
M2R Parallel Systems Training exercises

Exercises: Parallel merge and application to sort
Jean-Louis Roch

I. Complexity of MERGE and sequential algorithm

1. There are Cn
n+m possible choices to �x n positions in X; the n distinct elements of A are then

ranked on those �xed positions, in increasing order. Finally, the m distinct elements are ranked in
increasing order in the m remaining positions of X.

2. Each comparizon may, in the best case, split the possible outputs in 2 half. Also, a lower bound
is log2 Cn

n+m.

3. We have log2 n! ' n log2 n−n log2 e+ 1
2 log2 n+O(1) Thus a lower bound is 2n log2 2n−2n log2 e−

2n log2 n + 2n log2 e− log2 n + 1
2 log2 n + O(1) ' 2n− frac12 log2 n + O(1) ' 2n.

4.a. In the �rst loop (the only one that includes comparizons), at each comparizon, an element is
ranked. Since this loop ranks at most n + m− 1 elements, it performs at most n + m− 1 comparisons.
Moreover, let consider the following instance: a0 < . . . < an−2 < b0 < . . . < bm−1 < an−1: The n − 1
�rst elements of A are compared to b0 and the m elements of B are compared to an−1.

4.b. All comparizons in the �rst loop are in precedence (sequential dependency). In the general
case, we have D(n, m) ≥ min(n, m). In the previous instance, all comparizons are in precedence: thus
D(n, m) = n + m− 1 in the worst case.

II. A parallel Divide&Conquer algorithm for MERGE

5.a. Since A and B are sorted, A1, A2, B1 and B2 are sorted too. All elements of A1 and B1 are
lesser than α, this than all elements in A2 and B2. Thus, we can merge independently the n/2 + j
elements of A1 and B1 into the n/2 + j �rst positions of X; and the elements of A2 and B2 into the
n + m− n/2− j last positions of X. The resulting array is sorted.
NB: if A or B are empty, it is su�cient to copy � in parallel � the elements of the other non empty
array into X.

5.b. We perform a dichotomic search in B : this requires dlog2 me comparisons.

5.c The recurrence is direct; in worst case, m is maximum (n = m) and the array B is always on the
same side so D(n, n) ≤ D(n/2, n) + log n ≤ D(n/2, n/2) + 2 log n− 1 = O(log2 n) = O(log2 n + m).

5.d. Tp < n+m
p + o(n + m) + O(log2 n + m).

III. An ultrafast parallel algorithm for MERGE

6.a. The number of elements in X lesser than ai is i in A and k in B, thus i + k.

1



6.b. For a �xed i, in parallel for all k: compute boolean ti,k := (bk−1 < ai) ∨ (bk > ai).
Since all elements are distincts, only one ti,k is true. So the algorithm is :

parfor k = 0..m− 1 { if ((bk−1 < ai) and (bk > ai)) ki := k }.
This computation is of depth O(1) and performs m comparasons.

6.c. The previous algorithm question 6.b is applied to all elements of A to compute their position in
X in depth O(1) with n.m comparisons.
• In parallel for i = 0..n− 1 doSEQ :

1. In parallel for k = 0..m− 1 compute boolean ti,k := (bk−1 < ai) ∨ (bk > ai).
2. In parallel for k = 0..m− 1: if ti,k == vrai then xi+k := ai.

• Proceed the same way for all elements of B.
The two arrays A and B are thus merged in depth O(1) with 2nm comparisons.

IV. An e�cient cascading algorithm for MERGE

7.a. Each µi can be ranked like in 6.a in depth 1 with O(
√

m) operations. This all the µi are
computed in depth 1 with O(

√
n.
√

m) = O(n + m) operations.

7.b. Once computed µi and µj, we have a partition of A (resp. B) in
√

n +
√

m blocks, de�ned for
A by the αi and νj (resp. by the βj and µi). Then, we have computed in depth O(1) a sequence of√

n +
√

m couples of blocks (one for A, the other one for B); each couple corresponds to one block of
A of size <

√
n to merge recursively with one block of B with size <

√
m éléments.

We have D(n) = D(
√

n) + O(1) = O(log log n) and W1(n) ≤
√

n.W1(
√

n) + O(n) = O(n. log log n).

7.c. Just split the array A (resp B) in O(n/ log log n) (resp. O(m/ log log m)) blocks, and take the
�rst elements of each block to build the array α (resp. β).
Then, merge α and β ib depth O(log log n) with O(n) operations.
Finally, we have nos the list of couples to lerge; in each couple there are at most log log n elements
for A and at most log log m elements for B. Thos small blocks with size < log log n + m are merged
sequentially. The algorithm has a depth O(log log n) and each of the 3 phases performs O(n) opera-
tions.

V. Application to parallel merge-sort

8. We have W1(n) = 2W1(N/2)+W
(M)
1 (n) and D(n) = D(N/2)+D(M)(n). Solving the recurrence

equations in the 3 cases leads to:

9.a. D(n) = O(n) et W
(
1n) = O(n log n);

9.b. D(n) = O(log3 n) et W
(
1n) = O(n log n);

9.c. D(n) = O(log n. log log n) et W
(
1n) = O(n log n);

2


