Paging
Operating System Design — MOSIG 1

Instructor: Arnaud Legrand
Class Assistants: Benjamin Negrevergne, Sascha Hunold

September 27, 2010

A. Legrand Paging — 1/57

Flashback

Remember the last lecture

» Virtual Memory is required to enforce:
» Protection/Isolation: a process should only mess with its own
memory
» Transparency: memory references and size need to be dynami-
cally adjusted ; give each process its own adress space
» Resource exhaustion management: handle (efficiently) situation
where there is not enough memory to fit all process

» The MMU is here to help us!
» Hardware support for adress translation
» Segmentation is a first approach that suffers from a ter-
rible drawback: Fragmentation
» Fragmentation is caused by

> size heterogeneity;
» isolated deaths;
> time-varying behavior;

A. Legrand Paging — 2 /57

Alternative approaches

» Segmentation
» Part of each memory reference implicit in segment register
segreg < (offset, limit)
» By loading segment register code can be relocated
» Can enforce protection by restricting segment register loads

A. Legrand Paging — 3/57

http://research.microsoft.com/pubs/52716/tr-2005-135.pdf
http://code.google.com/p/nativeclient/
http://nativeclient.googlecode.com/svn/data/docs_tarball/nacl/googleclient/native_client/documentation/nacl_paper.pdf

Alternative approaches

» Segmentation
» Part of each memory reference implicit in segment register
segreg < (offset, limit)
» By loading segment register code can be relocated
» Can enforce protection by restricting segment register loads
» Language-level protection (Java)
» Single address space for different modules
» Language enforces isolation
» Singularity OS does this [Hunt]
» Software fault isolation
» Instrument compiler output
» Checks before every store operation prevents modules from trash-
ing each other

» Google Native Client does this with only about 5% slowdown
[Yee]

A. Legrand Paging — 3/57

http://research.microsoft.com/pubs/52716/tr-2005-135.pdf
http://code.google.com/p/nativeclient/
http://nativeclient.googlecode.com/svn/data/docs_tarball/nacl/googleclient/native_client/documentation/nacl_paper.pdf

Outline

Introduction to Paging
Principle
Data Structure and Implementation Examples

Speed considerations
The Memory Wall
TLB

Paging to disk
Principle

Challenge 1: Resuming Process

Challenge 2: What to fetch?
Challenge 3: What to eject?
Further Optimizations

Paging Multiple Process
Recap

A. Legrand Paging — 4 /57

Outline

Introduction to Paging
Principle
Data Structure and Implementation Examples

A. Legrand Paging Introduction to Paging — 5/57

Paging

v

Divide memory up into small pages
Map virtual pages to physical pages
» Each process has separate mapping
Allow OS to gain control on certain operations

» Read-only pages trap to OS on write
» Invalid pages trap to OS on read or write
» OS can change mapping and resume application

Other features sometimes found:

» Hardware can set “accessed” and “dirty" bits
» Control page execute permission separately from read/write
» Control caching of page

v

v

v

A. Legrand Paging Introduction to Paging — Principle 6 /57

Paging trade-offs

/7
>

Pages
typical: 4k-8k

gcc

~__

emacs

/ internal frag
4

v

v

v

» Average internal fragmentation of .5 pages per “segment”

A. Legrand Paging

Eliminates external fragmentation
Simplifies allocation, free, and backing storage (swap)

May leverage internal fragmentation

Introduction to Paging — Principle

7/57

Simplified allocation

A. Legrand

physical emacs

memory Q

gcc

» Allocate any physical page to any process

» Can store idle virtual pages on disk

Paging Introduction to Paging — Principle 8 /57

Paging data structures

» Pages are fixed size, e.g., 4K

» Least significant 12 (log 4K) bits of address are page offset
» Most significant bits are page number

» Each process has a page table

» Maps virtual page numbers to physical page numbers
» Also includes bits for protection, validity, etc.

» On memory access: Translate VPN to PPN,
\;h$n Fld offset
irfual addr

3
veN \ o

?

