Parallel
Algorithms

Parallel Algorithms

Arnaud Legrand, CNRS, University of Grenoble

LIG laboratory, arnaud.legrand@imag.fr

November 1, 2009

1/272

arnaud.legrand@imag.fr

QOutline

Part | Performance Evaluation
Part |l Network Models

Part Ill Communications on a Ring

Part IV Algorithms on a Ring

Part V Algorithm on an Heterogeneous Ring
Part VI Algorithms on an Grid

2/272

Parallel
Algorithms

Part |

Performance Evaluation

3/272

Code Performance

Parallel
Algorithms

» We will mostly talk about how to make code go fast, hence the
“High Performance”.

» Performance conflicts with other concerns:

Correctness. You will see that when trying to make code go fast
one often breaks it

Readability. Fast code typically requires more lines! Modularity
can hurt performance (e.g., Too many classes)

Portability.

» Code that is fast on machine A can be slow on machine B
> At the extreme, highly optimized code is not portable at all,
and in fact is done in hardware!

4/272

Why Performance?

Parallel

Agaiiting » To do a time-consuming operation in less time

> | am an aircraft engineer

> | need to run a simulation to test the stability of the wings at high
speed

> I'd rather have the result in 5 minutes than in 5 hours so that |
can complete the aircraft final design sooner.

» To do an operation before a tighter deadline
> | am a weather prediction agency
> | am getting input from weather stations/sensors
> |I'd like to make the forecast for tomorrow before tomorrow
» To do a high number of operations per seconds
> | am the CTO of Amazon.com
> My Web server gets 1,000 hits per seconds
> |'d like my Web server and my databases to handle 1,000 transac-
tions per seconds so that customers do not experience bad delays

(also called scalability)
Amazon does “process” several GBytes of data per seconds

v

5/272

QOutline

Parallel
Algorithms

@ Performance: Definition?
@ Time?
@ Rate?
@ Peak performance
@ Benchmarks

© Speedup and Efficiency
@ Speedup
@ Amdahl's Law

© Performance Measures
@ Measuring Time

@ Performance Improvement
@ Finding Bottlenecks
@ Profiling Sequential Programs
@ Profiling Parallel Programs

6/272

QOutline

Parallel
Algorithms

@ Performance: Definition?
@ Time?
Performance: ?
Definition? @ Rate?
@ Peak performance
@ Benchmarks

7/2712

Performance as Time

Parallel
Algorithms

Time?

» Time between the start and the end of an operation

> Also called running time, elapsed time, wall-clock time, response
time, latency, execution time, ...

> Most straightforward measure: “my program takes 12.5s on a
Pentium 3.5GHz"

» Can be normalized to some reference time

» Must be measured on a “dedicated” machine

8 /272

Performance as Rate

Parallel

Algorithms Used often so that performance can be independent on the “size” of the
application (e.g., compressing a 1MB file takes 1 minute. compressing

a 2MB file takes 2 minutes ~ the performance is the same).
IR : H __ _instruction count __ clock rate
MIPS Millions of |nstruct|ons./ SEC = iecution timex 105 = CPIX10%
But Instructions Set Architectures are not equivalent
» 1 CISC instruction = many RISC instructions
P Programs use different instruction mixes
» May be ok for same program on same architectures

MFlops Millions of floating point operations /sec
P Very popular, but often misleading
P> e.g., A high MFlops rate in a stupid algorithm could have poor application perfor-
mance
Application-specific
P Millions of frames rendered per second

P Millions of amino-acid compared per second
P> Millions of HTTP requests served per seconds

Application-specific metrics are often preferable and others may be
misleading

9/272

“Peak” Performance?

Parallel
Algorithms

Resource vendors always talk about peak performance rate
» computed based on specifications of the machine
» For instance:

> | build a machine with 2 floating point units
» Each unit can do an operation in 2 cycles

» My CPU is at 1GHz

> Therefore | have a 1*2/2 =1GFlops Machine

» Problem:

performance

> In real code you will never be able to use the two floating point
units constantly

» Data needs to come from memory and cause the floating point
units to be idle

Typically, real code achieves only an (often small) fraction of the peak
performance

10/272

Benchmarks

Parallel
Algorithms

Since many performance metrics turn out to be misleading, people
have designed benchmarks
Example: SPEC Benchmark

> Integer benchmark
> Floating point benchmark

v

Benchmarks

v

These benchmarks are typically a collection of several codes that
come from “real-world software”

» The question “what is a good benchmark” is difficult

> If the benchmarks do not correspond to what you'll do with the
computer, then the benchmark results are not relevant to you

11/272

How About GHz?

Parallel
Algorithms

» This is often the way in which people say that a computer is better
than another
> More instruction per seconds for higher clock rate

Benchmarks

» Faces the same problems as MIPS

Processor Clock Rate | SPEC FP2000 Benchmark
IBM Power3 450 MHz 434
Intel PIII 1.4 GHz 456
Intel P4 2.4GHz 833
[tanium-2 1.0GHz 1356

» But usable within a specific architecture

12 /272

Program Performance

Parallel
Algorithms

> In this class we're not really concerned with determining the per-
formance of a compute platform (whichever way it is defined)

» Instead we're concerned with improving a program'’s performance

Benchmarks

v

For a given platform, take a given program
Run it an measure its wall-clock time
Enhance it, run it an quantify the performance improvement (i.e.,

the reduction in wall-clock time)
> For each version compute its performance

\{

v

> preferably as a relevant performance rate
> so that you can say: the best implementation we have so far goes
“this fast” (perhaps a % of the peak performance)

13 /272

QOutline

Parallel
Algorithms

SR © Speedup and Efficiency
Efficiency ° Speedup
@ Amdahl’'s Law

14 /272

Parallel
Algorithms

» We need a metric to quantify the impact of your performance
enhancement

» Speedup: ratio of “old” time to “new” time
> new time = 1h
> speedup = 2h / 1h =2
» Sometimes one talks about a “slowdown” in case the “enhance-
ment” is not beneficial

» Happens more often than one thinks

Speedup

15 /272

Parallel Performance

Parallel
Algorithms

» The notion of speedup is completely generic
> By using a rice cooker I've achieved a 1.20 speedup for rice cooking
> For parallel programs one defines the Parallel Speedup (we'll just
say “speedup”):
Speedup > Parallel program takes time T; on 1 processor
> Parallel program takes time T, on p processors
> Parallel Speedup: S(p) = %
> In the ideal case, if my sequential program takes 2 hours on 1
processor, it takes 1 hour on 2 processors: called linear speedup

16 /272

Parallel
Algorithms

&
N .
S linear
K
)

sub-linear

Speedup

number of processors

Superlinear Speedup? There are several possible causes

17 /272

Parallel
Algorithms

&
N .
S linear
K
)

sub-linear

Speedup

number of processors

Superlinear Speedup? There are several possible causes

Algorithm with optimization problems, throwing many processors at
it increases the chances that one will “get lucky” and find the
optimum fast

17 /272

Parallel
Algorithms

&
N .
S linear
K
)

sub-linear

Speedup

number of processors

Superlinear Speedup? There are several possible causes

Algorithm with optimization problems, throwing many processors at
it increases the chances that one will “get lucky” and find the
optimum fast

Hardware with many processors, it is possible that the entire applica-
tion data resides in cache (vs. RAM) or in RAM (vs. Disk)

17 /272

Bad News: Amdahl’'s Law

Parallel
Algorithms

Consider a program whose execution consists of two phases
@ One sequential phase : Toq =(1—f)T1

@ One phase that can be perfectly parallelized (linear speedup)
Tpar =fT
Therefore: T, = Toeq + Tpa,/p =(1- f)Tl + le/p

f
f
f
f

10¢ : :
gg? : L
,,,,,,, W —]

Amdahl’s Law 4

Amdahl’s Law:
1

S = 1—-f+ 1~

P

Number of processors

18 /272

Lessons from Amdahl’'s Law

Parallel
Algorithms

> It's a law of diminishing return

» If a significant fraction of the code (in terms of time spent in it)
is not parallelizable, then parallelization is not going to be good

» |t sounds obvious, but people new to high performance computing

Amdzhis Eav often forget how bad Amdahl’s law can be

» Luckily, many applications can be almost entirely parallelized and
f is small

19/272

Parallel Efficiency

Parallel
Algorithms

» Efficiency is defined as Eff(p) = S(p)/p
» Typically < 1, unless linear or superlinear speedup
» Used to measure how well the processors are utilized
> If increasing the number of processors by a factor 10 increases the
speedup by a factor 2, perhaps it's not worth it: efficiency drops
by a factor 5
> Important when purchasing a parallel machine for instance: if due
to the application’s behavior efficiency is low, forget buying a large
cluster

Amdahl's Law

20 /272

Scalability

Parallel
Algorithms

> Measure of the “effort” needed to maintain efficiency while adding
processors

» Efficiency also depends on the problem size: Eff(n, p)

» |soefficiency: At which rate does the problem size need to be
increase to maintain efficiency
> nc(p) such that Eff(nc.(p), p) = c
» By making a problem ridiculously large, on can typically achieve
good efficiency
> Problem: is it how the machine/code will be used?

