
Processes
Operating System Design – MOSIG 1

Instructor: Arnaud Legrand
Class Assistants: Benjamin Negrevergne, Sascha Hunold

October 19, 2010

A. Legrand Processes — 1 / 49

Outline

Introduction

User View of Processes
Basic Unix/Linux System Call Interface
Basic Process Management

Kernel View of Processes

Inter Process Communication
Motivation
Signals
Shared Memory
Bounded Buffer
Pipes
Inter Process Communications

General Facts
Sockets
MPI, RPC and Java RMI

A. Legrand Processes Introduction — 2 / 49

Processes

I A process is an instance of a program running

I Modern OSes run multiple processes simultaneously
I Examples (can all run simultaneously):

I gcc file A.c – compiler running on file A
I gcc file B.c – compiler running on file B
I emacs – text editor
I firefox – web browser

I Non-examples (implemented as one process):
I Multiple firefox windows or emacs frames (still one process)

I Why processes?
I Simplicity of programming
I Higher throughput (better CPU utilization), lower latency

A. Legrand Processes Introduction — 3 / 49

Speed

I Multiple processes can increase CPU utilization
I Overlap one process’s computation with another’s wait

I Multiple processes can reduce latency
I Running A then B requires 100 sec for B to complete

I Running A and B concurrently makes B finish faster

I A slightly slower, but less than 100 sec unless A and B both
completely CPU-bound

A. Legrand Processes Introduction — 4 / 49

Processes in the real world

I Processes, parallelism fact of life much longer than OSes
have been around

I E.g., say takes 1 worker 10 months to make 1 widget
I Company may hire 100 workers to make 10,000 widgets
I Latency for first widget >> 1/10 month
I Throughput may be < 10 widgets per month

(if can’t perfectly parallelize task)
I Or > 10 widgets per month if better utilization (e.g., 100 work-

ers on 10,000 widgets never idly waiting for paint to dry)

I You will see this with your assignments
I Don’t expect labs to take 1/3 time with three people

A. Legrand Processes Introduction — 5 / 49

A process’s view of the world

I Each process has own view of machine
I Its own address space
I Its own open files
I Its own virtual CPU (through preemptive mul-

titasking)

I *(char *)0xc000 different in P1 & P2

I Greatly simplifies programming model
I gcc does not care that firefox is running

I Sometimes want interaction between processes
I Simplest is through files: emacs edits file, gcc compiles it
I More complicated: Shell/command, Window manager/app.

A. Legrand Processes Introduction — 6 / 49

Outline

Introduction

User View of Processes
Basic Unix/Linux System Call Interface
Basic Process Management

Kernel View of Processes

Inter Process Communication
Motivation
Signals
Shared Memory
Bounded Buffer
Pipes
Inter Process Communications

General Facts
Sockets
MPI, RPC and Java RMI

A. Legrand Processes User View of Processes — 7 / 49

UNIX files I/O

I Applications “open” files (or devices) by name
I I/O happens through open files

I int open(char *path, int flags, /*mode*/...);
I flags: O RDONLY, O WRONLY, O RDWR
I O CREAT: create the file if non-existent
I O EXCL: (w. O CREAT) create if file exists already
I O TRUNC: Truncate the file
I O APPEND: Start writing from end of file
I mode: final argument with O CREAT

I Returns file descriptor—used for all I/O to file

A. Legrand Processes User View of Processes
— Basic Unix/Linux System Call

Interface 8 / 49

Error returns

I What if open fails? Returns -1 (invalid fd)
I Most system calls return -1 on failure

I Specific kind of error in global int errno

I #include <sys/errno.h> for possible values
I 2 = ENOENT “No such file or directory”
I 13 = EACCES “Permission Denied”

I perror function prints human-readable message
I perror ("initfile");

→ “initfile: No such file or directory”

A. Legrand Processes User View of Processes
— Basic Unix/Linux System Call

Interface 9 / 49

Operations on file descriptors

I int read (int fd, void *buf, int nbytes);
I Returns number of bytes read
I Returns 0 bytes at end of file, or -1 on error

I int write (int fd, void *buf, int nbytes);
I Returns number of bytes written, -1 on error

I off t lseek (int fd, off t pos, int whence);
I whence: 0 – start, 1 – current, 2 – end

I Returns previous file offset, or -1 on error

I int close (int fd);

A. Legrand Processes User View of Processes
— Basic Unix/Linux System Call

Interface 10 / 49

File descriptor numbers

I File descriptors are inherited by processes
I When one process spawns another, same fds by default

