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Flashback
Remember the last lecture

I Virtual Memory is required to enforce:
I Protection/Isolation: a process should only mess with its own

memory
I Transparency: memory references and size need to be dynami-

cally adjusted ; give each process its own adress space
I Resource exhaustion management: handle (efficiently) situation

where there is not enough memory to fit all process

I The MMU is here to help us!
I Hardware support for adress translation

I Segmentation is a first approach that suffers from a ter-
rible drawback: Fragmentation

I Fragmentation is caused by
I size heterogeneity;
I isolated deaths;
I time-varying behavior;
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Alternative approaches

I Segmentation
I Part of each memory reference implicit in segment register

segreg← 〈offset, limit〉
I By loading segment register code can be relocated
I Can enforce protection by restricting segment register loads

I Language-level protection (Java)
I Single address space for different modules
I Language enforces isolation
I Singularity OS does this [Hunt]

I Software fault isolation
I Instrument compiler output
I Checks before every store operation prevents modules from trash-

ing each other
I Google Native Client does this with only about 5% slowdown

[Yee]
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Paging

I Divide memory up into small pages
I Map virtual pages to physical pages

I Each process has separate mapping

I Allow OS to gain control on certain operations
I Read-only pages trap to OS on write
I Invalid pages trap to OS on read or write
I OS can change mapping and resume application

I Other features sometimes found:
I Hardware can set “accessed” and “dirty” bits
I Control page execute permission separately from read/write
I Control caching of page
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Paging trade-offs

I Eliminates external fragmentation

I Simplifies allocation, free, and backing storage (swap)

I May leverage internal fragmentation

I Average internal fragmentation of .5 pages per “segment”
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Simplified allocation

gcc emacs

Disk

physical
memory

I Allocate any physical page to any process

I Can store idle virtual pages on disk
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Paging data structures
I Pages are fixed size, e.g., 4K

I Least significant 12 (log 4K) bits of address are page offset
I Most significant bits are page number

I Each process has a page table
I Maps virtual page numbers to physical page numbers
I Also includes bits for protection, validity, etc.

I On memory access: Translate VPN to PPN,
then add offset
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Example: Paging on PDP-11

I 64K virtual memory, 8K pages
I Separate address space for instructions & data
I I.e., can’t read your own instructions with a load

I Entire page table stored in registers
I 8 Instruction page translation registers
I 8 Data page translations

I Swap 16 machine registers on each context switch
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x86 Paging

I Paging enabled by bits in a control register (%cr0)
I Only privileged OS code can manipulate control registers

I Normally 4KB pages
I x86 use 32-bits words ; 4GB of adressable memory
I offset=12bits /page index=20 bits ; flat page table = 1MB!/

I %cr3: points to 4KB page directory (1 directory per process)

I Page directory: 1024 PDEs (page directory entries)
I Each contains physical address of a page table
I table index=10bits

I Page table: 1024 PTEs (page table entries)
I Each contains physical address of virtual 4K page
I Page table covers 4 MB of Virtual mem
I page index=10bits

I See old intel manual for simplest explanation
I Also volume 2 of AMD64 Architecture docs
I Also volume 3A of latest Pentium Manual
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x86 page translation

Page Directory

Directory Entry

CR3 (PDBR)

Page Table

Page−Table Entry

4−KByte Page

Physical Address
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D Tabl O f et

*32 bits aligned onto a 4−KByte boundary

1024 PDE × 1024 PTE = 220 Pages
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x86 page directory entry

31
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x86 page table entry

31

Available for system programmer’s use
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x86 hardware segmentation

I x86 architecture also supports segmentation
I Segment register base + pointer val = linear address
I Page translation happens on linear addresses

I Two levels of protection and translation check
I Segmentation model has four privilege levels (CPL 0–3)
I Paging only two, so 0–2 = kernel, 3 = user

I Why do you want both paging and segmentation?

