
Threads
Operating System Design – MOSIG 1

Instructor: Arnaud Legrand
Class Assistants: Benjamin Negrevergne, Sascha Hunold

October 21, 2010

A. Legrand Threads — 1 / 38

Outline

Threads
Overview
Kernel Threads
User Threads
Mixing Threads
Threading Issues

Race conditions

A. Legrand Threads Threads — 2 / 38

Remember Context Switches

I Typical things include:
I Save program counter and

integer registers (always)

I Save floating point or
other special registers

I Save condition codes

I Change virtual address
translations

I Non-negligible cost
I Save/restore floating point registers expensive
I May require flushing TLB (memory translation hardware)
I Usually causes more cache misses (switch working sets)

I Sharing data/information between process may be painful

A. Legrand Threads Threads — Overview 3 / 38

Threads

I A thread is a schedulable execution context
I Program counter, stack, registers, . . .

I Simple programs use one thread per process
I But can also have multi-threaded programs

I Multiple threads running in same process’s address space

A. Legrand Threads Threads — Overview 4 / 38

Why threads?
I Responsiveness

I Do not block the whole program when only a part of it should
be blocked

I Allows program to overlap I/O and computation (same benefit
as OS running emacs & gcc simultaneously)

I E.g., threaded web server services clients simultaneously:

for (;;) {

fd = accept_client ();

thread_create (service_client, &fd);

}

I Resource sharing
I Lighter-weight abstraction than processes (IPC, shmem)
I All threads in one process share memory, file descriptors, etc

I Economy
I Allocating memory, resources and context switching for process

is costly
I Scalability

I A single process can only use a single CPU at a time
I Allows one process to use multiple CPUs or cores

A. Legrand Threads Threads — Overview 5 / 38

Thread package API

I tid thread create (void (*fn) (void *), void *);
I Create a new thread, run fn with arg

I void thread exit ();
I Destroy current thread

I void thread join (tid thread);
I Wait for thread thread to exit

I Plus lots of support for synchronization [next week]
I Can have preemptive or non-preemptive threads

I Preemptive causes more race conditions
I Non-preemptive can’t take advantage of multiple CPUs
I Before prevalent SMPs, most kernels non-preemptive

A. Legrand Threads Threads — Overview 6 / 38

Kernel threads

I Can implement thread create as a system call
I To add thread create to an OS that doesn’t have it:

I Start with process abstraction in kernel
I thread create like process creation with features stripped out

I Keep same address space, file table, etc., in new process
I rfork/clone syscalls actually allow individual control
I Lunix Threads have been implemented by hacking clone for a

long time (threads appeared in the process table and were not
optimally managed)

I Now we have the Native POSIX Thread Library

I Faster than a process, but still very heavy weight

A. Legrand Threads Threads — Kernel Threads 7 / 38

Limitations of kernel-level threads

I Every thread operation must go through kernel
I create, exit, join, synchronize, or switch for any reason
I On Athlon 3400+: syscall takes 359 cycles, fn call 6 cycles
I Result: threads 10x-30x slower when implemented in kernel

I One-size fits all thread implementation
I Kernel threads must please all people
I Maybe pay for fancy features (priority, etc.) you don’t need

I General heavy-weight memory requirements
I E.g., requires a fixed-size stack within kernel
I Other data structures designed for heavier-weight processes

A. Legrand Threads Threads — Kernel Threads 8 / 38

User threads

I An alternative: implement in user-level library
I One kernel thread per process
I thread create, thread exit, etc., just library functions

A. Legrand Threads Threads — User Threads 9 / 38

Implementing user-level threads

I Allocate a new stack for each thread create

I Keep a queue of runnable threads
I Replace networking system calls (read/write/etc.)

I If operation would block, switch and run different thread

I Schedule periodic timer signal (setitimer)
I Switch to another thread on timer signals (preemption)

I Multi-threaded web server example
I Thread calls read to get data from remote web browser
I “Fake” user-level read make read syscall in non-blocking mode
I No data? schedule another thread
I On timer or when idle check which connections have new data

I How to switch threads?

