
Synchronization
Operating System Design – MOSIG 1

Instructor: Arnaud Legrand
Class Assistants: Benjamin Negrevergne, Sascha Hunold

November 23, 2010

A. Legrand Synchronization — 1 / 60



Outline

Mutual exclusion

Mutex: locks and conditions

Implementing Synchronization
Interrupts
Spinlocks
Kernel Synchronization

Classical Synchronization Problems

Other Synchronization Structures
Semaphores
Monitors

Deadlocks
Prevention
Detection

A. Legrand Synchronization Mutual exclusion — 2 / 60



Surprising Interleaving

int count = 0;

void loop(void *ignored) {

int i ;

for (i=0 ; i<10 ; i++)

count++;

}

int main () {

tid id = thread_create (loop, NULL);

loop (); thread_join (id);

printf("%d",count);

}

I What is the output of this program ?

Any value between 2 and 20

I Furthermore, compiler and hardware optimizations break
sequential consistency

; Need to protect such data and critical sections

A. Legrand Synchronization Mutual exclusion — 3 / 60



Surprising Interleaving

int count = 0;

void loop(void *ignored) {

int i ;

for (i=0 ; i<10 ; i++)

count++;

}

int main () {

tid id = thread_create (loop, NULL);

loop (); thread_join (id);

printf("%d",count);

}

I What is the output of this program ?
Any value between 2 and 20

I Furthermore, compiler and hardware optimizations break
sequential consistency

; Need to protect such data and critical sections

A. Legrand Synchronization Mutual exclusion — 3 / 60



Surprising Interleaving

int count = 0;

void loop(void *ignored) {

int i ;

for (i=0 ; i<10 ; i++)

count++;

}

int main () {

tid id = thread_create (loop, NULL);

loop (); thread_join (id);

printf("%d",count);

}

I What is the output of this program ?
Any value between 2 and 20

I Furthermore, compiler and hardware optimizations break
sequential consistency

; Need to protect such data and critical sections

A. Legrand Synchronization Mutual exclusion — 3 / 60



Problem Statement

I n processes all competing to use some shared data

I Each process has a code segment, called critical section, in
which the shared data is accessed

Problem: Ensure mutual exclusion
When one process is executing in its critical section, no other
process is allowed to execute in its critical section.

do {

entry section()

critical section
exit section()

remainder section

} while (1);

A. Legrand Synchronization Mutual exclusion — 4 / 60



Desired Properties
I Mutual Exclusion

I Only one thread can be in critical section at a time
I Progress

I Say no process currently in critical section (C.S.)
I One of the processes trying to enter will eventually get in

I Bounded waiting
I Once a thread T starts trying to enter the critical section, there

is a bound on the number of times other threads get in
I Note progress vs. bounded waiting

I If no thread can enter C.S., don’t have progress
I If thread A waiting to enter C.S. while B repeatedly leaves and

re-enters C.S. ad infinitum, don’t have bounded waiting

do {

entry section()

critical section
exit section()

remainder section

} while (1);

A. Legrand Synchronization Mutual exclusion — 5 / 60



Desired Properties
I Mutual Exclusion

I Only one thread can be in critical section at a time
I Progress

I Say no process currently in critical section (C.S.)
I One of the processes trying to enter will eventually get in

I Bounded waiting
I Once a thread T starts trying to enter the critical section, there

is a bound on the number of times other threads get in
I Note progress vs. bounded waiting

I If no thread can enter C.S., don’t have progress
I If thread A waiting to enter C.S. while B repeatedly leaves and

re-enters C.S. ad infinitum, don’t have bounded waiting

do {

acquire lock

critical section
release lock

remainder section

} while (1);

A. Legrand Synchronization Mutual exclusion — 5 / 60



Outline

Mutual exclusion

Mutex: locks and conditions

Implementing Synchronization
Interrupts
Spinlocks
Kernel Synchronization

Classical Synchronization Problems

Other Synchronization Structures
Semaphores
Monitors

Deadlocks
Prevention
Detection

A. Legrand Synchronization Mutex: locks and conditions — 6 / 60



Mutexes

I Want to insulate programmer from implementing synchro-
nization primitives

I Thread packages typically provide mutexes:
void mutex init (mutex t *m, ...);
void mutex lock (mutex t *m);
int mutex trylock (mutex t *m);
void mutex unlock (mutex t *m);

I Only one thread acquires m at a time, others wait
I All global data should be protected by a mutex!

