Introduction to Operating Systems
Operating System Design — MOSIG 1

Instructor: Arnaud Legrand
Class Assistants: Benjamin Negreverne, Sascha Hunold

September 16, 2010

A. Legrand Introduction to Operating Systems — 1/31

Outline

Administrivia

Introduction to Operating Systems

Main Goals
Abstraction
CPU protection
Memory protection
Efficient Use of Resources
Recap

A. Legrand Introduction to Operating Systems — 2/31

Outline

Administrivia

A. Legrand Introduction to Operating Systems Administrivia — 3/31

Administrivia
» Class web page: http://mescal.imag.fr/membres/arnaud.
legrand/teaching/2010/M1_0S.php
» All assignments, handouts, lecture notes on-line
> References
» Textbook: Operating System Concepts, 8th Edition, by Silber-
schatz, Galvin, and Gagne
» Slides heavily inspired by those from “CS140: Operating Sys-
tems by David Mazieres (Stanford)”. Many thanks to him!!!
» Staff email address: Arnaud.Legrand@imag.fr, Benjamin.
Negrevergne@Qimag.fr
» Add [M1-OSD] to the subject of your emails (otherwise, we may
not read them)
» Write your name/email on the sheet currently going through the
room. This way you will receive updates on the lecture
» Key dates:
Lectures: Tuesday & Wednesday 13:30-15:00, F111
Practical Sessions: Wednesday 15:15-18:00, F112
Midterm: Tuesday, November 9, 13:30-15:00, (F107;F204)
Final: to be determined (three hours).

vV vy VvVvyy

A. Legrand Introduction to Operating Systems Administrivia — 4 /31

http://mescal.imag.fr/membres/arnaud.legrand/teaching/2010/M1_OS.php
http://mescal.imag.fr/membres/arnaud.legrand/teaching/2010/M1_OS.php
Arnaud.Legrand@imag.fr
Benjamin.Negrevergne@imag.fr
Benjamin.Negrevergne@imag.fr

Course goals

v

Introduce you to operating system concepts
» Hard to use a computer without interacting with OS
» Understanding the OS makes you a more effective programmer
» The first minutes of the lecture can be devoted to re-explain
some parts of the previous lecture.
| can also come earlier if you have questions but you should send
me an email before.

» Cover important systems concepts in general
» Caching, concurrency, memory management, |/O, protection

v

v

Teach you to deal with larger software systems

v

Prepare you to take graduate OS classes (M1 Principles
of Computer Networks, M2 Parallel Systems, Distributed
Systems, ...)

A. Legrand Introduction to Operating Systems Administrivia — 5/31

Programming Assignments

» Among the different practical sessions, some of them will
be graded:
» A simple memory allocator.
» A Synchronization problem.
» Implementing System Calls in Nachos.
» The memory allocator session will be next week.
» Implement projects in groups of up to 3 people
» No incompletes
» Please, please, please turn in working code, or no credit here
» Means design and style matter a lot

> Large software systems not just about producing working code
» Need to produce code other people can understand
» That's why we have group projects

A. Legrand Introduction to Operating Systems Administrivia — 6 /31

Grading

» No incompletes
» Talk to me ASAP if you run into real problems
33% of grade from projects

» For each project, 50% of score based on passing test cases
» Remaining 50% based on design and style

v

v

33% of grade from mid-term exam

v

33% of grade from final exam

A. Legrand Introduction to Operating Systems Administrivia — 7/31

Style

v

Must turn in a design document along with code
CAs will manually inspect code for correctness

» E.g., must actually implement the design

» Must handle corner cases (e.g., handle malloc failure)
Will deduct points for error-prone code w/o errors

» Don’t use global variables if automatic ones suffice
» Don't use deceptive names for variables

v

v

v

Code must be easy to read

Indent code, keep lines and (when possible) functions short
Use a uniform coding style (try to match existing code)
Put comments on structure members, globals, functions
Don’t leave in reams of commented-out garbage code

vV vy VvVvYy

A. Legrand Introduction to Operating Systems Administrivia — 8 /31

Assignment requirements

v

Do not look at other people’s solutions to projects
Can read but don’t copy other OSes

