Lecture 2
= Remind: Work W and depth D :
= With work-stealing schedule:
- #steals = O(pD)
- Execution time on p procs = W/p + O(D) w.h.p.
- Similar bound achieved with processors with changing
speed or multiprogrammed systems.
= How to parallelize ?
= 1/ There exists a fine-grain parallel algorithm that
is optimal in sequential

- Work-stealing and Communications
= 2/ Extra work induced by parallel can be amortized
= 3/ Work and Depth are related

- Adaptive parallel algorithms

Lower bound(s) for the prefix

Prefix circuit of depth d
{ trieensor
#operations > 2n - d

f 2n
Parallel time > F1).Nand

Parallelism induces overhead :
e.g. Parallel prefix on fixed architecture

® Prefix problem :
*input: ay, ay, .
«output : 7y, .

o With

© Fine grain optimal parallel algorithm :
O ANs A Litd

T
%:::ig‘] };S ’\H \Q;é ‘}:'é Critical time = 2. Jog n Parallel
M#s.w}"\ | | but performs 2.n ops F=> requires

wl) e
& ¢ & twice more
=R operations
than
+ Tight lower bound on p identical ial !!

Meokutal. 158 i) [Optimal time 7, = 2n/ (p+1)
| ||| [but performs 2.n.p/(p+1) ops

el

3. Work-first principle and adaptability -

+ Work-first principle: -implicit- dynamic choice between two executions :
+ asequential “depth-first” execution of the parallel algorithm (local, default) ;
+ aparallel “breadth-first” one.
+ Choice is performed at runtime, depending on resource idleness:
rare event if Depth is small to Work
+ WS adapts parallelism to processors with practical provable performances
« Processors with changing speeds / load (data, user processes, system, users,
+ Addition of resources (fault-tolerance [Cilk/Porch, Kaapi, ...])

- The choice is justified only when the sequential execution of the parallel
algorithm is an efficient sequential algorithm:
+ Parallel Divide&Conquer computations

-> But, this may not be general in practice

How to get both optimal work W; and W, small?

+ General approach: to mix both
a sequential algorithm with optimal work Wy
and a fine grain parallel algorithm with minimal critical time W,,

- Folk technique : parallel, than sequential
Parallel algorithm until a certain « grain »; then use the sequential one
Drawback : W, increases (0) ...and, also, the number of steals

B

D sequential, then parallef ing e :
Careful interplay

speed-up iq
of both algorithms to build one with both
W.small and W, = O(W,)

Use the work-optimal sequential algorithm to reduce the size
Then use the time-optimal parallel algorithm to decrease the time
Drawback : sequential at coarse grain and parallel at fine grain :o(

Overview

« Introduction : interactive computation, parallelism and processor oblivious
+ Overhead of parallelism : parallel prefix

* Machine model and work-stealing

+ Scheme 1: Extended work-stealing : concurently sequential and par

30
Extended work-stealing: concurrently sequential and paralle!

Based on the work-stealing and the Work-first principle :
Instead of optimizing the sequential execution of the best parallel algorithm,
let optimize the parallel execution of the best sequential algorithm

Execute always a sequential algorithm to reduce parallelism overhead
= parallelaigorithm is used only it a processor becomes idle (fe workstealing) (recnsa20s..|
to extract parallelism from the remaining work a sequential computation

Assumption : two concurrent algorithms that are complementary:
* - one sequential : SeqCompute (always performed, the priority)
- the other parallel, fine grain : LastPar(Computatisn (often rot performed)

SeqCompute [~ 1

31

Extended work-stealing : concurrently sequential and paralle!

Based on the work-stealing and the Work-first principle :
Instead of optimizing the sequential execution of the best parallel algorithm,
let optimize the parallel execution of the best sequential algorithm

Execute always a sequential algorithm to reduce parallelism overhead
= parallel algorithm is used only if a processor becomes idle (ie workstealing) [Rochaai200s...]
t0 extract parallelism from the remaining work a sequential computation

Assumption : two concurrent algorithms that are complementary:
- - one sequential : SeqCompute (always performed, the priority)
the other parallel, fine grain : LastPar(Computation (ofien not performed)

SeqCompute_mai e r? i
ute_main |_rs_|_p_.‘ Se:
pute reempt = —— t

Spe===r,
SeqCompute complete

Note:

+ merge and jump operations to ensure non-idleness of the victim

+ Once SeqCompute_main it becomes a work-stealer

Overview

* Introduction : interactive computation, parallelism and processor oblivious
+ Overhead of parallelism : parallel prefix

« Machine model and work-stealing
+ Scheme 1: Extended work-stealing : concurently sequential and paralle]

+ Scheme 2: Amortizing the overhead of synchronization (Nano-loop)

Interactive application with time constraint

Anytime Algorithm:
« Can be stopped at any time (with a result)
+ Result quality improves as more time is allocated

In Computer graphics, anytime algorithms are common:
Level of Detail algorithms (time budget, triangle budget, etc...)
Example: Progressive texture loading, triangle decimation (Google Earth)

Anytime processor-oblivious algorithm:

On p processors with average speed IT,,,. it outputs in a fixed time T
a result with the same quality than

a sequential processor with speed IT,, in time p.IT,,,.

