
Linking
Operating System Design – MOSIG 1

Instructor: Arnaud Legrand
Class Assistants: Benjamin Negrevergne, Sascha Hunold

October 5, 2010

A. Legrand Linking — 1 / 38

Today’s Big Adventure

◮ How to name and refer to things that don’t exist yet
◮ How to merge separate name spaces into a cohesive whole

◮ Readings
◮ a.out & elf man pages, ELF standard
◮ Run “nm” or “objdump” on a few .o and a.out files.

A. Legrand Linking — 2 / 38

http://www.openbsd.org/cgi-bin/man.cgi?query=a.out&apropos=0&sektion=0&manpath=OpenBSD+Current&arch=i386&format=html
http://www.openbsd.org/cgi-bin/man.cgi?query=elf&apropos=0&sektion=0&manpath=OpenBSD+Current&arch=i386&format=html
http://refspecs.freestandards.org/elf/

Linking as our first naming system

◮ Naming is a very deep theme that comes up everywhere

◮ Naming system: maps names to values

◮ Examples:
◮ Linking: Where is printf? How to refer to it? How to deal

with synonyms? What if it doesn’t exist?
◮ Virtual memory address (name) resolved to physical address

(value) using page table
◮ File systems: translating file and directory names to disk loca-

tions, organizing names so you can navigate, . . .
◮ www.stanford.edu resolved 171.67.216.17 using DNS
◮ IP addresses resolved to Ethernet addresses with ARP
◮ Street names: translating (elk, pine, . . .) vs (1st, 2nd, . . .) to

actual location

A. Legrand Linking — 3 / 38

Perspectives on memory contents

◮ Programming language view: x += 1; add $1, %eax
◮ Instructions: Specify operations to perform
◮ Variables: Operands that can change over time
◮ Constants: Operands that never change

◮ Hardware view:
◮ executable: code, usually read-only
◮ read only: constants (maybe one copy for all processes)
◮ read/write: variables (each process needs own copy)

◮ Need addresses to use data:
◮ Addresses locate things. Must update them when you move
◮ Examples: linkers, garbage collectors, changing apartment

◮ Binding time: When is a value determined/computed?
◮ Early to late: Compile time, Link time, Load time, Runtime

A. Legrand Linking — 4 / 38

Outline

Process Organization

First Example: Hello World!

Second Example: using libc

Linking Libraries
Runtime Linking
Static Shared Library
Dynamic Library

Generating Code

A. Legrand Linking Process Organization — 5 / 38

How is a process specified?
◮ Executable file: the linker/OS interface.

◮ What is code? What is data?
◮ Where should they live?

◮ Linker builds executables from object files:

A. Legrand Linking Process Organization — 6 / 38

How is a program executed?

◮ On Unix systems, read by “loader”

◮ Reads all code/data segs into buffer cache;
Maps code (read only) and initialized data (r/w) into addr space

◮ Or. . . fakes process state to look like paged out

◮ Lots of optimizations happen in practice:
◮ Zero-initialized data does not need to be read in.
◮ Demand load: wait until code used before get from disk
◮ Copies of same program running? Share code
◮ Multiple programs use same routines: share code (harder)

A. Legrand Linking Process Organization — 7 / 38

What does a process look like? (Unix)

◮ Process address space divided into “segments”
◮ text (code), data, heap (dynamic data), and stack

Stack

Code

Read-only data

Initialized data

Uninitialized data

Heap

Kernel

regions
mmapped

◮ Why? (1) different allocation patterns; (2) separate code/data

A. Legrand Linking Process Organization — 8 / 38

Who builds what?

◮ Heap: allocated and laid out at runtime by malloc
◮ Compiler, linker not involved other than saying where it can

start
◮ Namespace constructed dynamically and managed by program-

mer (names stored in pointers, and organized using data struc-
tures)

◮ Stack: alloc at runtime (proc call), layout by compiler
◮ Names are relative off of stack (or frame) pointer
◮ Managed by compiler (alloc on proc entry, free on exit)
◮ Linker not involved because name space entirely local:

Compiler has enough information to build it.