>
*“invalid“
N P NN

A. Legrand Paging

page table

((1<<1/2\)I128) | 0x100Q

mem

128

seg

Prot|

VPN

PPN

PPN

Introduction to Paging — Data Structures

9/ 57

Example: Paging on PDP-11

» 64K virtual memory, 8K pages

» Separate address space for instructions & data
> l.e., can't read your own instructions with a load

» Entire page table stored in registers

» 8 Instruction page translation registers
» 8 Data page translations

» Swap 16 machine registers on each context switch

A. Legrand Paging Introduction to Paging — Data Structures 10 / 57

x86 Paging

» Paging enabled by bits in a control register (%cr0)
» Only privileged OS code can manipulate control registers
» Normally 4KB pages

» x86 use 32-bits words ~» 4GB of adressable memory
» offset=12bits /page index=20 bits ~ flat page table = IMBI®

A. Legrand Paging Introduction to Paging — Data Structures 11 /57

http://www.scs.stanford.edu/05au-cs240c/lab/i386/s05_02.htm
http://www.amd.com/us-en/Processors/DevelopWithAMD/0,,30_2252_869_875%5E7044,00.html
http://www.intel.com/products/processor/manuals/

x86 Paging

» Paging enabled by bits in a control register (%cr0)

» Only privileged OS code can manipulate control registers
Normally 4KB pages

» x86 use 32-bits words ~» 4GB of adressable memory

» offset=12bits /page index=20 bits ~ flat page table = IMBI®
%cr3: points to 4KB page directory (1 directory per process)
Page directory: 1024 PDEs (page directory entries)

» Each contains physical address of a page table
> table index=10bits
Page table: 1024 PTEs (page table entries)
» Each contains physical address of virtual 4K page
> Page table covers 4 MB of Virtual mem
> page index=10bits
See old intel manual for simplest explanation
» Also volume 2 of AMD64 Architecture docs
» Also volume 3A of latest Pentium Manual

v

v

v

v

v

A. Legrand Paging Introduction to Paging — Data Structures 11 /57

http://www.scs.stanford.edu/05au-cs240c/lab/i386/s05_02.htm
http://www.amd.com/us-en/Processors/DevelopWithAMD/0,,30_2252_869_875%5E7044,00.html
http://www.intel.com/products/processor/manuals/

x86 page translation

Linear Address

31 22 21 12 11 0
| Directory | Table Offset
12 4KByte Page
/1 0 10 Page Table Physical Address
Page Directory
Page-Table Entr >
9 y 750
» Directory Entry
(30 1024 PDE x 1024 PTE = 22° Pages

CR3 (PDBR)

*32 bits aligned onto a 4-KByte boundary

A. Legrand Paging Introduction to Paging — Data Structures 12 / 57

x86 page directory entry

Page-Directory Entry (4-KByte Page Table)

31 12 11 9876543210
P|P|U|R

Page-Table Base Address Avail |G|Plo]|alclw]/|/]|P
s DfT|s|w

Available for system programmer’s use —I ‘

Global page (Ignored)
Page size (0 indicates 4 KBytes)
Reserved (setto 0)
Accessed
Cache disabled
Write-through
User/Supervisor
Read/Write
Present

A. Legrand Paging Introduction to Paging — Data Structures 13 / 57

x86 page table entry

Page-Table Entry (4-KByte Page)
31 1211 9876543210

P
Page Base Address Avail |G|A|D|A|C[W]/|/|P
T

Available for system programmer’s use —I ‘

Global Page
Page Table Attribute Index
Dirty
Accessed
Cache Disabled
Write-Through
User/Supervisor
Read/Write
Present

A. Legrand Paging Introduction to Paging — Data Structures 14 / 57

x86 hardware segmentation

» x86 architecture also supports segmentation

» Segment register base + pointer val = linear address
» Page translation happens on linear addresses

» Two levels of protection and translation check

» Segmentation model has four privilege levels (CPL 0-3)
» Paging only two, so 0—2 = kernel, 3 = user

» Why do you want both paging and segmentation?

A. Legrand Paging Introduction to Paging — Data Structures 15 / 57

x86 hardware segmentation

» x86 architecture also supports segmentation

» Segment register base + pointer val = linear address
» Page translation happens on linear addresses

v

Two levels of protection and translation check

» Segmentation model has four privilege levels (CPL 0-3)
» Paging only two, so 0—2 = kernel, 3 = user

v

Why do you want both paging and segmentation?
Short answer: You don’t — just adds overhead
» Most OSes use “flat mode” — set base = 0, bounds = Oxffffffff
in all segment registers, then forget about it
» x86-64 architecture removes most segmentation support
» Long answer: Has some fringe/incidental uses

