Linking
Operating System Design — MOSIG 1

Instructor: Arnaud Legrand
Class Assistants: Benjamin Negrevergne, Sascha Hunold

October 5, 2010

A. Legrand Linking —_ 1/38

Today's Big Adventure

Linking,

.—' gce —'.—'-—>.\)
a.out

c.c— gce —'cs—'-—>C°

» How to name and refer to things that don't exist yet

» How to merge separate name spaces into a cohesive whole
» Readings

» a.out & elf man pages, ELF standard

» Run “nm" or “objdump” on a few .o and a.out files.

A. Legrand Linking —_ 2 /38

http://www.openbsd.org/cgi-bin/man.cgi?query=a.out&apropos=0&sektion=0&manpath=OpenBSD+Current&arch=i386&format=html
http://www.openbsd.org/cgi-bin/man.cgi?query=elf&apropos=0&sektion=0&manpath=OpenBSD+Current&arch=i386&format=html
http://refspecs.freestandards.org/elf/

Linking as our first naming system

A. Legrand

» Naming is a very deep theme that comes up everywhere

» Naming system: maps names to values

» Examples:

>

Linking: Where is printf? How to refer to it? How to deal
with synonyms? What if it doesn't exist?

Virtual memory address (name) resolved to physical address
(value) using page table

File systems: translating file and directory names to disk loca-
tions, organizing names so you can navigate, ...

» www.stanford.edu resolved 171.67.216.17 using DNS
> IP addresses resolved to Ethernet addresses with ARP
» Street names: translating (elk, pine, ...) vs (Ist, 2nd, ...) to

actual location

Linking —

3/38

Perspectives on memory contents

» Programming language view: x += 1; add $1, Jeax
» Instructions: Specify operations to perform
» Variables: Operands that can change over time
> : Operands that never change

Hardware view:

v

» executable: code, usually read-only
» read only: constants (maybe one copy for all processes)
» read/write: variables (each process needs own copy)

Need addresses to use data:

» Addresses locate things. Must update them when you move
» Examples: linkers, garbage collectors, changing apartment

Binding time: When is a value determined/computed?
» Early to late: Compile time, Link time, Load time, Runtime

v

v

A. Legrand Linking —_ 4 /38

Outline

Process Organization

A. Legrand Linking Process Organization — 5/ 38

How is a process specified?
» Executable file: the linker/OS interface.

» What is code? What is data?
» Where should they live?

» Linker builds executables from object files:

Header: code/data size,
symtab offset

0]

Object code: instructions
and data gen'd by compiler

40
Symbol table: T

external defs
(exported objects in file)

external refs ——

(global syms used in file)\A

Linking

A. Legrand Process Organization —

code~
—data
inta

foo:
ret

<

“f00.0"

code=110
data=8,

foo:
call 0
ret

bar:

ret

1: “hello world\n”

foo: 0: T
bar: 40: t

4: printf

6/ 38

How is a program executed?

» On Unix systems, read by “loader”
Compjle time runtime
| =

» Reads all code/data segs into buffer cache;
Maps code (read only) and initialized data (r/w) into addr space
» Or...fakes process state to look like paged out
» Lots of optimizations happen in practice:
Zero-initialized data does not need to be read in.
Demand load: wait until code used before get from disk
Copies of same program running? Share code
Multiple programs use same routines: share code (harder)

v

vVvYyy

A. Legrand Linking Process Organization — 7 /38

What does a process look like? (Unix)

A. Legrand

» Process address space divided into “segments”
» text (code), data, heap (dynamic data), and stack

» Why? (1) different allocation patterns; (2) separate code/data

Linking

Kernel

$

Stack

Heap

$

-

D

?

Uninitialized data
Initialized data
Read-only data

Code

—— mmapped
——— regions

Process Organization —

8 /38

Who builds what?