Amdahl's Law

21 /272

QOutline

Parallel
Algorithms

Performance

AT © Performance Measures
@ Measuring Time

22/272

Performance Measures

Parallel
Algorithms

This is all well and good, but how does one measure the performance
of a program in practice?
Two issues:

@ Measuring wall-clock times (We'll see how it can be done shortly)
@ Measuring performance rates

> Measure wall clock time (see above)
> “Count” number of “operations” (frames, flops, amino-acids: what-
ever makes sense for the application)
> Either by actively counting (count++)
> Or by looking at the code and figure out how many operations
are performed

Performance
Measures

> Divide the count by the wall-clock time

23 /272

Measuring time by hand?

Parallel
Algorithms

One possibility would be to do this by just “looking” at a clock,
launching the program, “looking” at the clock again when the
program terminates
» This of course has some drawbacks

> Poor resolution

> Requires the user’s attention
» Therefore operating systems provide ways to time programs au-
tomatically

Measuring Time

» UNIX provide the time command

24 /272

The UNIX time Command

Parallel
Algorithms

» You can put time in front of any UNIX command you invoke

» When the invoked command completes, time prints out timing
(and other) information

surf:”$ /usr/bin/X11/time 1ls -la -R 7/ > /dev/null
4.17user 4.34system 2:55.83elapsed 47CPU
(Oavgtext+Oavgdata Omaxresident)k

Oinputs+Ooutputs (Omajor+1344minor)pagefaults Oswaps

4.17 seconds of user time

4.34 seconds of system time

2 minutes and 55.85 seconds of wall-clock time
4% of CPU was used

040k memory used (text + data)

0 input, 0 output output (file system 1/0)
1344 minor pagefaults and 0 swaps

Measuring Time

YV VY VY VY VY VY

25 /272

User, System, Wall-Clock?

Parallel
Algorithms

» User Time: time that the code spends executing user code (i.e.,
non system calls)

Measuring Time

26 /272

User, System, Wall-Clock?

Parallel
Algorithms

» User Time: time that the code spends executing user code (i.e.,
non system calls)

» System Time: time that the code spends executing system calls

Measuring Time

26 /272

User, System, Wall-Clock?

Parallel
Algorithms

» User Time: time that the code spends executing user code (i.e.,
non system calls)
» System Time: time that the code spends executing system calls

» Wall-Clock Time: time from start to end

Measuring Time

26 /272

User, System, Wall-Clock?

Parallel
Algorithms

User Time: time that the code spends executing user code (i.e.,
non system calls)

System Time: time that the code spends executing system calls
Wall-Clock Time: time from start to end
Wall-Clock > User 4+ System. Why?

v

v

v

Measuring Time

26 /272

User, System, Wall-Clock?

Parallel
Algorithms

User Time: time that the code spends executing user code (i.e.,
non system calls)

v

System Time: time that the code spends executing system calls
Wall-Clock Time: time from start to end
Wall-Clock > User 4+ System. Why?

> because the process can be suspended by the O/S due to con-
MezEmiiag i tention for the CPU by other processes

v

v

26 /272

User, System, Wall-Clock?

Parallel
Algorithms

User Time: time that the code spends executing user code (i.e.,
non system calls)

v

System Time: time that the code spends executing system calls

Wall-Clock Time: time from start to end
Wall-Clock > User 4+ System. Why?
> because the process can be suspended by the O/S due to con-

MezEmiiag i tention for the CPU by other processes
> because the process can be blocked waiting for I/O

v

v

26 /272

Using time

Parallel
Algorithms

It's interesting to know what the user time and the system time
are

> for instance, if the system time is really high, it may be that the
code does to many calls to malloc(), for instance

» But one would really need more information to fix the code (not
always clear which system calls may be responsible for the high
system time)

» Wall-clock - system - user ~ |/O + suspended

> If the system is dedicated, suspended ~ 0

> Therefore one can estimate the ecost of 1/0

> If 1/O is really high, one may want to look at reducing I/O or
doing 1/0 better

» Therefore, time can give us insight into bottlenecks and gives us
wall-clock time

Measuring Time

» Measurements should be done on dedicated systems

27 /272

Dedicated Systems

Parallel
Algorithms

» Measuring the performance of a code must be done on a “quies-
cent”, “unloaded” machine (the machine only runs the standard
O/S processes)

» The machine must be dedicated

> No other user can start a process
> The user measuring the performance only runs the minimum amount
of processes (basically, a shell)

Measuring Time » Nevertheless, one should always present measurement results as
averages over several experiments (because the (small) load im-
posed by the O/S is not deterministic)

28 /272

Drawbacks of UNIX

Parallel
Algorithms

» The time command has poor resolution
> “Only” milliseconds
» Sometimes we want a higher precision, especially if our perfor-
mance improvements are in the 1-2% range

» time times the whole code
» Sometimes we're only interested in timing some part of the code,
for instance the one that we are trying to optimize
» Sometimes we want to compare the execution time of different
sections of the code

Measuring Time

29 /272

Timing with

Parallel
Algorithms

» gettimeofday from the standard C library

> Measures the number of microseconds since midnight, Jan 1st
1970, expressed in seconds and microseconds

struct timeval start;

gettimeofday (&tv,NULL) ;
printf("%1d,%1ld\n",start.tv_sec, start.tv_usec);

» Can be used to time sections of code
» Call gettimeofday at beginning of section
> Call gettimeofday at end of section
» Compute the time elapsed in microseconds:
(end.tv_sec*x1000000.0 + end.tv_usec -
start.tv_sec*1000000.0 - start.tv_usec) / 1000000.0)

Measuring Time

30/272

Other Ways to Time Code

Parallel
Algorithms

ntp gettime () (Internet RFC 1589)
» Sort of like gettimeofday, but reports estimated error on time
measurement
> Not available for all systems
» Part of the GNU C Library

Java: System.currentTimeMillis ()

v

> Known to have resolution problems, with resolution higher than 1
millisecond!

» Solution: use a native interface to a better timer

Measuring Time

» Java: System.nanoTime ()

> Added in J2SE 5.0
> Probably not accurate at the nanosecond level

v

Tons of “high precision timing in Java” on the Web

31/272

QOutline

Parallel
Algorithms

Performance
Improvement

@ Performance Improvement
@ Finding Bottlenecks
@ Profiling Sequential Programs
@ Profiling Parallel Programs

32/272

Why is Performance Poor?

Parallel
Algorithms

Performance is poor because the code suffers from a performance bot-
tleneck

Definition:

» An application runs on a platform that has many components

(CPU, Memory, Operating System, Network, Hard Drive, Video
Card, etc.)

» Pick a component and make it faster

» If the application performance increases, that component was the
bottleneck!

