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Want processes to co-exist

I Consider multiprogramming on physical memory
I What happens if pintos needs to expand?
I If emacs needs more memory than is on the machine??
I If pintos has an error and writes to address 0x7100?
I When does gcc have to know it will run at 0x4000?
I What if emacs isn’t using its memory?
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Issues in sharing physical memory

I Protection
I A bug in one process can corrupt memory in another
I Must somehow prevent process A from trashing B’s memory
I Also prevent A from even observing B’s memory (ssh-agent)

I Transparency
I A process shouldn’t require particular memory locations
I Processes often require large amounts of contiguous memory

(for stack, large data structures, etc.)

I Resource exhaustion
I Programmers typically assume machine has “enough” memory
I Sum of sizes of all processes often greater than physical memory
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Virtual memory goals

I Give each program its own “virtual” address space
I At run time, relocate each load and store to its actual memory
I So app doesn’t care what physical memory it’s using

I Also enforce protection
I Prevent one app from messing with another’s memory

I And allow programs to see more memory than exists
I Somehow relocate some memory accesses to disk
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Virtual memory advantages

I Can re-locate program while running
I Run partially in memory, partially on disk

I Most of a process’s memory will be idle (80/20 rule).

I Write idle parts to disk until needed
I Let other processes use memory for idle part
I Like CPU virtualization: when process not using CPU, switch.

When not using a page, switch it to another process.

I Challenge: VM = extra layer, could be slow
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Idea 1: load-time linking

I Link as usual, but keep the list of references
I Fix up process when actually executed

I Determine where process will reside in memory
I Adjust all references within program (using addition)

I Problems?

I How to enforce protection
I How to move once in memory (Consider: data pointers)
I What if no contiguous free region fits program?
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Idea 2: base + bounds register

I Two special privileged registers: base and bound
I On each load/store:

I Physical address = virtual address + base
I Check 0 ≤ virtual address < bound, else trap to kernel

I How to move process in memory?

I Change base register

I What happens on context switch?

I OS must re-load base and bound register
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Definitions

I Programs load/store to virtual (or logical) addresses

I Actual memory uses physical (or real) addresses
I Hardware has Memory Management Unit (MMU)

I Usually part of CPU
I Accessed w. privileged instructions (e.g., load bound reg)
I Translates from virtual to physical addresses
I Gives per-process view of memory called address space
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Address space
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Base+bound trade-offs

I Advantages
I Cheap in terms of hardware: only two registers
I Cheap in terms of cycles: do add and compare in parallel
I Examples: Cray-1 used this scheme

I Disadvantages

I Growing a process is expensive or impossible
I No way to share code or data (E.g., two copies of

bochs, both running pintos)

I One solution: Multiple segments
I E.g., separate code, stack, data segments
I Possibly multiple data segments
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Segmentation

I Let processes have many base/bounds regs
I Address space built from many segments
I Can share/protect memory on segment granularity

I Must specify segment as part of virtual address
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Segmentation mechanics

I Each process has a segment table
I Each VA indicates a segment and offset:

I Top bits of addr select segment, low bits select offset (PDP-10)
I Or segment selected by instruction or operand (means you need

wider “far” pointers to specify segment)
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Segmentation example

I 2-bit segment number (1st digit), 12 bit offset (last 3)
I Where is 0x0240? 0x1108? 0x265c? 0x3002? 0x1600?
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A process’s view of the world

I Each process has own view of machine
I Its own address space

I *(char *)0xc000 different in P1 & P2
I Common memory segments:

I Stack: automatically allocated / deallo-
cated variables (r/w)

I Heap: manually allocated / deallocated
data (r/w)

I Data: global variables and static vari-
ables (initialized) (r/w)

I BSS: statically-allocated variables (ze-
roed) (r/w)

I Text: code (r/o)

I Greatly simplifies programming model
I gcc does not care that firefox is running
I A bug in firefox does not matter to gcc

A. Legrand Segmentation and Fragmentation Segmentation — Segmentation 16 / 46



Segmentation trade-offs

I Advantages
I Multiple segments per process
I Allows sharing! (how?)
I Don’t need entire process in memory

