
View access control as a matrix

• Subjects (processes/users) access objects (e.g., files)

• Each cell of matrix has allowed permissions

1/33

Specifying policy
• Manually filling out matrix would be tedious

• Use tools such as groups or role-based access control:

dir 1

dir 3

dir 2

2/33

Two ways to slice the matrix

• Along columns:

- Kernel stores list of who can access object along with object

- Most systems you’ve used probably do this

- Examples: Unix file permissions, Access Control Lists (ACLs)

• Along rows:

- Capability systems do this

- More on these later. . .

3/33

Example: Unix protection

• Each process has a User ID & one or more group IDs

• System stores with each file:

- User who owns the file and group file is in

- Permissions for user, any one in file group, and other

• Shown by output of ls -l command:

-

user︷︸︸︷
rw-

group︷︸︸︷
rw-

other︷︸︸︷
r--

owner︷︸︸︷
dm

group︷ ︸︸ ︷
cs140 ... index.html

- Each group of three letters specifies a subset of

read, write, and execute permissions

- User permissions apply to processes with same user ID

- Else, group permissions apply to processes in same group

- Else, other permissions apply

4/33

Unix continued

• Directories have permission bits, too

- Need write perm. on directory to create or delete a file

• Special user root (UID 0) has all privileges

- E.g., Read/write any file, change owners of files

- Required for administration (backup, creating new users, etc.)

• Example:

- drwxr-xr-x 56 root wheel 4096 Apr 4 10:08 /etc

- Directory writable only by root, readable by everyone

- Means non-root users cannot directly delete files in /etc

- Execute permission means ability to use pathnames in the

directory, separate from read permission which allows listing

5/33

Non-file permissions in Unix

• Many devices show up in file system

- E.g., /dev/tty1 permissions just like for files

• Other access controls not represented in file system

• E.g., must usually be root to do the following:

- Bind any TCP or UDP port number less than 1,024

- Change the current process’s user or group ID

- Mount or unmount file systems

- Create device nodes (such as /dev/tty1) in the file system

- Change the owner of a file

- Set the time-of-day clock; halt or reboot machine

6/33

Example: Login runs as root
• Unix users typically stored in files in /etc

- Files passwd, group, and often shadow or master.passwd

• For each user, files contain:

- Textual username (e.g., “dm”, or “root”)

- Numeric user ID, and group ID(s)

- One-way hash of user’s password: {salt, H(salt, passwd)}
- Other information, such as user’s full name, login shell, etc.

• /usr/bin/login runs as root

- Reads username & password from terminal

- Looks up username in /etc/passwd, etc.

- Computes H(salt, typed password) & checks that it matches

- If matches, sets group ID & user ID corresponding to username

- Execute user’s shell with execve system call

7/33

Setuid

• Some legitimate actions require more privs than UID

- E.g., how should users change their passwords?

- Stored in root-owned /etc/passwd & /etc/shadow files

• Solution: Setuid/setgid programs

- Run with privileges of file’s owner or group

- Each process has real and effective UID/GID

- real is user who launched setuid program

- effective is owner/group of file, used in access checks

• Shown as “s” in file listings

- -rws--x--x 1 root root 38464 Jan 26 14:26 /bin/passwd

- Obviously need to own file to set the setuid bit

- Need to own file and be in group to set setgid bit

8/33

Setuid (continued)
• Examples

- E.g., /usr/bin/passwd – changes user’s password

- E.g., /bin/su – acquire new user ID with correct password

- E.g., /usr/bin/netstat – lists network connections (by reading

kernel memory on some OSes)

• Have to be very careful when writing setuid code

- Attackers can run setuid programs any time (no need to wait

for root to run a vulnerable job)

- Attacker controls many aspects of program’s environment

• Example attacks when running a setuid program

- Change PATH or IFS if setuid prog calls system(3)

- Set maximum file size to zero (if app rebuilds DB)

- Close fd 2 before running program—may accidentally send

error message into protected file

9/33

Other permissions

• When can proc. A send a signal to proc. B w. kill?

- Allow if sender and receiver have same effective UID

- But need ability to kill processes you launch even if suid

- So allow if real UIDs match, as well

- Can also send SIGCONT w/o UID match if in same session

• Debugger system call ptrace

- Lets one process modify another’s memory

- Setuid gives a program more privilege than invoking user

- So don’t let process ptrace more privileged process

- E.g., Require sender to match real & effective UID of target

- Also disable/ignore setuid if ptraced target calls exec

- Exception: root can ptrace anyone

10/33

A security hole

• Even without root or setuid, attackers can trick root

owned processes into doing things. . .

• Example: Want to clear unused files in /tmp

• Every night, automatically run this command as root:

find /tmp -atime +3 -exec rm -f -- {} \;

• find identifies files not accessed in 3 days

- executes rm, replacing {} with file name

• rm -f -- path deletes file path

- Note “--” prevents path from being parsed as option

• What’s wrong here?

11/33

An attack

find/rm Attacker

creat (“/tmp/badetc/passwd”)

readdir (“/tmp”) → “badetc”

lstat (“/tmp/badetc”) → DIRECTORY

readdir (“/tmp/badetc”) → “passwd”

rename (“/tmp/badetc” → “/tmp/x”)

symlink (“/etc”, “/tmp/badetc”)

unlink (“/tmp/badetc/passwd”)

• Time-of-check-to-time-of-use (TOCTTOU) bug

- find checks that /tmp/badetc is not symlink

- But meaning of file name changes before it is used

12/33

xterm command

• Provides a terminal window in X-windows

• Used to run with setuid root privileges

- Requires kernel pseudo-terminal (pty) device

- Required root privs to change ownership of pty to user

- Also writes protected utmp/wtmp files to record users

• Had feature to log terminal session to file
if (access (logfile, W_OK) < 0)
return ERROR;

fd = open (logfile, O_CREAT|O_WRONLY|O_TRUNC, 0666);

/* ... */

• What’s wrong here?

