
CPU Scheduling
Operating System Design – MOSIG 1

Instructor: Arnaud Legrand
Class Assistants: Benjamin Negrevergne, Sascha Hunold

November 16, 2010

A. Legrand CPU Scheduling — 1 / 45

CPU Scheduling

I The scheduling problem:
I Have K jobs ready to run
I Have N ≥ 1 CPUs
I Which jobs to assign to which CPU(s)

I When do we make decision?

A. Legrand CPU Scheduling — 2 / 45

CPU Scheduling

I Scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Exits

I Non-preemptive schedules use 1 & 4 only

I Preemptive schedulers run at all four points

A. Legrand CPU Scheduling — 3 / 45

Criteria: Intuitive Notion

CPU utilization (max) percent usage of CPU.

Only useful computations
(mix CPU, I/O; preemption overhead).

Throughput (max) average number of tasks that complete their execution
per time-unit.

Turnaround Time/Response Time/Flow (min) amount of time it takes be-
tween the task arrival and its completion.

Waiting Time (min) amount of time spent waiting for being executed.

Slowdown/Stretch (min) slowdown factor encountered by a task relative
to the time it would take on an unloaded system.

The previous quantities are task- or CPU-centric and need to be aggregated
into a single objective function.

I max (the worst case)
I average: arithmetic (i.e. sum)

or something else. . .

I variance (to be “fair” between
the tasks).

A. Legrand CPU Scheduling — 4 / 45

Criteria: Intuitive Notion

CPU utilization (max) percent usage of CPU. Only useful computations
(mix CPU, I/O; preemption overhead).

Throughput (max) average number of tasks that complete their execution
per time-unit.

Turnaround Time/Response Time/Flow (min) amount of time it takes be-
tween the task arrival and its completion.

Waiting Time (min) amount of time spent waiting for being executed.

Slowdown/Stretch (min) slowdown factor encountered by a task relative
to the time it would take on an unloaded system.

The previous quantities are task- or CPU-centric and need to be aggregated
into a single objective function.

I max (the worst case)
I average: arithmetic (i.e. sum)

or something else. . .

I variance (to be “fair” between
the tasks).

A. Legrand CPU Scheduling — 4 / 45

Criteria: Intuitive Notion

CPU utilization (max) percent usage of CPU. Only useful computations
(mix CPU, I/O; preemption overhead).

Throughput (max) average number of tasks that complete their execution
per time-unit.

Turnaround Time/Response Time/Flow (min) amount of time it takes be-
tween the task arrival and its completion.

Waiting Time (min) amount of time spent waiting for being executed.

Slowdown/Stretch (min) slowdown factor encountered by a task relative
to the time it would take on an unloaded system.

The previous quantities are task- or CPU-centric and need to be aggregated
into a single objective function.

I max (the worst case)
I average: arithmetic (i.e. sum)

or something else. . .

I variance (to be “fair” between
the tasks).

A. Legrand CPU Scheduling — 4 / 45

Criteria: Intuitive Notion

CPU utilization (max) percent usage of CPU. Only useful computations
(mix CPU, I/O; preemption overhead).

Throughput (max) average number of tasks that complete their execution
per time-unit.

Turnaround Time/Response Time/Flow (min) amount of time it takes be-
tween the task arrival and its completion.

Waiting Time (min) amount of time spent waiting for being executed.

Slowdown/Stretch (min) slowdown factor encountered by a task relative
to the time it would take on an unloaded system.

The previous quantities are task- or CPU-centric and need to be aggregated
into a single objective function.

I max (the worst case)
I average: arithmetic (i.e. sum)

or something else. . .

I variance (to be “fair” between
the tasks).

A. Legrand CPU Scheduling — 4 / 45

Criteria: Classical Definitions

A given task Ti is defined by:
I processing time pi

I release date ri

I (number of required processors qi)

I (deadline di)

Then, depending on the scheduling decision, we obtain its comple-
tion time Ci

Completion Time

I Makespan: Cmax = maxi Ci

This metric is relevant when scheduling a single application
(made of several synchronized process).