Finding
Bottlenecks

33 /272

Removing a Bottleneck

Parallel
Algorithms

There are two may approaches to remove a bottleneck:

Brute force Hardware Upgrade
> |s sometimes necessary
» But can only get you so far and may be very costly (e.g.,
memory technology)
Modify the code
» The bottleneck is there because the code uses a “resource”

heavily or in non-intelligent manner
» We will learn techniques to alleviate bottlenecks at the soft-

.
it ware level

34 /272

|dentifying a Bottleneck

Parallel
Algorithms

> It can be difficult

happens to the application

happens
» One Approach
> Know/discover the characteristics of the machine

> Instrument the code with gettimeofdays everywhere
> Observe the application execution on the machine
> Tinker with the code

il > Run the application again

Bottlenecks > Repeat
> Reason about what the bottleneck is

> You're not going to change the memory bus just to see what

» But you can run the code on a different machine and see what

35 /272

A better approach: profiling

Parallel
Algorithms

>

>
>
>

Profiling
Sequential
Programs

» A profiler is a tool that monitors the execution of a program and
that reports the amount of time spent in different functions

» Useful to identify the expensive functions
» Profiling cycle

Compile the code with the profiler

Run the code

Identify the most expensive function

Optimize that function (i.e. call it less often if possible or make
it faster)

Repeat until you can’t think of any ways to further optimize the
most expensive function

36 /272

Using gprof

Parallel

Algorithms Compile your code using gcc with the -pg option

» Run your code until completion

» Then run gprof with your program’s name as single command-line
argument

» Example: gcc -pg prog.c -o prog; ./prog gprof prog >
profile_file

» The output file contains all profiling information (which fraction
of the code is spent in which function)

=] [sra]
[
[CBstrrotie | terrcica rofie
¥ [Icmm Ivam @ Iz |sdr(:)|ma1 msical | Seff mafeall
S CProfien: CProficmovaa) o o
5 CProfisewltem: CProfiieultem(GLstviw ~, CProfienfo™) oom oo om0 |
- CProfieVi em:CProfievew enQistiewlten”, Crofieiio”} 226 002 0 0 0 o
5 KiboutDat:-KeboutDatavoid oo 00 o o
5 KProfTopLevel:KFrofTopLeve(nt, Qeget”,cha const*) oo oo s 0
KProfTopLeve:setpdctons(void) "o o0 o o
5 KProfWidget: KProfkigel(QUigt”, chis const ™) 1o 0o w0
KProfVigetsoph Settngs(vody 2 o o0 78 o
IcProfVidoet oodSeltinge(yad) 1o 00 4o o
Profiling 5 Gstring:-Qstrng(vont) S0 001 144 144
s Eal QShared: dere(void) 22002 00 0 o
(&g U Quector<CProfieinfo> :QVector(void) oo 0o 0 0
Programs KprofTopLevel-seictons(vaid) i oo oo o o
- KProfTopLeelstafchetaObict(vaic) w oo 00 o o
5 KProfiet: KProfigel Qidget”,charconst ™) 102 0o wsm o0
D KProfViget sppySetings(voit) 2 o 00 78 o
B KProfiaet atProfeList(void) [
5 KProfvidget filierrofielstvoi) o2 00 1@ o -
@ KProfwidget: filerarchy(CProfieviewem *, Crofieinto *, Gar.. G es 02 00 0) =
il) K0

37 /272

Callgrind

Parallel
Algorithms

» Callgrind is a tool that uses runtime code instrumentation frame-
work of Valgrind for call-graph generation
» Valgrind is a kind of emulator or virtual machine.
> It uses JIT (just-in-time) compilation techniques to translate x86
instructions to simpler form called ucode on which various tools
can be executed.
> The ucode processed by the tools is then translated back to the
x86 instructions and executed on the host CPU.

» This way even shared libraries and dynamically loaded plugins can
be analyzed but this kind of approach results with huge slow down
(about 50 times for callgrind tool) of analyzed application and big

Seouenl memory consumption.

Programs

38 /272

Callgrind /Kcachegrind

Alatims Data produced by callgrind can be loaded into KCacheGrind tool for
browsing the performance results.

A /cachegrind.out.24457 [kcachegrind] - KCachegrind] 3
Elle View Go Settings Help
| 19 36> MT[% b & frsreion [Grovng) =]
s |IN?

QFontPrivate:ioad

| Typos | Gaters | Soures | |[can Graph |

s E=134.07010 00
12850010 00
0 174001
E13850 3001
s E=66.65030.00
£ 22207004
£ 75803001
E=51540.00
E3S1C001 Lim= Itme +Dimr + Dimy
EDi140002 Lom= \zmuozmunzjj

[T |
m
EE

I"WHF

Profiling
Sequential
Programs

Caller Map | Call Map | Assembler |

rashegrind out 2457 [1] - Total Instruction Gost. 456 122 709

39/272

Parallel
Algorithms

> mpiP is a link-time library (it gathers MPI information through
the MPI profiling layer)

> It only collects statistical information about MPI functions

» All the information captured by mpiP is task-local

sleeptime = 10;
MPI_Init (&argc, &argv);
MPI_Comm_size (comm, &nprocs);

Task AppTime MPITime MPI%

MPI_Comm rank (comm, &rank) ; 0 10 0.000243 0.00
. 1 10 10 99.92
MPI Barrier (comm);
) o) 2 10 10 99.92
if (rank == 0) sleep (sleeptime);
MPI Barrier (comm); 3 10 10 99.92
! * 40 30 74.94

MPI_Finalize ();

Profiling Parallel
Programs

40 /272

vaMPlr

Parallel
Algorithms

I j‘ YAHPIR J]

P
Applicafion
Calcufion

sehp
Communicafion

Process 4

> generate traces (i.e. not just e —
collect statistics) of MPI calls

Message sent fram Process 1 o Process 2
commuricator. o, hoe 2
length +4580
sentat933.396 ms, YAHP IR
Dafirat: 3481 UE

» These traces can then be vi-
sualized and used in different
ways.

YAMPIR

ark
ss0073.29%)

erchinge_3(3.455%)

WP Send(10.705%)

erhs(45.659%) hs(1227%)

Profiling Parallel
Programs

P Wait24, 4055
Joonoon

41 /272

Parallel
Algorithms

Part |l

Network Models

42 /272

Motivation

Parallel
Algorithms

Scientific computing : large needs in computation or storage re-
sources.

> Need to use systems with “several processors”:

> Parallel computers with shared/dis- > Clusters of clusters

tributed memory » Network of workstations
» Clusters » The Grid
> Heterogeneous clusters » Desktop Grids

» When modeling platform, communications modeling seems to be
the most controversial part.

» Two kinds of people produce communication models: those who
are concerned with scheduling and those who are concerned with
performance evaluation.

» All these models are imperfect and intractable.

43 /272

QOutline

Parallel
Algorithms

© Point to Point Communication Models
oo @ Hockney

Communication o LogP and Frlends

e TCP

44 /272

UET-UCT

Parallel
Algorithms

P2P
Communication

Hem. .. This one is mainly used by scheduling theoreticians to prove
that their problem is hard and to know whether there is some hope to
prove some clever result or not.

45 /272

“Hockney” Model

A Hockney [Hoc94] proposed the following model for performance eval-
uation of the Paragon. A message of size m from P; to P; requires:

tij(m)=Lij+m/B;
Hockney

In scheduling, there are three types of “corresponding” models:

» Communications are not “splitable” and each communication k is
associated to a communication time t, (accounting for message
size, latency, bandwidth, middleware, ...).

» Communications are “splitable” but latency is considered to be
negligible (linear divisible model):

tij(m)=m/B;;

» Communications are “splitable” and latency cannot be neglected
(linear divisible model):

t,-J(m) = L,',j + m/B,-J

46 /272

The LogP model [CKP"96] is defined by 4 parameters:
» L is the network latency

> o is the middleware overhead (message splitting and packing,
buffer management, connection, ...) for a message of size w
> g is the gap (the minimum time between two packets communi-

cation) between two messages of size w
» P is the number of processors/modules

Sender -l:l l:l = l:I—

Card il

T
- g g g
Network oL
| L g g g g
Card — il

Receiver —l:l = I:I l:l-

» Sending m bytes with packets of size w:
204 L+ [Z]-max(o,g)
» Occupation on the sender and on the receiver:
o+ L+ ([2]-1)-max(o,g)

The LogP model [CKP"96] is defined by 4 parameters:
» L is the network latency

> o is the middleware overhead (message splitting and packing,
buffer management, connection, ...) for a message of size w
> g is the gap (the minimum time between two packets communi-

cation) between two messages of size w
» P is the number of processors/modules

Sender -l:l l:l =g

Card ; il] | —
1 g ! g g g g
Network oL
| Lg g g g
Card [e— I

Receiver —l:l = I:I l:l-

» Sending m bytes with packets of size w:
204 L+ [Z]-max(o,g)
» Occupation on the sender and on the receiver:
o+ L+ ([2]-1)-max(o,g)

LogGP & pLogP

Parallel
Algorithms

The previous model works fine for short messages. However, many par-
allel machines have special support for long messages, hence a higher
) bandwidth. LogGP [AISS97] is an extension of LogP:

Friends G captures the bandwidth for long messages:

short messages 20 + L + [%] -max(o, g)

long messages 20+ L+ (m—1)G

There is no fundamental difference. . .