Example: Parallel Octree computation for 3D Modeling

Extended work-stealing and granularity

= Scheme of the sequential process : nanoloop
While (not completed(Wrem)) and (next_operation hasn’t been stolen)

atomic { extract_next k operations ; Wrem -= k ; }
process the k operations extracted ;
¥
Processor-oblivious algorithm
= Whatever pis, it performs O(p.D) preemption operations (= continuation fauits »)
> Dshould be as small as possible to maximize both speed-up and locality

= I no steal ocours during a (sequential) computation, then its arithmetic work is optimal
10 the one W, of the sequential algorithm (no spawn/forkicopy)
> Wshould be as close as possible to Wo,

Choosing k = Depth(W,,,,,) does not increase the depth of the parallel algorithm
while ensuring O(W/D) atomic operations :
since D> log, W, , thenifp=1: W~W,,

- ion : atomicity in loop based without lock
» Efficient mutual exclusion between sequential process and parallel work-stealer

Self-adaptive granularity

Parallel 3D Modeling

3D Modeling :
build a 3D model of a scene from a set of calibrated images

On-line 3D modeling for interactions: 3D modeling from
multiple video streams (30 fps)

Octree Carving (v soares s

A classical recursive anytlme 3D modeling algorithm.

|

State of a cube:
“Grey: mixed => spit | [Level2
“Block ful:stop
“Whit: empty - siop sy 1 71}
Lol
ErTE sss
Widh first

Depth first
+ iterative deepening

At termination: quick test to decide all grey cubes time control

- 16 core Opteron machine, 64 images
- Sequential: 269 ms, 16 Cores: 24 ms
- 8 cores: about 100 steals (167 000 grey cells)

Results

[L. Soares 06]

8 cameras, levels 2 to 10 64 cameras, levels 2 to 7

Preliminary result: CPUs+GPU

-1GPU + 16 CPUs

- GPU programmed in OpenGL

- efficient coupling till 8 but
does not scale

o (Time (ms))

Width first parallel octree carving”

Well suited to work-stealing
-Small critical path, while huge amount of work (eg. D = 8, W = 164 000)
- non-predictable work, non predictable grain :
For cache locality, each level is processed by a self-adaptive grain :
“sequential iterative” / "parallel recursive split-half”

Octree needs to be “balanced” when stopping:
« Serially computes each level (with small overiap)
« Time deadline (30 ms) managed by signal protocol

Unbalanced Balanced

Theorem: W.r.t the adaptive in time T on p procs., the sequential algorithm:
- goes at most one level deeper : Id,-d,151;
- computes atmost: ng<n,+0O(log) .

Overview

+ Introduction : interactive computation, parallelism and processor oblivious
+ Overhead of parallelism : parallel prefix

* Machine model and work-stealing

+ Scheme 1: Extended work-stealing : concurently sequential and paralle]
+ Scheme 2: izing the overhead of (Nano-loop)
+ Scheme 3: Amortizing the overhead of parallelism (Macro-loop)

4. Amortizing the arithmetic overhead
of parallelism

Adaptive scheme : extract_seqg/nanoloop // extract_par
« ensures an optimal number of operation on 1 processor
« but no guarantee on the work performed on p processors

Eg (C++ STL): find_if (first, last, predicate)
locates the first element in [First, Last) verifying the predicate

This may be a drawback (unneeded processor usage) :
* undesirable for a library code that may be used in a complex application,
with many components
+ (or not fair with other users)
- increases the time of the application :
any parallelism that may increase the execution time should be avoided

Motivates the building of work-optimal parallel adaptive algorithm
(processor oblivious)

a2

[S. Guelton]

Results on find_if

time predicate ~ 0.31 ms.