I OS kernels also need synchronization
I May or may not look like mutexes

A. Legrand Synchronization Mutex: locks and conditions — 7 / 60



Lock analogy

lock/unlock

shared data

A. Legrand Synchronization Mutex: locks and conditions — 8 / 60



Lock analogy

lock

unlock

shared data

synchronized
doors

A. Legrand Synchronization Mutex: locks and conditions — 8 / 60



Consumer Producer
mutex t mutex = MUTEX INITIALIZER;

void producer (void *ignored) {

for (;;) {

/* produce an item and put in

nextProduced */

while (count == BUFFER SIZE) {

/* Do nothing */

}

buffer [in] = nextProduced;

in = (in + 1) % BUFFER SIZE;

count++;

}

}

void consumer (void *ignored) {

for (;;) {

while (count == 0) {

/* Do nothing */

}

nextConsumed = buffer[out];

out = (out + 1) % BUFFER SIZE;

count--;

/* consume the item in

nextConsumed */

}

}

Dangerous because of data races

A. Legrand Synchronization Mutex: locks and conditions — 9 / 60



Consumer Producer with Locks
mutex t mutex = MUTEX INITIALIZER;

void producer (void *ignored) {

for (;;) {

/* produce an item and put in

nextProduced */

mutex lock (&mutex);

while (count == BUFFER SIZE) {

thread yield ();

}

buffer [in] = nextProduced;

in = (in + 1) % BUFFER SIZE;

count++;

mutex unlock (&mutex);

}

}

void consumer (void *ignored) {

for (;;) {

mutex lock (&mutex);

while (count == 0) {

thread yield ();

}

nextConsumed = buffer[out];

out = (out + 1) % BUFFER SIZE;

count--;

mutex unlock (&mutex);

/* consume the item in

nextConsumed */

}

}

Again...

What is “wrong” with this solution ?

A. Legrand Synchronization Mutex: locks and conditions — 9 / 60



Consumer Producer with Locks
mutex t mutex = MUTEX INITIALIZER;

void producer (void *ignored) {

for (;;) {

/* produce an item and put in

nextProduced */

mutex lock (&mutex);

while (count == BUFFER SIZE) {

mutex unlock (&mutex);

thread yield ();

mutex lock (&mutex);

}

buffer [in] = nextProduced;

in = (in + 1) % BUFFER SIZE;

count++;

mutex unlock (&mutex);

}

}

void consumer (void *ignored) {

for (;;) {

mutex lock (&mutex);

while (count == 0) {

mutex unlock (&mutex);

thread yield ();

mutex lock (&mutex);

}

nextConsumed = buffer[out];

out = (out + 1) % BUFFER SIZE;

count--;

mutex unlock (&mutex);

/* consume the item in

nextConsumed */

}

}

Again... What is “wrong” with this solution ?

A. Legrand Synchronization Mutex: locks and conditions — 9 / 60



Condition variables
I Busy-waiting in application is a bad idea

I Thread consumes CPU even when can’t make progress
I Unnecessarily slows other threads and processes

I Better to inform scheduler of which threads can run

I Typically done with condition variables
I void cond init (cond t *, ...);

I Initialize

I void cond wait (cond t *c, mutex t *m);
I Atomically unlock m and sleep until c signaled
I Then re-acquire m and resume executing

I void cond signal (cond t *c);
void cond broadcast (cond t *c);

I Wake one/all threads waiting on c

I A “condition variable” is a synchronization structure (a queue)
It is often associated to a “logical condition” (hence the
name)

A. Legrand Synchronization Mutex: locks and conditions — 10 / 60



Lock and Condition analogy

lock

unlock

synchronized
doors

shared data

A. Legrand Synchronization Mutex: locks and conditions — 11 / 60



Lock and Condition analogy

wait

signal

lock

unlock

synchronized
doors

shared data

A. Legrand Synchronization Mutex: locks and conditions — 11 / 60



Lock and Condition analogy

shared data

A. Legrand Synchronization Mutex: locks and conditions — 11 / 60



Improved producer
mutex t mutex = MUTEX INITIALIZER;

cond t nonempty = COND INITIALIZER;

cond t nonfull = COND INITIALIZER;

void producer (void *ignored) {

for (;;) {

/* produce an item and

put in nextProduced */

mutex lock (&mutex);

if (count == BUFFER SIZE)

cond wait (&nonfull, &mutex);

buffer [in] = nextProduced;

in = (in + 1) % BUFFER SIZE;

count++;

cond signal (&nonempty);

mutex unlock (&mutex);

}

}

void consumer (void *ignored) {

for (;;) {

mutex lock (&mutex);

if (count == 0)

cond wait (&nonempty, &mutex);

nextConsumed = buffer[out];

out = (out + 1) % BUFFER SIZE;

count--;

cond signal (&nonfull);

mutex unlock (&mutex);

/* consume the item

in nextConsumed */

}

}

Does it work with many readers and many writers?

A. Legrand Synchronization Mutex: locks and conditions — 12 / 60



Improved producer
mutex t mutex = MUTEX INITIALIZER;

cond t nonempty = COND INITIALIZER;

cond t nonfull = COND INITIALIZER;

void producer (void *ignored) {

for (;;) {

/* produce an item and

put in nextProduced */

mutex lock (&mutex);

while (count == BUFFER SIZE)

cond wait (&nonfull, &mutex);

buffer [in] = nextProduced;

in = (in + 1) % BUFFER SIZE;

count++;

cond signal (&nonempty);

mutex unlock (&mutex);

}

}

void consumer (void *ignored) {

for (;;) {

mutex lock (&mutex);

while (count == 0)

cond wait (&nonempty, &mutex);

nextConsumed = buffer[out];

out = (out + 1) % BUFFER SIZE;

count--;

cond signal (&nonfull);

mutex unlock (&mutex);

/* consume the item

in nextConsumed */

}

}

Always put a while around the waiting on a condition!