I Short answer: You don’t – just adds overhead
I Most OSes use “flat mode” – set base = 0, bounds = 0xffffffff

in all segment registers, then forget about it
I x86-64 architecture removes most segmentation support

I Long answer: Has some fringe/incidental uses
I VMware runs guest OS in CPL 1 to trap stack faults
I OpenBSD used CS limit for W∧X when no PTE NX bit
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64-bit address spaces

I Recall x86-64 only has 48-bit virtual address space
I What if you want a 64-bit virtual address space?

I Straight hierarchical page tables not efficient

I Solution 1: Guarded page tables [Liedtke]
I Omit intermediary tables with only one entry
I Add predicate in high level tables, stating the only virtual ad-

dress range mapped underneath + # bits to skip

I Solution 2: Hashed page tables
I Store Virtual → Physical translations in hash table
I Table size proportional to physical memory
I Clustering makes this more efficient [Talluri]
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The Memory Bottleneck

The memory is a very common bottleneck that programmers often
don’t think about

I When you look at code, you often pay more attention to com-
putation

I a[i] = b[j] + c[k]
I The access to the 3 arrays take more time than doing an addition
I For the code above, the memory is the bottleneck for most

machines!

I In the 70’s, everything was balanced. The memory kept pace
with the CPU (n cycles to execute an instruction, n cycles to
bring in a word from memory)

I No longer true
I CPUs have gotten 1,000x faster
I Memory have gotten 10x faster and 1,000,000x larger

I Flops are free and bandwidth is expensive and processors are
STARVED for data
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Memory Latency and Bandwidth
I The performance of memory is typically defined by Latency and

Bandwidth (or Rate)
I Latency: time to read one word from memory (measured in

nanoseconds these days)
I Bandwidth: how many bytes can be read per seconds (measured

in GB/sec)
I Note that you don’t have bandwidth = 1 / latency!
I There is pipelining: Reading 2 words in sequence is much

cheaper than twice the time reading one word only

Memory Latency Peak Bandwidth

DDR400 SDRAM 10 ns 6.4 GB/sec

DDR533 SDRAM 9.4 ns 8.5 GB/sec

DDR2-533 SDRAM 11.2 ns 8.5 GB/sec

DDR2-800 SDRAM ??? 12.8 GB/sec

DDR2-667 SDRAM ??? 10.6 GB/sec

DDR2-600 SDRAM 13.3 ns 9.6 GB/sec
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Memory Bottleneck
Example and crude estimation

I Fragment of code: a[i] = b[j] + c[k]
I Three memory references: 2 reads, 1 write
I One addition: can be done in one cycle

I If the memory bandwidth is 12.8GB/sec, then the rate at which
the processor can access integers (4 bytes) is: 12.8 × 1024 ×
1024× 1024/4 = 3.4GHz

I The above code needs to access 3 integers

I Therefore, the rate at which the code gets its data is ' 1.1GHz

I But the CPU could perform additions at 4GHz!
I Therefore: The memory is the bottleneck

I And we assumed memory worked at the peak!!!
I We ignored other possible overheads on the bus
I In practice the gap can be around a factor 15 or higher
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Dealing With Memory

I How have people been dealing with the memory bottleneck?
I Computers are built with a memory hierarchy

I Registers, Multiple Levels of Cache, Main memory
I Data is brought in in bulk (cache line) from a lower level (slow,

cheap, big) to a higher level (fast, expensive, small)
I When the cache is full, we need a policy to decide what should

stay in the cache and what should be replaced
I Hopefully brought in in a cache line will be (re)used soon

I temporal locality
I spatial locality

I Programs must be aware of the memory hierarchy (at least to
some extent)

I Makes life difficult when writing for performance
I But is necessary on most systems
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Making paging fast

I x86 PTs require 3 memory reference per load/store
I Look up page table address in page directory
I Look up PPN in page table
I Actually access physical page corresponding to virtual address

I For speed, CPU caches recently used translations
I Called a translation lookaside buffer or TLB
I Typical: 64-2K entries, 4-way to fully associative, 95% hit rate
I Each TLB entry maps a VPN→ PPN + protection information

I On each memory reference
I Check TLB, if entry present get physical address fast
I If not, walk page tables, insert in TLB for next time

(Must evict some entry. We’ll discuss eviction soon.)
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TLB Principle