OK, it works for small and large messages. Does it work for average-
size messages ? pLogP [KBVO00] is an extension of LogP when L, o
and g depends on the message size m. They also have introduced

a distinction between os and o,. This is more and more precise but
concurency is still not taken into account.

48 /272

Bandwidth as a Function of Message Size

Parallel

Algorithms With the Hockney model:

L+m/B

1000
Mplch 136 sans Toptimisation ————
c optimisation — -
LogP and
Friends 800 PR TR Rl
x x
.
- x TR TR
B A\
3 600
= %
2
2
H
é
g
3 400
g
5
8
200 j
y"“’ﬁ))
0

12 4 8 16 32 64128256 1K02Ko4Ko 16Ko 64Ko 256Ko 1Mo 4Mo 16Mo
Taille des messages

MPICH, TCP with Gigabit Ethernet

49 /272

Parallel
Algorithms

LogP and
Friends

Bandwidth as a Function of Message Size

Bande passante [Mbits/s]

With the Hockney model:

1000

800

600

200

0

L+m/B

T
Mplch 126 sans optimisation’ —+—
c optimisation -

N
i

e

1 2 4 8 16 32 64128256 1K02Ko4Ko 16Ko 64Ko 256Ko 1Mo 4Mo 16Mo
Taille des messages

MPICH, TCP with Gigabit Ethernet

49 /272

What About TCP-based Networks?

Parallel
Algorithms

The previous models work fine for parallel machines. Most networks
use TCP that has fancy flow-control mechanism and slow start. s it
valid to use affine model for such networks?

The answer seems to be yes but latency and bandwidth parameters
have to be carefully measured [LQDBO05].

» Probing for m = 1b and m = 1Mb leads to bad results.

» The whole middleware layers should be benchmarked (theoretical
latency is useless because of middleware, theoretical bandwidth is
useless because of middleware and latency).

The slow-start does not seem to be too harmful.
Most people forget that the round-trip time has a huge impact on the
bandwidth.

50 /272

QOutline

Parallel
Algorithms

Modsing @ Modeling Concurency
@ Multi-port
@ Single-port (Pure and Full Duplex)
@ Flows

51/272

Multi-ports

Parallel

Algorithms > A given processor can communicate with as many other processors
as he wishes without any degradation.

> This model is widely used by scheduling theoreticians (think about
all DAG with commmunications scheduling problems) to prove
that their problem is hard and to know whether there is some
hope to prove some clever result or not.
This model is borderline, especially when allowing duplication,
when one communicates with everybody at the same time, or
when trying to design algorithms with super tight approximation
ratios.

Multi-port

Frankly, such a model is totally unrealistic.

» Using MPI and synchronous communica-
tions, it may not be an issue. However, with
multi-core, multi-processor machines, it can-
not be ignored. ..

Multi-port

(numbers in s)

52 /272

Bounded Multi-port

Parallel

Algorithms » Assume now that we have threads or multi-core processors.

We can write that sum of the throughputs of all communications
(incomming and outgoing). Such a model is OK for wide-area
communications [HP04].

» Remember, the bounds due to the round-trip-time must not be
forgotten!

Multi-port

5/2
Multi-port (3)
(numbers in Mb/s)

53 /272

Single-port (Pure)

Parallel
Algorithms

» A process can communicate with only one other process at a time.
This constraint is generally written as a constraint on the sum of
communication times and is thus rather easy to use in a scheduling
context (even though it complexifies problems).

» This model makes sense when using non-threaded versions of com-
munication libraries (e.g., MPI). As soon as you're allowed to
use threads, bounded-multiport seems a more reasonnable option

; (both for performance and scheduling complexity).

ingle-port

(Pure and Full
Duplex)

1-port (pure)

(numbers in s)
54 /272

Single-port (Full-Duplex)

Parallel
Algorithms

At a given time, a process can be engaged in at most one emission and
one reception. This constraint is generally written as two constraints:
one on the sum of incomming communication times and one on the
sum of outgoing communication times.

Single-port

I(DPJ;;Eej)nd Full 1/2 1/2

On0

1-port (full duplex)
(numbers in Mb/s)

55 /272

Single-port (Full-Duplex)

Alatims This model somehow makes sense when using networks like Myrinet
that have few multiplexing units and with protocols without control
flow [Mar07].

Myrinet
0__ 1e JB°_ 22 e Bl 2 0/ 1/ 2
Ceh e dy e ST C T .
12b 13b 14b
0 /2> gl < 0w/ gl — 5 g2 0 s B
T CadTe) * s et ET: SasLRNTTRE
Bumen P 15b 16b 17b
(2.8) o0 (2.8) (4.15) 90 (4.15) (4.9) @0 (4.9)
£ * 5 ‘L’ 4
ol A’).z \ o3 ol (& 1’).2 \ o3 ol “ ").2 o
(1.45)4 (125)} (1.25)} (L15)f (1.15) (1.15)4
.4 04 05 04 .5 .6
18b 19b 20b

Even if it does not model well complex situations, such a model is not

harmfull.
56 /272

Fluid Modeling

Parallel
Algorithms

When using TCP-based networks, it is generally reasonnable to use
flows to model bandwidth sharing [MR99, Low03].

VieL, Income Maximization maximize E or
> or<q rer
rER st I€r Max-Min Fairness maximize min p,
reR

Proportional Fairness maximize Z log(or)
reR

Potential Delay Minimization minimize Z —
reR Or

Some weird function minimize Z arctan(o,)
rer

57 /272

Fluid Modeling

Parallel
Algorithms

When using TCP-based networks, it is generally reasonnable to use
flows to model bandwidth sharing [MR99, Low03].

VieL, Income Maximization maximize E or
> o <g rer
rER st I€r Max-Min Fairness maximize né|7r21 Q,
r

Proportional Fairness maximize Z log(or)

rer
e

Potential Delay Minimization minimize Z —
reR Or

Some weird function minimize Z arctan(o,)

rerR

57 /272

Flows Extensions

Parallel
Algorithms

> Note that this model is a multi-port model with capacity-constraints
(like in the previous bounded multi-port).

» When latencies are large, using multiple connections enables to
get more bandwidth. As a matter of fact, there is very few to
loose in using multiple connections. . .

> Therefore many people enforce a sometimes artificial (but less
intrusive) bound on the maximum number of connections per
link [Wag05, MYCRO6].

58 /272

QOutline

Parallel
Algorithms

Imperfection

ﬂ Remind This is a Model, Hence Imperfect

59 /272

Remind This is a Model, Hence Imperfect

Parallel
Algorithms

» The previous sharing models are nice but you generally do not
know other flows. ..

» Communications use the memory bus and hence interfere with
computations. Taking such interferences into account may be-
come more and more important with multi-core architectures.

> Interference between communications are sometimes. . . surprising.

Imperfection

Modeling is an art. You have to know your platform and your applica-
tion to know what is negligeable and what is important. Even if your
model is imperfect, you may still derive interesting results.

60 /272

QOutline

Parallel
Algorithms

Topology

© Topology
@ A Few Examples
@ Virtual Topologies

61 /272

Various Topologies Used in the Litterature

62 /272

Parallel
Algorithms

& Beyond MPI Comm_rank()?

So far, MPI gives us a unique number for each
processor

= With this one can do anything

= But it’'s pretty inconvenient because one can do
anything with it

= Typically, one likes to impose constraints about
which processor/process can talk to which other
processor/process

Virtual

Topologies = With this constraint, one can then think of the

algorithm in simpler terms
= There are fewer options for communications between
processors

= So there are fewer choices to implementing an

a | g (o] rlth m Courtesy of Henri Casanova
63 /272

Parallel
Algorithms

& Virtual Topologies?