A. Legrand Threads Threads — User Threads 10 / 38

Background: calling conventions

I Registers divided into 2 groups
I Functions free to clobber caller-

saved regs
(%eax [return val], %edx, & %ecx

on x86)
I But must restore callee-saved ones

to original value upon return

I sp register always base of stack
I Frame pointer (fp) is old sp

I Local variables stored in registers
and on stack

I Function arguments go in
callee-saved regs and on stack

and temps
Local vars

registers
callee-saved

old frame ptr

arguments
Call

sp

return addr

fp

A. Legrand Threads Threads — User Threads 11 / 38

Background: procedure calls

I Some state saved on stack
I Return address, caller-saved registers

I Some state not saved
I Callee-saved regs, global variables, stack pointer

A. Legrand Threads Threads — User Threads 12 / 38

Threads vs. procedures

I Threads may resume out of order:
I Cannot use LIFO stack to save state
I General solution: one stack per thread

I Threads switch less often
I Threads can be involuntarily interrupted:

I Synchronous: procedure call can use compiler to save state
I Asynchronous: thread switch code saves all registers

I More than one than one thread can run at a time
I Thread scheduling: What to run next and on which CPU?
I Procedure call scheduling obvious: Run called procedure

A. Legrand Threads Threads — User Threads 13 / 38

Example user threads implementation

I Per-thread state in thread control block structure

typedef struct tcb {

unsigned long md_esp; /* Stack pointer of thread */

char *t_stack; /* Bottom of thread’s stack */

/* ... */

};

I Machine-dependent thread-switch function:
I void thread md switch (tcb *current, tcb *next);

I Machine-dependent thread initialization function:
I void thread md init (tcb *t,

void (*fn) (void *), void *arg);

A. Legrand Threads Threads — User Threads 14 / 38

i386 thread md switch

%esp

return addr

current

next next

current

return addr

old %ebp

%ebx

%esi

%edi

stack stack
nextcurrent

%esp

I This is literally switch code from simple thread lib
I Nothing magic happens here when you can read assembly code

A. Legrand Threads Threads — User Threads 15 / 38

i386 thread md switch

%esp

old %ebp

return addr

current

next next

current

return addr

old %ebp

%ebx

%esi

%edi

stack stack
nextcurrent

%ebp, %esp

I This is literally switch code from simple thread lib
I Nothing magic happens here when you can read assembly code

A. Legrand Threads Threads — User Threads 15 / 38

i386 thread md switch

%esp

old %ebp

return addr

current

next

%ebx

%esi

%edi

next

current

return addr

old %ebp

%ebx

%esi

%edi

%ebp

%esp

stack stack
nextcurrent

I This is literally switch code from simple thread lib
I Nothing magic happens here when you can read assembly code

A. Legrand Threads Threads — User Threads 15 / 38

i386 thread md switch

old %ebp

return addr

current

next

%ebx

%esi

%edi

next

current

return addr

old %ebp

%ebx

%esi

%edi

%ebp

stack stack
nextcurrent

%esp

I This is literally switch code from simple thread lib
I Nothing magic happens here when you can read assembly code

A. Legrand Threads Threads — User Threads 15 / 38

i386 thread md switch

%ebp

registers
restored

callee-saved

old %ebp

return addr

current

next

%ebx

%esi

%edi

next

current

return addr

stack stack
nextcurrent

%esp

I This is literally switch code from simple thread lib
I Nothing magic happens here when you can read assembly code

A. Legrand Threads Threads — User Threads 15 / 38

Limitations of user-level threads

I Can’t take advantage of multiple CPUs or cores
I A blocking system call blocks all threads

I Can replace read to handle network connections
I But usually OSes don’t let you do this for disk
I So one uncached disk read blocks all threads

I A page fault blocks all threads
I Possible deadlock if one thread blocks on another

I May block entire process and make no progress

A. Legrand Threads Threads — User Threads 16 / 38

User threads on kernel threads

I User threads implemented on kernel threads
I Multiple kernel-level threads per process
I thread create, thread exit still library functions as before

I Sometimes called n : m threading
I Have n user threads per m kernel threads

(Simple user-level threads are n : 1, kernel threads 1 : 1)

A. Legrand Threads Threads — Mixing Threads 17 / 38

Limitations of n : m threading

I Many of same problems as n : 1 threads
I Blocked threads, deadlock, . . .