» Heap: allocated and laid out at runtime by malloc

» Compiler, linker not involved other than saying where it can
start

» Namespace constructed dynamically and managed by program-
mer (names stored in pointers, and organized using data struc-
tures)

» Stack: alloc at runtime (proc call), layout by compiler
» Names are relative off of stack (or frame) pointer
» Managed by compiler (alloc on proc entry, free on exit)
> Linker not involved because name space entirely local:
Compiler has enough information to build it.
» Global data/code: alloc by compiler, layout by linker

» Compiler emits them and names with symbolic references
» Linker lays them out and translates references

A. Legrand Linking Process Organization — 9 /38

Outline

First Example: Hello World!

A. Legrand Linking First Example: Hello World! — 10 / 38

Example

A. Legrand

» Simple program has “printf ("hello world\n");”
» Compile with: cc -m32 -fno-builtin -S hello.c
» -S says don't run assembler (-m32 is 32-bit x86 code)

» OQOutput in hello.s has symbolic reference to printf

.section .rodata
.LCO: .string "hello world\n"
.text
.globl main

main: ..
subl $4, Yesp
movl $.LCO, (%esp)
call printf

v

Disassemble a.out or hello.o with objdump -d:
[8048415: e8 26 ff ff ff call 8048340 <printf@plt>

v

Jumps to PC - d5 = address of address within instruction.
This is used to get Position Independant Code.

Linking First Example: Hello World! —

11/ 38

Linkers (Linkage editors)

» Unix: Id
» Usually hidden behind compiler
» Run gcc -v hello.c to see Id or invoked

> Three functions:

» Collect together all pieces of a program

» Coalesce like segments

» Fix addresses of code and data so the program can run
> Result: runnable program stored in new object file
» Why can’t compiler do this?

» Limited world view: sees one file, rather than all files
» Usually linkers don’t rearrange segments, but can

» E.g., re-order instructions for fewer cache misses;
remove routines that are never called from a.out

A. Legrand Linking First Example: Hello World! — 12 /38

Simple linker: two passes needed

» Pass 1:
» Coalesce like segments; arrange in non-overlapping mem.
» Read file's symbol table, construct global symbol table with
entry for every symbol used or defined
» Compute virtual address of each segment (at start+offset)
» Pass 2:
» Patch references using file and global symbol table
» Emit result
» Symbol table: information about program kept while linker
running
» Segments: name, size, old location, new location
» Symbols: name, input segment, offset within segment

A. Legrand Linking First Example: Hello World! — 13 /38

Where to put emitted objects?

» Assembler:

» Doesn’'t know where data/code should be
placed in the process’s address space

» Assumes everything starts at zero 0 foo: .
» Emits symbol table that holds the name and call printf
offset of each created object ret

» Routines/variables exported by file arel 40| bar:
recorded as global definitions

» Simpler perspective: ret
» Code is in a big char array - foo: 0: T
» Data is in another big char array bar: 40: t

» Assembler creates (object name, index) tu-
ple for each interesting thing
Linker then merges all of these arrays

v

A. Legrand Linking First Example: Hello World! — 14 / 38

Where to put emitted objects

40

80

30

A. Legrand

» At link time, linker
» Determines the size of each segment and the resulting address

to place each object at
» Stores all global definitions in a global symbol table that maps

the definition to its final virtual address

foo:
call printf
ret

bar:

foo: 0: T
bar: 40: t

f.o

.

printf:

printf.o

Linking

a.out

1d

foo:
call printf
bar:

printf:

foo: 4000
bar: 4040
printf: 4080

First Example: Hello World! —

4000

4040

4080

4110

e

(partially done)

stab

15/ 38

Where is everything?

» How to call procedures or reference variables?