» VMware runs guest OS in CPL 1 to trap stack faults
» OpenBSD used CS limit for WAX when no PTE NX bit

v

A. Legrand Paging Introduction to Paging — Data Structures 15 / 57

64-bit address spaces

» Recall x86-64 only has 48-bit virtual address space
» What if you want a 64-bit virtual address space?
» Straight hierarchical page tables not efficient
» Solution 1: Guarded page tables [Liedtke]
» Omit intermediary tables with only one entry
» Add predicate in high level tables, stating the only virtual ad-
dress range mapped underneath + # bits to skip
» Solution 2: Hashed page tables

» Store Virtual — Physical translations in hash table
» Table size proportional to physical memory
» Clustering makes this more efficient [Talluri]

A. Legrand Paging Introduction to Paging — Data Structures 16 / 57

http://www.scs.stanford.edu/10wi-cs140/sched/readings/guarded.pdf
http://www.scs.stanford.edu/10wi-cs140/sched/readings/clustered.pdf

Outline

Speed considerations
The Memory Wall
TLB

A. Legrand Paging Speed considerations — 17 / 57

The Memory Bottleneck

The memory is a very common bottleneck that programmers often
don't think about

» When you look at code, you often pay more attention to com-

putation
>
» The access to the 3 arrays take more time than doing an addition
» For the code above, the memory is the bottleneck for most
machines!
> In the 70's, everything was balanced. The memory kept pace
with the CPU (n cycles to execute an instruction, n cycles to
bring in a word from memory)
» No longer true
» CPUs have gotten 1,000x faster
» Memory have gotten 10x faster and 1,000,000x larger
» Flops are free and bandwidth is expensive and processors are

STARVED for data

A. Legrand Paging Speed considerations — The Memory Wall 18 / 57

Memory Latency and Bandwidth

» The performance of memory is typically defined by Latency and
Bandwidth (or Rate)

» Latency: time to read one word from memory (measured in
nanoseconds these days)

» Bandwidth: how many bytes can be read per seconds (measured
in GB/sec)

» Note that you don’t have bandwidth = 1 / latency!

> There is pipelining: Reading 2 words in sequence is much
cheaper than twice the time reading one word only

Memory Latency | Peak Bandwidth
DDR400 SDRAM 10 ns 6.4 GB/sec
DDR533 SDRAM 9.4 ns 8.5 GB/sec
DDR2-533 SDRAM | 11.2 ns 8.5 GB/sec
DDR2-800 SDRAM 77 12.8 GB/sec
DDR2-667 SDRAM 77 10.6 GB/sec
DDR2-600 SDRAM | 13.3 ns 9.6 GB/sec

A. Legrand Paging Speed considerations — The Memory Wall

19 / 57

Memory Bottleneck

Example and crude estimation

» Fragment of code:

» Three memory references: 2 reads, 1 write
» One addition: can be done in one cycle

» If the memory bandwidth is 12.8GB/sec, then the rate at which
the processor can access integers (4 bytes) is: 12.8 x 1024 x
1024 x 1024/4 = 3.4GHz

» The above code needs to access 3 integers

» Therefore, the rate at which the code gets its data is ~ 1.1GHz

» But the CPU could perform additions at 4 GHZz!

» Therefore: The memory is the bottleneck

» And we assumed memory worked at the peak!!!
» We ignored other possible overheads on the bus
> In practice the gap can be around a factor 15 or higher

A. Legrand Paging Speed considerations — The Memory Wall 20 / 57

Dealing With Memory

» How have people been dealing with the memory bottleneck?

» Computers are built with a memory hierarchy
» Registers, Multiple Levels of Cache, Main memory
» Data is brought in in bulk (cache line) from a lower level (slow,
cheap, big) to a higher level (fast, expensive, small)
» When the cache is full, we need a policy to decide what should
stay in the cache and what should be replaced
» Hopefully brought in in a cache line will be (re)used soon
> temporal locality
> spatial locality
» Programs must be aware of the memory hierarchy (at least to
some extent)
» Makes life difficult when writing for performance
» But is necessary on most systems

A. Legrand Paging Speed considerations — The Memory Wall 21 /57

Making paging fast

» x86 PTs require 3 memory reference per load/store

» Look up page table address in page directory

» Look up PPN in page table

» Actually access physical page corresponding to virtual address
» For speed, CPU caches recently used translations

» Called a translation lookaside buffer or TLB

» Typical: 64-2K entries, 4-way to fully associative, 95% hit rate

» Each TLB entry maps a VPN — PPN + protection information
» On each memory reference

» Check TLB, if entry present get physical address fast

> If not, walk page tables, insert in TLB for next time

(Must evict some entry. We'll discuss eviction soon.)