A. Legrand Synchronization Mutex: locks and conditions — 12 / 60



Improved producer
mutex t mutex = MUTEX INITIALIZER;

cond t nonempty = COND INITIALIZER;

cond t nonfull = COND INITIALIZER;

void producer (void *ignored) {

for (;;) {

/* produce an item and

put in nextProduced */

mutex lock (&mutex);

while (count == BUFFER SIZE)

cond wait (&nonfull, &mutex);

buffer [in] = nextProduced;

in = (in + 1) % BUFFER SIZE;

count++;

cond signal (&nonempty);

mutex unlock (&mutex);

}

}

void consumer (void *ignored) {

for (;;) {

mutex lock (&mutex);

while (count == 0)

cond wait (&nonempty, &mutex);

nextConsumed = buffer[out];

out = (out + 1) % BUFFER SIZE;

count--;

cond signal (&nonfull);

mutex unlock (&mutex);

/* consume the item

in nextConsumed */

}

}

Beware: this solution does not warrant First Come First Served!

A. Legrand Synchronization Mutex: locks and conditions — 12 / 60



Condition variables (continued)
I Why must cond wait both release mutex & sleep?

Why not separate mutexes and condition variables?

while (count == BUFFER SIZE) {

mutex unlock (&mutex);

cond wait(&nonfull);

mutex lock (&mutex);

}

I Can end up stuck waiting when bad interleaving

PRODUCER | CONSUMER

while (count == BUFFER SIZE){ |

mutex unlock (&mutex); |

| mutex lock (&mutex);

| ...

| count--;

| cond signal (&nonfull);

cond wait (&nonfull); |

I With mutex and conditions, we can implement safe (no
data race) and efficient (no busy waiting) synchroniza-
tion)

I We will see soon that busy waiting has actually not completely
disappeared

A. Legrand Synchronization Mutex: locks and conditions — 13 / 60



Condition variables (continued)
I Why must cond wait both release mutex & sleep?

Why not separate mutexes and condition variables?

while (count == BUFFER SIZE) {

mutex unlock (&mutex);

cond wait(&nonfull);

mutex lock (&mutex);

}

I Can end up stuck waiting when bad interleaving

PRODUCER | CONSUMER

while (count == BUFFER SIZE){ |

mutex unlock (&mutex); |

| mutex lock (&mutex);

| ...

| count--;

| cond signal (&nonfull);

cond wait (&nonfull); |

I With mutex and conditions, we can implement safe (no
data race) and efficient (no busy waiting) synchroniza-
tion)

I We will see soon that busy waiting has actually not completely
disappeared

A. Legrand Synchronization Mutex: locks and conditions — 13 / 60



Common Synchronization Problems

Deadlock P0 and P1 both want to access S and Q that are each
protected by a lock:

P0 P1

lock(S.lock) lock(R.lock)
lock(R.lock) lock(S.lock)
... ...
unlock(R.lock) unlock(S.lock)
unlock(S.lock) unlock(R.lock)

Starvation There may be indefinite blocking (e.g., if resuming in
LIFO order, if select in priority process that are not swapped, ...)

Priority Inversion Assume we have three process L,M,H with pri-
ority L < M < H.

1. L acquires resource R

2. H tries to acquire R and is thus blocked

3. M becomes runnable and thereby preempts L

4. Hence, M affects how long H must wait for R

This priority inversion occurs only in systems with more than two
priorities. Can be solved by implementing priority inheritence

A. Legrand Synchronization Mutex: locks and conditions — 14 / 60



Other thread package features

I Alerts – cause exception in a thread

I Timedwait – timeout on condition variable

I Shared locks – concurrent read accesses to data
I Thread priorities – control scheduling policy

I Mutex attributes allow various forms of priority donation

I Thread-specific global data
I Different synchronization primitives (in a few slides)

I Monitors
I Semaphores

A. Legrand Synchronization Mutex: locks and conditions — 15 / 60



Outline

Mutual exclusion

Mutex: locks and conditions

Implementing Synchronization
Interrupts
Spinlocks
Kernel Synchronization

Classical Synchronization Problems

Other Synchronization Structures
Semaphores
Monitors

Deadlocks
Prevention
Detection

A. Legrand Synchronization Implementing Synchronization — 16 / 60



Implementing synchronization

I User-visible mutex is a straight-forward data structure

typedef struct mutex {

bool is locked; /* true if locked */

thread id t owner; /* thread holding lock, if locked */

thread list t waiters; /* threads waiting for lock */

lower level lock t lk; /* Protect above fields */

};

mutex lock(struct mutex *L) {

if(L->is locked) {

add myself to L->waiters;

block();

} else

L->owner = myself;

L->is locked = true;

}

mutex unlock(struct mutex *L) {

pick P from L->waiters;

L->owner = P;

L->is locked = false;

wakeup(P)

}

I Need lower-level lock lk for mutual exclusion
I Internally, mutex * functions bracket code with

lock(mutex->lk) . . . unlock(mutex->lk)
I Otherwise, data races! (E.g., two threads manipulating waiters)

I How to implement lower level lock t?