I Total (or average) Completion Time: SC =
∑

i Ci

A. Legrand CPU Scheduling — 5 / 45

Criteria: Classical Definitions

A given task Ti is defined by:
I processing time pi

I release date ri

I (number of required processors qi)

I (deadline di)

Then, depending on the scheduling decision, we obtain its comple-
tion time Ci

Response Time
Fi = Ci − ri

I Maximum Flow Time: Fmax = maxi Fi

I Total Completion Time: SF =
∑

i Fi = SC −
∑

i ri

A. Legrand CPU Scheduling — 5 / 45

Criteria: Classical Definitions

A given task Ti is defined by:
I processing time pi

I release date ri

I (number of required processors qi)

I (deadline di)

Then, depending on the scheduling decision, we obtain its comple-
tion time Ci

Waiting Time
Wi = Ci − ri − pi

I Maximum Waiting time: Wmax = maxi Wi

I Total Waiting Time: SW =
∑

i Wi = SF −
∑

i pi

A. Legrand CPU Scheduling — 5 / 45

Criteria: Classical Definitions

A given task Ti is defined by:
I processing time pi

I release date ri

I (number of required processors qi)

I (deadline di)

Then, depending on the scheduling decision, we obtain its comple-
tion time Ci

Slowdown

Si =
Ci − ri

pi

I Maximum Stretch: Smax = maxi Si

I Total Stretch: SS =
∑

i Si

A. Legrand CPU Scheduling — 5 / 45

Outline

Optimizing largest response time

Optimizing throughput

Optimizing average response time

Avoiding starvation

Coming up with a compromise

Recap

A. Legrand CPU Scheduling — 6 / 45

Outline

Optimizing largest response time

Optimizing throughput

Optimizing average response time

Avoiding starvation

Coming up with a compromise

Recap

A. Legrand CPU Scheduling Optimizing largest response time — 7 / 45

Let’s play with a small example

We wish to find a schedule (possibly using preemption) that has the
smallest possible max flow (maxi Ci − ri).

First-Come First-Served seems to be optimal.

A. Legrand CPU Scheduling Optimizing largest response time — 8 / 45

Let’s play with a small example

We wish to find a schedule (possibly using preemption) that has the
smallest possible max flow (maxi Ci − ri = 12).

First-Come First-Served seems to be optimal.

A. Legrand CPU Scheduling Optimizing largest response time — 8 / 45

FCFS is optimal: sketch of the proof

Proof:

I Let us consider an optimal schedule σ. Let us assume that
there are two jobs A and B that are not scheduled according
to the FCFS policy, i.e. rB < rA and CA < CB .

I By scheduling B before A, we do not increase max(CA−rA,CB−
rB).

I Therefore, by scheduling A and B according to the FCFS policy,
we get a new schedule σ′ that is still optimal.

I By proceeding similarly for all pairs of jobs, we prove that FCFS
is optimal. �

rB rA CA CB

A. Legrand CPU Scheduling Optimizing largest response time — 9 / 45

FCFS is optimal: sketch of the proof

Proof:

I Let us consider an optimal schedule σ. Let us assume that
there are two jobs A and B that are not scheduled according
to the FCFS policy, i.e. rB < rA and CA < CB .

I By scheduling B before A, we do not increase max(CA−rA,CB−
rB).

I Therefore, by scheduling A and B according to the FCFS policy,
we get a new schedule σ′ that is still optimal.

I By proceeding similarly for all pairs of jobs, we prove that FCFS
is optimal. �

rB rA CACB

A. Legrand CPU Scheduling Optimizing largest response time — 9 / 45

FCFS is optimal: sketch of the proof

Proof:

I Let us consider an optimal schedule σ. Let us assume that
there are two jobs A and B that are not scheduled according
to the FCFS policy, i.e. rB < rA and CA < CB .

I By scheduling B before A, we do not increase max(CA−rA,CB−
rB).

I Therefore, by scheduling A and B according to the FCFS policy,
we get a new schedule σ′ that is still optimal.

