
Master M1 MOSIG, Grenoble Universities
TD 1: Memory Management 1

Arnaud Legrand, Benjamin Negrevergne

2010

I. Stack and Heap

The stack and the heap are two distinct memory segments defined by the system for each process
so that they can store their data.

• The stack is used to automatically allocate memory for the variables defined within func-
tions. Their size is known at compile time and for such variables, memory is automatically
reserved when the program enter the functions and released when the program leaves the
function. It is thus used for temporary storage of information and the use of this information
is restricted to the function where they are defined.

• The heap is used to store data that will need to be visible across function calls or whose
size is unknown at compile time. Memory management (allocation and deallocation) is the
responsibility of the user.

Read the following code and try to figure out in which segment (stack or heap) each variable is
allocated:

#include <stdio.h>

int min(int a, int b, int c){
int tmp_min;
tmp_min = a <= b ? a : b;
tmp_min = tmp_min <= c ? tmp_min : c;
return tmp_min;

}

int main(int argc, char *argv[]){
int min_val = min(3, 7, 5);
printf("The min is: %d\n", min_val);
exit(0);

}

1

Question I.1: In which memory segment are the variables a, b and c allocated ? When is the
memory allocated to them released ? What about the tmp_min variable ?

Let us now consider the following code:

int vect_sum(int *v1, int *v2, int size){
int *r, i;
r = malloc(sizeof(int) * size);
for(i = 0; i < size; i++){

r[i] = v1[i] + v2[i];
}
return r;

}

int main(){
int v1[] = {1, 2, 4, 7};
int v2[] = {3, 4, 9, 2};

int *p_result = vect_sum(v1, v2, 4);
print_vect(result, size); /* prints the content of the given vector */
exit(0);

}

Question I.2: What value is contained by the r variable after the call to malloc() inside the
vect_sum() function ? In which memory segment is this value stored ?

Question I.3: What is the exact meaning of the affectation: r[i] = v1[i] + v2[i]; ? This
affectation results in a write instruction. In this program, in which memory segment does
this write happen ?

Question I.4: Write a similar program that behaves in the same way without using malloc().
You may need to change the parameters of the sum_vect() function.

Question I.5: What is the life cycle of a stack-allocated variable ? of a heap-allocated variable ?

II. Illegal memory accesses

Correct memory allocation is required so that each variable lies at distinct places in the memory
space. Pointers are very useful, but they also enable to access memory addresses that have not
been allocated. If a program tries to read or write at a such address, it may be killed by the system
with the SEGFAULT signal. A memory access that may raise a SEGFAULT signal is called an illegal
memory access.

Question II.1: Which one of theses lines are illegal memory accesses ? Which one would raise
a warning using a “picky” compiler ? (One declared variable is available for the following
lines).

2

1. int *pa = 2;

2. *pa = 34;

3. int b = 4, *pb = &b;

4. *pb = 5;

5. int *pc;

6. printf("pc is equal to %d\n", pc);

7. printf("*pc is equal to %d\n", *pc);

8. pc = malloc(sizeof(int));

9. *pc = -2;

10. pa = pc;

11. free(pa);

12. pc = -4;

III. Recursive functions

int power(int a, int n){
if(n != 0)
return power(a * a, n - 1);

else
return 1;

}

Question III.1: Make a rough estimation of the memory needed to compute power(2, 3).
Where is this memory allocated ?

Question III.2: Write and run a small program to validate your estimation. If your estimation
was wrong, figure out why.

IV. Valgrind

valgrind is a tool used to track runtime errors. It simulates the execution of a given executable
inside a virtual system, and records any illegal access to the memory as well as other errors.

Retreive and extract the archive at mandelbrot: negreveb/ens/2010/mosig/ex.tgz. The
programs given in this archive are all syntactically correct C programs, but they all misbehave at
run time.

Question IV.1: Use valgrind to find and solve errors in the given C files. valgrind is usually
very verbose, write down the valgrind errors that helped you and explain their exact
meaning. (If programs are compiled with the -g option valgrind is able to provide the source
file name and line where the error happened). You may also find the following options useful
:

3

• –db-attach=yes (to launch gdb as soon as there is a problem);

• –leak-check=yes (to get information about memory that was never freed and are defi-
nitely lost);

• –show-reachable=yes (to get information about memory that was never freed and are
still reachable).

4