I A TLB is a fast (small) associative memory which can perform
a parallel search

I It acts as a cache for the paging table

I TLB management can either be done at hardware or software
level
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TLB: Effective Access Time

I The percentage that a particular page number is found in the
TLB is called hit ratio

I Typical TLB:
I Size: 8 - 4,096 entries
I Hit time: 0.5 - 1 clock cycle
I Miss penalty: 10 - 100 clock cycles
I Miss rate: 0.01 - 1%

If a TLB hit takes 1 clock cycle, a miss takes 30 clock cycles,
and the miss rate is 1%, the effective memory cycle rate is an
average of

1× 0.99 + (1 + 30)× 0.01 = 1.021

(1.021 clock cycles per memory access).
A 10% miss rate would lead to 4 cycles. . .

I There may be multiple TLBs (e.g., a very small and fully
associative one, then a larger and smaller TLB, and so on)
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TLB details

I TLB operates at CPU pipeline speed =⇒ small, fast
I Complication: what to do when switch address space?

I Flush TLB on context switch (e.g., x86 until recently)
I Tag each entry with associated process’s ID (e.g., MIPS): ASIDs
I With the advent of virtualization for server consolidation, the

x86 architecture has started introducing such mechanism

I In general, OS must manually keep TLB valid
I E.g., x86 invlpg instruction

I Invalidates a page translation in TLB
I Must execute after changing a possibly used page table entry
I Otherwise, hardware will miss page table change

I More Complex on a multiprocessor since every core has
its own TLB. Maintaining consistency is non-trivial (TLB
shootdown)

A. Legrand Paging Speed considerations — TLB 25 / 57



Outline

Introduction to Paging
Principle
Data Structure and Implementation Examples

Speed considerations
The Memory Wall
TLB

Paging to disk
Principle
Challenge 1: Resuming Process
Challenge 2: What to fetch?
Challenge 3: What to eject?
Further Optimizations

Paging Multiple Process

Recap

A. Legrand Paging Paging to disk — 26 / 57



Paging
Use disk to simulate larger virtual than physical mem

31
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“The RAM acts like a cache for the disk”.
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Example: Paging to disk

I gcc needs a new page of memory

I OS re-claims an idle page from emacs

I If page is clean (i.e., also stored on disk):
I E.g., page of text from emacs binary on disk
I Can always re-read same page from binary
I So okay to discard contents now & give page to gcc

I If page is dirty (meaning memory is only copy)
I Must write page to disk first before giving to gcc

I Either way:
I Mark page invalid in emacs
I emacs will fault on next access to virtual page
I On fault, OS reads page data back from disk into new page,

maps new page into emacs, resumes executing
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Performance

I Page fault service time is depends on
I Servicing the page fault interrupt (≈ 1-100 ns).
I Reading the page (≈ 8 ms.)

I HD average latency ≈ 3ms
I HD average seek ≈ 5ms
I HD transfer time ≈ .05ms/page

I Restarting the process (≈ 1-100 ns)

I Effective access time:

Effective access time = (1− p)× 200ns + p × 8ms

= (1− p)× 200 + p × 8, 000, 000ns

= 200 + 7, 999, 800× p

p = 10/00⇒ EAT = 8200 (slowdown = 40)
A degradation smaller than 10% requires p < 2.5 10−6!!!
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Paging in day-to-day use

I Demand paging

I Growing the stack

I BSS page allocation

I Shared text

I Shared libraries

I Shared memory

I Copy-on-write (fork, mmap, etc.)

I Bypass the File System (direct access to the H.D.)
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Working set model

I Disk much, much slower than memory
I Goal: Run at memory, not disk speeds

I 90/10 rule: 10% of memory gets 90% of memory refs
I So, keep that 10% in real memory, the other 90% on disk
I How to pick which 10%?
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Paging challenges

I How to resume a process after a fault?
I Need to save state and resume
I Process might have been in the middle of an instruction!

I What to fetch?
I Just needed page or more?