I Disadvantages
I Requires translation hardware, which could limit performance
I Segments not completely transparent to program (e.g., default

segment faster or uses shorter instruction)
I n byte segment needs n contiguous bytes of physical memory
I Makes fragmentation a real problem.
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Fragmentation
I Fragmentation =⇒ Inability to use free memory
I Over time:

I Variable-sized pieces = many small holes (external frag.)
I Fixed-sized pieces = no external holes, but force internal waste

(internal fragmentation)

I In the next lecture, we will see a better solution to the virtual
memory problem which does not suffer from fragmentation

I In the meantime, let’s keep on focusing on fragmentation issues
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Dynamic memory allocation

I Almost every useful program uses it
I Gives wonderful functionality benefits

I Don’t have to statically specify complex data structures
I Can have data grow as a function of input size
I Allows recursive procedures (stack growth)

I But, can have a huge impact on performance

I Today: how to implement it
I Lecture draws on [Wilson] (good survey from 1995)

I Some interesting facts:
I Two or three line code change can have huge, non-obvious im-

pact on how well allocator works (examples to come)
I Proven: impossible to construct an ”always good” allocator
I Surprising result: after 35 years, memory management still poorly

understood
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Why is it hard?

I Satisfy arbitrary set of allocation and free’s.
I Easy without free: set a pointer to the beginning of some

big chunk of memory (“heap”) and increment on each
allocation:

I Problem: free creates holes (“fragmentation”) Result?
Lots of free space but cannot satisfy request!

I Why can’t we just stack everything to the left when
needed ?

I Requires to update memory references (and thus to know about
the semantice of data)
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More abstractly

I What an allocator must do:
I Track which parts of memory in use, which parts are free
I Ideal: no wasted space, no time overhead

I What the allocator cannot do:
I Control order of the number and size of requested blocks
I Change user ptrs =⇒ (bad) placement decisions permanent

I The core fight: minimize fragmentation
I App frees blocks in any order, creating holes in “heap”
I Holes too small? cannot satisfy future requests
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What is fragmentation really?

I Inability to use memory that is free
I Two factors required for fragmentation

I Different lifetimes—if adjacent objects die at different times,
then fragmentation:

I If they die at the same time, then no fragmentation:

I Different sizes: If all requests the same size, then no fragmen-
tation (as we will see later, paging relies on this to remove external frag-

mentation):
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Important decisions

I Placement choice: where in free memory to put a re-
quested block?

I Freedom: can select any memory in the heap
I Ideal: put block where it won’t cause fragmentation later (im-

possible in general: requires future knowledge)

I Split free blocks to satisfy smaller requests?
I Fights internal fragmentation
I Freedom: can chose any larger block to split
I One way: chose block with smallest remainder (best fit)

I Coalescing free blocks to yield larger blocks

I Freedom: when to coalesce (deferring can be good) fights ex-
ternal fragmentation
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Impossible to “solve” fragmentation

I If you read allocation papers to find the best allocator
I All discussions revolve around tradeoffs
I The reason? There cannot be a best allocator

I Theoretical result:
I For any possible allocation algorithm, there exist streams of

allocation and deallocation requests that defeat the allocator
and force it into severe fragmentation.

I How much fragmentation should we tolerate?
I Let M = bytes of live data, nmin = smallest allocation, nmax = largest

– How much gross memory required?
I Bad allocator: M · (nmax/nmin)

(use maximum size for any size)
I Good allocator: ∼ M · log(nmax/nmin)
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Pathological examples

I Given allocation of 7 20-byte chunks

I What’s a bad stream of frees and then allocates?

I Free every one chunk out of two, then alloc 21 bytes

I Given a 128-byte limit on malloced space
I What’s a really bad combination of mallocs & frees?

I Malloc 128 1-byte chunks, free every chunk but the first and
the 64th

I Try to malloc 64 bytes.