◮ Global data/code: alloc by compiler, layout by linker
◮ Compiler emits them and names with symbolic references
◮ Linker lays them out and translates references

A. Legrand Linking Process Organization — 9 / 38

Outline

Process Organization

First Example: Hello World!

Second Example: using libc

Linking Libraries
Runtime Linking
Static Shared Library
Dynamic Library

Generating Code

A. Legrand Linking First Example: Hello World! — 10 / 38

Example

◮ Simple program has “printf ("hello world\n");”

◮ Compile with: cc -m32 -fno-builtin -S hello.c
◮ -S says don’t run assembler (-m32 is 32-bit x86 code)

◮ Output in hello.s has symbolic reference to printf
.section .rodata

.LC0: .string "hello world\n"

.text

.globl main

main: ...

subl $4, %esp

movl $.LC0, (%esp)

call printf

◮ Disassemble a.out or hello.o with objdump -d:
8048415: e8 26 ff ff ff call 8048340 <printf@plt>

◮ Jumps to PC - d5 = address of address within instruction.
This is used to get Position Independant Code.

A. Legrand Linking First Example: Hello World! — 11 / 38

Linkers (Linkage editors)

◮ Unix: ld
◮ Usually hidden behind compiler
◮ Run gcc -v hello.c to see ld or invoked

◮ Three functions:
◮ Collect together all pieces of a program
◮ Coalesce like segments
◮ Fix addresses of code and data so the program can run

◮ Result: runnable program stored in new object file

◮ Why can’t compiler do this?
◮ Limited world view: sees one file, rather than all files

◮ Usually linkers don’t rearrange segments, but can
◮ E.g., re-order instructions for fewer cache misses;

remove routines that are never called from a.out

A. Legrand Linking First Example: Hello World! — 12 / 38

Simple linker: two passes needed

◮ Pass 1:
◮ Coalesce like segments; arrange in non-overlapping mem.
◮ Read file’s symbol table, construct global symbol table with

entry for every symbol used or defined
◮ Compute virtual address of each segment (at start+offset)

◮ Pass 2:
◮ Patch references using file and global symbol table
◮ Emit result

◮ Symbol table: information about program kept while linker
running

◮ Segments: name, size, old location, new location
◮ Symbols: name, input segment, offset within segment

A. Legrand Linking First Example: Hello World! — 13 / 38

Where to put emitted objects?

◮ Assembler:
◮ Doesn’t know where data/code should be

placed in the process’s address space
◮ Assumes everything starts at zero
◮ Emits symbol table that holds the name and

offset of each created object
◮ Routines/variables exported by file are

recorded as global definitions

◮ Simpler perspective:
◮ Code is in a big char array
◮ Data is in another big char array
◮ Assembler creates (object name, index) tu-

ple for each interesting thing
◮ Linker then merges all of these arrays

0 foo:

call printf

ret

40 bar:

...

ret

foo: 0: T

bar: 40: t

A. Legrand Linking First Example: Hello World! — 14 / 38

Where to put emitted objects

◮ At link time, linker
◮ Determines the size of each segment and the resulting address

to place each object at
◮ Stores all global definitions in a global symbol table that maps

the definition to its final virtual address

A. Legrand Linking First Example: Hello World! — 15 / 38

Where is everything?

◮ How to call procedures or reference variables?
◮ E.g., call to printf needs a target addr
◮ Assembler uses 0 or PC for address
◮ Emits an external reference telling the linker the instruction’s

offset and the symbol it needs to be patched with
0 foo:

pushl $.LC0

4 call -4

ret

40 bar:

...

ret

foo: 0: T

bar: 40: t

printf: 4

◮ At link time the linker patches every reference

A. Legrand Linking First Example: Hello World! — 16 / 38

Linker: Where is everything

◮ At link time the linker
◮ Records all references in the global symbol table
◮ After reading all files, each symbol should have exactly one def-

inition and 0 or more uses
◮ The linker then enumerates all references and fixes them by in-

serting their symbol’s virtual address into the reference’s speci-
fied instruction or data location

A. Legrand Linking First Example: Hello World! — 17 / 38

Outline

Process Organization

First Example: Hello World!