I Descriptors 0, 1, and 2 have special meaning
I 0 – “standard input” (stdin in ANSI C)
I 1 – “standard output” (stdout, printf in ANSI C)
I 2 – “standard error” (stderr, perror in ANSI C)
I Normally all three attached to terminal

I Example: type.c
I Prints the contents of a file to stdout

A. Legrand Processes User View of Processes
— Basic Unix/Linux System Call

Interface 11 / 49

Exemple: type.c

void typefile(char *filename)

{

int fd, nread;

char buf[1024];

fd = open(filename, O RDONLY);

if (fd == -1) {

perror(filename);

return;

}

while ((nread = read(fd, buf, sizeof(buf))) > 0)

write(1, buf, nread);

close(fd);

}

A. Legrand Processes User View of Processes
— Basic Unix/Linux System Call

Interface 12 / 49

The rename system call

I int rename (const char *p1, const char *p2);
I Changes name p2 to reference file p1
I Removes file name p1

I Guarantees that p2 will exist despite any crashes
I p2 may still be old file
I p1 and p2 may both be new file
I but p2 will always be old or new file

I fsync/rename idiom used extensively
I E.g., emacs: Writes file .#file#
I Calls fsync on file descriptor
I rename (".#file#", "file");

A. Legrand Processes User View of Processes
— Basic Unix/Linux System Call

Interface 13 / 49

Creating processes

I int fork (void);
I Create new process that is exact copy of current one
I Returns process ID of new process in “parent”
I Returns 0 in “child”
I Actually, not int anymore, but pid t

I int get pid (void); int get ppid (void);
I Returns process ID of the calling process (resp. of its parent)

I int waitpid (int pid, int *stat, int opt);
I pid – process to wait for, or -1 for any
I stat – will contain exit value, or signal
I opt – usually 0 or WNOHANG
I Returns process ID or -1 on error

I Hierarchy of processes
I run the pstree -p command

A. Legrand Processes User View of Processes — Basic Process Management 14 / 49

Deleting processes

I void exit (int status);
I Current process ceases to exist
I status shows up in waitpid (shifted)
I By convention, status of 0 is success, non-zero error

I int kill (int pid, int sig);
I Sends signal sig to process pid
I SIGTERM most common value, kills process by default

(but application can catch it for “cleanup”)
I SIGKILL stronger, kills process always

A. Legrand Processes User View of Processes — Basic Process Management 15 / 49

Process Termination

I When a child terminates (either by calling exit or abnor-
mally due to a fatal error or signal)

I An exit status is returne to the OS
I Some of the process resources are deallocated by operating sys-

tem.
I A SIGCHLD signal is sent to the parent
I Parent should retrieve the exit status using wait. If it does not,

then the child process will remain in the system as a zombi.

I When a parent process terminates before its child, there
are two options:

I Operating system does not allow child to continue if its parent
terminates ; cascading termination (VMS).

I Re-parent the orphan (UNIX). The init process becomes the new
parent and is specifically designed to handle orphan proces (and
take care of zombis).

A. Legrand Processes User View of Processes — Basic Process Management 16 / 49

Running programs

I int execve (const char *prog, const char **argv,
char **envp;)

I prog – full pathname of program to run
I argv – argument vector that gets passed to main
I envp – environment variables, e.g., PATH, HOME

I Generally called through a wrapper functions
I int execvp (char *prog, char **argv);

Search PATH for prog, use current environment
I int execlp (char *prog, char *arg, ...);

List arguments one at a time, finish with NULL

I Example: minish.c
I Loop that reads a command, then executes it

A. Legrand Processes User View of Processes — Basic Process Management 17 / 49

minish.c (simplified)
pid t pid;

char **av;

void doexec() {

execvp(av[0], av);

perror(av[0]);

exit(1);

}

/* ... main loop: */

for (;;) {

parse next line of input(&av, stdin);

switch (pid = fork()) {

case -1:

perror("fork");

break;

case 0:

doexec();

default:

waitpid(pid, NULL, 0);

break;

}

}

A. Legrand Processes User View of Processes — Basic Process Management 18 / 49

Manipulating file descriptors

I int dup2 (int oldfd, int newfd);
I Makes newfd be the copy of oldfd,

closing newfd first if necessary.
I Two file descriptors will share same offset

(lseek on one will affect both)

I int fcntl (int fd, F SETFD, int val)
I Sets close on exec flag if val = 1, clears if val = 0
I Makes file descriptor non-inheritable by spawned programs

