
1!

24

Lecture 2
!! Remind: Work W and depth D :!

!!With work-stealing schedule: "

-! #steals = O(pD)"

-! Execution time on p procs = W/p + O(D) w.h.p."

-! Similar bound achieved with processors with changing
speed or multiprogrammed systems."

!! How to parallelize ? !!

!! 1/ There exists a fine-grain parallel algorithm that

is optimal in sequential "
-! Work-stealing and Communications"

!! 2/ Extra work induced by parallel can be amortized"

!! 3/ Work and Depth are related"

-! Adaptive parallel algorithms"

25

•! Prefix problem :

•! input : a0, a1, …, an

•! output : !1, …, !n with

 Parallelism induces overhead :
 e.g. Parallel prefix on fixed architecture

•! Tight lower bound on p identical processors:

Optimal time Tp = 2n / (p+1)

but performs 2.n.p/(p+1) ops
[Nicolau&al. 1996]

Parallel

requires

twice more

operations

 than

sequential !!

 performs only n operations

•! Sequential algorithm :

•! for (![0] = a[0], i = 1 ; i <= n; i++) ![i] = ![i – 1] * a [i] ;

Critical time = 2. log n

but performs 2.n ops

[Ladner-
Fisher-81]

•! Fine grain optimal parallel algorithm :

2!

26

Lower bound(s) for the prefix

Prefix circuit of depth d !

 " [Fitch80] !

 #operations > 2n - d!

27

Overview

•! Introduction : interactive computation, parallelism and processor oblivious!

•! Overhead of parallelism : parallel prefix"

•! Machine model and work-stealing!

•! Scheme 1: !Extended work-stealing : concurently sequential and parallel!

3!

28

3. Work-first principle and adaptability

•! Work-first principle: -implicit- dynamic choice between two executions :

•! a sequential “depth-first” execution of the parallel algorithm (local, default) ;

•! a parallel “breadth-first” one.

•! Choice is performed at runtime, depending on resource idleness:

 rare event if Depth is small to Work

•! WS adapts parallelism to processors with practical provable performances

•! Processors with changing speeds / load (data, user processes, system, users,

•! Addition of resources (fault-tolerance [Cilk/Porch, Kaapi, …])

•! The choice is justified only when the sequential execution of the parallel

algorithm is an efficient sequential algorithm:

•! Parallel Divide&Conquer computations

•! …

 -> But, this may not be general in practice

29

•! General approach: to mix both !
•! a sequential algorithm with optimal work W1 "

•! and a fine grain parallel algorithm with minimal critical time W!

•! Folk technique : parallel, than sequential !
•! Parallel algorithm until a certain «#grain#»; then use the sequential one"

•! Drawback : W! increases ;o) …and, also, the number of steals$

•! Work-preserving speed-up technique [Bini-Pan94] sequential, then parallel Cascading [Jaja92] :
Careful interplay of both algorithms to build one with both !

 ! ! ! ! ! !W! small and W1 = O(Wseq) "

•! Use the work-optimal sequential algorithm to reduce the size "

•! Then use the time-optimal parallel algorithm to decrease the time "

•! Drawback : sequential at coarse grain and parallel at fine grain ;o($

How to get both optimal work W1 and W! small?

4!

30

Extended work-stealing: concurrently sequential and parallel

SeqCompute

Extract_par LastPartComputation
SeqCompute

Based on the work-stealing and the Work-first principle : "

Instead of optimizing the sequential execution of the best parallel algorithm, $
let optimize the parallel execution of the best sequential algorithm $

Execute always a sequential algorithm to reduce parallelism overhead!
#! parallel algorithm is used only if a processor becomes idle (ie workstealing) [Roch&al2005,…]

to extract parallelism from the remaining work a sequential computation $

Assumption : two concurrent algorithms that are complementary: "
•! - one sequential : SeqCompute (always performed, the priority)

- the other parallel, fine grain : LastPartComputation (often not performed)"

31

Based on the work-stealing and the Work-first principle : "