I What to eject?
I How to allocate physical pages amongst processes?
I Which of a particular process’s pages to keep in memory?
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Re-starting instructions

I Hardware provides kernel w. info
about page fault

I Faulting virtual address (In %cr2 reg on
x86)

I Address of instruction that caused fault
I Was the access a read or write? Was it

an instruction fetch?
Was it caused by user access to kernel-
only memory?

I Hardware must allow resuming after a fault
I Idempotent instructions are easy

I E.g., simple load or store instruction can be restarted
I Just re-execute any instruction that only accesses one address

I Complex instructions must be re-started, too
I E.g., x86 move string instructions
I Specify srd, dst, count in %esi, %edi, %ecx registers
I On fault, registers adjusted to resume where move left off
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What to fetch?

I Bring in page that caused page fault
I Pre-fetch surrounding pages?

I Reading two disk blocks approximately as fast as reading one
I As long as no track/head switch, seek time dominates
I If application exhibits spacial locality, then big win to store and

read multiple contiguous pages

I Also pre-zero unused pages in idle loop
I Need 0-filled pages for stack, heap, BSS, anonymously mmapped

memory
I Zeroing them only on demand is slower
I So many OSes zero freed pages while CPU is idle
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Selecting physical pages

I May need to eject some pages
I More on eviction policy in two slides

I May also have a choice of physical pages
I Direct-mapped physical caches

I Virtual → Physical mapping can affect performance
I Applications can conflict with each other or themselves
I Scientific applications benefit if consecutive virtual pages to not

conflict in the cache
I Many other applications do better with random mapping

A. Legrand Paging Paging to disk — What to eject? 35 / 57



Straw man: FIFO eviction

I Evict oldest fetched page in system

I Example—reference string 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

I 3 physical pages: 9 page
faults

I 4 physical pages: 10 page
faults
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Belady’s Anomaly

I More phys. mem. doesn’t always mean fewer faults
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Optimal page replacement

I What is optimal (if you knew the future)?

I Replace page that will not be used for longest period of time

I Example—reference string 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

I With 4 physical pages:
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LRU page replacement
I Approximate optimal with least recently used

I Because past often predicts the future

I Example—reference string 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

I With 4 physical pages: 8 page faults

I Problem 1: Can be pessimal – example?

I Looping over memory (then want MRU eviction)

I Problem 2: How to implement?
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Straw man LRU implementations

I Stamp PTEs with timer value
I E.g., CPU has cycle counter
I Automatically writes value to PTE on each page access
I Scan page table to find oldest counter value = LRU page
I Problem: Would double memory traffic!

I Keep doubly-linked list of pages
I On access remove page, place at tail of list
I Problem: again, very expensive

I What to do?
I Just approximate LRU, don’t try to do it exactly
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Clock algorithm

I Use accessed bit supported by most hardware
I E.g., Pentium will write 1 to A bit in PTE on first access
I Software managed TLBs like MIPS can do the same

I Do FIFO but skip accessed pages

I Keep pages in circular FIFO list
I Scan:

I page’s A bit = 1, set to 0 & skip
I else if A == 0, evict

I A.k.a. second-chance replacement
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Clock alg. (continued)

I Large memory may be a problem
I Most pages reference in long interval

I Add a second clock hand
I Two hands move in lockstep
I Leading hand clears A bits
I Trailing hand evicts pages with A=0

I Can also take advantage of hardware Dirty bit
I Each page can be (Unaccessed, Clean), (Unaccessed, Dirty),

(Accessed, Clean), or (Accessed, Dirty)
I Consider clean pages for eviction before dirty

I Or use n-bit accessed count instead just A bit
I On sweep: count = (A << (n − 1)) | (count >> 1)
I Evict page with lowest count
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Other replacement algorithms

I Random eviction
I Dirt simple to implement
I Not overly horrible (avoids Belady & pathological cases)

I LFU (least frequently used) eviction
I instead of just A bit, count # times each page accessed
I least frequently accessed must not be very useful

(or maybe was just brought in and is about to be used)
I decay usage counts over time (for pages that fall out of usage)

I MFU (most frequently used) algorithm
I because page with the smallest count was probably just brought

in and has yet to be used

I Neither LFU nor MFU used very commonly
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Näıve paging