I Hard to keep same # ktrheads as available CPUs
I Kernel knows how many CPUs available
I Kernel knows which kernel-level threads are blocked
I But tries to hide these things from applications for transparency
I So user-level thread scheduler might think a thread is running

while underlying kernel thread is blocked

I Kernel doesn’t know relative importance of threads
I Might preempt kthread in which library holds important lock

A. Legrand Threads Threads — Mixing Threads 18 / 38

fork and exec

I What happens if one thread of a program calls fork()?
I Does the new process duplicate all threads ? Or i the new

process single-threaded ?
I Some UNIX systems have chose to have two versions of fork()

I What happens if one thread of a program calls exec()?
I Generally, the new program replace the entire process, including

all threads.

A. Legrand Threads Threads — Threading Issues 19 / 38

Cancellation

I One may want to cancel a thread before it has completed

I When multiple threads concurrently search for a given data in a
database

I When you hit the stop button of your Web browser, all the
threads in charge of loading the core of the page and the various
images should be canceled

I Asynchronous cancellation
I One thread immediately terminates the target thread.
I Main issue: what if resources have been allocated and/or the

target thread is in the midst of updating data shared with other
threads ?

I May lead to incoherent state

I Deferred cancellation
I The target thread periodically checks whether it should termi-

nate, allowing it an opportunity to terminate itself in an orderly
fashion

I Such points are called cancellation points

A. Legrand Threads Threads — Threading Issues 20 / 38

Signal Handling
I There are two types of signals

I Synchronous signals (SIGSEGV, SIGFPE), which are delivered
to the process that generated the signal.

I Asynchronous signals (SIGALARM, SIGPIPE, SIGSTOP,...) whose
handler may be changed and that may sometimes be ignored.

I Handling signals in single-threaded programs is straight-
forward

I signals are always delivered to a process
I In a multi-threaded program, who should receive the sig-

nal ?
1. Deliver the signal to the thread to which the signal applies (e.g.,

SIGSEGV)
2. Deliver the signal to every thread in the process
3. Deliver the signal to certain threads in the process
4. Assign a specific thread to receive all signals for the process

In many UNIX, the first thread which does not block the signal
handles it.

I POSIX threads have the pthread kill(pthread t tid,

int signal) function
A. Legrand Threads Threads — Threading Issues 21 / 38

Thread Pools

I Web servers could create threads upon each request
I Although it is better than creating a process, creating thread is

costly, especially regarding its corresponding service time
I If there is no bound on the number of concurrently active threads,

we could exhaust the OS resources (CPU, RAM) and trash the
system

I Thread Pool address these two issues
I Remember the slab allocator from the kernel ?
I Create a number of threads at process startup and place them

into a pool where they wait for work.
I When a server receives a request, it awakens a thread from the

pool if any available and waits otherwise.
I When the thread has finished servicing the request, it returns to

the pool, awaiting for more work.

A. Legrand Threads Threads — Threading Issues 22 / 38

Thread specific data

I All threads share the data of the process

I In some circumstances, each thread may need to have its
ow copy of certain data

I Most thread libraries provide some support for thread-
specific data

I POSIX provides the following functions:
int pthread setspecific(pthread key t key, const void *pointer);

void *pthread getspecific(pthread key t key);

I Each thread possesses a private memory block, the thread-
specific data area (TSD)

I This area is indexed by TSD keys and associates values of type
void * to TSD keys.

I TSD keys are common to all threads, but the value associated
with a given TSD key can be different in each thread.