Instead of optimizing the sequential execution of the best parallel algorithm, $
let optimize the parallel execution of the best sequential algorithm $

Execute always a sequential algorithm to reduce parallelism overhead!
#! parallel algorithm is used only if a processor becomes idle (ie workstealing) [Roch&al2005,…]

to extract parallelism from the remaining work a sequential computation $

Assumption : two concurrent algorithms that are complementary: "
•! - one sequential : SeqCompute (always performed, the priority)

- the other parallel, fine grain : LastPartComputation (often not performed)"

SeqCompute

SeqCompute

preempt
SeqCompute_main

SeqCompute

merge/jump

complete

Seq

Note:

•! merge and jump operations to ensure non-idleness of the victim

•! Once SeqCompute_main completes, it becomes a work-stealer

Extended work-stealing : concurrently sequential and parallel

5!

32

Overview

•! Introduction : interactive computation, parallelism and processor oblivious!

•! Overhead of parallelism : parallel prefix"

•! Machine model and work-stealing!

•! Scheme 1: !Extended work-stealing : concurently sequential and parallel!

•! Scheme 2: !Amortizing the overhead of synchronization (Nano-loop)"

33

Extended work-stealing and granularity

!! Scheme of the sequential process : nanoloop
 While (not completed(Wrem)) and (next_operation hasn’t been stolen) !
{!

 atomic { extract_next k operations ; Wrem -= k ; }!

 process the k operations extracted ;!

}!

!! Processor-oblivious algorithm !

!! Whatever p is, it performs O(p.D) preemption operations («#continuation faults#»)"

-> D should be as small as possible to maximize both speed-up and locality $

!! If no steal occurs during a (sequential) computation, then its arithmetic work is optimal
to the one Wopt of the sequential algorithm (no spawn/fork/copy) "

-> W should be as close as possible to Wopt "

!! Choosing k = Depth(Wrem) does not increase the depth of the parallel algorithm
while ensuring O(W / D) atomic operations :!
 "since D > log2 Wrem , then if p = 1: W ~ Wopt "

!! Implementation : atomicity in nano-loop based without lock
!! Efficient mutual exclusion between sequential process and parallel work-stealer"

!! Self-adaptive granularity!

6!

34

Anytime Algorithm:!
•! Can be stopped at any time (with a result)"

•! Result quality improves as more time is allocated"

In Computer graphics, anytime algorithms are common: "

"Level of Detail algorithms (time budget, triangle budget, etc…)"

"Example: Progressive texture loading, triangle decimation (Google Earth)"

Anytime processor-oblivious algorithm: !
On p processors with average speed "ave, it outputs in a fixed time T "

 a result with the same quality than "

a sequential processor with speed "ave in time p."ave. "

Example: Parallel Octree computation for 3D Modeling !"

Interactive application with time constraint

35

3D Modeling : !

!build a 3D model of a scene from a set of calibrated images"

On-line 3D modeling for interactions: 3D modeling from

multiple video streams (30 fps) "

Parallel 3D Modeling

…

…

7!

A classical recursive anytime 3D modeling algorithm."

Standard algorithms with time control:"

At termination: quick test to decide all grey cubes time control"

Octree Carving [L. Soares 06]

State of a cube:
- Grey: mixed => split
- Black: full : stop
- White: empty : stop

Depth first "

+ iterative deepening!

Width first !

37

Well suited to work-stealing "

-!Small critical path, while huge amount of work (eg. D = 8, W = 164 000)"

-! non-predictable work, non predictable grain : "

For cache locality, each level is processed by a self-adaptive grain :

" "“sequential iterative” / ”parallel recursive split-half”"

Octree needs to be “balanced” when stopping:"

•! Serially computes each level (with small overlap)!

•! Time deadline (30 ms) managed by signal protocol"

Theorem: W.r.t the adaptive in time T on p procs., the sequential algorithm: ""

"- goes at most one level deeper : | ds - dp | ! 1 ;

 - computes at most : ns ! np + O(log ns) .!