= MPI provides an abstraction over physical computers
= Each host has an IP address
= MPI hides this address with a convenient numbers
= There could be multiple such numbers mapped to the same
IP address
= All “numbers” can talk to each other
= A Virtual Topology provides an abstraction over MPI

= Each process has a number, which may be different from
the MPI number

Virtual

Topologies = There are rules about which “numbers” a “number” can talk

to
= A virtual topology is defined by specifying the
neighbors of each process

Courtesy of Henri Casanova
64 /272

Implementing a Vvirtual
Topology

00200606 @

(i,j) = (floor(log2(rank+1)), rank - 2max(i0)47)
rank = j-1 + 2maxi0

Courtesy of Henri Casanova
65 /272

Parallel
Algorithms

Virtual
Topologies

Implementing a Vvirtual
Topology

00200606 @

(i,j) = (floor(log2(rank+1)), rank - 2max(i0)47)
rank = j-1 + 2maxi0

my_parent(i,j) = (i-1, floor(j/2))
my_left_child(i,j) = (i+1, j*2), if any
my_right_child(i,j) = (i+1, j*2+1), if any

Courtesy of Henri Casanova
66 /272

Implementing a Virtual

Topology

00200606 @

(i,j) = (floor(log2(rank+1)), rank - 2max(i0)47)
rank = j-1 + 2maxi0

my_parent(i,j) = (i-1, floor(j/2))
my_left_child(i,j) = (i+1, j*2), if any
my_right_child(i,j) = (i+1, j*2+1), if any

MPI_Send(..., rank(my_parent(i,j)), ...)

MPI_Recv(..., rank(my_left_child(i,j)), ...)

Courtesy of Henri Casanova
67 /272

Parallel
Algorithms

&Typical Topologies

= Common Topologies (see Section 3.1.2)
* Linear Array
= Ring
= 2-D grid
= 2-D torus
* One-level Tree
= Fully connected graph
= Arbitrary graph
= Two options for all topologies:

Virtual

s = Monodirectional links: more constrained but
simpler
* Bidirectional links: less constrained but
potential more complicated
* By “complicated” we typically mean more bug-prone

= We’'ll look at Ring and Grid in detaijl e ot Cesmora

et Main Assumption and Big
Question

The main assumption is that once we’ve defined the virtual
topology we forget it’s virtual and write parallel algorithms
assuming it’s physical
= We assume communications on different (virtual) links do not
interfere with each other

= We assume that computations on different (virtual) processors
do not interfere with each other

The big question: How well do these assumptions hold?
® The question being mostly about the network

Two possible “bad” cases

Case #1: the assumptions do not hold and there are

Virtual

Topologies interferences

= We’'ll most likely achieve bad performance

= Our performance models will be broken and reasoning about
performance improvements will be difficult

Case #2: the assumptions do hold but we leave a lot of the

network resources unutilized

= We could perhaps do better with another virtual top&dagy of Henri Casanova

69 /272

i which Virtual 1opology to
Pick

We will see that some topologies are really well

suited to certain algorithms

The question is whether they are well-suite to the

underlying architecture

The goal is to strike a good compromise

= Not too bad given the algorithm

= Not too bad given the platform

Fortunately, many platforms these days use

_ switches, which support naturally many virtual

Yoporogies topologies

= Because they support concurrent communications
between disjoint pairs of processors

As part of a programming assignment, you will

explore whether some virtual topology makes

sense on our cluster Courtesy of Henri Casanova

70 /272

Nl lopologles and Data
Distribution

= One of the common steps when writing a
parallel algorithm is to distribute some
data (array, data structure, etc.) among
the processors in the topology

= Typically, one does data distribution in a way
that matches the topology

= E.g., if the data is 3-D, then it’s nice to have a
3-D virtual topology
Topeingies ®= One question that arises then is: how is
the data distributed across the topology?
® |n the next set of slides we look at our first
topology: a ring

Courtesy of Henri Casanova
71/272

Parallel
Algorithms

Part 111

Communications on a Ring

72/272

QOutline

Parallel
Algorithms

Assumptions e ASSU m pt|0ns

73/272

Parallel

Algorithms

Assumptions

lui. Ring Topology (Section 3.3)

Each processor is identified by a
rank

= MY_NUM()
There is a way to find the total
number of processors

= NUM_PROCS()

Each processor can send a
message to its successor

= SEND(addr, L)

And receive a message from its
predecessor

= RECV(addr, L)

We'll just use the above pseudo-
code rather than MPI

Note that this is much simpler than
the example tree topology we saw

in the DFEViOUS set of SIidQSurtesy of Henri Casanova
74 /272

Parallel
Algorithms

Assumptions

li qVirtual vs. Physical Topology

Now that we have chosen to consider a Ring
topology we “pretend” our physical topology is a
ring topology

We can always implement a virtual ring topology
(see previous set of slides)

= And read Section 4.6

So we can write many “ring algorithms”

It may be that a better virtual topology is better
suited to our physical topology

But the ring topology makes for very simple
programs and is known to be reasonably good in
practice

So it's a good candidate for our first look at
pa ra”el algorlth ms Courtesy of Henri Casanova

75 /272

Parallel
Algorithms

Cost of communication (Sect.

Lii-IB.Z.l)

= |t is actually difficult to precisely model the cost
of communication
= E.g., MPl implementations do various optimizations
given the message sizes
= We will be using a simple model
Time =L+ m/B
L: start-up cost or latency
B: bandwidth (b =1/B)
m: message size

Assumptions

= We assume that if a message of length m is sent
from P, to P,, then the communication cost is q(L
+ m b) S

= There are many assumptions in our model, some
not very realistic, but we'll discuss them later

Courtesy of Henri Casanova
76 /272

Assumptions about

LEL. fCommunications
D |

= Several Options

= Both Send() and Recv() are blocking
* Called “rendez-vous”
* Very old-fashioned systems

= Recv() is blocking, but Send() is not
* Pretty standard
= MPI supports it

= Both Recv() and Send() are non-blocking
* Pretty standard as well
* MPI supports it

Courtesy of Henri Casanova
77 /272

Parallel
Algorithms

AsSsumptions about

%.Concurrency

ne question that's important is: can the processor
do multiple things at the same time?

= Typically we will assume that the processor can
send, receive, and compute at the same time
= Call MPI_IRecv() Call MPI_ISend()
= Compute something
= This of course implies that the three operations are
independent
= E.g., you don’t want to send the result of the computation
= E.g., you don’t want to send what you’'re receiving
(forwarding)
= When writing parallel algorithms (in pseudo-code),
we'll simply indicate concurrent activities with a ||
sign

Assumptions

Courtesy of Henri Casanova

78 /272

L;,L, 4Collective Communications
1

= To write a parallel algorithm, we will need
collective operations

= Broadcasts, etc.

Now MPI provide those, and they likely:

= Do not use the ring logical topology

= Utilize the physical resources well

Let’s still go through the exercise of
writing some collective communication
algorithms

We will see that for some algorithms we
really want to do these communications
“by hand” on our virtual topology rather
than using the MPI collective Courtesy of Henri Casanova

79 /272

QOutline

Parallel
Algorithms

Broadcast

@ Broadcast

80/272

Parallel
Algorithms

liuL- 4Broadcast (Section 3.3.1)

= We want to write a program that has P,
send the same message of length m to all
other processors

Broadcast(k,addr,m)

®= On the ring, we just send to the next
processor, and so on, with no parallel
communications whatsoever

® This is of course not the way one should
implement a broadcast in practice if the
physical topology is not merely a ring
= MPI uses some type of tree topology

Courtesy of Henri Casanova
81 /272

Parallel
Algorithms

L;,L, 4Broadcast (Section 3.3.1)

Broadcast

Brodcast (k, addr, m)
g = MY _NUM()
p = NUM_PROCS ()
if (q == k)
SEND (addr, m)
else
if (q == k-1 mod p)
RECV (addr, m)
else
RECV (addr, m)
SEND (addr, m)
endif
endif

= Assumes a blocking
receive

= Sending may be
non-blocking

®* The broadcast time

is

(p-IN(L+mM b)