I Näıve page replacement: 2 disk I/Os per page fault
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Page buffering

I Idea: reduce # of I/Os on the critical path
I Keep pool of free page frames

I On fault, still select victim page to evict
I But read fetched page into already free page
I Can resume execution while writing out victim page
I Then add victim page to free pool

I Can also yank pages back from free pool
I Contains only clean pages, but may still have data
I If page fault on page still in free pool, recycle
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Page allocation

I Allocation can be global or local
I Global allocation doesn’t consider page ownership

I E.g., with LRU, evict least recently used page of any proc
I Works well if P1 needs 20% of memory and P2 needs 70%:

I Doesn’t protect you from memory pigs
(imagine P2 keeps looping through array that is size of mem)

I Local allocation isolates processes (or users)
I Separately determine how much mem each proc. should have
I Then use LRU/clock/etc. to determine which pages to evict

within each process
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Thrashing

I Thrashing: processes on system require more memory
than it has

I Each time one page is brought in, another page, whose contents
will soon be referenced, is thrown out

I Processes will spend all of their time blocked, waiting for pages
to be fetched from disk

I I/O devs at 100% utilization but system not getting much useful
work done

I What we wanted: virtual memory the size of disk with
access time the speed of physical memory

I What we have: memory with access time of disk
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Reasons for thrashing

I Process doesn’t reuse memory, so caching doesn’t work
(past != future)

I Process does reuse memory, but it does not “fit”

I Individually, all processes fit and reuse memory, but too
many for system

I At least this case is possible to address
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Multiprogramming & Thrashing

I Need to shed load when thrashing
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Dealing with thrashing

I Approach 1: working set
I Thrashing viewed from a caching perspective: given locality of

reference, how big a cache does the process need?
I Or: how much memory does process need in order to make

reasonable progress (its working set)?
I Only run processes whose memory requirements can be satisfied

I Approach 2: page fault frequency
I Thrashing viewed as poor ratio of fetch to work
I PFF = page faults / instructions executed
I If PFF rises above threshold, process needs more memory

not enough memory on the system? Swap out.
I If PFF sinks below threshold, memory can be taken away
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Working sets

I Working set changes across phases
I Baloons during transition
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Calculating the working set

I Working set: all pages proc. will access in next T time
I Can’t calculate without predicting future

I Approximate by assuming past predicts future
I So working set ≈ pages accessed in last T time

I Keep idle time for each page
I Periodically scan all resident pages in system

I A bit set? Clear it and clear the page’s idle time
I A bit clear? Add CPU consumed since last scan to idle time
I Working set is pages with idle time < T
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Two-level scheduler

I Divide processes into active & inactive
I Active – means working set resident in memory
I Inactive – working set intentionally not loaded

I Balance set: union of all active working sets
I Must keep balance set smaller than physical memory

I Use long-term scheduler
I Moves procs active → inactive until balance set small enough
I Periodically allows inactive to become active
I As working set changes, must update balance set

I Complications
I How to chose idle time threshold T ?
I How to pick processes for active set
I How to count shared memory (e.g., libc.so)
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Some complications of paging

I What happens to available memory?
I Some physical memory tied up by kernel VM structures

I What happens to user/kernel crossings?
I More crossings into kernel
I Pointers in syscall arguments must be checked

(can’t just kill proc. if page not present—might need to page
in)

I What happens to IPC?
I Must change hardware address space
I Increases TLB misses
I Context switch flushes TLB entirely on old x86 machines

(But not on MIPS. . . Why?)
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Recap

Paging nice features

I removes the fragmentation issue
I enables to offload the RAM (demand paging) and thus to

fit more process in RAM
I enables to run process requiring more memory than available

RAM

Replacement issues

I when the RAM is full, a page must be evicted, stored back
on the disk and replaced in RAM by the requested one

I this content management is similar to the one in caches,
TLB, . . .

I Good policies build on locality, regularity of memory access.
I Workload and speed/size of the different components (TLB

vs. cache L1 vs. cache L2 vs. RAM vs. disk, disk cache vs.
cylinders, . . . ) call for different policies, data structures and
tradeoffs.
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