Width first parallel octree carving

Unbalanced ! Balanced !

8!

38

-! 16 core Opteron machine, 64 images "

-! Sequential: 269 ms, 16 Cores: 24 ms"

-! 8 cores: about 100 steals (167 000 grey cells)"

Results

8 cameras, levels 2 to 10! 64 cameras, levels 2 to 7!

Preliminary result: CPUs+GPU

-! 1 GPU + 16 CPUs "

-! GPU programmed in OpenGL"

- efficient coupling till 8 but $
 does not scale"

lo
g
 (

T
im

e
(m

s)
)!

[L. Soares 06]

39

Overview

•! Introduction : interactive computation, parallelism and processor oblivious!

•! Overhead of parallelism : parallel prefix"

•! Machine model and work-stealing!

•! Scheme 1: !Extended work-stealing : concurently sequential and parallel!

•! Scheme 2: !Amortizing the overhead of synchronization (Nano-loop)"

•! Scheme 3: !Amortizing the overhead of parallelism (Macro-loop)"

9!

40

Adaptive scheme : extract_seq/nanoloop // extract_par!

•! ensures an optimal number of operation on 1 processor"

•! but no guarantee on the work performed on p processors!

Eg (C++ STL): find_if (first, last, predicate) !

locates the first element in [First, Last) verifying the predicate!

This may be a drawback (unneeded processor usage) :"

•! undesirable for a library code that may be used in a complex application, $

 with many components "

•! (or not fair with other users)"
•! increases the time of the application :"

•!any parallelism that may increase the execution time should be avoided "

Motivates the building of work-optimal parallel adaptive algorithm

(processor oblivious)"

4. Amortizing the arithmetic overhead
of parallelism

41

Similar to nano-loop for the sequential process :!

•! that balances the -atomic- local work by the depth of the remaindering one"

Here, by amortizing the work induced by the extract_par operation, $

ensuring this work to be small enough :"

•! Either w.r.t the -useful- work already performed"

•! Or with respect to the - useful - work yet to performed (if known)"

•! or both."

Eg : find_if (first, last, predicate) :!

•! only the work already performed is known (on-line)!

•! then prevent to assign more than $(Wdone) operations to work-stealers"

•! Choices for $(n) :!

•! n/2 : similar to Floyd#s iteration (approximation ratio = 2)!

•! n/log* n : to ensure optimal usage of the work-stealers!

4. Amortizing the arithmetic overhead
of parallelism (cont’d)

10!

42

Results on find_if
[S. Guelton]!

N doubles : time predicate ~ 0.31 ms!

With no amortization macroloop!

With amortization macroloop!

43

Parallel algorithm based on :"

!- compute-seq / extract-par scheme!

!- nano-loop for compute-seq"

"- macro-loop for extract-par!

5. Putting things together
processor-oblivious prefix computation

11!

44

Parallel

Sequential

P0

P1

P3

10

 !0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

Work-
stealer 1

Main
Seq.

Work-
stealer 2

S
te

al
 r
eq

ue
st

!1

time

P-Oblivious Prefix on 3 proc.

45

Parallel

Sequential

P0

P1

P3

10

 !0 a1 a2 a3 a4

Work-
stealer 1

Main
Seq.

Work-
stealer 2

!1

 a5 a6 a7 a8 a9 a10 a11 a12

2

 !2

$6

3

$7

 !3

$i=a5*…*ai

Steal re
quest

time

P-Oblivious Prefix on 3 proc.

12!

46

Parallel

Sequential

P0

P1

P3

10

 !0 a1 a2 a3 a4

Work-
stealer 1

Main
Seq.

Work-
stealer 2

!1

 a5 a6 a7 a8

2

 !2

$6

3

$7

 !3

 %i=a9*…*ai

 a9 a10 a11 a12

$i=a5*…*ai

!4 Preempt $8

 $8 !4

$8

%10

4

time

P-Oblivious Prefix on 3 proc.