A. Legrand Synchronization Implementing Synchronization — 17 / 60



Implementing synchronization

I User-visible mutex is a straight-forward data structure

typedef struct mutex {

bool is locked; /* true if locked */

thread id t owner; /* thread holding lock, if locked */

thread list t waiters; /* threads waiting for lock */

lower level lock t lk; /* Protect above fields */

};

mutex lock(struct mutex *L) {

if(L->is locked) {

add myself to L->waiters;

block();

} else

L->owner = myself;

L->is locked = true;

}

mutex unlock(struct mutex *L) {

pick P from L->waiters;

L->owner = P;

L->is locked = false;

wakeup(P)

}

I Need lower-level lock lk for mutual exclusion
I Internally, mutex * functions bracket code with

lock(mutex->lk) . . . unlock(mutex->lk)
I Otherwise, data races! (E.g., two threads manipulating waiters)

I How to implement lower level lock t?

A. Legrand Synchronization Implementing Synchronization — 17 / 60



Outline

Mutual exclusion

Mutex: locks and conditions

Implementing Synchronization
Interrupts
Spinlocks
Kernel Synchronization

Classical Synchronization Problems

Other Synchronization Structures
Semaphores
Monitors

Deadlocks
Prevention
Detection

A. Legrand Synchronization Implementing Synchronization — Interrupts 18 / 60



Approach #1: Disable interrupts

I Only for apps with n : 1 threads (1 kthread)
I On a multiprocessor, the disable interrupt message has to be

passed to all processors, which delays entry into each critical
section and decreases efficiency.

I But sometimes most efficient solution for uniprocessors

I Trick: Masking interrupts is costly. Instead, have per-
thread “do not interrupt” (DNI) bit

I lock (lk): sets thread’s DNI bit
I If timer interrupt arrives

I Check interrupted thread’s DNI bit
I If DNI clear, preempt current thread
I If DNI set, set “interrupted” (I) bit & resume current thread

I unlock (lk): clears DNI bit and checks I bit
I If I bit is set, immediately yields the CPU

A. Legrand Synchronization Implementing Synchronization — Interrupts 19 / 60



Outline

Mutual exclusion

Mutex: locks and conditions

Implementing Synchronization
Interrupts
Spinlocks
Kernel Synchronization

Classical Synchronization Problems

Other Synchronization Structures
Semaphores
Monitors

Deadlocks
Prevention
Detection

A. Legrand Synchronization Implementing Synchronization — Spinlocks 20 / 60



Approach #2: Spinlocks
I Most CPUs support atomic read-[modify-]write
I Example: int test and set (int *lockp);

I Atomically sets *lockp = 1 and returns old value
I Special instruction – can’t be implemented in portable C

I Use this instruction to implement spinlocks:

#define lock(lock) while (test_and_set (&lock))

#define trylock(lock) (test_and_set (&lock) == 0)

#define unlock(lock) lock = 0

do {

while(test and set(&lock))

;

critical section
lock = 0;

remainder section

} while (1);

I Satisfies Mutual Exclusion and Progress but not Bounded
Waiting

A. Legrand Synchronization Implementing Synchronization — Spinlocks 21 / 60



Approach #2: Spinlocks
I Most CPUs support atomic read-[modify-]write
I Example: int test and set (int *lockp);

I Atomically sets *lockp = 1 and returns old value
I Special instruction – can’t be implemented in portable C

I Use this instruction to implement spinlocks:

#define lock(lock) while (test_and_set (&lock))

#define trylock(lock) (test_and_set (&lock) == 0)

#define unlock(lock) lock = 0

do {

while(test and set(&lock))

;

critical section
lock = 0;

remainder section

} while (1);

I Satisfies Mutual Exclusion and Progress but not Bounded
Waiting

A. Legrand Synchronization Implementing Synchronization — Spinlocks 21 / 60



Bounded Waiting with Test and Set

volatile boolean waiting[n]; // Initialized to 0

volatile boolean lock; // Initialized to 0

do {

int islocked = 1;

waiting[i] = 1;

while (waiting[i] && islocked)

islocked = test and set(&lock);

waiting[i] = 0;

critical section

// look for next process to free

j = (i+1)%n;

while((j!=i) && (!waiting[j]))

j = (j+1)%n;

// free process j

if(j==i) lock = 0;

else waiting[j] = 0;

remainder section

} while(1);

A. Legrand Synchronization Implementing Synchronization — Spinlocks 22 / 60



Bounded Waiting with Test and Set

volatile boolean waiting[n]; // Initialized to 0

volatile boolean lock; // Initialized to 0

do {

int islocked = 1;

waiting[i] = 1;

while (waiting[i] && islocked) // Do we really need islocked ?

islocked = test and set(&lock);

waiting[i] = 0;

critical section

// look for next process to free

j = (i+1)%n;

while((j!=i) && (!waiting[j]))

j = (j+1)%n;

// free process j

if(j==i) lock = 0;

else waiting[j] = 0;

remainder section

} while(1);

A. Legrand Synchronization Implementing Synchronization — Spinlocks 22 / 60



Mutex vs. Spinlocks
I Can you use spinlocks instead of mutexes?