A. Legrand Pagin Speed considerations — TLB 22 /57
g ging

TLB Principle

logical
address

cPU b

page frame
number number

TLB hit

physical
address

t | d F—>

TLB

7 {
TLB miss

f

R physical
memory

page table

» A TLB is a fast (small) associative memory which can perform
a parallel search

» It acts as a cache for the paging table

» TLB management can either be done at hardware or software
level

A. Legrand Paging Speed considerations — TLB 23 /57

TLB: Effective Access Time

A. Legrand

» The percentage that a particular page number is found in the

TLB is called hit ratio
Typical TLB:

» Size: 8 - 4,096 entries

» Hit time: 0.5 - 1 clock cycle

» Miss penalty: 10 - 100 clock cycles

» Miss rate: 0.01 - 1%
If a TLB hit takes 1 clock cycle, a miss takes 30 clock cycles,
and the miss rate is 1%, the effective memory cycle rate is an
average of

1% 0.99 + (14 30) x 0.01 = 1.021

(1.021 clock cycles per memory access).
A 10% miss rate would lead to 4 cycles. . .

There may be multiple TLBs (e.g., a very small and fully
associative one, then a larger and smaller TLB, and so on)

Paging Speed considerations — TLB 24 / 57

TLB details

» TLB operates at CPU pipeline speed — small, fast
» Complication: what to do when switch address space?
» Flush TLB on context switch (e.g., x86 until recently)
» Tag each entry with associated process's ID (e.g., MIPS): ASIDs
» With the advent of virtualization for server consolidation, the
x86 architecture has started introducing such mechanism

v

In general, OS must manually keep TLB valid
E.g., x86 invlpg instruction

» Invalidates a page translation in TLB
» Must execute after changing a possibly used page table entry
» Otherwise, hardware will miss page table change

v

v

More Complex on a multiprocessor since every core has
its own TLB. Maintaining consistency is non-trivial (TLB
shootdown)

A. Legrand Paging Speed considerations — TLB 25 / 57

Outline

Paging to disk
Principle
Challenge 1: Resuming Process
Challenge 2: What to fetch?
Challenge 3: What to eject?
Further Optimizations

A. Legrand Paging Paging to disk — 26 / 57

Paging

Use disk to simulate larger virtual than physical mem

Page-Table Entry (4-KByte Page)

31 1211 9876543210
P P|P[U|R
Page Base Address Avail |G[A[D|A|C|W|/]|/]|P
T D|T|S W
Available for system programmer’s use J ‘
Global Page
Page Table Attribute Index
Dirty
Accessed
Cache Disabled
Write-Through
User/Supervisor

Read/Write
Present

A. Legrand Paging Paging to disk — Principle 27 / 57

Paging

Use disk to simulate larger virtual than physical mem

page is on
backing store
operating
system
reference trap
load M [i—
restart page table
instruction
free frame
reset page bring in
table missing page
physical
memory
A. Legrand Paging Paging to disk — Principle

27 / 57

Paging

Use disk to simulate larger virtual than physical mem

page is on
backing store /\
operating
system
reference trap
load M [i—
restart page table
instruction
free frame
reset page bring in
table missing page
physical
memory

“The RAM acts like a cache for the disk”.

A. Legrand Paging Paging to disk — Principle 27 / 57

Example: Paging to disk

v

gcc needs a new page of memory

v

OS re-claims an idle page from emacs
If page is clean (i.e., also stored on disk):
» E.g., page of text from emacs binary on disk
» Can always re-read same page from binary
» So okay to discard contents now & give page to gcc
If page is dirty (meaning memory is only copy)
» Must write page to disk first before giving to gcc
Either way:

» Mark page invalid in emacs

» emacs will fault on next access to virtual page

» On fault, OS reads page data back from disk into new page,
maps new page into emacs, resumes executing

v

v

v

A. Legrand Paging Paging to disk — Principle 28 / 57

Performance

» Page fault service time is depends on

» Servicing the page fault interrupt (~ 1-100 ns).
» Reading the page (= 8 ms.)