I By proceeding similarly for all pairs of jobs, we prove that FCFS
is optimal. �

rB rA CACB

A. Legrand CPU Scheduling Optimizing largest response time — 9 / 45

FCFS is optimal: sketch of the proof

Proof:

I Let us consider an optimal schedule σ. Let us assume that
there are two jobs A and B that are not scheduled according
to the FCFS policy, i.e. rB < rA and CA < CB .

I By scheduling B before A, we do not increase max(CA−rA,CB−
rB).

I Therefore, by scheduling A and B according to the FCFS policy,
we get a new schedule σ′ that is still optimal.

I By proceeding similarly for all pairs of jobs, we prove that FCFS
is optimal. �

rB rA CACB

A. Legrand CPU Scheduling Optimizing largest response time — 9 / 45

FCFS is optimal: sketch of the proof

Proof:

I Let us consider an optimal schedule σ. Let us assume that
there are two jobs A and B that are not scheduled according
to the FCFS policy, i.e. rB < rA and CA < CB .

I By scheduling B before A, we do not increase max(CA−rA,CB−
rB).

I Therefore, by scheduling A and B according to the FCFS policy,
we get a new schedule σ′ that is still optimal.

I By proceeding similarly for all pairs of jobs, we prove that FCFS
is optimal. �

We do not even need to preempt jobs! Note that when you have
more than one processor, things are more complicated:

Bad News NP-complete with no preemption.

Good news Polynomial algorithm with preemption but it is much
more complicated than FCFS.

A. Legrand CPU Scheduling Optimizing largest response time — 9 / 45

FCFS: other criteria
I The FCFS scheduling policy is non-clairvoyant, easy to

implement, and does not use preemption.

I The FCFS policy is optimal for minimizing max Fi . It min-
imizes the “response time”!
Yet, would you say it is “reactive” ?

I Run jobs in order that they arrive
I E.g.., Say P1 needs 24 sec, while P2 and P3 need 3.
I Say P2, P3 arrived immediately after P1, get:

I Throughput: 3 jobs / 30 sec = 0.1 jobs/sec
I Turnaround Time: P1 : 24, P2 : 27, P3 : 30

I Average TT: (24 + 27 + 30)/3 = 27

I Can we do better?

A. Legrand CPU Scheduling Optimizing largest response time — 10 / 45

FCFS continued

I We would accept to sacrifice some jobs to get something
more “reactive”.

I Suppose we scheduled P2, P3, then P1

I Would get:

I Throughput: 3 jobs / 30 sec = 0.1 jobs/sec
I Turnaround time: P1 : 30, P2 : 3, P3 : 6

I Average TT: (30 + 3 + 6)/3 = 13 – much less than 27

I Lesson: scheduling algorithm can reduce TT

I What about throughput?

A. Legrand CPU Scheduling Optimizing largest response time — 11 / 45

Outline

Optimizing largest response time

Optimizing throughput

Optimizing average response time

Avoiding starvation

Coming up with a compromise

Recap

A. Legrand CPU Scheduling Optimizing throughput — 12 / 45

View CPU and I/O devices the same

I CPU is one of several devices needed by users’ jobs
I CPU runs compute jobs, Disk drive runs disk jobs, etc.
I With network, part of job may run on remote CPU

I Scheduling 1-CPU system with n I/O devices like schedul-
ing asymmetric n + 1-CPU multiprocessor

I Result: all I/O devices + CPU busy =⇒ n+1 fold speedup!

I Overlap them just right? throughput will be almost doubled

A. Legrand CPU Scheduling Optimizing throughput — 13 / 45

Bursts of computation & I/O

I Jobs contain I/O and computation
I Bursts of computation
I Then must wait for I/O

I To Maximize throughput
I Must maximize CPU utilization
I Also maximize I/O device utilization

I How to do?
I Overlap I/O & computation from multiple

jobs
I Means response time very important for

I/O-intensive jobs: I/O device will be idle
until job gets small amount of CPU to is-
sue next I/O request

A. Legrand CPU Scheduling Optimizing throughput — 14 / 45

Histogram of CPU-burst times

I What does this mean for FCFS?