I On x86, requires the CPU to lock memory system around read
and write

I Prevents other uses of the bus (e.g., DMA)
I Usually runs at memory bus speed, not CPU speed

I Much slower than cached read/buffered write
I Causes ping-pong cache line migration

I Wastes CPU, especially if thread holding lock not running
I Spinlocks are often used by the kernel as a low-level mutex

to implement a higher level mutex
I Spinlocks = busy waiting but the only way to really implement

mutual exclusion
I When the Critical Section is long, this is extremely inefficient
I Higher-level mutex = “few” busy waiting
I With mutex, busy waiting is limited to the CSs of lock,unlock,wait,

signal, which are short sections (about ten instructions).
I Therefore, the CS os mutexes is almost never occupied and

busy-waiting occurs rarely and only for a short time
I On multiprocessor, sometimes good to spin for a bit, then yield

A. Legrand Synchronization Implementing Synchronization — Spinlocks 23 / 60



Outline

Mutual exclusion

Mutex: locks and conditions

Implementing Synchronization
Interrupts
Spinlocks
Kernel Synchronization

Classical Synchronization Problems

Other Synchronization Structures
Semaphores
Monitors

Deadlocks
Prevention
Detection

A. Legrand Synchronization Implementing Synchronization — Kernel Synchronization 24 / 60



Kernel Synchronization

I Should kernel use locks or disable interrupts?
I Old UNIX had non-preemptive threads, no mutexes

I Interface designed for single CPU, so count++ etc. not data race

I Nowadays, should design for multiprocessors
I Even if first version of OS is for uniprocessor
I Someday may want multiple CPUs and need preemptive threads

I Multiprocessor performance needs fine-grained locks
I Want to be able to call into the kernel on multiple CPUs

I If kernel has locks, should it ever disable interrupts?

I Yes! Can’t sleep in interrupt handler, so can’t wait for lock
I So even modern OSes have support for disabling interrupts
I Often uses DNI trick, which is cheaper than masking interrupts

in hardware

I Modern OS provide both mutex, spinlocks, ability to dis-
able/enable interrupts, and even more (futex, ).

A. Legrand Synchronization Implementing Synchronization — Kernel Synchronization 25 / 60



Kernel Synchronization

I Should kernel use locks or disable interrupts?
I Old UNIX had non-preemptive threads, no mutexes

I Interface designed for single CPU, so count++ etc. not data race

I Nowadays, should design for multiprocessors
I Even if first version of OS is for uniprocessor
I Someday may want multiple CPUs and need preemptive threads

I Multiprocessor performance needs fine-grained locks
I Want to be able to call into the kernel on multiple CPUs

I If kernel has locks, should it ever disable interrupts?
I Yes! Can’t sleep in interrupt handler, so can’t wait for lock
I So even modern OSes have support for disabling interrupts
I Often uses DNI trick, which is cheaper than masking interrupts

in hardware

I Modern OS provide both mutex, spinlocks, ability to dis-
able/enable interrupts, and even more (futex, ).

A. Legrand Synchronization Implementing Synchronization — Kernel Synchronization 25 / 60



Outline

Mutual exclusion

Mutex: locks and conditions

Implementing Synchronization
Interrupts
Spinlocks
Kernel Synchronization

Classical Synchronization Problems

Other Synchronization Structures
Semaphores
Monitors

Deadlocks
Prevention
Detection

A. Legrand Synchronization Classical Synchronization Problems — 26 / 60



A few classical synchronization problems
Producer/Consumer

I the bounded-buffer problem, where consumers (resp. producers) need the
buffer to be non-empty (resp. non-full) to proceed

I need to work with many producers and many consumers (then the while

around the wait(condition, mutex) is mendatory)
I may or not respect FIFO order

Bank Account
I a bank with the two functions deposit(amount, account), withdraw(amount,

account)
I a shared bank account where concurrently, the husband calls withdraw and

the wife calls deposit

Reader/Writer
I the same shared memory is concurrently accessed by threads, some reading

and some writing
I writers require exclusive access
I there may be multiple readers at the same time
I readers-preference, writers-preference, no thread shall be allowed to starve

Dining Philosophers
I N philophers eating rice around a round table
I only N chopsticks and philophers need to pick left and right chopsticks to eat
I avoid deadlock
I avoid starvation

A. Legrand Synchronization Classical Synchronization Problems — 27 / 60



A few classical synchronization problems (cont’d)
Cigarette Smokers

I you need paper, tobacco, and a match to make a cigarette
I 3 smokers around a table each with an infinite supply of one of the three

ingredients
I an arbiter randomly select two smokers, takes one item out of their supply

and puts it on the table, which enables the third smoker to smoke
I a smoker only begins to roll a new cigarette once he has finished smoking the

last one
Sleeping Barber

I a barbershop: a waiting room with n chairs, a barber room with 1 barber
I if there is no customer to be served, the barber takes a nap
I when a customer enters the shop, if all chairs are occupied, then the customer

leaves the shop (unshaved!)
I if the barber is busy but chairs are available, then the customer sits on one

of the free chairs
I if the barber is asleep, the customer wakes up the barber

Traffic Lights and Intersection
I traffic lights of both ways are synchronized (using red/orange/green helps)
I each car spends a finite (random) time at the intersection
I only cars from of a given way (but both directions) can be in the intersection

at the same time
; need to forbid some cars to enter the intersection when the light needs to be

switched but also needs to let the cars leave the intersection befor switching
I the intersection may contain up to k cars for each direction
; need to forbid some cars to enter the intersection