» E.g., Linux, Open/FreeBSD, etc.
Cite any code that inspired your code

» As long as you cite what you used, it's not cheating
» Worst case we deduct points if it undermines the assignments

v

v

v

Projects due on the next Tuesday at start of lecture

v

Ask me for extension if you run into trouble

A. Legrand Introduction to Operating Systems Administrivia — 9/31

Outline

Introduction to Operating Systems

A. Legrand Introduction to Operating Systems Introduction to Operating Systems — 10 / 31

What is an operating system?

» Layer between applications and hardware

-_

hardware

» Makes hardware useful to the programmer
» [Usually] Provides abstractions for applications

» Manages and hides details of hardware
» Accesses hardware through low/level interfaces unavailable to
applications

» [Often] Provides protection
» Prevents one process/user from clobbering another

A. Legrand Introduction to Operating Systems Introduction to Operating Systems — 11 /31

Why study operating systems?

v

Operating systems are a maturing field
» Most people use a handful of mature OSes
» Hard to get people to switch operating systems
» Hard to have impact with a new OS

v

High-performance servers are an OS issue
» Face many of the same issues as OSes

» Resource consumption is an OS issue

» Battery life, radio spectrum, etc.

v

Security is an OS issue
» Hard to achieve security without a solid foundation

» New “smart” devices need new OSes

v

Web browsers increasingly face OS issues

A. Legrand Introduction to Operating Systems Introduction to Operating Systems — 12 /31

Primitive Operating Systems

» Just a library of standard services [no protection]

hardware

» Standard interface above hardware-specific drivers, etc.
» Simplifying assumptions

» System runs one program at a time

» No bad users or programs (often bad assumption)

» Problem: Poor utilization

» ...of hardware (e.g., CPU idle while waiting for disk)
» ...of human user (must wait for each program to finish)

A. Legrand Introduction to Operating Systems Introduction to Operating Systems — 13 /31

Multitasking

gcc | emacs |
L os 1]

hardware

» Idea: Run more than one process at once

» When one process blocks (waiting for disk, network, user input,
etc.) run another process

» Problem: What can ill-behaved process do?

A. Legrand Introduction to Operating Systems Introduction to Operating Systems — 14 / 31

Multitasking

gcc | emacs |
L os 1]

hardware

» Idea: Run more than one process at once

» When one process blocks (waiting for disk, network, user input,
etc.) run another process

» Problem: What can ill-behaved process do?

» Go into infinite loop and never relinquish CPU
» Scribble over other processes’ memory to make them fail

» OS provides mechanisms to address these problems

» Preemption — take CPU away from looping process
» Memory protection — protect process’'s memory from one an-
other

A. Legrand Introduction to Operating Systems Introduction to Operating Systems — 14 / 31

Multi-user OSes

foo(@®) () bar
/ /

araware

» Many OSes use protection to serve distrustful users
> Idea: With N users, system not N times slower

» Users' demands for CPU, memory, etc. are bursty
» Win by giving resources to users who actually need them

» What can go wrong?

A. Legrand Introduction to Operating Systems Introduction to Operating Systems — 15 /31

Multi-user OSes

foo(@®) () bar
/ /

araware

» Many OSes use protection to serve distrustful users
> Idea: With N users, system not N times slower
» Users' demands for CPU, memory, etc. are bursty
» Win by giving resources to users who actually need them
» What can go wrong?
» Users are gluttons, use too much CPU, etc. (need policies)
» Total memory usage greater than in machine (must virtualize)
» Super-linear slowdown with increasing demand (thrashing)

A. Legrand Introduction to Operating Systems Introduction to Operating Systems — 15 /31

Outline

Main Goals
Abstraction
CPU protection
Memory protection
Efficient Use of Resources
Recap