Courtesy of Henri Casanova
82 /272

QOutline

Parallel
Algorithms

Scatter

@ Scatter

83 /272

Parallel
Algorithms

L;,L, HOcatter (Section 3.2.2)

Seatter = Processor k sends a different message to
all other processors (and to itself)
= P, stores the message destined to P, at
address addr[q], including a message at
addrlk]
= At the end of the execution, each
processor holds the message it had
received in msg
= The principle is just to pipeline
communication by starting to send the
message destined to P, ,, the most distant
p rocessor Courtesy of Henri Casanova

84 /272

Parallel
Algorithms

Scatter

Scatter (k, msg, addr, m) Same execution time as the broadcast

L;,L, HOcatter (Section 3.3.2)

g = MY_NUM() (p-1)(L + m b)
p = NUM_PROCS ()
if (g == k)

for i = 0 to p-2
SEND (addr [k+p-1-i mod p],m)

msg « addr[k] Swapping of send buffer
and receive buffer (pointer)

else
RECV (tempR, L) Sending and
for i = 1 to k-1-g aéd p Receiving
in Parallel, with a
tempS o tempR non blocking Send

SEND (tempS,m) || RECV(tempR,m)
msg < tempR

Courtesy of Henri Casanova
85 /272

Parallel
Algorithms

Scatter

L gcatter (Section 3.3.2)

Scatter (k, msg, addr, m)
g = MY_NUM()
p = NUM_PROCS ()
if (g == k)
for i = 0 to p-2
SEND (addr [k+p-1-i mod p],m)
msg ~ addr[k]
else
RECV (tempR, L)
for i = 1 to k-1-q mod p
tempS « tempR
SEND (tempS,m) || RECV(tempR,m)
msg « tempR

-9
\..

Proc q=2

Proc q=3

Proc q=0

Proc g=1

k

=2,p=4

send addr[2+4-1-0 % 4 = 1]
send addr[2+4-1-1 % 4 = 0]
send addr[2+4-1-2 % 4 = 3]
msg = addr[2]

recv (addr{1])

//loop 2-1-3 % 4 = 2 times
send (addr[1]) || recv (addr[0])
send (addr[0]) || recv (addr[3])

msg = addr[3]

recv (addr[1])

//loop 2-1-2 % 4 = 1 timi

send (addr{1]) || recv (addr[o])
msg = addr[0]

//'loop 2-1-1 % 4 = 0 time
recv (addr[1])

msg = addr[1]

Courtesy of Henri Casanova
86 /272

QOutline

Parallel
Algorithms

All-to-All

@ All-to-All

87 /272

Parallel
Algorithms

L;,L, JAll-to-all (Section 3.3.3)

Al12A11 (my addr, addr, m)
g = MY_NUM()
All-to-All p = NUM_PROCS ()
addr[q] « my_addr
for i = 1 to p-1
SEND (addr [g-i+1 mod p],m)
|| RECV(addr[gq-i mod p],m)

Same execution time as the scattet
(p-1)(L + m b)

1 1

Courtesy of Henri Casanova
88 /272

QOutline

Parallel
Algorithms

Broadcast: Going
Faster

@® Broadcast: Going Faster

89 /272

Parallel
Algorithms

LEL. JA faster broadcast?

®= How can we improve performance?

®= One can cut the message in many small
Broadcast: Going pieces, say in r pieces where m is divisible by

Faster
r.

® The root processor just sends r messages

®* The performance is as follows
= Consider the last processor to get the last piece of the
message
= There need to be p-1 steps for the first piece to arrive,
which takes (p-1)(L+ mb/r)
®= Then the remaining r-1 pieces arrive one after another,
which takes (r-1)(L+ m b /r)

" For a total of: (p - 2 + r) (L + mb / r) Courtesy of Henri Casanova

90 /272

Parallel
Algorithms

LEL. JA faster broadcast?

® The question is, what is the value of r that minimizes
(p-24+n(L+mb/r)?

Broadcast: Going - One can view the above expression as (c+ar)(d+b/r),

Faster with four constants a, b, ¢, d

®= The non-constant part of the expression is then ad.r +
cb/r, which must be minimized

= It is known that this value is minimized for
sqrt(cb / ad)
and we have
Mot = SArt(m(p-2) b / L)
with the optimal time
(sart((p-2) L) + sqrt(m b))?
which tends to mb when m is large, which is independent
of p!

Courtesy of Henri Casanova
91 /272

Parallel
Algorithms

L;,L_ }IWeII-known Network Principle

= We have seen that if we cut a (large) message in
many (small) messages, then we can send the
: message over multiple hops (in our case p-1)
S almost as fast as we can send it over a single hop

= This is a fundamental principle of IP networks
= We cut messages into IP frames
= Send them over many routers
= But really go as fast as the slowest router

Courtesy of Henri Casanova
92 /272

Parallel
Algorithms

Part IV

Algorithms on a Ring

93 /272

QOutline

Parallel

N @ Matrix Vector Product
@ Open MP Version
Matrix Vector e First MPI Version
Frodue e Distributing Matrices

@ Second MPI Version

@ Third MPI Version

@ Mixed Parallelism Version

94 /272

Parallel
Algorithms

Matrix Vector
Product

NEL. sLarallel Matrix-Vector product
a

= y=AX
= Let n be the size of the matrix

int a[n][n];
int x[n];
for i = 0 to n-1 {
yli] = 0;
for j = 0 to n-1
yli] = y[i] + a[i,j] * x[j];

}
X[N]
" How do we do this in
parallel?
yIN]

Section 4.1 in the book

a[NI]IN]

Courtesy of Henri Casanova
95 /272

Parallel
Algorithms

L;,L_ sLarallel Matrix-Vector product

Open MP

Vesion ®= How do we do this in parallel?
= For example:

= Computations of elements of
vector y are independent

= Each of these computations
requires one row of matrix a and
vector x

= |n shared-memory:

X[N]

#pragma omp parallel for private(i,j)
for i = 0 to n-1 { N
yIi] = 0; yIN)
for j = 0 to n-1
yli] = y[i] + a[i,j] * x[j];
} a[N][N]
Courtesy of Henri Casanova
96 /272

Parallel
Algorithms

First MPI
Version

L;,L_ sLarallel Matrix-Vector product

®= How do we do this in parallel?
= For example:

= Computations of elements of
vector y are independent

= Each of these computations
requires one row of matrix a and
vector x

= |n shared-memory:

#pragma omp parallel for private(i,j)
for i = 0 to n-1 {
yli] = 0;
for j = 0 to n-1
yli] = y[i] + a[i,j] * x[j];

a[N]IN]

X[N]

yIN]

Courtesy of Henri Casanova
97 /272

L,L_ JParallel Matrix-Vector Product

In distributed memory, one possibility is that
each process has a full copy of matrix a and of
vector x
Each processor declares a vector y of size n/p
= We assume that p divides n
Therefore, the code can just be
load(a); load(x)
p = NUM_PROCS(); r = MY RANK();
for (i=r#*n/p; i<(r+l)*n/p; i++) {
for (3j=0;j<n;j++)
yli-r*n/p] = a[i][j] * x[3j];
}
It's embarrassingly parallel
What about the result?

Courtesy of Henri Casanova
98 /272

Parallel
Algorithms

First MPI
Version

Li'

What about the result?

After the processes complete the computation, each
process has a piece of the result

One probably wants to, say, write the result to a file
= Requires synchronization so that the 1/O is done correctly
For example

if (r !=0) {
recv(&token,1);

}

open (file, “append”);

for (j=0; j<n/p ; j++)
write (file, y[3jl);

send (&token, 1) ;

close(file)

barrier(); // optional

Could also use a “gather” so that the entire vector is
returned to processor 0
= vector y fits in the memory of a single node

Courtesy of Henri Casanova
99 /272

Parallel
Algorithms

LEL. }IWhat if matrix a is too big?