A. Legrand Synchronization Classical Synchronization Problems — 28 / 60



Summary

I The dining philosophers will be worked out in the next practical
session

I Implementing the three versions of the reader-writer problem
will be your next programming assignment

I Work the others by yourself

I Often you’ll realize the problem needs some extra specification

I In all these problems, fairness (avoiding starvation) may de-
crease throughput

A. Legrand Synchronization Classical Synchronization Problems — 29 / 60



Outline

Mutual exclusion

Mutex: locks and conditions

Implementing Synchronization
Interrupts
Spinlocks
Kernel Synchronization

Classical Synchronization Problems

Other Synchronization Structures
Semaphores
Monitors

Deadlocks
Prevention
Detection

A. Legrand Synchronization Other Synchronization Structures — 30 / 60



Introduction

I Spinlocks, futex, or signal handling are special “kernel”
synchronization mechanisms

I Mutex locks and conditions are standard synchronization
structures available in any thread library

I There are a few other standard synchronization structures
that I will present now

A. Legrand Synchronization Other Synchronization Structures — 31 / 60



Outline

Mutual exclusion

Mutex: locks and conditions

Implementing Synchronization
Interrupts
Spinlocks
Kernel Synchronization

Classical Synchronization Problems

Other Synchronization Structures
Semaphores
Monitors

Deadlocks
Prevention
Detection

A. Legrand Synchronization Other Synchronization Structures — Semaphores 32 / 60



Semaphore
I Thread packages typically provide semaphores.

I A Semaphore is initialized with an integer N void sem init

(sem t *s, unsigned int value);

void sem post (sem t *s); (originally called V)
void sem wait (sem t *); (originally called P)
void sem trywait (sem t *);

void sem getvalue (sem t *);
I Think of a semaphore as a purse with a certain number of

tokens
sem wait(sem t S) {

S->value--;

if(S->value < 0) {

add myself to S->waiters;

block();

}

}

sem post(sem t S) {

S->value++;

if(S->value <= 0) {

pick P from S->waiters

wakeup(P)

}

}

I Remember real implementations require lower level locking (e.g.,
spinlocks or interruption management)

A. Legrand Synchronization Other Synchronization Structures — Semaphores 33 / 60



Semaphores vs. Mutex

I If N == 1, then semaphore is a mutex with sem wait as lock
and sem post as unlock
Yet, is there a difference between a binary semaphore and a
lock?

I Could use semaphores to implement conditions. Yet, is there a
difference between a post and a signal?

I Can re-write producer/consumer to use three semaphores
I Semaphore mutex initialized to 1

I Used as mutex, protects buffer, in, out. . .

I Semaphore full initialized to 0 (≈ number of items)
I To block consumer when buffer empty

I Semaphore empty initialized to N (≈ number of free locations)
I To block producer when queue full

A. Legrand Synchronization Other Synchronization Structures — Semaphores 34 / 60



Consumer Producer with Semaphores
void producer (void *ignored) {

for (;;) {

/* produce an item and put in nextProduced */

sem_wait (&empty);

sem_wait (&mutex);

buffer [in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

sem_post (&mutex);

sem_post (&full);

}

}

void consumer (void *ignored) {

for (;;) {

sem_wait (&full);

sem_wait (&mutex);

nextConsumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

sem_post (&mutex);

sem_post (&empty);

/* consume the item in nextConsumed */

}

}

A. Legrand Synchronization Other Synchronization Structures — Semaphores 35 / 60



Semaphores vs. Mutex

I Semaphores can implement Mutex and vice-versa

I Semaphores allow elegant solutions to some problems (pro-
ducer/consumer, reader/writer)

I “One structure to rule them all” ,
I Yet. . .

they are quite error prone
I If you call wait instead of post, you’ll have a deadlock.
I If you forgot to protect parts of your code, then you may end

up either with a deadlock or a mutual exclusion violation
I You have “tokens” of different types, which may be harder to

reason about
I If by mistake you interchange the order of the wait and

the post, you may violate mutual exclusion in an unrepro-
ducable way.

I That is why people have proposed higher-level language con-
structs

A. Legrand Synchronization Other Synchronization Structures — Semaphores 36 / 60



Semaphores vs. Mutex

I Semaphores can implement Mutex and vice-versa

I Semaphores allow elegant solutions to some problems (pro-
ducer/consumer, reader/writer)

I “One structure to rule them all” ,
I Yet. . . they are quite error prone

I If you call wait instead of post, you’ll have a deadlock.
I If you forgot to protect parts of your code, then you may end

up either with a deadlock or a mutual exclusion violation
I You have “tokens” of different types, which may be harder to

reason about
I If by mistake you interchange the order of the wait and

the post, you may violate mutual exclusion in an unrepro-
ducable way.