A. Legrand CPU Scheduling Optimizing throughput — 15 / 45

FCFS Convoy effect

I CPU bound jobs will hold CPU until exit or I/O
(but I/O rare for CPU-bound thread)

I long periods where no I/O requests issued, and CPU held
I Result: poor I/O device utilization

I Example: one CPU-bound job, many I/O bound
I CPU bound runs (I/O devices idle)
I CPU bound blocks
I I/O bound job(s) run, quickly block on I/O
I CPU bound runs again
I I/O completes
I CPU bound job continues while I/O devices idle

I Simple hack: run process whose I/O completed?
I What is a potential problem?

A. Legrand CPU Scheduling Optimizing throughput — 16 / 45

Outline

Optimizing largest response time

Optimizing throughput

Optimizing average response time

Avoiding starvation

Coming up with a compromise

Recap

A. Legrand CPU Scheduling Optimizing average response time — 17 / 45

Let’s play with a small example

We wish to find a schedule (possibly using preemption) that has the
smallest possible sum flow (

∑
i Ci − ri).

Shortest Remaining Processing Timer first seems to be optimal.

A. Legrand CPU Scheduling Optimizing average response time — 18 / 45

Let’s play with a small example

We wish to find a schedule (possibly using preemption) that has the
smallest possible sum flow (

∑
i Ci − ri = 28).

Shortest Remaining Processing Timer first seems to be optimal.

A. Legrand CPU Scheduling Optimizing average response time — 18 / 45

SRPT is optimal: sketch of the proof

I Let us consider an optimal schedule σ. Let us assume that
there are two jobs A and B that are not scheduled according to
the SRPT policy, i.e. CA < CB and at some point there were
more work to finish A than to finish B.

I By scheduling B before A, we strictly decrease CA + CB and
thus we strictly decrease the total flow.

I Therefore, the original schedule was not optimal! The only
optimal schedule is thus SRPT. �

Decision CA CB

A. Legrand CPU Scheduling Optimizing average response time — 19 / 45

SRPT is optimal: sketch of the proof

I Let us consider an optimal schedule σ. Let us assume that
there are two jobs A and B that are not scheduled according to
the SRPT policy, i.e. CA < CB and at some point there were
more work to finish A than to finish B.

I By scheduling B before A, we strictly decrease CA + CB and
thus we strictly decrease the total flow.

I Therefore, the original schedule was not optimal! The only
optimal schedule is thus SRPT. �

Decision CB CA

A. Legrand CPU Scheduling Optimizing average response time — 19 / 45

SRPT is optimal: sketch of the proof

I Let us consider an optimal schedule σ. Let us assume that
there are two jobs A and B that are not scheduled according to
the SRPT policy, i.e. CA < CB and at some point there were
more work to finish A than to finish B.

I By scheduling B before A, we strictly decrease CA + CB and
thus we strictly decrease the total flow.

I Therefore, the original schedule was not optimal! The only
optimal schedule is thus SRPT. �

Decision CB CA

A. Legrand CPU Scheduling Optimizing average response time — 19 / 45

SRPT is optimal: sketch of the proof

I Let us consider an optimal schedule σ. Let us assume that
there are two jobs A and B that are not scheduled according to
the SRPT policy, i.e. CA < CB and at some point there were
more work to finish A than to finish B.

I By scheduling B before A, we strictly decrease CA + CB and
thus we strictly decrease the total flow.

I Therefore, the original schedule was not optimal! The only
optimal schedule is thus SRPT. �

Here, preemption is required!

Bad News NP-complete for multiple processors or with no preemp-
tion.

Good News Algorithm with logarithmic competitive ratio on multi-
ple processors exists.

A. Legrand CPU Scheduling Optimizing average response time — 19 / 45

Comments

I Scheduling small jobs first is good for “reactivity” but it requires
to know the size of the jobs (i.e. clairvoyant).

I Scheduling small jobs first is good for the average response time
but some jobs may be left behind. . .

I Do you know an algorithm where job cannot starve?

A. Legrand CPU Scheduling Optimizing average response time — 20 / 45

Comments

I Scheduling small jobs first is good for “reactivity” but it requires
to know the size of the jobs (i.e. clairvoyant).