A. Legrand Threads Threads — Threading Issues 23 / 38

Lessons

I Threads best implemented as a library
I But kernel threads not best interface on which to do this

I Better kernel interfaces have been suggested
I See Scheduler Activations [Anderson et al.]
I Maybe too complex to implement on existing OSes (some have

added then removed such features)

I Today shouldn’t dissuade you from using threads
I Standard user or kernel threads are fine for most purposes
I Use kernel threads if I/O concurrency main goal
I Use n : m threads for highly concurrent (e.g,. scientific applica-

tions) with many thread switches

I . . . though the next two lectures may dissuade you
I Concurrency greatly increases the complexity of a program!
I Leads to all kinds of nasty race conditions

A. Legrand Threads Threads — Threading Issues 24 / 38

http://www.cs.washington.edu/homes/tom/pubs/sched_act.pdf

Outline

Threads
Overview
Kernel Threads
User Threads
Mixing Threads
Threading Issues

Race conditions

A. Legrand Threads Race conditions — 25 / 38

Surprising Interleaving
int count = 0;

void loop(void *ignored) {

int i ;

for (i=0 ; i<10 ; i++)

count++;

}

int main () {

tid id = thread_create (loop, NULL);

loop (); thread_join (id);

printf("%d",count);

}

I What is the output of this program ?

I Any value between 2 and 20.
I Remember that count++ may be transformed into :

reg1 ← count

reg1 ← reg1+1
count ← reg1

A. Legrand Threads Race conditions — 26 / 38

Surprising Interleaving
int count = 0;

void loop(void *ignored) {

int i ;

for (i=0 ; i<10 ; i++)

count++;

}

int main () {

tid id = thread_create (loop, NULL);

loop (); thread_join (id);

printf("%d",count);

}

I What is the output of this program ?
I Any value between 2 and 20.

I Remember that count++ may be transformed into :
reg1 ← count

reg1 ← reg1+1
count ← reg1

A. Legrand Threads Race conditions — 26 / 38

Program A

int flag1 = 0, flag2 = 0;

void p1 (void *ignored) {

flag1 = 1;

if (!flag2) { critical_section_1 (); }

}

void p2 (void *ignored) {

flag2 = 1;

if (!flag1) { critical_section_2 (); }

}

int main () {

tid id = thread_create (p1, NULL);

p2 (); thread_join (id);

}

I Can both critical sections run?

A. Legrand Threads Race conditions — 27 / 38

Program B

int data = 0, ready = 0;

void p1 (void *ignored) {

data = 2000;

ready = 1;

}

void p2 (void *ignored) {

while (!ready)

;

use (data);

}

int main () { ... }

I Can use be called with value 0?

A. Legrand Threads Race conditions — 28 / 38

Program C

int a = 0, b = 0;

void p1 (void *ignored) { a = 1; }

void p2 (void *ignored) {

if (a == 1)

b = 1;

}

void p3 (void *ignored) {

if (b == 1)

use (a);

}

int main () { ... }

I Can use be called with value 0?

A. Legrand Threads Race conditions — 29 / 38

Correct answers

I Program A: I don’t know

I Program B: I don’t know

I Program C: I don’t know
I Why?

I It depends on your hardware
I If it provides sequential consistency, then answers all No
I But not all hardware provides sequential consistency

I Note: Examples and other frame content from [Adve &
Gharachorloo]

A. Legrand Threads Race conditions — 30 / 38

http://www.scs.stanford.edu/10wi-cs140/sched/readings/shmem-tut.pdf
http://www.scs.stanford.edu/10wi-cs140/sched/readings/shmem-tut.pdf

Sequential Consistency

I Sequential consistency : The result of execution is as if all op-
erations were executed in some sequential order, and the oper-
ations of each processor occurred in the order specified by the
program. [Lamport]

I Boils down to two requirements:

1. Maintaining program order on individual processors
2. Ensuring write atomicity

I Without SC, multiple CPUs can be “worse” than preemp-
tive threads

I May see results that cannot occur with any interleaving on 1 CPU

I Why doesn’t all hardware support sequential consistency?

