M2R PARALLEL SYSTEMS

TRAINING EXERCISES

Exercises: Parallel merge and application to sort Jean-Louis Roch

I. Complexity of MERGE and sequential algorithm

1. There are C_{n+m}^n possible choices to fix n positions in X; the n distinct elements of A are then ranked on those fixed positions, in increasing order. Finally, the m distinct elements are ranked in increasing order in the m remaining positions of X.

2. Each comparison may, in the best case, split the possible outputs in 2 half. Also, a lower bound is $\log_2 C_{n+m}^n$.

3. We have $\log_2 n! \simeq n \log_2 n - n \log_2 e + \frac{1}{2} \log_2 n + O(1)$ Thus a lower bound is $2n \log_2 2n - 2n \log_2 e - 2n \log_2 n + 2n \log_2 e - \log_2 n + \frac{1}{2} \log_2 n + O(1) \simeq 2n - frac 12 \log_2 n + O(1) \simeq 2n$.

4.a. In the first loop (the only one that includes comparizons), at each comparizon, an element is ranked. Since this loop ranks at most n + m - 1 elements, it performs at most n + m - 1 comparisons. Moreover, let consider the following instance: $a_0 < \ldots < a_{n-2} < b_0 < \ldots < b_{m-1} < a_{n-1}$: The n-1 first elements of A are compared to b_0 and the m elements of B are compared to a_{n-1} .

4.b. All comparisons in the first loop are in precedence (sequential dependency). In the general case, we have $D(n,m) \ge \min(n,m)$. In the previous instance, all comparisons are in precedence: thus D(n,m) = n + m - 1 in the worst case.

II. A parallel Divide&Conquer algorithm for MERGE

5.a. Since A and B are sorted, A_1 , A_2 , B_1 and B_2 are sorted too. All elements of A_1 and B_1 are lesser than α , this than all elements in A_2 and B_2 . Thus, we can merge independently the n/2 + j elements of A_1 and B_1 into the n/2 + j first positions of X; and the elements of A_2 and B_2 into the n+m-n/2-j last positions of X. The resulting array is sorted.

NB: if A or B are empty, it is sufficient to copy - in parallel - the elements of the other non empty array into X.

5.b. We perform a dichotomic search in B: this requires $\lfloor \log_2 m \rfloor$ comparisons.

5.c The recurrence is direct; in worst case, m is maximum (n = m) and the array B is always on the same side so $D(n, n) \le D(n/2, n) + \log n \le D(n/2, n/2) + 2\log n - 1 = O(\log^2 n) = O(\log^2 n + m)$.

5.d. $T_p < \frac{n+m}{p} + o(n+m) + O(\log^2 n + m).$

III. An ultrafast parallel algorithm for MERGE

6.a. The number of elements in X lesser than a_i is i in A and k in B, thus i + k.

6.b. For a fixed *i*, in parallel for all *k*: compute boolean $t_{i,k} := (b_{k-1} < a_i) \lor (b_k > a_i)$. Since all elements are distincts, only one $t_{i,k}$ is true. So the algorithm is :

parfor k = 0..m - 1 { if $((b_{k-1} < a_i) \text{ and } (b_k > a_i))$ $k_i := k$ }. This computation is of depth O(1) and performs m comparasons.

6.c. The previous algorithm question 6.b is applied to all elements of A to compute their position in X in depth O(1) with n.m comparisons.

• In parallel for i = 0..n - 1 doSEQ :

1. In parallel for k = 0..m - 1 compute boolean $t_{i,k} := (b_{k-1} < a_i) \lor (b_k > a_i)$.

2. In parallel for k = 0..m - 1: if $t_{i,k} == vrai$ then $x_{i+k} := a_i$.

• Proceed the same way for all elements of B.

The two arrays A and B are thus merged in depth O(1) with 2nm comparisons.

IV. An efficient cascading algorithm for MERGE

7.a. Each μ_i can be ranked like in 6.a in depth 1 with $O(\sqrt{m})$ operations. This all the μ_i are computed in depth 1 with $O(\sqrt{n}.\sqrt{m}) = O(n+m)$ operations.

7.b. Once computed μ_i and μ_j , we have a partition of A (resp. B) in $\sqrt{n} + \sqrt{m}$ blocks, defined for A by the α_i and ν_j (resp. by the β_j and μ_i). Then, we have computed in depth O(1) a sequence of $\sqrt{n} + \sqrt{m}$ couples of blocks (one for A, the other one for B); each couple corresponds to one block of A of size $<\sqrt{n}$ to merge recursively with one block of B with size $<\sqrt{m}$ éléments.

We have $D(n) = D(\sqrt{n}) + O(1) = O(\log \log n)$ and $W_1(n) \le \sqrt{n} \cdot W_1(\sqrt{n}) + O(n) = O(n \cdot \log \log n)$.

7.c. Just split the array A (resp B) in $O(n/\log \log n)$ (resp. $O(m/\log \log m)$) blocks, and take the first elements of each block to build the array α (resp. β).

Then, merge α and β ib depth $O(\log \log n)$ with O(n) operations.

Finally, we have nos the list of couples to lerge; in each couple there are at most $\log \log n$ elements for A and at most $\log \log m$ elements for B. Thos small blocks with size $< \log \log n + m$ are merged sequentially. The algorithm has a depth $O(\log \log n)$ and each of the 3 phases performs O(n) operations.

V. Application to parallel merge-sort

8. We have $W_1(n) = 2W_1(N/2) + W_1^{(M)}(n)$ and $D(n) = D(N/2) + D^{(M)}(n)$. Solving the recurrence equations in the 3 cases leads to:

9.a. D(n) = O(n) et $W_1(n) = O(n \log n);$

9.b. $D(n) = O(\log^3 n)$ et $W_1(n) = O(n \log n);$

9.c. $D(n) = O(\log n, \log \log n)$ et $W_1(n) = O(n \log n);$