» HD average latency ~ 3ms

» HD average seek ~ bms

» HD transfer time ~ .05ms/page

» Restarting the process (~ 1-100 ns)
» Effective access time:

Effective access time = (1 — p) x 200ns + p x 8ms
= (1 — p) x 200 + p x 8,000,000ns
=200 + 7,999,800 x p

p = 1% = EAT = 8200 (slowdown = 40)
A degradation smaller than 10% requires p < 2.5 106111

A. Legrand Paging Paging to disk — Principle 29 / 57

Paging in day-to-day use

» Demand paging

» Growing the stack

» BSS page allocation

» Shared text

» Shared libraries

» Shared memory

» Copy-on-write (fork, mmap, etc.)

» Bypass the File System (direct access to the H.D.)

A. Legrand Paging Paging to disk — Principle 30/ 57

Working set model

S20uUaJ2jau JO #

» Disk much, much slower than memory
» Goal: Run at memory, not disk speeds

» 90/10 rule: 10% of memory gets 90% of memory refs
» So, keep that 10% in real memory, the other 90% on disk
» How to pick which 10%7?

A. Legrand Paging Paging to disk — Principle 31 /57

Paging challenges

» How to resume a process after a fault?

» Need to save state and resume
» Process might have been in the middle of an instruction!

» What to fetch?
» Just needed page or more?
» What to eject?

» How to allocate physical pages amongst processes?
» Which of a particular process’s pages to keep in memory?

A. Legrand Paging Paging to disk — Principle 32 /57

Re-starting instructions

» Hardware provides kernel w. info
about page fault

» Faulting virtual address (In %cr2 reg on
x86)

» Address of instruction that caused fault

» Was the access a read or write? Was it
an instruction fetch?
Was it caused by user access to kernel- e
only memory?

» Hardware must allow resuming after a fault

» lIdempotent instructions are easy

» E.g., simple load or store instruction can be restarted

» Just re-execute any instruction that only accesses one address
» Complex instructions must be re-started, too

» E.g., x86 move string instructions
» Specify srd, dst, count in %esi, %edi, %ecx registers
» On fault, registers adjusted to resume where move left off

A. Legrand Paging Paging to disk — Resuming Process 33 /57

What to fetch?

» Bring in page that caused page fault

» Pre-fetch surrounding pages?
» Reading two disk blocks approximately as fast as reading one
» As long as no track/head switch, seek time dominates
» If application exhibits spacial locality, then big win to store and
read multiple contiguous pages
> Also pre-zero unused pages in idle loop
» Need O-filled pages for stack, heap, BSS, anonymously mmapped

memory
» Zeroing them only on demand is slower
» So many OSes zero freed pages while CPU is idle

A. Legrand Paging Paging to disk — What to fetch? 34 /57

Selecting physical pages

» May need to eject some pages
» More on eviction policy in two slides

» May also have a choice of physical pages
» Direct-mapped physical caches
» Virtual — Physical mapping can affect performance
» Applications can conflict with each other or themselves

» Scientific applications benefit if consecutive virtual pages to not
conflict in the cache

Many other applications do better with random mapping

v

A. Legrand Paging Paging to disk — What to eject? 35 /57

Straw man: FIFO eviction

» Evict oldest fetched page in system
» Example—reference string 1, 2, 3,4,1,2,5,1,2,3,4,5

» 3 physical pages: 9 page

5
faults 1 3 9 page faults
4

Paging to disk — What to eject? 36 / 57

A. Legrand Paging

Straw man: FIFO eviction

v

Evict oldest fetched page in system

» Example—reference string 1, 2, 3,4,1,2,5,1,2,3,4,5
_ 11115 4
» 3 physical pages: 9 page —
faults 22| 1 5 10 page faults
> 4 physical pages: 10 page 313|2
faults]
4043

A. Legrand Paging Paging to disk — What to eject? 36 / 57

Belady's Anomaly

16
14
12

10 <

8
) AN
4
2

number of page faults

1 2 3 4 5 6 7
number of frames

» More phys. mem. doesn’t always mean fewer faults

o = = A
A. Legrand Paging Paging to disk — What to eject? 37 /57

Optimal page replacement

» What is optimal (if you knew the future)?

A. Legrand Paging Paging to disk — What to eject? 38 /57

Optimal page replacement

A. Legrand

» What is optimal (if you knew the future)?

» Replace page that will not be used for longest period of time
» Example—reference string 1, 2, 3,4,1,2,5,1,2,3,4,5

» With 4 physical pages:

Paging

114

6 page faults

2
3
4

Paging to disk — What to eject?