A. Legrand Threads Race conditions — 31 / 38

http://www.scs.stanford.edu/10wi-cs140/sched/readings/sequential-consistency.pdf

SC thwarts hardware optimizations

I Complicates write buffers
I E.g., read flagn before flag(2 − n) written through in Program

A

I Can’t re-order overlapping write operations
I Concurrent writes to different memory modules
I Coalescing writes to same cache line

I Complicates non-blocking reads
I E.g., speculatively prefetch data in Program B

I Makes cache coherence more expensive
I Must delay write completion until invalidation/update (Pro-

gram B)
I Can’t allow overlapping updates if no globally visible order (Pro-

gram C)

A. Legrand Threads Race conditions — 32 / 38

SC thwarts compiler optimizations

I Code motion
I Caching value in register

I E.g., ready flag in Program B

I Common subexpression elimination
I Could cause memory location to be read fewer times

I Loop blocking
I Re-arrange loops for better cache performance

I Software pipelining
I Move instructions across iterations of a loop to overlap instruc-

tion latency with branch cost

A. Legrand Threads Race conditions — 33 / 38

x86 consistency

I x86 supports multiple consistency/caching models
I Memory Type Range Registers (MTRR) specify consistency for

ranges of physical memory (e.g., frame buffer)
I Page Attribute Table (PAT) allows control for each 4K page

I Choices include:
I WB: Write-back caching (the default)
I WT: Write-through caching (all writes go to memory)
I UC: Uncacheable (for device memory)
I WC: Write-combining – weak consistency & no caching

I Some instructions have weaker consistency
I String instructions
I Special “non-temporal” instructions that bypass cache

A. Legrand Threads Race conditions — 34 / 38

x86 atomicity

I lock prefix makes a memory instruction atomic
I Usually locks bus for duration of instruction (expensive!)
I Can avoid locking if memory already exclusively cached
I All lock instructions totally ordered
I Other memory instructions cannot be re-ordered w. locked ones

I xchg instruction is always locked (even w/o prefix)
I Special fence instructions can prevent re-ordering

I LFENCE – can’t be reordered w. reads (or later writes)
I SFENCE – can’t be reordered w. writes
I MFENCE – can’t be reordered w. reads or writes

A. Legrand Threads Race conditions — 35 / 38

Data races (continued)

I What about a single-instruction add?
I E.g., i386 allows single instruction addl $1, count
I So implement count++/-- with one instruction
I Now are we safe?

I Not atomic on multiprocessor!
I Will experience exact same race condition
I Can potentially make atomic with lock prefix
I But lock very expensive
I Compiler won’t generate it, assumes you don’t want penalty

I Need solution to critical section problem
I Place count++ and count-- in critical section
I Protect critical sections from concurrent execution

A. Legrand Threads Race conditions — 36 / 38

Data races (continued)

I What about a single-instruction add?
I E.g., i386 allows single instruction addl $1, count
I So implement count++/-- with one instruction
I Now are we safe?

I Not atomic on multiprocessor!
I Will experience exact same race condition
I Can potentially make atomic with lock prefix
I But lock very expensive
I Compiler won’t generate it, assumes you don’t want penalty

I Need solution to critical section problem
I Place count++ and count-- in critical section
I Protect critical sections from concurrent execution

A. Legrand Threads Race conditions — 36 / 38

Problem Statement

I n processes all competing to use some shared data

I Each process has a code segment, called critical section, in
which the shared data is accessed.

I Problem ensure that when one process is executing in its critical
section, no other process is allowed to execute in its critical
section.

do {

entry section()

critical section

exit section()

reminder section

} while (1);

A. Legrand Threads Race conditions — 37 / 38

Desired Properties

I Mutual Exclusion
I Only one thread can be in critical section at a time

I Progress
I Say no process currently in critical section (C.S.)
I One of the processes trying to enter will eventually get in

I Bounded waiting
I Once a thread T starts trying to enter the critical section, there

is a bound on the number of times other threads get in

I Note progress vs. bounded waiting
I If no thread can enter C.S., don’t have progress
I If thread A waiting to enter C.S. while B repeatedly leaves and

re-enters C.S. ad infinitum, don’t have bounded waiting

A. Legrand Threads Race conditions — 38 / 38

	Threads
	Overview
	Kernel Threads
	User Threads
	Mixing Threads
	Threading Issues

	Race conditions