= Matrix a may not fit in memory
Version ! = Which is a motivation to use distributed memory
implementations
= |n this case, each processor can store only a
piece of matrix a
= For the matrix-vector multiply, each processor
can just store n/p rows of the matrix
= Conceptually: A[n][n]
= But the program declares a[n/p]lin]
= This raises the (annoying) issue of global indices
versus local indices

Courtesy of Henri Casanova
100 /272

Parallel
Algorithms

L;,L, 4Global vs. Local indices

= When an array is split among processes
= global index (l,)) that references an element of the matrix
Distributing = Jocal index (i,j) that references an element of the local array
that stores a piece of the matrix
= Translation between global and local indices
= think of the algorithm in terms of global indices
= implement it in terms of local indices

Global: A[5][3]
Local: a[1][3] on process P1

ali.jl = Al(n/p)*rank + il[j]

(W)

—
N Courtesy of Henri Casanova
101 /272

Parallel
Algorithms

LEL. 4Global Index Computation

= Real-world parallel code often implements actual
translation functions
Distributing

Matrices = GlobalTolLocal()
* LocalToGlobal()
= This may be a good idea in your code, although

for the ring topology the computation is pretty
easy, and writing functions may be overkill

= We’'ll see more complex topologies with more
complex associated data distributions and then
it's probably better to implement such functions

Courtesy of Henri Casanova
102 /272

Parallel
Algorithms

L;,L, }IDistributions of arrays

= At this point we have

: = 2-D array a distributed
Mitices = 1-D array y distributed
= 1-D array x replicated

= Having distributed arrays makes it possible to
partition work among processes
= But it makes the code more complex due to
global/local indices translations

* |t may require synchronization to load/save the
array elements to file

Courtesy of Henri Casanova
103 /272

Parallel
Algorithms

Distributing
Matrices

LEL. JAll vector distributed?

So far we have array x replicated

It is usual to try to have all arrays involved in the
same computation be distributed in the same
way

= makes it easier to read the code without constantly
keeping track of what’s distributed and what’s not

= e.g., “local indices for array y are different from the global
ones, but local indices for array x are the same as the
global ones” will lead to bugs

What one would like it for each process to have
= N/n rows of matrix A in an array a[n/pl[n]

= N/n components of vector x in an array x[n/p]

= N/n components of vector y in an array y[n/p]

Turns out there is an elegant solution to do this

Courtesy of Henri Casanova
104 /272

105 /272

Courtesy of Henri Casanova

Initial data distribution
n/p =2

<< | | L] L <
S| | L LS
IR Ry,
23| i3 23| 22

iple of the Algorithm

02
12
22
32
42
52
62
72

:
A
:
A

Lé H.Pr
Po
P,
P,
P

2
3=
T

o
& &

<

Second MPI

Parallel
Algorithms

L,L_ JPrinciple of the Algorithm

p ApAy® © o o o o X,
0 AgA,e o o o o o X,
Vergon ! p o o ALA e o o o X,
1 o o A ,A; 0 o o o X5
p o o o o A A0 o X4 >
2 o o o o A A, 0 o X5
p e o o o o o A A, Xg >
3 e o o o o o A76 A77 X,

Step 0

Courtesy of Henri Casanova
106 /272

Parallel
Algorithms

L,L_ JPrinciple of the Algorithm

p o o o o o o ALA, Xe
0 ® e o A Ay Xy
Vergon ! P A A, o o o o o o X,
1 AjuAj;o o o o o o X,
p o o ALA ;e o o o X, >
2 o o AL ,A e o o o X3
p o o o o A A, 0 o X4 >
3 ° o A A e X5
Step 1

Courtesy of Henri Casanova
107 /272

Parallel
Algorithms

L,L_ JPrinciple of the Algorithm

p e o o o AL A, e o Xy
0 e o o o A, A .0 o Xs
T b e e e e AA (X
1 e o o o o o A A, Xy
p [Pohas o e e e o] [x >
2 AsgAs ;0 o o o o %
p o A,A;; 0 o o o Xz >
3 o o ALA, L4 X3

Step 2

Courtesy of Henri Casanova
108 /272

Parallel
Algorithms

L,L_ JPrinciple of the Algorithm

a
o oAz e e e e X,
e ALbA; o o o o X3
o o o AyA e o X4
. Xs
® Ap Ay Xs >
o o o o o o A A, X5
P AggAg;@ o o o o o X, >
3 A A e o °

U
h

e o
> >

Second MPI
Version

L]
L]
L]
&
&
&
o
°

CEOIrary
L]
[]
[)
L]

Step 3

Courtesy of Henri Casanova
109 /272

Parallel
Algorithms

a

p Ay Ay @ e o o o Xo

0 |ApA,e e o o Xy

Vergon ! p { o AL,A ;e o o o J X,
1 o ALA;; ¢ o o X5

p o o o o A A0 o X4

2 e o o o A A e o Xs

p o o o Ay Agr Xg

3 o o o A A, X

Final state

L,L_ JLrinciple of the Algorithm

The final exchange of
vector x is not strictly
necessary, but one may
want to have it
distributed as the end of
the computation like it
was distributed at the
beginning.

Courtesy of Henri Casanova
110/272

Parallel
Algorithms

Second MPI
Version

L JAlgorithm

= Uses two buffers
= tempS for sending and tempR to receiving

float A[n/p][n], x[n/p], y[n/pl;
r « n/p
tempS ~ x /* My piece of the vector (n/p elements) */
for (step=0; step<p; step++) { /* p steps */

SEND (tempS, r)

RECV (tempR, r)

for (i=0; i<n/p; i++)

for (j=0; j <n/p; j++)
yl[i] « y[i] + a[i, (rank - step mod p) * n/p + j] * tempS[j]

tempS o tempR

}

" |n our example, process of rank 2 at step 3 would work with
the 2x2 matrix block starting at column ((2 - 3) mod 4)*8/4
=3%8/4=6;
Courtesy of Henri Casanova
111 /272

Parallel
Algorithms

L;,L, JA few General Principles

= Large data needs to be distributed among
processes (running on different nodes of a cluster
for instance)
= causes many arithmetic expressions for index
Sacondibns computation
= People who do this for a leaving always end up writing
local_to_global() and global_to_local() functions
= Data may need to be loaded/written before/after
the computation
* requires some type of synchronization among processes
= Typically a good idea to have all data structures
distributed similarly to avoid confusion about
which indices are global and which ones are local
* |n our case, all indices are local
® |n the end the code looks much more complex
than the equivalent OpenMP implementati@Riesy of Henri casanova

112 /272

Parallel
Algorithms

L;,L_ serformance

®= There are p identical steps
= During each step each processor performs
. three activities: computation, receive, and
version sending
= Computation: rz2w
* w: time to perform one += * operation
= Receiving: L+ rb
" Sending: L+ rb

T(p) = p (rPw + 2L + 2rb)

Courtesy of Henri Casanova
113 /272

Parallel
Algorithms

L;,L_ JAsymptotic Performance
a
= T(p) = p(r’w + 2L + 2rb)
* Speedup(p) = n2w /p (r2w + 2L + 2rb)
Second P! = n?w / (n?w/p + 2pL + 2nb)
= Eff(p) = n2w / (n2w+ 2p2L + 2pnb)
= For p fixed, when n is large, Eff(p) ~ 1

= Conclusion: the algorithm is
asymptotically optimal

Courtesy of Henri Casanova
114 /272

Parallel
Algorithms

LEL. Jerformance (2)

= Note that an algorithm that initially broadcasts the
entire vector to all processors and then have every
processor compute independently would be in time

(p-1)(L + nb) + pr2w
* Could use the pipelined broadcast
= which:
* has the same asymptotic performance
= is a simpler algorithm
= wastes only a tiny little bit of memory
= is arguably much less elegant

= |t is important to think of simple solutions and see
what works best given expected matrix size, etc.