A. Legrand Introduction to Operating Systems

Main Goals —

16 / 31

Protection

v

Mechanisms that isolate bad programs and people
Pre-emption:

» Give application a resource, take it away if needed elsewhere
» Interposition:

» Place OS between application and “stuff”
» Track all pieces that application allowed to use (e.g., in table)
» On every access, look in table to check that access legal

Privileged & unprivileged modes in CPUs :
» Applications unprivileged (user/unprivileged mode)
» OS privileged (privileged/supervisor mode)
» Protection operations can only be done in privileged mode

v

v

A. Legrand Introduction to Operating Systems Main Goals — Abstraction 17 / 31

Typical OS structure

kernel]
sockets scheduler Yy t\
TCP/I deyicej deyice) deyicej

- driver J \driver drlver/

AN

network console disk

» Most software runs as user-level processes (P[1-4])
» OS kernel runs in privileged mode [shaded]

» Creates/deletes processes
» Provides access to hardware

A. Legrand Introduction to Operating Systems Main Goals — Abstraction 18 / 31

System calls

user application

}7

open ()
user
mode
4{ system call interface
kernel
mode A
| open ()
* Implementation
i » of open ()
; system call
return

» Applications can invoke kernel through system calls

» Special instruction transfers control to kernel
» ...which dispatches to one of few hundred syscall handlers

A. Legrand Introduction to Operating Systems

Main Goals — Abstraction

19 /31

System calls (continued)

v

Goal: Do things app. can’t do in unprivileged mode
> Like a library call, but into more privileged kernel code

v

Kernel supplies well-defined system call interface

» Applications set up syscall arguments and trap to kernel
» Kernel performs operation and returns result

v

Higher-level functions built on syscall interface
» printf, scanf, gets, etc. all user-level code

Example: POSIX/UNIX interface

» open, close, read, write,

v

A. Legrand Introduction to Operating Systems Main Goals — Abstraction 20 /31

System call example

user

#include <stdio.h>
int main ()

{

+— printf ("Greetings");

retumn o;

mode
kernel

standard C library }—

mode

write ()

write ()
system call

» Standard library implemented in terms of syscalls

» printf —in libc, has same privileges as application
» calls write — in kernel, which can send bits out serial port

A. Legrand Introduction to Operating Systems

Main Goals — Abstraction

21 /31

Different system contexts

» A system can typically be in one of several contexts
> User-level — running an application
» Kernel process context (“top half” in Unix)
» Running kernel code on behalf of a particular process
» E.g., performing system call
» Also exception (mem. fault, numeric exception, etc.)
» Or executing a kernel-only process (e.g., network file server)
» Kernel code not associated w. a process (“bottom half”
in Unix)
» Timer interrupt (hardclock)
» Device interrupt
» “Softirgs”, “Tasklets”, ...in Linux
» Context switch code — changing address spaces

A. Legrand Introduction to Operating Systems Main Goals — Abstraction 22 /31

Transitions between contexts

v

User — top half: syscall, page fault

v

User/top half — device/timer interrupt: hardware

v

Top half — user/context switch: return

v

Top half — context switch: sleep

v

Context switch — user/top half

A. Legrand Introduction to Operating Systems Main Goals — Abstraction 23 /31

CPU preemption

v

Protection mechanism to prevent monopolizing CPU

v

E.g., kernel programs timer to interrupt every 10 ms
» Must be in supervisor mode to write appropriate 1/O registers
» User code cannot re-program interval timer

Kernel sets interrupt to vector back to kernel
» Regains control whenever interval timer fires
» Gives CPU to another process if someone else needs it
» Note: must be in supervisor mode to set interrupt entry points
» No way for user code to hijack interrupt handler

v

v

Result: Cannot monopolize CPU with infinite loop
» At worst get 1/N of CPU with N CPU-hungry processes

A. Legrand Introduction to Operating Systems Main Goals — CPU protection 24 /31

Protection is not security

» How can you monopolize CPU?