I That is why people have proposed higher-level language con-
structs

A. Legrand Synchronization Other Synchronization Structures — Semaphores 36 / 60



Outline

Mutual exclusion

Mutex: locks and conditions

Implementing Synchronization
Interrupts
Spinlocks
Kernel Synchronization

Classical Synchronization Problems

Other Synchronization Structures
Semaphores
Monitors

Deadlocks
Prevention
Detection

A. Legrand Synchronization Other Synchronization Structures — Monitors 37 / 60



Monitors [BH][Hoar]

I Programming language construct
I Possibly less error prone than raw mutexes, but less flexible too
I Basically a class where only one procedure executes at a time

monitor monitor-name

{

// shared variable declarations

procedure P1 (...) { ... }

...

procedure Pn (...) { ... }

Initialization code (..) { ... }

}

I Can implement mutex w. monitor or vice versa
I But monitor alone doesn’t give you condition variables
I Need some other way to interact w. scheduler
I Use conditions, which are essentially condition variables

A. Legrand Synchronization Other Synchronization Structures — Monitors 38 / 60

http://www.scs.stanford.edu/10wi-cs140/sched/readings/monitors.pdf


Monitor implementation

I Queue of threads waiting to get in
I Might be protected by spinlock

I Queues associated with conditions
I Two possibilities exist for the signal:

I Signal and wait
I Signal and continue

Both have pros and cons

I Java provide monitors: just add the synchronized key-
word. Locks are automatically acquired and release. They
have only one waiting queue though.

A. Legrand Synchronization Other Synchronization Structures — Monitors 39 / 60



Signal and continue analogy

A. Legrand Synchronization Other Synchronization Structures — Monitors 40 / 60



Signal and wait analogy

A. Legrand Synchronization Other Synchronization Structures — Monitors 40 / 60



Recap

I Synchronization structures enable to keep out of race conditions
and optimizations breaking sequential consistency

I They may lead to deadlocks and starvation

I Enables to save resources if well used (avoid busy waiting as
much as possible)

I Your critical sections should be as short as possible to avoid
poor resource usage

I The tradeoff over-protecting/loosening mutual exclusion affects
the tradeoff fairness/throughput

I All thread libraries provide Mutexes (locks and conditions) and
semaphores. Some languages provide even higher level con-
structs like monitors.

I Efficient implementations require a lots of different non-standard
tricks and tradeoffs (spinlock, interruption, user/kernel space,...)

A. Legrand Synchronization Other Synchronization Structures — Monitors 41 / 60



Outline

Mutual exclusion

Mutex: locks and conditions

Implementing Synchronization
Interrupts
Spinlocks
Kernel Synchronization

Classical Synchronization Problems

Other Synchronization Structures
Semaphores
Monitors

Deadlocks
Prevention
Detection

A. Legrand Synchronization Deadlocks — 42 / 60



The deadlock problem

mutex_t m1, m2;

void p1 (void *ignored) {

lock (m1);

lock (m2);

/* critical section */

unlock (m2);

unlock (m1);

}

void p2 (void *ignored) {

lock (m2);

lock (m1);

/* critical section */

unlock (m1);

unlock (m2);

}

I This program can cease to make progress – how?

I Can you have deadlock w/o mutexes?

A. Legrand Synchronization Deadlocks — 43 / 60



More deadlocks

I Same problem with condition variables
I Suppose resource 1 managed by c1, resource 2 by c2

I A has 1, waits on c2, B has 2, waits on c1

I Or have combined mutex/condition variable deadlock:

- lock (a); lock (b); while (!ready) wait (b, c);

unlock (b); unlock (a);

- lock (a); lock (b); ready = true; signal (c);

unlock (b); unlock (a);

I One lesson: Dangerous to hold locks when crossing ab-
straction barriers!

I I.e., lock (a) then call function that uses condition variable

A. Legrand Synchronization Deadlocks — 44 / 60



Deadlocks w/o computers

I Real issue is resources & how required
I E.g., bridge only allows traffic in one direction

I Each section of a bridge can be viewed as a resource.
I If a deadlock occurs, it can be resolved if one car backs up

(preempt resources and rollback).
I Several cars may have to be backed up if a deadlock occurs.
I Starvation is possible.

A. Legrand Synchronization Deadlocks — 45 / 60



Deadlock conditions

1. Limited access (mutual exclusion):
I Resource can only be shared with finite users.

2. No preemption:
I once resource granted, cannot be taken away.

3. Multiple independent requests (hold and wait):
I don’t ask all at once (wait for next resource while holding current

one)

4. Circularity in graph of requests

I All of 1–4 necessary for deadlock to occur
I Two approaches to dealing with deadlock:

I pro-active: prevention
I reactive: detection + corrective action

A. Legrand Synchronization Deadlocks — 46 / 60



Outline

Mutual exclusion

Mutex: locks and conditions

Implementing Synchronization
Interrupts
Spinlocks
Kernel Synchronization

Classical Synchronization Problems

Other Synchronization Structures
Semaphores
Monitors

Deadlocks
Prevention
Detection

A. Legrand Synchronization Deadlocks — Prevention 47 / 60



Prevent by eliminating one condition

1. Limited access (mutual exclusion):
I Buy more resources, split into pieces, or virtualize to make ”in-

finite” copies.