» E.g., call to printf needs a target addr
» Assembler uses 0 or PC for address
» ,Emits an external reference telling the linker the instruction’
offset and the symbol it needs to be patched with

0 | foo:
pushl $.LCO
call -4

ret

bar:

ret
foo: 0: T
bar: 40: t
+ printf: 4

» At link time the linker patches every reference

A. Legrand Linking First Example: Hello World! — 16 / 38

Linker: Where is everything

» At link time the linker
» Records all references in the global symbol table

» After reading all files, each symbol should have exactly one def-
inition and 0 or more uses

» The linker then enumerates all references and fixes them by in-
serting their symbol’s virtual address into the reference’s speci-

fied instruction or data location

40

foo:
call 0
ret

80 e

T~

4: printf

1d

foo:
call4080

printf:

A. Legrand

Linking

printf:

foo: 4000
bar: 4040

printf: 4080

First Example: Hello World! —

4000
4040

4080

4110

17 / 38

Outline

Second Example: using libc

A. Legrand Linking Second Example: using libc — 18 / 38

Example: 2 modules and C lib

Imain.c: math.c:
extern float sin(); float sin(float x) {
extern int printf(), scanf(); float tmp1, tmp2;
float val = 0.0; static float res = 0.0;
main() { static float lastx = 0.0;
static float x = 0.0; if(x 1= lastx) {
printf(“enter number”); lastx = x;
scanf(“%f”, &x); ... compute sin(x)...
val = sin(x); }
printf(“Sine is %f”, val); return res;
} }
C library:

int scanf(char *fmt, ...) { ... }
int printf(char *fmt, ...) { ... }

A. Legrand Linking Second Example: using libc —

19 /38

Initial object files

Main.o:
def: val @ 0:D symbols
def: main @ 0:T
def: x @ 4:4
relocation
ref: printf @ 0:T,12:T
ref: scanf @ 4:T
ref: x @ 4:T7, 8:T
ref: sin @ ?:T
ref: val @ ?:T, ?:T
ol x:
4 | val: data
0 call printf
4 | call scanf (&x)
g | val call sin(x) text
12| call printf (val)

A. Legrand

Linking

Math.o:
symbols
def: sin @0:T
def: res @ 0:d4
def: lastx @4:d
relocation
ref: lastx@0:T,4:T
ref res @24:T
0 res: data
4 lastx:
0 if(x 1= lastx)
4 lastx = x; text
- . compute sin(x)..
24 return res;

Second Example: using libc —

20/ 38

Pass 1: Linker reorganization

a.out:

symbol table
0 val:
4 X: def:
8 res: def:
12 lastx: def:

def:

16| main: -
oo oo re f .
26 call printf(val) ref:
30| sin:
50 return res; text
64| printf:
80| scanf:

A. Legrand

Linking

Second Example: using libc —

Starti virtual addr: 4000
Afbol table:

data starts @ 0
text starts @ 16

val @ 0
X @ 4

res @ 8
main @ 16

printf @ 26
res @ 50

(what are some other refs?)

21/ 38

Pass 2: Relocation

“final” a.out:

o B O

16

26
30

50
64
80

symbol table

val:

X:

res:

lastx: data

main:

call ??(??)//printf (val)
sin: text
return load ??;// res
printf:
scanf:

Starting virtual addr: 4000

Symbol table:
data starts 4000

4000 text starts 4016
4004 def: val @ 0
4008 def: x @ 4
4012 def: res @ 8
def: main @ 14

4016 def: sin @ 30
. def: printf @ 64
4026 def: scanf @80
4030 -

(usually don’t keep refs,
- since won’t relink. Defs
4050

are for debugger: can
4064 be stripped out)
4080

A. Legrand Linking Second Example: using libc — 22 /38

What gets written out

a.out:
symbol table
16l main: Text segment
26| call 4064(4000)
30| sin:
50| return load 4008;
64| printf:
80| scanf:
1000 Data segment
val: 0.0
x: 0.0
A. Legrand Linking

virtual addr:

4016

Symbol table:

4016

4026
4030

4050
4064
4080

5000

initialized data =
uninitialized data =
text = 4016

def: val @ 1000

def: x @ 1004

def: res @ 1008

def: main @ 14

def: sin @ 30

def: printf @ 64
def: scanf @ 80

Second Example: using libc —

4000
4000

23 /38

Examining programs with nm

VA % nm a.out symbol type
int uninitialized; N /
int initialized = 1; 0400400 T _start
const int constant = 2; 04005bc R constant
int main () 0601008 W data_start
{ 0601020 D initialized
return 0; 04004b8 T main
¥ 0601028 B uninitialized