I Example: redirsh.c
I Loop that reads a command and executes it
I Recognizes command < input > output 2> errlog

A. Legrand Processes User View of Processes — Basic Process Management 19 / 49

redirsh.c

void doexec (void) {

int fd;

/* infile non-NULL if user typed "command < infile" */

if (infile) {

if ((fd = open (infile, O RDONLY)) < 0) {

perror (infile);

exit (1);

}

if (fd != 0) {

dup2 (fd, 0);

close (fd);

}

}

/* ... Do same for outfile -> fd 1, errfile -> fd 2 ... */

execvp (av[0], av);

perror (av[0]);

exit (1);

}

A. Legrand Processes User View of Processes — Basic Process Management 20 / 49

Why fork?

I Most calls to fork followed by execve

I Could also combine into one spawn system call
I Occasionally useful to fork one process

I Unix dump utility backs up file system to tape
I If tape fills up, must restart at some logical point
I Implemented by forking to revert to old state if tape ends

I Real win is simplicity of interface
I Tons of things you might want to do to child:

Manipulate file descriptors, environment, resource limits, etc.
I Yet fork requires no arguments at all

A. Legrand Processes User View of Processes — Basic Process Management 21 / 49

Spawning process w/o fork

I Without fork, require tons of different options

I Example: Windows CreateProcess system call

A. Legrand Processes User View of Processes — Basic Process Management 22 / 49

Outline

Introduction

User View of Processes
Basic Unix/Linux System Call Interface
Basic Process Management

Kernel View of Processes

Inter Process Communication
Motivation
Signals
Shared Memory
Bounded Buffer
Pipes
Inter Process Communications

General Facts
Sockets
MPI, RPC and Java RMI

A. Legrand Processes Kernel View of Processes — 23 / 49

Implementing processes

I OS keeps data structure for each proc

I Process Control Block (PCB)
I Called proc in Unix, task struct in

Linux

I Tracks state of the process
I Running, runnable, blocked, etc.

I Includes information necessary to run
I Registers, virtual memory mappings, etc.
I Open files (including memory mapped

files)

I Various other data about the process
I Credentials (user/group ID), signal mask,

controlling terminal, priority, accounting
statistics, whether being debugged, which
system call binary emulation in use, . . .

Registers

Program counter

Address space

(VM data structs)

Process state

Process ID

User id, etc.

Open files

PCB

A. Legrand Processes Kernel View of Processes — 24 / 49

Fork & Exec

I The fork system call creates a copy of
the PCB

I Open files and memory mapped files are
thus similar

I Open files are thus opened by both father
and child. They should both close the
files

I The pages of many memory segments are
shared (text, r/o data,...)

I Many others are lazily copied (copy on
write)

I The exec system call replaces the ad-
dress space, the registers, the program
counter by the one of the program to
exec.

I Open files are thus inherited (hence, the
need for the fcntl function sometimes)

Registers

Program counter

Address space

(VM data structs)

Process state

Process ID

User id, etc.

Open files

PCB

A. Legrand Processes Kernel View of Processes — 25 / 49

Process states

I Process can be in one of several states
I new & terminated at beginning & end of life
I running – currently executing (or will execute on kernel return)
I ready – can run, but kernel has chosen different process to run
I waiting – needs async event (e.g., disk operation) to proceed

I Which process should kernel run?
I if 0 runnable, run idle loop, if 1 runnable, run it
I if >1 runnable, must make scheduling decision

A. Legrand Processes Kernel View of Processes — 26 / 49

Scheduling

I How to pick which process to run
I Scan process table for first runnable?

I Expensive. Weird priorities (small pids better)
I Divide into runnable and blocked processes

I FIFO?
I Put process on back of list, pull them off from front

I Priority?
I Give some process a better shot at the CPU

A. Legrand Processes Kernel View of Processes — 27 / 49

Scheduling policy

I Want to balance multiple goals
I Fairness – don’t starve processes
I Priority – reflect relative importance of procs
I Deadlines – must do x (play audio) by certain time
I Throughput – want good overall performance
I Reactivity – minimize response time
I Efficiency – minimize overhead of scheduler itself

I No universal policy
I Many objectives, can’t optimize for all
I Conflicting goals (e.g., throughput or priority vs. fairness)

I We will spend a lecture on this topic

A. Legrand Processes Kernel View of Processes — 28 / 49

Preemption

I Can preempt a process when kernel gets control
I Running process can vector control to kernel

I System call, page fault, illegal instruction, etc.
I May put current process to sleep—e.g., read from disk
I May make other process runnable—e.g., fork, write to pipe

I Periodic timer interrupt
I If running process used up quantum, schedule another

I Device interrupt
I Disk request completed, or packet arrived on network
I Previously waiting process becomes runnable
I Schedule if higher priority than current running proc.