I Scheduling small jobs first is good for the average response time
but large jobs may be left behind. . .

I Do you know an algorithm where job cannot starve?

A. Legrand CPU Scheduling Optimizing average response time — 20 / 45

FCFS is ∆-competitive for
∑

Fi

∆: ratio of the sizes of the largest and smallest job.
Let’s prove FCFS is at most ∆-competitive.

FCFS is at exactly ∆-competitive.

A. Legrand CPU Scheduling Optimizing average response time — 21 / 45

FCFS is ∆-competitive for
∑

Fi

∆: ratio of the sizes of the largest and smallest job.
Let’s prove FCFS is at most ∆-competitive.

n

 ∆

n2

1/n

FCFS is at exactly ∆-competitive.

A. Legrand CPU Scheduling Optimizing average response time — 21 / 45

FCFS is ∆-competitive for
∑

Fi

∆: ratio of the sizes of the largest and smallest job.
Let’s prove FCFS is at most ∆-competitive.

n

 ∆

n2

1/n

SFFCFS = ∆ + ...+ n∆ + n2

(
1 + n∆− 1

n

)
=

2n3∆ + n2(2 + ∆) + n(∆− 2)

2

FCFS is at exactly ∆-competitive.

A. Legrand CPU Scheduling Optimizing average response time — 21 / 45

FCFS is ∆-competitive for
∑

Fi

∆: ratio of the sizes of the largest and smallest job.
Let’s prove FCFS is at most ∆-competitive.

n

 ∆

n2

1/n
SFSRPT = n2 × 1 + (n2 + ∆) + ...+ (n2 + n∆)

= n3 + n2 +
n(n + 1)

2
∆

FCFS is at exactly ∆-competitive.

A. Legrand CPU Scheduling Optimizing average response time — 21 / 45

FCFS is ∆-competitive for
∑

Fi

∆: ratio of the sizes of the largest and smallest job.
Let’s prove FCFS is at most ∆-competitive.

n

 ∆

n2

1/n

%FCFS(∆) >
SFFCFS

SFSRPT
=

2n3∆+n2(2+∆)+n(∆−2)
2

n3 + n2 + n(n+1)
2 ∆

=
2n3∆ + n2(2 + ∆) + n(∆− 2)

2n3 + 2n2 + n(n + 1)∆
−−−−→
n→+∞

∆

FCFS is at exactly ∆-competitive.

A. Legrand CPU Scheduling Optimizing average response time — 21 / 45

FCFS is ∆-competitive for
∑

Fi

∆: ratio of the sizes of the largest and smallest job.
Let’s prove FCFS is at most ∆-competitive.

n

 ∆

n2

1/n

%FCFS(∆) >
SFFCFS

SFSRPT
=

2n3∆+n2(2+∆)+n(∆−2)
2

n3 + n2 + n(n+1)
2 ∆

=
2n3∆ + n2(2 + ∆) + n(∆− 2)

2n3 + 2n2 + n(n + 1)∆
−−−−→
n→+∞

∆

FCFS is at exactly ∆-competitive.

A. Legrand CPU Scheduling Optimizing average response time — 21 / 45

Optimizing the average response time with no starvation?

Theorem
Consider any online algorithm whose competitive ratio for average
flow minimization satisfies %(∆) < ∆.

There exists for this algorithm a sequence of jobs leading to
starvation, and for which the maximum flow can be as far as we
want from the optimal maximum flow.

The starvation issue is inherent to the optimization of the average
response time.
Still, we would like something “reactive” and we like the idea that
short jobs have a higher priority.

A. Legrand CPU Scheduling Optimizing average response time — 22 / 45

Recap SJF/SRPT limitations

I The previous analysis relies on a model (i.e. a simplifica-
tion of reality) and is thus limited.

I Actually, in practice, doesn’t always minimize average
turnaround time

I Example where turnaround time might be suboptimal?

If applications are made of jobs/tasks that have dependencies
(synchronizations), if more than 1 CPU, . . .