38 /57

LRU page replacement

A. Legrand

» Approximate optimal with least recently used
» Because past often predicts the future

» Example—reference string 1, 2, 3,4,1,2,5,1,2,3,4,5

» With 4 physical pages: 8 page faults

115

2

3|15 4
413

» Problem 1: Can be pessimal — example?

Paging

Paging to disk — What to eject?

39 / 57

LRU page replacement

A. Legrand

» Approximate optimal with least recently used
» Because past often predicts the future

» Example—reference string 1, 2, 3,4,1,2,5,1,2,3,4,5

» With 4 physical pages: 8 page faults

115

2

3|15 4
413

» Problem 1: Can be pessimal — example?
» Looping over memory (then want MRU eviction)

» Problem 2: How to implement?

Paging

Paging to disk — What to eject?

39 / 57

Straw man LRU implementations

» Stamp PTEs with timer value
E.g., CPU has cycle counter
Automatically writes value to PTE on each page access
Scan page table to find oldest counter value = LRU page
Problem: Would double memory traffic!
» Keep doubly-linked list of pages
» On access remove page, place at tail of list
» Problem: again, very expensive
» What to do?

» Just approximate LRU, don't try to do it exactly

v

v vYyy

A. Legrand Paging Paging to disk — What to eject? 40 / 57

Clock algorithm

v

Use accessed bit supported by most hardware

» E.g., Pentium will write 1 to A bit in PTE on first access
» Software managed TLBs like MIPS can do the same

» Do FIFO but skip accessed pages
| A=
» Keep pages in circular FIFO list x [A=0
» Scan: \ A=1
» page's A bit = 1, set to 0 & skip A=1
> else if A == 0, evict A:1|
A=0
» A.k.a. second-chance replacement

A. Legrand Paging Paging to disk — What to eject? 41 / 57

Clock alg. (continued)

» Large memory may be a problem

» Most pages reference in long interval
Add a second clock hand
» Two hands move in lockstep

» Leading hand clears A bits
» Trailing hand evicts pages with A=0

v

A=0

v

Can also take advantage of hardware Dirty bit
» Each page can be (Unaccessed, Clean), (Unaccessed, Dirty),
(Accessed, Clean), or (Accessed, Dirty)
» Consider clean pages for eviction before dirty
Or use n-bit accessed count instead just A bit

» On sweep: count = (A << (n—1))| (count >> 1)
» Evict page with lowest count

v

A. Legrand Paging Paging to disk — What to eject? 42 / 57

Other replacement algorithms

» Random eviction
» Dirt simple to implement
» Not overly horrible (avoids Belady & pathological cases)
» LFU (least frequently used) eviction
» instead of just A bit, count # times each page accessed
> least frequently accessed must not be very useful
(or maybe was just brought in and is about to be used)
» decay usage counts over time (for pages that fall out of usage)
» MFU (most frequently used) algorithm
> because page with the smallest count was probably just brought
in and has yet to be used
>

Neither LFU nor MFU used very commonly

A. Legrand Paging Paging to disk — What to eject? 43 / 57

Naive paging

frame valid-invalid bit

swap out
change victim
o i to invalid @ page |yl |
K /

@ o
f| victim
reset page \
table for =
page table new page @ swap \j
desired

page in

physical
memory

» Naive page replacement: 2 disk 1/Os per page fault

A. Legrand Paging Paging to disk — Further Optimizations 44 | 57

Page buffering

» ldea: reduce # of 1/Os on the critical path

» Keep pool of free page frames

On fault, still select victim page to evict

But read fetched page into already free page

Can resume execution while writing out victim page
Then add victim page to free pool

vV vy VvVvyy

» Can also yank pages back from free pool

» Contains only clean pages, but may still have data
> If page fault on page still in free pool, recycle

A. Legrand Paging Paging to disk — Further Optimizations 45 / 57

Outline

Paging Multiple Process

A. Legrand Paging Paging Multiple Process — 46 / 57

Page allocation

» Allocation can be global or local
» Global allocation doesn’t consider page ownership

» E.g., with LRU, evict least recently used page of any proc
» Works well if P1 needs 20% of memory and P2 needs 70%:

P1\ - P2

» Doesn't protect you from memory pigs
(imagine P2 keeps looping through array that is size of mem)
» Local allocation isolates processes (or users)
» Separately determine how much mem each proc. should have
» Then use LRU/clock/etc. to determine which pages to evict
within each process