A. Legrand Introduction to Operating Systems Main Goals — CPU protection 25 /31

Protection is not security

» How can you monopolize CPU?
> Use multiple processes
» Until recently, could wedge many OSes with
int main() { while(1) fork(); }
» Keeps creating more processes until system out of proc. slots
» Other techniques: use all memory (chill program)
» Typically solved with technical/social combination

» Technical solution: Limit processes per user
» Social: Reboot and yell at annoying users
» Social: Pass laws (often debatable whether a good idea)

A. Legrand Introduction to Operating Systems Main Goals — CPU protection 25 /31

Address translation

v

Protect mem. of one program from actions of another

v

Definitions

Address space: all memory locations a program can name
Virtual address: addresses in process' address space
Physical address: address of real memory

Translation: map virtual to physical addresses

Translation done on every load and store
» Modern CPUs do this in hardware for speed
Idea: If you can’t name it, you can’t touch it

» Ensure one process's translations don't include any other pro-
cess's memory

v
vV vy VvVyy

v

A. Legrand Introduction to Operating Systems Main Goals — Memory protection 26 / 31

More memory protection

v

CPU allows kernel-only virtual addresses
» Kernel typically part of all address spaces,
e.g., to handle system call in same address space
» But must ensure apps can't touch kernel memory
CPU allows disabled virtual addresses

» Catch and halt buggy program that makes wild accesses
» Make virtual memory seem bigger than physical
(e.g., bring a page in from disk only when accessed)

CPU enforced read-only virtual addresses useful

» E.g., allows sharing of code pages between processes
» Plus many other optimizations

CPU enforced execute disable of VAs
» Makes certain code injection attacks harder

v

v

v

A. Legrand Introduction to Operating Systems Main Goals — Memory protection 27 /31

Resource allocation & performance

v

Multitasking permits higher resource utilization
Simple example:

» Process downloading large file mostly waits for network
» You play a game while downloading the file
» Higher CPU utilization than if just downloading

v

v

Complexity arises with cost of switching

Example: Say disk 1,000 times slower than memory
100 MB memory in machine

2 Processes want to run, each use 100 MB

Can switch processes by swapping them out to disk
Faster to run one at a time than keep context switching

v

v

vV vVvYy

A. Legrand Introduction to Operating Systems Main Goals — Efficient Use of Resources 28 /31

Useful properties to exploit

> Skew
» 80% of time taken by 20% of code
» 10% of memory absorbs 90% of references
» Basis behind cache: place 10% in fast memory, 90% in slow,
usually looks like one big fast memory
» Past predicts future (a.k.a. temporal locality)
» What's the best cache entry to replace?
» If past = future, then least-recently-used entry
> Note conflict between fairness & throughput
» Higher throughput (fewer cache misses, etc.) to keep running

same process
» But fairness says should periodically preempt CPU and give it

to next process

A. Legrand Introduction to Operating Systems Main Goals — Efficient Use of Resources 29 /31

Goals

Main Goals of an OS:
» Provide abstraction of hardware through sound APls

Make efficient use of hardware

v

v

Ensure protection

Ensure fairness

v

You should always study the lectures (including this one) with these
goals in mind.

We will see how these different issues are adressed when dealing with
the different parts of a computer system (memory, CPU, storage,
network, ...).

The course will be organized accordingly.

A. Legrand Introduction to Operating Systems Main Goals — Recap 30 /31

Course Organization

Memory (Virtual memory)

» Fragmentation and » Pagination, caching
segmentation

CPU

> Processes & Threads » Concurrency, Synchroniza-

» Scheduling tion & Communication
Storage

> File systems » Network file systems
Network

» Distributed Systems

Note: Lectures will often take Unix as an example
> Most current and future OSes heavily influenced by Unix

» Windows is exception; we will mostly ignore it

A. Legrand Introduction to Operating Systems Main Goals — Recap 31/31

	Administrivia
	Introduction to Operating Systems
	Main Goals
	Abstraction
	CPU protection
	Memory protection
	Efficient Use of Resources
	Recap