I Changing running process is called a context switch

A. Legrand Processes Kernel View of Processes — 29 / 49

Context switch

A. Legrand Processes Kernel View of Processes — 30 / 49

Context switch details

I Very machine dependent. Typical things include:
I Save program counter and integer registers (always)
I Save floating point or other special registers
I Save condition codes
I Change virtual address translations

I Non-negligible cost
I Save/restore floating point registers expensive

I Optimization: only save if process used floating point

I May require flushing TLB (memory translation hardware)
I Optimization: don’t flush kernel’s own data from TLB

I Usually causes more cache misses (switch working sets)

A. Legrand Processes Kernel View of Processes — 31 / 49

Outline

Introduction

User View of Processes
Basic Unix/Linux System Call Interface
Basic Process Management

Kernel View of Processes

Inter Process Communication
Motivation
Signals
Shared Memory
Bounded Buffer
Pipes
Inter Process Communications

General Facts
Sockets
MPI, RPC and Java RMI

A. Legrand Processes Inter Process Communication — 32 / 49

Cooperating Processes

I Independent process cannot affect or be affected by the
execution of another process

I We put a lot of effort on this... remember all the previous
lectures

I Cooperating process can affect or be affected by the ex-
ecution of another process. Advantages:

I Information sharing
I Computation speed-up
I Modularity
I Convenience

A. Legrand Processes Inter Process Communication — Motivation 33 / 49

Process Interaction

I How can processes interact in real time?

(1) Through files but it’s not really “real time”.
(2) Through asynchronous signals or alerts but again, it’s not really

“real time”.
(3) By sharing a region of physical memory
(4) By passing messages through the kernel

A. Legrand Processes Inter Process Communication — Motivation 34 / 49

Asynchronous notification
I As we have seen earlier

I Children process send a SIGCHLD signal to their parents upon
termination.

I One may send a SIGINT/SIGTERM/SIGSTOP/SIGKILL signal
to CTRL-C/suspend (CTRL-Z)/terminate/kill a process using
the kill function:

int kill (int pid, int sig);

I Upon reception of a signal, a given handler is called. This han-
dler can be obtained and modified using the signal function:

typedef void (*sighandler t)(int);

sighandler t signal(int signum, sighandler t handler);

I Some common signals:
I SIGSEGV (segfault), SIGFPE (floating-point exception), SIGALRM

(timer alarm), SIGABRT (abort is catched by gdb), SIGILL (il-
legal instruction!), SIGCONT (resume if suspended)

I SIGUSR1, SIGUSR2

I Some signals cannot be blocked (SIGSTOP and SIGKILL)

A. Legrand Processes Inter Process Communication — Signals 35 / 49

Illustrating shm

#define DELAY 1 /* secondss */

void handler(int signal_num)

{

printf("Signal %d => ", signal_num);

switch (signal_num) {

case SIGTSTP:

printf("Let’s sleep!");

kill(getpid(), SIGSTOP);

printf("Waking up!");

signal(SIGTSTP, handler);

break;

case SIGINT:

case SIGTERM:

printf("End of the program");

exit(EXIT_SUCCESS);

break;

}

}

#include <stdlib.h>

#include <signal.h>

#include <errno.h>

#include <unistd.h>

#include <stdio.h>

int main(void)

{

signal(SIGTSTP, handler);

/* if control-Z */

signal(SIGINT, handler);

/* if control-C */

signal(SIGTERM, handler);

/* if kill processus */

while (1) {

sleep(DELAI);

printf(".");

fflush(stdout);

}

printf("fin");

exit(EXIT_SUCCESS);

}

A. Legrand Processes Inter Process Communication — Signals 36 / 49

Shared Memory Segment

I A process can create a shared memory segment using:

int shmget(key t key, size t size, int shmflg);

I The returned value identifies the segment and is called the shmid
I The key is used so that process indeed get the same segment.

I The original owner of a shared memory segment can as-
sign ownership to another user with shmctl().

I It can also revoke this assignment.