With no amortization macroloop

With amortization macroloop

4. Amortizing the arithmetic overhead
of parallelism (cont'd)

Similar to nano-loop for the sequential process :
« that balances the -atomic- local work by the depth of the remaindering one

Here, by amortizing the work induced by the extract_par operation,
ensuring this work to be small enough :

« Either w.r.t the -useful- work already performed

« Or with respect to the - useful - work yet to performed (if known)
« or both.

Eg : find_if (first, last, predicate) :
« only the work already performed is known (on-line)
« then prevent to assign more than a(W) Operations to work-stealers
« Choices fora(n) :
+n/2 : similar to Floyd’s iteration (approximation ratio = 2)
+nflog* n : to ensure optimal usage of the work-stealers

5. Putting things together -

processor-oblivious prefix computation

Parallel algorithm based on :
- compute-seq / extract-par scheme
- nano-loop for compute-seq

- macro-loop for extract-par

P-Oblivious Prefix on 3 proc.

Sequential

Ty @, 8, 8, 8, 8s 858; 83 8g 310 8y A,
Main
= —

b

S Parallel
5

&

<

Work-
stealor 1

Work-
stealor 2

time

P-Oblivious Prefix on 3 proc.

Sequential
Tgdy 8 a3
Main
Lo — R
Parallel
ai=a5"...*ai

a.a, 8, 8 8, 8,03, a.

Work-
stoaler 1

@
g =
Work.
soser 3 =

time

P-Oblivious Prefix on 3 proc.

Sequential
Tay 3 3 A

Main
Seq m

Preempt\ Ty ag

Parallel
a.a; a, lay Reobelel
Work-
stealer 1 Og 00 0t

Pizag®...'al

e o
Work-
stealor 2 = =

time

P-Oblivious Prefix on 3 proc.

Sequential
M@y 8y 8 8, >

Main
Seq

Preempt \ g Bt

Parallel

Work-
stealor 1

Work-
stealer 3

P-Oblivious Prefix on 3 proc.

Sequential
Y e

Parallel
DEE, aisast.
Work-
e 1
05706 Tty =
easr..ca

3, _ay

P, T T4 o [=====]

P-Oblivious Prefix on 3 proc.

Sequential
Tpay a; ag a— o
Implicit critical path on the sequential process T? e
Parallel
a5 3, a, ai=a5*...%ai
staler 1 5T TT7
e e e s |
pimasr..ai
Sa |
work-
stealer 2 Tg g P o s |
R
time
49

52
Results 2/2 [D Traore]
Prefix sum of 8.10° double on a SMP 8 procs (1A64 1.5GHz! linux)
Multi-user context :
ol External charge
IR (9-p external processes)
o Off-line parallel algorithm for p processors
" Oblivious
o #orocessors :
Multi-user context :
Additional external charge: (9-p) additional external dummy processes are concurrently executed
Processor-oblivious prefix computation is always the fastest
15% benefit over a parallel algorithm for p processors with off-line schedule,
53

Conclusion

Fine grain ism enables efficient ion on a small number of
processors

= Interest : portability ; mutualization of code ;
= Drawback : needs work-first principle => algorithm design

Efficiency of classical work stealing relies on work-first principle :
= Implicitly defenerates a parallel algorithm into a sequential efficient ones ;

+ Assumes that parallel and sequential algorithms perform about the same amount of
operations

Processor Oblivious algorithms based on work-first principle

= Based on anytime extraction of parallelism from any sequential algorithm (may
execute different amount of operations) ;

= Oblivious: near-optimal whatever the execution context is.

Generic scheme for stream computations :
parallelism introduce a copy overhead from local buffers to the output
gzip / compression, MPEG-4 / H264

Analysis of the algorithm

L 2n logn
. Execution time < GFD) Mave (@) ()

Mave

Lower bound

= Sketch of the proof :
Dynamic coupling of two algorithms that complete simultaneously:

Sequential: (optimal) number of operations S on one processor

Extract_par : work stealer perform X operations on other processors
- dynamic splitting always possible till finest grain BUT local sequential
« Critical path small (eg :log X witha W=n/log* n macroloop)

—_S — X log X
o=y, and Ty = opy + 0 (RL)

Algorithmic scheme ensures T, = T, + O(log X)

X of operail ed
‘and the overhead of paralielism = (5+X) - fops_optimal

Results 1/2 [D Traore]

Prefix sum of 8.10° double on a SMP 8 procs (1A64 1.5GHz! linux)

Single user context

 Pure sequential

s i
g
[
. Optimal off-line on p procs
7
Goiions
orocossors
I blivious prefix achieves imal

- close to the lower bound both on 1 proc ~ and_on p processors

- Less sensitive +even better than ptimal” algorithm on p processor