I Can lead to unfairness or starvation

I In practice, can’t actually predict the future
I But can estimate CPU burst length based on past

I Exponentially weighted average a good idea
I tn actual length of proc’s nth CPU burst
I τn+1 estimated length of proc’s n + 1st

I Choose parameter α where 0 < α ≤ 1
I Let τn+1 = αtn + (1− α)τn

A. Legrand CPU Scheduling Optimizing average response time — 23 / 45

Recap SJF/SRPT limitations

I The previous analysis relies on a model (i.e. a simplifica-
tion of reality) and is thus limited.

I Actually, in practice, doesn’t always minimize average
turnaround time

I Example where turnaround time might be suboptimal?
If applications are made of jobs/tasks that have dependencies
(synchronizations), if more than 1 CPU, . . .

I Can lead to unfairness or starvation

I In practice, can’t actually predict the future
I But can estimate CPU burst length based on past

I Exponentially weighted average a good idea
I tn actual length of proc’s nth CPU burst
I τn+1 estimated length of proc’s n + 1st

I Choose parameter α where 0 < α ≤ 1
I Let τn+1 = αtn + (1− α)τn

A. Legrand CPU Scheduling Optimizing average response time — 23 / 45

Recap SJF/SRPT limitations

I The previous analysis relies on a model (i.e. a simplifica-
tion of reality) and is thus limited.

I Actually, in practice, doesn’t always minimize average
turnaround time

I Example where turnaround time might be suboptimal?
If applications are made of jobs/tasks that have dependencies
(synchronizations), if more than 1 CPU, . . .

I Can lead to unfairness or starvation

I In practice, can’t actually predict the future
I But can estimate CPU burst length based on past

I Exponentially weighted average a good idea
I tn actual length of proc’s nth CPU burst
I τn+1 estimated length of proc’s n + 1st

I Choose parameter α where 0 < α ≤ 1
I Let τn+1 = αtn + (1− α)τn

A. Legrand CPU Scheduling Optimizing average response time — 23 / 45

Exp. weighted average example

A. Legrand CPU Scheduling Optimizing average response time — 24 / 45

Outline

Optimizing largest response time

Optimizing throughput

Optimizing average response time

Avoiding starvation

Coming up with a compromise

Recap

A. Legrand CPU Scheduling Avoiding starvation — 25 / 45

Round robin (RR) scheduling

I Solution to fairness and starvation
I Preempt job after some time slice or quantum
I When preempted, move to back of FIFO queue
I (Most systems do some flavor of this)

I Advantages:
I Fair allocation of CPU across jobs
I Low average waiting time when job lengths vary
I Good for responsiveness if small number of jobs

I Disadvantages?

A. Legrand CPU Scheduling Avoiding starvation — 26 / 45

RR disadvantages

I Varying sized jobs are good
. . . but what about same-sized jobs?

I Assume 2 jobs of time=100 each:

I What is average completion time?
I How does that compare to FCFS?

I In the previous algorithms (FCFS, SRPT), we have never
produced a schedule with . . .A . . .B . . .A . . .B Intu-
itively alternating jobs is not a good idea for minimizing
completion time.

I Preemption should not be blindly used to ensure fairness.
It should help to deal with the online non-clairvoyant set-
ting.

A. Legrand CPU Scheduling Avoiding starvation — 27 / 45

Context switch costs
I What is the cost of a context switch? (recall from previ-

ous lectures)

I Brute CPU time cost in kernel
I Save and restore resisters, etc.
I Switch address spaces (expensive instructions)

I Indirect costs: cache, buffer cache, & TLB misses

A. Legrand CPU Scheduling Avoiding starvation — 28 / 45

Context switch costs
I What is the cost of a context switch? (recall from previ-

ous lectures)

I Brute CPU time cost in kernel
I Save and restore resisters, etc.
I Switch address spaces (expensive instructions)

I Indirect costs: cache, buffer cache, & TLB misses

A. Legrand CPU Scheduling Avoiding starvation — 28 / 45

Time quantum

I How to pick quantum?
I Want much larger than context switch cost
I Majority of bursts should be less than quantum
I But not so large system reverts to FCFS

I Typical values: 10–100 msec

A. Legrand CPU Scheduling Avoiding starvation — 29 / 45

Turnaround time vs. quantum

A. Legrand CPU Scheduling Avoiding starvation — 30 / 45

Two-level scheduling

I Switching to swapped out process very expensive
I Swapped out process has most pages on disk
I Will have to fault them all in while running
I One disk access costs ∼10ms. On 1GHz machine, 10ms = 10

million cycles!