I Once created, a shared segment should be attached to a
process address space using

void *shmat(int shmid, const void *shmaddr, int

shmflg);

I It can be detached using int shmdt(const void *shmaddr);

I Can also be done with the mmap function

A. Legrand Processes Inter Process Communication — Shared Memory 37 / 49

Illustrating shm

char c;

int shmid;

key t key;

char *shm, *s;

key = 5678;

/* Create the segment */

if ((shmid = shmget(key, SHMSZ,

IPC CREAT | 0666)) < 0) {

perror("shmget");

exit(1);

}

/* Attach the segment */

if ((shm = shmat(shmid, NULL, 0)) ==

(char *) -1) {

perror("shmat");

exit(1);

}

int shmid;

key t key;

char *shm, *s;

key = 5678;

/* Locate the segment */

if ((shmid = shmget(key, SHMSZ, 0666))

< 0) {

perror("shmget");

exit(1);

}

/* Attach the segment */

if ((shm = shmat(shmid, NULL, 0)) ==

(char *) -1) {

perror("shmat");

exit(1);

}

A. Legrand Processes Inter Process Communication — Shared Memory 38 / 49

Producer-Consumer Problem
I Paradigm for cooperating processes

I Producer process produces information that is consumed by a
consumer process

I unbounded-buffer places no practical limit on the size of the
buffer

I bounded-buffer assumes that there is a fixed buffer size
I Shared-Memory Solution

/*Shared data structure*/

#define BUFFER_SIZE 10

typedef struct {

...

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

/* Producer */

item nextProduced;

while (1) {

while(((in + 1)%BUFFER_SIZE)

==out)

; /* do nothing */

buffer[in]=nextProduced;

in=(in+1)%BUFFER_SIZE;

}

/* Consumer */

item nextConsumed;

while (1) {

while (in == out)

; /* do nothing */

nextConsumed=buffer[out];

out=(out+1)%BUFFER_SIZE;

}

I Drawbacks:
I Solution is correct, but can only use BUFFER SIZE-1 elements
I Works only with one producer and one consumer
I Busy waiting

A. Legrand Processes Inter Process Communication — Bounded Buffer 39 / 49

Pipes

I int pipe (int fds[2]);
I Returns two file descriptors in fds[0] and fds[1]
I Writes to fds[1] will be read on fds[0]
I When last copy of fds[1] closed, fds[0] will return EOF
I Returns 0 on success, -1 on error

I Operations on pipes
I read/write/close – as with files
I When fds[1] closed, read(fds[0]) returns 0 bytes
I When fds[0] closed, write(fds[1]):

I Kills process with SIGPIPE, or if blocked
I Fails with EPIPE

I Example: pipesh.c
I Sets up pipeline command1 | command2 | command3 ...

A. Legrand Processes Inter Process Communication — Pipes 40 / 49

pipesh.c (simplified)

void doexec (void) {

int pipefds[2];

while (outcmd) {

pipe (pipefds);

switch (fork ()) {

case -1:

perror ("fork"); exit (1);

case 0:

dup2 (pipefds[1], 1);

close (pipefds[0]); close (pipefds[1]);

outcmd = NULL;

break;

default:

dup2 (pipefds[0], 0);

close (pipefds[0]); close (pipefds[1]);

parse command line (&av, &outcmd, outcmd);

break;

}

}

/* ... */

}

A. Legrand Processes Inter Process Communication — Pipes 41 / 49

Inter Process Communications (IPC)

I Mechanism for processes to communicate and to synchro-
nize their actions

I Message system processes communicate with each other
without resorting to shared variables

I IPC facility provides two operations:
I send(message) message size fixed or variable
I receive(message)

I If P and Q wish to communicate, they need to:
I establish a communication link between them
I exchange messages via send/receive

I Implementation of communication link
I physical (e.g., shared memory, hardware bus)
I logical (e.g., logical properties)

A. Legrand Processes Inter Process Communication — IPC 42 / 49

Implementation Issues

I How are links established?

I Can a link be associated with more than two processes?

I How many links can there be between every pair of com-
municating processes?

I What is the capacity of a link?

I Is the size of a message that the link can accommodate
fixed or variable?

I Is a link unidirectional or bi-directional?