47

Parallel

Sequential

P0

P1

P3

10

 !0 a1 a2 a3 a4

Work-
stealer 1

Main
Seq.

Work-
stealer 2

!1

a5 a6 a7 a8

2

 !2

$6

3

 !3

 %i=a9*…*ai

a9 a10 a11 a12

$i=a5*…*ai

 !4

%10

4

$7 !5

 %11

5

 !8

!6

!8
Preempt

!9

%11

 !11

6

time

P-Oblivious Prefix on 3 proc.

13!

48

Parallel

Sequential

P0

P1

P3

10

 !0 a1 a2 a3 a4

Work-
stealer 1

Main
Seq.

Work-
stealer 2

!1

a5 a6 a7

2

 !2

$6

3

 !3

 %i=a9*…*ai

a9 a10

$i=a5*…*ai

 !4

4

!5

5

 !8

!6

!9

 !11

6

!10

!7

 !12

7

time

P-Oblivious Prefix on 3 proc.

49

Parallel

Sequential

P0

P1

P3

10

 !0 a1 a2 a3 a4

Work-
stealer 1

Main
Seq.

Work-
stealer 2

!1

a5 a6 a7

2

 !2

$6

3

 !3

 %i=a9*…*ai

a9 a10

$i=a5*…*ai

 !4

4

!5

5

 !8

!6

!9

 !11

6

!10

!7

 !12

7

Implicit critical path on the sequential process Tp = 7 Tp
*
 = 6

time

P-Oblivious Prefix on 3 proc.

14!

50

Analysis of the algorithm

!! "

!! Sketch of the proof :!

Dynamic coupling of two algorithms that complete simultaneously:"

!! Sequential: (optimal) number of operations S on one processor"

!! Extract_par : work stealer perform X operations on other processors"
-! dynamic splitting always possible till finest grain BUT local sequential"

•! Critical path small (eg : log X with a W= n / log* n macroloop) "

•! Each non constant time task can potentially be splitted (variable speeds)"

!! Algorithmic scheme ensures Ts = Tp + O(log X)$

=> enables to bound the whole number X of operations performed $
and the overhead of parallelism = (s+X) - #ops_optimal$

Lower bound

Execution time"

51

 Results 1/2 [D Traore]

Single-usercontext : processor-oblivious prefix achieves near-optimal performance :
 - close to the lower bound both on 1 proc and on p processors

- Less sensitive to system overhead : even better than the theoretically “optimal” off-line parallel algorithm on p processors :

Optimal off-line on p procs

Oblivious

Prefix sum of 8.106 double on a SMP 8 procs (IA64 1.5GHz/ linux)

T
im

e
 (

s
)

#processors

Pure sequential

Single user context

15!

52

Results 2/2

External charge

 (9-p external processes)

Off-line parallel algorithm for p processors

Oblivious

Prefix sum of 8.106 double on a SMP 8 procs (IA64 1.5GHz/ linux)

T
im

e
 (

s
)

#processors

Multi-user context :

Multi-user context :

Additional external charge: (9-p) additional external dummy processes are concurrently executed

Processor-oblivious prefix computation is always the fastest

 15% benefit over a parallel algorithm for p processors with off-line schedule,

[D Traore]

53

Conclusion
!! Fine grain parallelism enables efficient execution on a small number of

processors!

!! Interest : portability ; mutualization of code ; "

!! Drawback : needs work-first principle => algorithm design"

!! Efficiency of classical work stealing relies on work-first principle : !

!! Implicitly defenerates a parallel algorithm into a sequential efficient ones ; "

!! Assumes that parallel and sequential algorithms perform about the same amount of
operations"

!! Processor Oblivious algorithms based on work-first principle!
!! Based on anytime extraction of parallelism from any sequential algorithm (may

execute different amount of operations) ;"

!! Oblivious: near-optimal whatever the execution context is. "

!! Generic scheme for stream computations :!
" parallelism introduce a copy overhead from local buffers to the output"

" "gzip / compression, MPEG-4 / H264 ""