» const variables of type R won’t be written

» Note constant VA on same page as main
» Share pages of read-only data just like text

» Uninitialized data in “BSS” segment, B
» No actual contents in executable file

» Goes in pages that the OS allocates zero-filled, on-demand

A. Legrand Linking

Second Example: using libc —

24/ 38

Examining programs with objdump

Note Load mem addr. and File off have same page

% objdump -h a.out alignment for easy mmapping
a.out: file format elf64-x86-64

Sections: //

Idx Name Size VMA LMA File off Algn

12 .text 000001a8 00400400 00400400 00000400 2*x4
CONTENTS, ALLOC, LOAD, READONLY, CODE

14 .rodata 00000008 004005b8 004005b8 000005b8 2**2
CONTENTS, ALLOC, LOAD, READONLY, DATA

17 .ctors 00000010 00600e18 00600e18 00000el18 2**3
CONTENTS, ALLOC, LOAD, DATA

23 .data 0000001c 00601008 00601008 00001008 2%*3
CONTENTS, ALLOC, LOAD, DATA

24 .bss 0000000c 00601024 00601024 00001024 2%x2
ALLOC
. " No contents in file

A. Legrand Linking Second Example: using libc —

25 / 38

Types of relocation

v

Place final address of symbol here
» Example: int y, *x = &y;
y gets address in BSS, x in data segment, contains VA of y
» Code example: call printf becomes
8048248: e8 e3 09 00 00 call 8048c30 <printf>
» Binary encoding reflects computed VMA of printf
(Note encoding of call argument is actually PC-relative)

Add address of symbol to contents of this location

» Used for record/struct offsets
» Example: g.head = 1 - move $1, g+4 —movl $1, 0x804allc

v

v

Add diff between final and original seg to this location
» Segment was moved, “static” variables need to be reloc’ed

A. Legrand Linking Second Example: using libc — 26 /38

Outline

Linking Libraries
Runtime Linking
Static Shared Library
Dynamic Library

A. Legrand Linking Linking Libraries — 27 / 38

Variation 0: Dynamic linking

» Link time isn’t special, can link at runtime too

» Get code not available when program compiled
» Defer loading code until needed

[void foo(void) { puts(*hello"); }I—'gcc -c foo.c =

foo:

call puts

void *p = dlopen (“foo.0", RTLD_LAZY):] (

void (*fp)(void) = disym(p, “foo0");——~

fpO:

» Issues: what happens if can't resolve? How can behavior differ
compared to static linking? Where to get unresolved syms (e.g.,
“puts”) from?

A. Legrand Linking Linking Libraries — Runtime Linking 28 /38

Variation 1: Static shared libraries

» Observation: everyone links in standard libraries (libc.a.),
these libs consume space in every executable.

4500

libc.a

printf:
scanf:

1s

9000

libec.a

printf:
scanf:

gcc

> Insight: we can have a single copy on disk if we don’t

actually include lib code in executable

A. Legrand Linking

Linking Libraries — Static Shared Library

29 / 38

Static shared libraries

» Define a “shared library segment” at same address in ev-
ery program’s address space

cC
Oxffe0000
Oxffe0000 Oxffe000Q
OXfffOOOO{ i OXfffOOOO{ E 0xfff0000 '

» Every shared lib is allocated a
unique range in this seg, and com- Oxffe0000 libc.a
putes where its external defs reside

» Linker links program against lib OxfffO000
(why?) but does not bring in actual
code

» Loader marks shared lib region as unreadable

math.a i

» When process calls lib code, seg faults: embedded linker brings
in lib code from known place & maps it in.

» Now different running programs can now share code!