I Context-switch-cost aware scheduling
I Run in-core subset for “a while”
I Then swap some between disk and memory

I How to pick subset? How to define “a while”?
I View as scheduling memory before CPU
I Swapping in process is cost of memory “context switch”
I So want “memory quantum” much larger than swapping cost

A. Legrand CPU Scheduling Avoiding starvation — 31 / 45

Outline

Optimizing largest response time

Optimizing throughput

Optimizing average response time

Avoiding starvation

Coming up with a compromise

Recap

A. Legrand CPU Scheduling Coming up with a compromise — 32 / 45

Priority scheduling

I Associate a numeric priority with each process
I E.g., smaller number means higher priority (Unix/BSD)
I Or smaller number means lower priority (Pintos)

I Give CPU to the process with highest priority
I Can be done preemptively or non-preemptively

I Note SJF is a priority scheduling where priority is the
predicted next CPU burst time

I Starvation – low priority processes may never execute
I Solution?

I Aging - increase a process’s priority as it waits

A. Legrand CPU Scheduling Coming up with a compromise — 33 / 45

http://www.scs.stanford.edu/10wi-cs140/pintos/pintos_2.html#SEC26

Priority scheduling

I Associate a numeric priority with each process
I E.g., smaller number means higher priority (Unix/BSD)
I Or smaller number means lower priority (Pintos)

I Give CPU to the process with highest priority
I Can be done preemptively or non-preemptively

I Note SJF is a priority scheduling where priority is the
predicted next CPU burst time

I Starvation – low priority processes may never execute
I Solution?

I Aging - increase a process’s priority as it waits

A. Legrand CPU Scheduling Coming up with a compromise — 33 / 45

http://www.scs.stanford.edu/10wi-cs140/pintos/pintos_2.html#SEC26

Multilevel feeedback queues (BSD)

I Every runnable process on one of 32 run queues
I Kernel runs process on highest-priority non-empty queue
I Round-robins among processes on same queue

I Process priorities dynamically computed
I Processes moved between queues to reflect priority changes
I If a process gets higher priority than running process, run it

I Idea: Favor interactive jobs that use less CPU

A. Legrand CPU Scheduling Coming up with a compromise — 34 / 45

Process priority

I p nice – user-settable weighting factor
I p estcpu – per-process estimated CPU usage

I Incremented whenever timer interrupt found proc. running
I Decayed every second while process runnable

p estcpu←
(

2 · load
2 · load + 1

)
p estcpu + p nice

I Load is sampled average of length of run queue plus short-term
sleep queue over last minute

I Run queue determined by p usrpri/4

p usrpri← 50 +
(p estcpu

4

)
+ 2 · p nice

(value clipped if over 127)

A. Legrand CPU Scheduling Coming up with a compromise — 35 / 45

Sleeping process increases priority

I p estcpu not updated while asleep
I Instead p slptime keeps count of sleep time

I When process becomes runnable

p estcpu←
(

2 · load
2 · load + 1

)p slptime

× p estcpu

I Approximates decay ignoring nice and past loads

I These are uggly hacks.
I The BSD time quantum: 1/10 sec (since ∼1980)
I Empirically longest tolerable latency
I Computers now faster, but job queues also shorter

A. Legrand CPU Scheduling Coming up with a compromise — 36 / 45

Limitations of BSD scheduler

I Hard to have isolation / prevent interference
I Priorities are absolute

I Can’t donate priority (e.g., to server on RPC)
I No flexible control

I E.g., In monte carlo simulations, error is 1/sqrt(N) after N trials
I Want to get quick estimate from new computation
I Leave a bunch running for a while to get more accurate results