2. No preemption:
I Threads: threads have copy of registers = no lock
I Physical memory: virtualized with VM, can take physical page

away and give to another process!
I You can preempt resources whose state can be easily saved and

restored later

3. Multiple independent requests (hold and wait):
I Wait on all resources at once (must know in advance, bad re-

source usage, starvation, . . . )

4. Circularity in graph of requests
I Single lock for entire system: (problems?)
I Partial ordering of resources (next)

A. Legrand Synchronization Deadlocks — Prevention 48 / 60



Resource-allocation graph

I View system as graph
I Processes and Resources are nodes
I Resource Requests and Assignments are edges

I Process:

I Resource w. 4 instances:

I Pi requesting Rj :

I Pi holding instance of Rj :

A. Legrand Synchronization Deadlocks — Prevention 49 / 60



Example resource allocation graph

A. Legrand Synchronization Deadlocks — Prevention 50 / 60



Graph with deadlock

A. Legrand Synchronization Deadlocks — Prevention 51 / 60



Is this deadlock?

A. Legrand Synchronization Deadlocks — Prevention 52 / 60



Cycles and deadlock

I If graph has no cycles =⇒ no deadlock
I If graph contains a cycle

I Definitely deadlock if only one instance per resource
I Otherwise, maybe deadlock, maybe not

I Prevent deadlock w. partial order on resources
I E.g., always acquire mutex m1 before m2

I Usually design locking discipline for application this way

A. Legrand Synchronization Deadlocks — Prevention 53 / 60



Prevention

I Determine safe states based on possible resource alloca-
tion

I Conservatively prohibits non-deadlocked states

A. Legrand Synchronization Deadlocks — Prevention 54 / 60



Claim edges

I Dotted line is claim edge
I Signifies process may request re-

source

I Process should claim edges all at
once before requisting them.

I Upon request, transform claimed edge into an assignment
edge only if does does not create a cycle (O(n2) algo-
rithm).
Otherwise, make it a request edge (even if you “could”
allocate resource).

A. Legrand Synchronization Deadlocks — Prevention 55 / 60



Example: unsafe state
I Assume that P1 requests R2 (Figure is wrong and should be

fixed for next year).

I Note cycle in graph
I P1 might request R2 before relinquishing R1

I Would cause deadlock
I This techniques works only for systems with a single in-

stance of each resource type. Other situations need more
elaborate algorithms (e.g., banker’s algorithm)

A. Legrand Synchronization Deadlocks — Prevention 56 / 60



Example: unsafe state
I Assume that P1 requests R2 (Figure is wrong and should be

fixed for next year).

I Note cycle in graph
I P1 might request R2 before relinquishing R1

I Would cause deadlock
I This techniques works only for systems with a single in-

stance of each resource type. Other situations need more
elaborate algorithms (e.g., banker’s algorithm)

A. Legrand Synchronization Deadlocks — Prevention 56 / 60



Outline

Mutual exclusion

Mutex: locks and conditions

Implementing Synchronization
Interrupts
Spinlocks
Kernel Synchronization

Classical Synchronization Problems

Other Synchronization Structures
Semaphores
Monitors

Deadlocks
Prevention
Detection

A. Legrand Synchronization Deadlocks — Detection 57 / 60



Detecting deadlock
I Static approaches (hard)
I Program grinds to a halt
I Threads package can keep track of locks held:

I Again, this techniques works only for systems with a single
instance of each resource type. Otherwise use extensions
of the banker’s algorithm

A. Legrand Synchronization Deadlocks — Detection 58 / 60



Fixing & debugging deadlocks

Detection is costly ; when ? how often ? is it really worth
the effort ? . . .

I Reboot system (windows approach)

I Examine hung process with debugger
I Threads package can deduce partial order

I For each lock acquired, order with other locks held
I If cycle occurs, abort with error
I Detects potential deadlocks even if they do not occur

I Or use transactions. . .
I Another paradigm for handling concurrency
I Often provided by databases, but some OSes use them
I Vino OS used transactions to abort after failures [Seltzer]
I OS support for transactional memory now hot research topic

A. Legrand Synchronization Deadlocks — Detection 59 / 60

http://www.eecs.harvard.edu/syrah/vino//osdi-96/paper.html


Transactions

I A transaction T is a collection of actions with
I Atomicity – all or none of actions happen
I Consistency – T leaves data in valid state
I Isolation – T ’s actions all appear to happen before or after every

other transaction T ′

I Durability* – T ’s effects will survive reboots
I Often hear mnemonic ACID to refer to above

I Transactions typically executed concurrently
I But isolation means must appear not to
I Must roll-back transactions that use others’ state
I Means you have to record all changes to undo them

I When deadlock detected just abort a transaction
I Breaks the dependency cycle

I Most Lock-free algorithms rely on atomic read-modify-
write primitives.
Software transactional memories promises standard ab-
stractions for writing efficient non-blocking code.

A. Legrand Synchronization Deadlocks — Detection 60 / 60


	Mutual exclusion
	Mutex: locks and conditions
	Implementing Synchronization
	Interrupts
	Spinlocks
	Kernel Synchronization

	Classical Synchronization Problems
	Other Synchronization Structures
	Semaphores
	Monitors

	Deadlocks
	Prevention
	Detection