A. Legrand Processes Inter Process Communication — IPC 43 / 49

Direct Communication

I Processes must name each other explicitly:
I send (P, message) send a message to process P
I receive(Q, message) receive a message from process Q

I Properties of communication link
I Links are established automatically
I A link is associated with exactly one pair of communicating

processes
I Between each pair there exists exactly one link.
I The link may be unidirectional, but is usually bi-directional

A. Legrand Processes Inter Process Communication — IPC 44 / 49

Indirect Communication

I Messages are directed and received from mailboxes (also
referred to as ports)

I Each mailbox has a unique id
I Processes can communicate only if they share a mailbox

I Properties of communication link
I Link established only if processes share a common mailbox
I A link may be associated with many processes
I Each pair of processes may share several communication links
I Link may be unidirectional or bi-directional

I Operations
I create a new mailbox
I send and receive messages through mailbox
I destroy a mailbox

I Primitives are defined as:
I send(A, message) send a message to mailbox A
I receive(A, message) receive a message from mailbox A

A. Legrand Processes Inter Process Communication — IPC 45 / 49

Indirect Communication Issues

I Mailbox sharing
I P1, P2, and P3 share mailbox A
I P1, sends; P2 and P3 receive
I Who gets the message?

I Solutions
I Allow a link to be associated with at most two processes
I Allow only one process at a time to execute a receive operation
I Allow the system to select arbitrarily the receiver. Sender is

notified who the receiver was

A. Legrand Processes Inter Process Communication — IPC 46 / 49

Synchronization Issues

I Synchronization
I Message passing may be either blocking or non-blocking
I Blocking is considered synchronous
I Non-blocking is considered asynchronous
I send and receive primitives may be either blocking or non-blocking

I Queue of messages attached to the link; implemented in
one of three ways.

I Zero capacity 0 messages. Sender must wait for receiver (ren-
dezvous)

I Bounded capacity finite length of n messages. Sender must
wait if link full

I Unbounded capacity infinite length. Sender never waits

I Pipes, just like most I/Os are buffered
I Hence, when you pipe process, the initial producer process will

“wait” for the child process to read the data

A. Legrand Processes Inter Process Communication — IPC 47 / 49

Sockets
I A socket is defined as an endpoint for com-

munication

I Concatenation of IP address and port

I The socket 161.25.19.8:1625 refers to port
1625 on host 161.25.19.8

I Communication consists between a pair of
sockets and is bidirectionnal

(int) sock id = socket(int domain, int type, int protocol);

(int) error bind(int sock id,sockaddr localaddr, int addrlen);

(int) error = listen(int sock id,int backlog);

(int) new_sock id = accept(int sock id, struct sockaddr *client addr,

int * client addrlen);

(int) error = connect(int sock id, struct sockaddr *server addr,

int * server addrlen);

ssize t recv(int sock id,char * buffer,int len,int flags);

ssize t send(int sock id,char * buffer,int len,int flags);

(int) error = close(int sock id);

A. Legrand Processes Inter Process Communication — IPC 48 / 49

Sockets
To accept connections, the following steps are performed:

1. A socket is created with socket

2. The socket is bound to a local address using bind (assigning a
name to a socket), so that other sockets may be connected to
it

3. A willingness to accept incoming connections and a queue limit
for incoming connections are specified with listen.

4. Connections are accepted with accept.

(int) sock id = socket(int domain, int type, int protocol);

(int) error bind(int sock id,sockaddr localaddr, int addrlen);

(int) error = listen(int sock id,int backlog);

(int) new_sock id = accept(int sock id, struct sockaddr *client addr,

int * client addrlen);

(int) error = connect(int sock id, struct sockaddr *server addr,

int * server addrlen);

ssize t recv(int sock id,char * buffer,int len,int flags);

ssize t send(int sock id,char * buffer,int len,int flags);

(int) error = close(int sock id);

A. Legrand Processes Inter Process Communication — IPC 48 / 49

Higher level APIs
I Message Passing Interface (MPI)

I Used for High Performance Computing with high-speed network
implementations

I Proposes send/recv but many others (Isend/Irecv, collective op-
erations)

I Uses structured types instead of char * (for portability)

I Remote procedure call (RPC) abstracts procedure calls
between processes on networked systems

I Stubs client-side proxy for the actual procedure on the server
I The client-side stub locates the server and marshalls the pa-

rameters
I The server-side stub receives this message, unpacks the mar-

shalled parameters, and peforms the procedure on the server

I Remote Method Invocation
I Remote Method Invocation (RMI) is a Java mechanism similar

to RPCs
I RMI allows a Java program on one machine to invoke a method

on a remote object

A. Legrand Processes Inter Process Communication — IPC 49 / 49

	Introduction
	User View of Processes
	Basic Unix/Linux System Call Interface
	Basic Process Management

	Kernel View of Processes
	Inter Process Communication
	Motivation
	Signals
	Shared Memory
	Bounded Buffer
	Pipes
	Inter Process Communications