A. Legrand Linkin Linking Libraries — Static Shared Library 30 /38
g g

Variation 2: Dynamic shared libs

» Static shared libraries require system-wide pre-allocation
of address space
» Clumsy, inconvenient
» What if a library gets too big for its space?
» Can space ever be reused?
» Solution: Dynamic shared libraries
Let any library be loaded at any VA
New problem: Linker won't know what names are valid
Solution: stub library
New problem: How to call functions if their position may vary?
Solution: next page. ..

v

vV vy Vvyy

A. Legrand Linking Linking Libraries — Dynamic Library 31/38

Position-independent code
» Code must be able to run

anywhere in virtual mem 0x080480
Lo 00
» Runtime linking would pre- program

vent code sharing, so...

» Add a level of indirection! PLT
» Procedure Linkage Table (r/o code)
» Global Offset Table GOT
0x080480 (r/w
00 main: data)
program een ara
call printf

0x08048f #

44 prm'l'f : 0x400012
libc 34 :

ret libc

Static Libraries

A. Legrand Linking

main:

|_call printf
printf:

call 6OT[5]y

[5] &printf

/

printf: e

ret

Linking Libraries — Dynamic Library

Dynamic Shared Libraries

32/ 38

Lazy dynamic linking

0x080480 [—
00 main: » Linking all the functions at
program startup costs time

call printf]
_5- » Program might only call a
PLT | printf:

few of th
(v/0 code) | _call 60T[5] || ew of them

» Only link each function on

6oT s its first call
(r/w | [5]: difixup
data)
0x400012 v
34 printf: ixup:
libc | ... \ GOT[5] = &printf

ret call printf,

A. Legrand Linking Linking Libraries — Dynamic Library 33 /38

Outline

Generating Code

A. Legrand Linking Generating Code — 34 /38

Code = data, data = code

» No inherent difference between code and data

» Code is just something that can be run through a CPU without
causing an ‘“illegal instruction fault”

» Can be written/read at runtime just like data “dynamically gen-
erated code”

» Why? Speed (usually)
» Big use: eliminate interpretation overhead. Gives 10-100x per-
formance improvement
» Example: Just-in-time compilers for java, or gemu vs. bochs.
» In general: optimizations thrive on information. More informa-
tion at runtime.

» The big tradeoff:

» Total runtime = code gen cost + cost of running code

A. Legrand Linking Generating Code — 35 /38

How?

» Determine binary encoding of desired instructions

SPARC: sub instruction

symbolic = “sub rdst, rsrcl, rsrc2”
325

binary = 10 rd 100 rsi rs2
bit pos: 31 30 25 19 14 0]

» Write these integer values into a memory buffer
unsigned code[1024], *cp = &code[0]:
/* sub %g5, %g4, %g3 */
*cp++ = (2<<30) | (5<<25) | (4<<19) |(4<<14) | 3;

» Jump to the address of the buffer:
((Ant () ())code) O ;

A. Legrand Linking Generating Code — 36 /38

Linking and security

1. Attacker puts code in buf

void 2 O » Overwrites return address to jump
{ to code
char buf [80]; 2. Attacker puts shell command
gets (buf);
Te .. %/ above buf
} » Overwrites return address so func-
tion “returns” to system function
in libc

» People try to address problem with linker
» W”X: No memory both writable and executable
» Prevents 1 but not 2, breaks jits

» Address space randomization
» Makes attack #2 a little harder, not impossible

A. Legrand Linking Generating Code — 37 /38

Linking Summary

» Compiler/Assembler: 1 object file for each source file
» Problem: incomplete world view
» Where to put variables and code? How to refer to them?
» Names definitions symbolically (“printf"), refers to routines/variable
by symbolic name
» Linker: combines all object files into 1 executable file
» Big lever: global view of everything. Decides where everything
lives, finds all references and updates them
» Important interface with OS: what is code, what is data, where
is start point?
» OS loader reads object files into memory:
» Allows optimizations across trust boundaries (share code)
» Provides interface for process to allocate memory (sbrk)

A. Legrand Linking Generating Code — 38 /38

	Process Organization
	First Example: Hello World!
	Second Example: using libc
	Linking Libraries
	Runtime Linking
	Static Shared Library
	Dynamic Library

	Generating Code