I Multimedia applications
I Often fall back to degraded quality levels depending on resources
I Want to control quality of different streams

A. Legrand CPU Scheduling Coming up with a compromise — 37 / 45

Real-time scheduling

I Two categories:
I Soft real time—miss deadline and CD will sound funny
I Hard real time—miss deadline and plane will crash

I System must handle periodic and aperiodic events
I E.g., procs A, B, C must be scheduled every 100, 200, 500 msec,

require 50, 30, 100 msec respectively

I Schedulable if
∑ CPU

period
≤ 1 (not counting switch time)

I Variety of scheduling strategies
I E.g., first deadline first (works if schedulable)

I Linux is finaly slightly moving from priority scheduling to
deadline scheduling

A. Legrand CPU Scheduling Coming up with a compromise — 38 / 45

Multiprocessor scheduling issues

I Must decide on more than which processes to run
I Must decide on which CPU to run which process

I Moving between CPUs has costs
I More cache misses, depending on arch more TLB misses too

I Affinity scheduling—try to keep threads on same CPU

I But also prevent load imbalances
I Do cost-benefit analysis when deciding to migrate

A. Legrand CPU Scheduling Coming up with a compromise — 39 / 45

Multiprocessor scheduling (cont)

I Want related processes scheduled together
I Good if threads access same resources (e.g., cached files)
I Even more important if threads communicate often,

otherwise must context switch to communicate

I Gang scheduling—schedule all CPUs synchronously
I With synchronized quanta, easier to schedule related processes/threads

together

A. Legrand CPU Scheduling Coming up with a compromise — 40 / 45

Outline

Optimizing largest response time

Optimizing throughput

Optimizing average response time

Avoiding starvation

Coming up with a compromise

Recap

A. Legrand CPU Scheduling Recap — 41 / 45

CPU Scheduling Recap

I Goal: High throughput
I Minimize context switches to avoid wasting CPU, TLB misses,

cache misses, even page faults.

I Goal: Low latency
I People typing at editors want fast response
I Network services can be latency-bound, not CPU-bound

I Algorithms
I Round-robin
I Priority scheduling
I Shortest process next (if you can estimate it)
I Fair-Share Schedule (try to be fair at level of users, not pro-

cesses)
I Fancy combinations of the above

A. Legrand CPU Scheduling Recap — 42 / 45

The universality of scheduling

I General problem: Let m requests share n resources
I Always same issues: fairness, prioritizing, optimization

I Disk arm: which read/write request to do next?
I Optimal: close requests = faster
I Fair: don’t starve far requests

I Memory scheduling: whom to take page from?
I Optimal: past=future? take from least-recently-used
I Fair: equal share of memory

I Printer: what job to print?
I People = fairness paramount: uses FIFO rather than SJF
I Use “admission control” to combat long jobs

A. Legrand CPU Scheduling Recap — 43 / 45

How to allocate resources

I Space sharing (sometimes): split up. When to stop?
I Time-sharing (always): how long do you give out piece?

I Pre-emptable (CPU, memory) vs. non-preemptable (locks, files,
terminals)

A. Legrand CPU Scheduling Recap — 44 / 45

Postscript

I In principle, scheduling decisions can be arbitrary & shouldn’t
affect program’s results

I Good, since rare that “the best” schedule can be calculated

I In practice, schedule does affect correctness
I Soft real time (e.g., mpeg or other multimedia) common
I Or after 10s of seconds, users will give up on web server

I Unfortunately, algorithms strongly affect system through-
put, turnaround time, and response time

I The best schemes are adaptive. To do absolutely best
we’d have to predict the future.

I Most current algorithms tend to give the highest priority to the
processes that need the least CPU time

I Scheduling has gotten increasingly ad hoc over the years. 1960s
papers very math heavy, now mostly “tweak and see”

A. Legrand CPU Scheduling Recap — 45 / 45

	Optimizing largest response time
	Optimizing throughput
	Optimizing average response time
	Avoiding starvation
	Coming up with a compromise
	Recap