13/33

xterm command

• Provides a terminal window in X-windows

• Used to run with setuid root privileges

- Requires kernel pseudo-terminal (pty) device

- Required root privs to change ownership of pty to user

- Also writes protected utmp/wtmp files to record users

• Had feature to log terminal session to file
if (access (logfile, W_OK) < 0)
return ERROR;

fd = open (logfile, O_CREAT|O_WRONLY|O_TRUNC, 0666);

/* ... */

• xterm is root, but shouldn’t log to file user can’t write

• access call avoids dangerous security hole

- Does permission check with real, not effective UID

13/33

xterm command

• Provides a terminal window in X-windows

• Used to run with setuid root privileges

- Requires kernel pseudo-terminal (pty) device

- Required root privs to change ownership of pty to user

- Also writes protected utmp/wtmp files to record users

• Had feature to log terminal session to file
if (access (logfile, W_OK) < 0)
return ERROR;

fd = open (logfile, O_CREAT|O_WRONLY|O_TRUNC, 0666);

/* ... */

• xterm is root, but shouldn’t log to file user can’t write

• access call avoids dangerous security hole

- Does permission check with real, not effective UID

- Wrong: Another TOCTTOU bug
13/33

An attack

xterm Attacker

creat (“/tmp/X”)

access (“/tmp/X”) → OK

unlink (“/tmp/X”)

symlink (“/tmp/X” → “/etc/passwd”)

open (“/tmp/X”)

• Attacker changes /tmp/X between check and use

- xterm unwittingly overwrites /etc/passwd

- Another TOCTTOU bug

• OpenBSD man page: “CAVEATS: access() is a

potential security hole and should never be used.”

14/33

SSH configuration files

• SSH 1.2.12 – secure login program, runs as root

- Needs to bind TCP port under 1,024 (privileged operation)

- Needs to read client private key (for host authentication)

• Also needs to read & write files owned by user

- Read configuration file ~/.ssh/config

- Record server keys in ~/.ssh/known hosts

• Author wanted to avoid TOCTTOU bugs:

- First binds socket & reads root-owned secret key file

- Then drops all privileges before accessing user files—real and

effective user IDs those of invoking user

- Idea: avoid using any user-controlled arguments/files until

you have no more privileges than the user

- What might still have gone wrong?
15/33

Trick question: ptrace bug

• Actually do have more privileges than user!

- Bound privileged port and read host private key

• Dropping privs allows user to “debug” SSH

- Depends on OS, but at the time several had ptrace

implementations that made SSH vulerable

• Once in debugger

- Could use privileged port to connect anywhere

- Could read secret host key from memory

- Could overwrite local user name to get privs of other user

• The fix: restructure into 3 processes!

- Perhaps overkill, but really wanted to avoid problems

16/33

A Linux security hole

• Some programs acquire then release privileges

- E.g., su user is setuid root, becomes user if password correct

• Consider the following:

- A and B unprivileged processes owned by attacker

- A ptraces B

- A executes “su user” to its own identity

- While su is superuser, B execs su root

(A is superuser, so this is not disabled)

- A types password, gets shell, and is attached to su root

- Can manipulate su root’s memory to get root shell

17/33

Editorial

• Previous examples show two limitations of Unix

• Many OS security policies subjective not objective

- When can you signal/debug process? Re-bind network port?

- Rules for non-file operations somewhat incoherent

- Even some file rules weird (Creating hard links to files)

• Correct code is much harder to write than incorrect

- Delete file without traversing symbolic link

- Read SSH configuration file (requires 3 processes??)

- Write mailbox owned by user in dir owned by root/mail

• Don’t just blame the application writers

- Must also blame the interfaces they program to

18/33

Another security problem [Hardy]

• Setting: A multi-user time sharing system

- This time it’s not Unix

• Wanted fortran compiler to keep statistics

- Modified compiler /sysx/fort to record stats in /sysx/stat

- Gave compiler “home files license”—allows writing to

anything in /sysx (kind of like Unix setuid)

• What’s wrong here?

19/33

A confused deputy

• Attacker could overwrite any files in /sysx

- System billing records kept in /sysx/bill got wiped

- Probably command like fort -o /sysx/bill file.f

• Is this a bug in the compiler fort?

- Original implementors did not anticipate extra rights

- Can’t blame them for unchecked output file

• Compiler is a “confused deputy”

- Inherits privileges from invoking user (e.g., read file.f)

- Also inherits privileges from home files license

- Which master is it serving on any given system call?

- OS doesn’t know if it just sees open ("/sysx/bill", ...)

20/33

Recall access control matrix

21/33

Capabilities

• Slicing matrix along rows yields capabilities

- E.g., For each process, store a list of objects it can access

- Process explicitly invokes particular capabilities

• Can help avoid confused deputy problem

- E.g., Must give compiler an argument that both specifies the

output file and conveys the capability to write the file

(think about passing a file descriptor, not a file name)

- So compiler uses no ambient authority to write file

• Three general approaches to capabilities:

- Hardware enforced (Tagged architectures like M-machine)

- Kernel-enforced (Hydra, KeyKOS)

- Self-authenticating capabilities (like Amoeba)

• Good history in [Levy]
22/33