An adversary should work backward (come up with a bad situa-
tion and figure out how to force the allocator into this situation)

I Next: two allocators (best fit, first fit) that, in practice,
work pretty well

I “pretty well” = ∼20% fragmentation under many workloads
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Illustrating Fragmentation

Source:
http://blog.pavlov.net/2007/11/

10/memory-fragmentation/

1. Start browser.

2. Measure memory usage (Point 1).

3. Load a URL that in turn opens many
windows. Wait for them to finish load-
ing.

4. Measure memory usage (Point 2).

5. Close them all down, and go back to
the blank start page.

6. Measure memory usage again (Point 3).

7. Force the caches to clear, to eliminate
them from the experiment.

8. Measure memory usage again (Point 4).

Point 1 Point 2 Point 3 Point 4

35MB 118MB 94MB 88MB
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Best fit

I Strategy: minimize fragmentation by allocating space from
block that leaves smallest fragment

I Data structure: heap is a list of free blocks, each has a header
holding block size and pointers to next

I Code: Search freelist for block closest in size to the request.
(Exact match is ideal)

I During free (usually) coalesce adjacent blocks

I Problem: Sawdust
I Remainder so small that over time left with “sawdust” every-

where
I Fortunately not a problem in practice
I Implementation (go through the whole list ? maintain sorted

list ? . . . )
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Best fit gone wrong

I Simple bad case: allocate n, m (n < m) in alternating
orders, free all the ns, then try to allocate an n + 1

I Example: start with 100 bytes of memory
I alloc 19, 21, 19, 21, 19

I free 19, 19, 19:

I alloc 20? Fails! (wasted space = 57 bytes)

I However, doesn’t seem to happen in practice (though the
way real programs behave suggest it easily could)
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First fit

I Strategy: pick the first block that fits
I Data structure: free list, sorted lifo, fifo, or by address
I Code: scan list, take the first one

I LIFO: put free object on front of list.
I Simple, but causes higher fragmentation
I Potentially good for cache locality

I Address sort: order free blocks by address
I Makes coalescing easy (just check if next block is free)
I Also preserves empty/idle space (locality good when paging)

I FIFO: put free object at end of list
I Gives similar fragmentation as address sort, but unclear why
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Subtle pathology: LIFO FF

I Storage management example of subtle impact of simple
decisions

I LIFO first fit seems good:
I Put object on front of list (cheap), hope same size used again

(cheap + good locality)

I But, has big problems for simple allocation patterns:
I E.g., repeatedly intermix short-lived 2n-byte allocations, with

long-lived (n + 1)-byte allocations
I Each time large object freed, a small chunk will be quickly taken,

leaving useless fragment. Pathological fragmentation
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First fit: Nuances

I First fit sorted by address order, in practice:
I Blocks at front preferentially split, ones at back only split when

no larger one found before them
I Result? Seems to roughly sort free list by size
I So? Makes first fit operationally similar to best fit: a first fit of

a sorted list = best fit!

I Problem: sawdust at beginning of the list
I Sorting of list forces a large requests to skip over many small

blocks. Need to use a scalable heap organization

I Suppose memory has free blocks:
I If allocation ops are 10 then 20, best fit wins
I When is FF better than best fit?

I Suppose allocation ops are 8, 12, then 12 =⇒ first fit wins
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First/best fit: weird parallels

I Both seem to perform roughly equivalently
I In fact the placement decisions of both are roughly iden-

tical under both randomized and real workloads!
I No one knows why
I Pretty strange since they seem pretty different

I Possible explanations:
I Over time FF’s free list becomes sorted by size: the beginning

of the free list accumulates small objects and so fits tend to be
close to best

I Both have implicit “open space heuristic” try not to cut into
large open spaces: large blocks at end only used when have to
be (e.g., first fit skips over all smaller blocks)
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Some worse ideas

I Worst-fit:
I Strategy: fight against sawdust by splitting blocks to maximize

leftover size
I In real life seems to ensure that no large blocks around

I Next fit:
I Strategy: use first fit, but remember where we found the last

thing and start searching from there
I Seems like a good idea, but tends to break down entire list

I Buddy systems:
I Round up allocations to power of 2 to make management faster
I Result? Heavy internal fragmentation

A. Legrand Segmentation and Fragmentation Handling Fragmentation — Common Strategies 34 / 46



Slab allocation [Bonwick] (When program “bypass” malloc/free)

Remember what we told earlier:

If all requests the same size, then no fragmentation

I Kernel allocates many instances of same structures
I E.g., a 1.7 KB task struct for every process on system

I Often want contiguous physical memory (for DMA)
I Slab allocation optimizes for this case:

I A slab is multiple pages of contiguous physical memory
I A cache contains one or more slabs
I Each cache stores only one kind of object (fixed size)

I Each slab is full, empty, or partial
I E.g., need new task struct?