Second Example: using libc

Linking Libraries
Runtime Linking
Static Shared Library
Dynamic Library

Generating Code

A. Legrand Linking Second Example: using libc — 18 / 38

Example: 2 modules and C lib

A. Legrand Linking Second Example: using libc — 19 / 38

Initial object files

0

A. Legrand Linking Second Example: using libc — 20 / 38

Pass 1: Linker reorganization

A. Legrand Linking Second Example: using libc — 21 / 38

Pass 2: Relocation

A. Legrand Linking Second Example: using libc — 22 / 38

What gets written out

A. Legrand Linking Second Example: using libc — 23 / 38

Examining programs with nm

int uninitialized;

int initialized = 1;

const int constant = 2;

int main ()

{

return 0;

}

% nm a.out

...

0400400 T start

04005bc R constant

0601008 W data start

0601020 D initialized

04004b8 T main

0601028 B uninitialized

VA symbol type

◮ const variables of type R won’t be written
◮ Note constant VA on same page as main
◮ Share pages of read-only data just like text

◮ Uninitialized data in “BSS” segment, B
◮ No actual contents in executable file
◮ Goes in pages that the OS allocates zero-filled, on-demand

A. Legrand Linking Second Example: using libc — 24 / 38

Examining programs with objdump

% objdump -h a.out

a.out: file format elf64-x86-64

Sections:

Idx Name Size VMA LMA File off Algn

...

12 .text 000001a8 00400400 00400400 00000400 2**4

CONTENTS, ALLOC, LOAD, READONLY, CODE

...

14 .rodata 00000008 004005b8 004005b8 000005b8 2**2

CONTENTS, ALLOC, LOAD, READONLY, DATA

...

17 .ctors 00000010 00600e18 00600e18 00000e18 2**3

CONTENTS, ALLOC, LOAD, DATA

...

23 .data 0000001c 00601008 00601008 00001008 2**3

CONTENTS, ALLOC, LOAD, DATA

...

24 .bss 0000000c 00601024 00601024 00001024 2**2

ALLOC

... No contents in file

Note Load mem addr. and File off have same page
alignment for easy mmapping

A. Legrand Linking Second Example: using libc — 25 / 38

Types of relocation

◮ Place final address of symbol here
◮ Example: int y, *x = &y;

y gets address in BSS, x in data segment, contains VA of y
◮ Code example: call printf becomes

8048248: e8 e3 09 00 00 call 8048c30 <printf>
◮ Binary encoding reflects computed VMA of printf

(Note encoding of call argument is actually PC-relative)

◮ Add address of symbol to contents of this location
◮ Used for record/struct offsets
◮ Example: q.head = 1→ move $1, q+4→ movl $1, 0x804a01c

◮ Add diff between final and original seg to this location
◮ Segment was moved, “static” variables need to be reloc’ed

A. Legrand Linking Second Example: using libc — 26 / 38

Outline

Process Organization

First Example: Hello World!

Second Example: using libc

Linking Libraries
Runtime Linking
Static Shared Library
Dynamic Library

Generating Code

A. Legrand Linking Linking Libraries — 27 / 38

Variation 0: Dynamic linking

◮ Link time isn’t special, can link at runtime too
◮ Get code not available when program compiled
◮ Defer loading code until needed

◮ Issues: what happens if can’t resolve? How can behavior differ
compared to static linking? Where to get unresolved syms (e.g.,
“puts”) from?

A. Legrand Linking Linking Libraries — Runtime Linking 28 / 38

Variation 1: Static shared libraries

◮ Observation: everyone links in standard libraries (libc.a.),
these libs consume space in every executable.