A. Legrand Paging Paging Multiple Process — 47 / 57

Thrashing

» Thrashing: processes on system require more memory
than it has

» Each time one page is brought in, another page, whose contents
will soon be referenced, is thrown out

» Processes will spend all of their time blocked, waiting for pages
to be fetched from disk

» 1/0 devs at 100% utilization but system not getting much useful
work done

» What we wanted: virtual memory the size of disk with
access time the speed of physical memory

» What we have: memory with access time of disk

A. Legrand Paging Paging Multiple Process — 48 / 57

Reasons for thrashing

> Process doesn’t reuse memory, so caching doesn’t work
(past != future)
access pattern

N
» Process does reuse memory, but it does not “fit”

P1
mem

» Individually, all processes fit and reuse memory, but too
many for system

=
mem

» At least this case is possible to address

A. Legrand Pagin Paging Multiple Process — 49 / 57
g ging

Multiprogramming & Thrashing

A

thrashing

CPU utilization

degree of multiprogramming

» Need to shed load when thrashing

A. Legrand Paging Paging Multiple Process — 50 / 57

Dealing with thrashing

» Approach 1: working set

» Thrashing viewed from a caching perspective: given locality of
reference, how big a cache does the process need?

» Or: how much memory does process need in order to make
reasonable progress (its working set)?

» Only run processes whose memory requirements can be satisfied

» Approach 2: page fault frequency

Thrashing viewed as poor ratio of fetch to work

PFF = page faults / instructions executed

If PFF rises above threshold, process needs more memory
not enough memory on the system? Swap out.

If PFF sinks below threshold, memory can be taken away

v

vy

v

A. Legrand Paging Paging Multiple Process — 51 /57

Working sets

2ZIS }2s buiyuom

A

%ﬁable

» Working set changes across phases
» Baloons during transition

-
-

A. Legrand Paging Paging Multiple Process — 52 / 57

Calculating the working set

v

Working set: all pages proc. will access in next T time
» Can't calculate without predicting future

Approximate by assuming past predicts future
» So working set & pages accessed in last T time

v

v

Keep idle time for each page
Periodically scan all resident pages in system

> A bit set? Clear it and clear the page's idle time
» A bit clear? Add CPU consumed since last scan to idle time
» Working set is pages with idle time < T

v

A. Legrand Paging Paging Multiple Process — 53 / 57

Two-

A. Legrand

level scheduler

» Divide processes into active & inactive

» Active — means working set resident in memory
» Inactive — working set intentionally not loaded

» Balance set: union of all active working sets
» Must keep balance set smaller than physical memory
> Use long-term scheduler
» Moves procs active — inactive until balance set small enough
» Periodically allows inactive to become active
» As working set changes, must update balance set
» Complications
» How to chose idle time threshold T7
» How to pick processes for active set
» How to count shared memory (e.g., libc.so)

Paging Paging Multiple Process — 54 / 57

Some complications of paging

» What happens to available memory?
» Some physical memory tied up by kernel VM structures
» What happens to user/kernel crossings?
» More crossings into kernel
» Pointers in syscall arguments must be checked
(can't just kill proc. if page not present—might need to page
in)
» What happens to IPC?
» Must change hardware address space
> Increases TLB misses

» Context switch flushes TLB entirely on old x86 machines
(But not on MIPS. .. Why?)

A. Legrand Paging Paging Multiple Process — 55/ 57

Outline

Recap

A. Legrand Paging Recap — 56 / 57

Recap

Paging nice features

» removes the fragmentation issue
> enables to offload the RAM (demand paging) and thus to
fit more process in RAM

> enables to run process requiring more memory than available
RAM

Replacement issues

» when the RAM is full, a page must be evicted, stored back
on the disk and replaced in RAM by the requested one

> this content management is similar to the one in caches,
TLB, ...

» Good policies build on locality, regularity of memory access.

» Workload and speed/size of the different components (TLB
vs. cache L1 vs. cache L2 vs. RAM vs. disk, disk cache vs.
cylinders, ...) call for different policies, data structures and
tradeoffs.

A. Legrand Paging Recap —

57 / 57

	Introduction to Paging
	Principle
	Data Structure and Implementation Examples

	Speed considerations
	The Memory Wall
	TLB

	Paging to disk
	Principle
	Challenge 1: Resuming Process
	Challenge 2: What to fetch?
	Challenge 3: What to eject?
	Further Optimizations

	Paging Multiple Process
	Recap