I Look in the task struct cache
I If there is a partial slab, pick free task struct in that
I Else, use empty, or may need to allocate new slab for cache

I Advantages: speed, and no internal fragmentation
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Performance Evaluation Through Randomized Workload

I Size and lifetime distribution:
I Exponential

I typical programs allocate more small than big chunks and more
short-lived than long-lived

I mathematically tractable

I Spiky (out of hat)
I Modeled using statistics from real programs

I Assume size and lifetime are independant ?/
I Correlation between consecutive events ?/
I Actually, programs have patterns. Exponential behavior

is often an artifact /
Analysis with exponentially distributed workload may lead to
conclusions about allocator completely different from what hap-
pens in reality

I Even Markov chains or other more avanced modeling are
unable to accurately reflect real memory patterns
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Known patterns of real programs

I So far we’ve treated programs as black boxes.
I Most real programs exhibit 1 or 2 (or all 3) of the following

patterns of alloc/dealloc:
I Ramps: accumulate data monotonically over time

I Peaks: allocate many objects, use briefly, then free all

I Plateaus: allocate many objects, use for a long time
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Pattern 1: ramps

I In a practical sense: ramp = no free!
I Implication for fragmentation?
I What happens if you evaluate allocator with ramp programs

only?
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Pattern 2: peaks

I Peaks: allocate many objects, use briefly, then free all
I Surviving data are likely to be of different types
I Fragmentation a real danger
I What happens if peak allocated from contiguous memory?
I Interleave peak & ramp? Interleave two different peaks?
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Exploiting peaks

I Peak phases: alloc a lot, then free everything
I So have new allocation interface: alloc as before, but only sup-

port free of everything
I Called “arena allocation”, “obstack” (object stack), or alloca/procedure

call (by compiler people)

I Arena = a linked list of large chunks of memory
I Advantages: alloc is a pointer increment, free is “free”

No wasted space for tags or list pointers
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Pattern 3: Plateaus

I Plateaus: allocate many objects, use for a long time
I What happens if overlap with peak or different plateau?
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Exploit ordering and size dependencies

I Segregation = reduced fragmentation:
I Allocated at same time ∼ freed at same time
I Different type ∼ freed at different time

I Implementation observations:
I Programs allocate small number of different sizes
I Fragmentation at peak use more important than at low
I Most allocations small (< 10 words)
I Work done with allocated memory increases with size
I Implications?
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Simple, fast segregated free lists

I Array of free lists for small sizes, tree for larger
I Place blocks of same size on same “page”
I Have count of allocated blocks: if goes to zero, can return page

I Pro: segregate sizes, no size tag, fast small alloc

I Con: worst case waste: 1 page per size even w/o free,
after pessimal free waste 1 page per object
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Typical space overheads

I Free list bookkeeping + alignment determine minimum
allocatable size:

I Store size of block
I Pointers to next and previous freelist element

I Machine enforced overhead: alignment. Allocator doesn’t know
type. Must align memory to conservative boundary

I Minimum allocation unit? Space overhead when allocated?
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Recap

I Fragmentation is caused by
I size heterogeneity;
I isolated deaths;
I time-varying behavior;

I Allocator should try to:
I exploit memory patterns
I be evaluated under real workload
I have smart and cheap implementation

Your first assignment will be about
implementing such an allocator.

I User should be aware of it try to ease the allocator’s task
I by paying attention to when doing the allocation
I by bypassing the allocator

I Fighting Fragmentation is a lost cause and is inherent
when using segmentation only
; We need an other mechanism for Virtual Memory
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