◮ Insight: we can have a single copy on disk if we don’t
actually include lib code in executable

A. Legrand Linking Linking Libraries — Static Shared Library 29 / 38

Static shared libraries

◮ Define a “shared library segment” at same address in ev-
ery program’s address space

◮ Every shared lib is allocated a
unique range in this seg, and com-
putes where its external defs reside

◮ Linker links program against lib
(why?) but does not bring in actual
code

◮ Loader marks shared lib region as unreadable

◮ When process calls lib code, seg faults: embedded linker brings
in lib code from known place & maps it in.

◮ Now different running programs can now share code!

A. Legrand Linking Linking Libraries — Static Shared Library 30 / 38

Variation 2: Dynamic shared libs

◮ Static shared libraries require system-wide pre-allocation
of address space

◮ Clumsy, inconvenient
◮ What if a library gets too big for its space?
◮ Can space ever be reused?

◮ Solution: Dynamic shared libraries
◮ Let any library be loaded at any VA
◮ New problem: Linker won’t know what names are valid
◮ Solution: stub library
◮ New problem: How to call functions if their position may vary?
◮ Solution: next page. . .

A. Legrand Linking Linking Libraries — Dynamic Library 31 / 38

Position-independent code
◮ Code must be able to run

anywhere in virtual mem

◮ Runtime linking would pre-
vent code sharing, so...

◮ Add a level of indirection!
◮ Procedure Linkage Table
◮ Global Offset Table

A. Legrand Linking Linking Libraries — Dynamic Library 32 / 38

Lazy dynamic linking

◮ Linking all the functions at
startup costs time

◮ Program might only call a
few of them

◮ Only link each function on
its first call

A. Legrand Linking Linking Libraries — Dynamic Library 33 / 38

Outline

Process Organization

First Example: Hello World!

Second Example: using libc

Linking Libraries
Runtime Linking
Static Shared Library
Dynamic Library

Generating Code

A. Legrand Linking Generating Code — 34 / 38

Code = data, data = code

◮ No inherent difference between code and data
◮ Code is just something that can be run through a CPU without

causing an “illegal instruction fault”
◮ Can be written/read at runtime just like data “dynamically gen-

erated code”

◮ Why? Speed (usually)
◮ Big use: eliminate interpretation overhead. Gives 10-100x per-

formance improvement
◮ Example: Just-in-time compilers for java, or qemu vs. bochs.
◮ In general: optimizations thrive on information. More informa-

tion at runtime.

◮ The big tradeoff:
◮ Total runtime = code gen cost + cost of running code

A. Legrand Linking Generating Code — 35 / 38

How?

◮ Determine binary encoding of desired instructions

◮ Write these integer values into a memory buffer

◮ Jump to the address of the buffer:
((int (*)())code)();

A. Legrand Linking Generating Code — 36 / 38

Linking and security

void fn ()

{

char buf[80];

gets (buf);

/* ... */

}

1. Attacker puts code in buf
◮ Overwrites return address to jump

to code

2. Attacker puts shell command
above buf

◮ Overwrites return address so func-
tion “returns” to system function
in libc

◮ People try to address problem with linker

◮ WˆX: No memory both writable and executable
◮ Prevents 1 but not 2, breaks jits

◮ Address space randomization
◮ Makes attack #2 a little harder, not impossible

A. Legrand Linking Generating Code — 37 / 38

Linking Summary

◮ Compiler/Assembler: 1 object file for each source file
◮ Problem: incomplete world view
◮ Where to put variables and code? How to refer to them?
◮ Names definitions symbolically (“printf”), refers to routines/variable

by symbolic name

◮ Linker: combines all object files into 1 executable file
◮ Big lever: global view of everything. Decides where everything

lives, finds all references and updates them
◮ Important interface with OS: what is code, what is data, where

is start point?

◮ OS loader reads object files into memory:
◮ Allows optimizations across trust boundaries (share code)
◮ Provides interface for process to allocate memory (sbrk)

A. Legrand Linking Generating Code — 38 / 38

	Process Organization
	First Example: Hello World!
	Second Example: using libc
	Linking Libraries
	Runtime Linking
	Static Shared Library
	Dynamic Library

	Generating Code