Courtesy of Henri Casanova
115 /272

Second MPI
Version

Parallel
Algorithms

Third MPI
Version

LEL. Back to the Algorithm

float A[n/p][n], x[n/p], yI[n/pl;
r « n/p
tempS ~ x /* My piece of the vector (n/p elements) */
for (step=0; step<p; step++) { /* p steps */

SEND (tempS, r)

RECV (tempR, r)

for (i=0; i<n/p; i++)

for (j=0; j <n/p; j++)
yli] « y[i] + a[i, (rank - step mod p) * n/p + j] * tempS[j]
tempS o« tempR

= In the above code, at each iteration, the SEND, the RECV,
and the computation can all be done in parallel

= Therefore, one can overlap communication and
computation by using non-blocking SEND and RECV if
available

= MPI provides MPI_ISend() and MPI_IRecv() for this purpose

Courtesy of Henri Casanova

116 /272

Parallel
Algorithms

L,L_ ANore Concurrent Algorithm

= Notation for concurrent activities:

float A[n/p][n], x[n/p], y[n/p];
tempS « x /* My piece of the vector (n/p elements) */

r « n/p
Third MPI
Version for (step=0; step<p; step++) { /* p steps */
SEND (tempS, r)

|| RECV(tempR, r)
|| for (i=0; i<n/p; i++)
for (j=0; j <n/p; j++)
yli] « yl[i]+a[i, (rank-step mod p) *n/p+j] *tempS[j]
tempS o tempR
}

Courtesy of Henri Casanova
117 /272

Parallel
Algorithms

LEL. Better Performance
a

®= There are p identical steps

= During each step each processor performs
three activities: computation, receive, and

sending

e = Computation: r2w

= Receiving: L+ rb

* Sending: L+ rb

T(p) = p max(rw, L + rb)

Same asymptotic performance as above, but
better performance for smaller values of n

Courtesy of Henri Casanova
118 /272

Parallel
Algorithms

L,L_ JHybrid parallelism

= We have said many times that multi-core
architectures are about to become the standard

= When building a cluster, the nodes you will buy will
be multi-core

®= Question: how to exploit the multiple cores?
gﬁ*m = Or in our case how to exploit the multiple
processors in each node
= Option #1: Run multiple processes per node
= Causes more overhead and more
communication

= |n fact will cause network communication among
processes within a node!

= MPI will not know that processes are co-
located

Courtesy of Henri Casanova
119 /272

Parallel
Algorithms

LEL. ©OpenMP MPI Program

= Option #2: Run a single multi-threaded process
per node
= Much lower overhead, fast communication
within a node

Mixed * Done by combining MPI with OpenMP!

Ve = Just write your MPI program

= Add OpenMP pragmas around loops

= Let’'s look back at our Matrix-Vector multiplication
example

Courtesy of Henri Casanova
120 /272

Parallel
Algorithms

Mixed
Parallelism
Version

L JHybrid Parallelism

float A[n/p][n], x[n/p], yln/pl;
tempS « x /* My piece of the vector (n/p elements) */
for (step=0; step<p; step++) { /* p steps */
SEND (tempS, r)
|| RECV(tempR, r)
|| #pragma omp parallel for private (i, j)
for (i=0; i<n/p; i++)
for (j=0; j <n/p; j++)
yli] < y[i] + a[i, (rank - step mod p) *n/p+3j]*
tempS[j]
tempS ~ tempR
}

® This is called Hybrid Parallelism
= Communication via the network among nodes
= Communication via the shared memory within nodes

Courtesy of Henri Casanova
121 /272

QOutline

Parallel
Algorithms

@ Matrix Multiplication

Matrix
Multiplication

122 /272

Parallel
Algorithms

Matrix Multiplication on the
LEL. ‘-IRing

= See Section 4.2

®= Turns out one can do matrix multiplication in a
way very similar to matrix-vector multiplication

= A matrix multiplication is just the computation
of n2 scalar products, not just n

= We have three matrices, A, B, and C
Matrix = We want to compute C = A*B

= We distribute the matrices to that each processor
“owns” a block row of each matrix

= Easy to do if row-major is used because all
matrix elements owned by a processor are
contiguous in memory

Multiplication

Courtesy of Henri Casanova
123 /272

Parallel
Algorithms

¥t

Matrix
Multiplication

Data Distribution

o —

. S

Courtesy of Henri Casanova
124 /272

Parallel
Algorithms

lui. JFirst Step

p=4
|
let’s look at
processor P,

.

Matrix
Multiplication

+= += += +=
A1,0 Al,l A1,2 A1,3

Al.IXBl,D Al.IXBl,l Al,JXBJJ Al,lXBl,Z

Courtesy of Henri Casanova
125 /272

L;,L, +©hifting of block rows of B

D |
p=4 | >
r
let’s look at >
processor Pq >
n

Courtesy of Henri Casanova
126 /272

Parallel
Algorithms

L;,L_ econd step

p=4
|
let’s look at
processor P,

n

Matrix
Multiplication

+= += += +=
A1,0 Al,l A1,2 A1,3

AI.HXBD,D Al.DXBD,l Al,OXBOJ AI,DXBD,Z

Courtesy of Henri Casanova
127 /272

Parallel
Algorithms

= Inthe end, every Ci,j block has the correct value: A, By, + A;;B,; +

L;,L_ JAlgorithm

= Basically, this is the same algorithm as for matrix-vector
multiplication, replacing the partial scalar products by submatrix
products (gets tricky with loops and indices)

float A[N/p][N], B[N/p][N], C[N/p][N];
r « N/p
tempS « B
g « MY _RANK()
for (step=0; step<p; step++) { /* p steps */
SEND (tempS, r*N)
|| RECV(tempR, r*N)
|| for (1=0; 1l<p; 1++)
for (i=0; i<N/p; i++)
for (j=0; j<N/p; j++)
for (k=0; k<N/p; k++)
C[i,1*r+j] « C[i,1*r+j] + A[i,r((q - step)3$p)+k] * tempS[k,1l*r+j]
tempS ~ tempR

Matrix
Multiplication

) Courtesy of Henri Casanova
128 /272

Parallel
Algorithms

-

Matrix
Multiplication

JAlgorithm

for (step=0; step<p; step++) { /* p steps */
SEND (tempS, r*N)
|| RECV(tempR, r*N)
|| for (1=0; 1l<p; 1++)
for (i=0; i<N/p; i++)
for (j=0; j<N/p; j++)
for (k=0; k<N/p; k++)

C[i,1lr+j] < C[i,1r+j] + A[i,r((rank - step)3$p)+k] * tempS[k,lr+j]

tempS ~ tempR

Courtesy of Henri Casanova
129 /272

Parallel
Algorithms

-

Matrix
Multiplication

JAlgorithm

for (step=0; step<p; step++) { /* p steps */
SEND (tempS, r*N)
|| RECV(tempR, r*N)
|| for (1=0; 1l<p; 1++)
for (i=0; i<N/p; i++)
for (j=0; j<N/p; j++)
for (k=0; k<N/p; k++)

C[i,1lr+j] < C[i,1r+j] + A[i,r((rank - step)3$p)+k] * tempS[k,lr+j]

tempS ~ tempR

Courtesy of Henri Casanova
130 /272

Parallel
Algorithms

.
JAlgorithm
Lﬁ a
for (step=0; step<p; step++) { /* p steps */
SEND (tempS, r*N)
|| RECV(tempR, r*N)
|| for (1=0; 1l<p; 1++)
for (i=0; i<N/p; i++)
for (j=0; j<N/p; j++)
for (k=0; k<N/p; k++)
C[i,1lr+j] < C[i,1r+j] + A[i,r((rank - step)3$p)+k] * tempS[k,lr+j]
tempS ~ tempR
! step=0

Multiplication 0

Courtesy of Henri Casanova
131/272

Parallel
Algorithms

for (step=0; step<p; step++) { /* p steps */
SEND (tempS, r*N)
|| RECV(tempR, r*N)
|| for (1=0; 1l<p; 1++)
for (i=0; i<N/p; i++)
for (j=0; j<N/p; j++)
for (k=0; k<N/p; k++)
C[i,1lr+j] < C[i,1r+j] + A[i,r((rank - step)3$p)+k] * tempS[k,lr+j]

L JAlgorithm

tempS ~ tempR

Matrix
Multiplication 1

Courtesy of Henri Casanova
132 /272

Parallel
Algorithms

for (step=0; step<p; step++) { /* p steps */
SEND (tempS, r*N)
|| RECV(tempR, r*N)
|| for (1=0; 1l<p; 1++)
for (i=0; i<N/p; i++)
for (j=0; j<N/p; j++)
for (k=0; k<N/p; k++)
C[i,1lr+j] < C[i,1r+j] + A[i,r((rank - step)3$p)+k] * tempS[k,lr+j]

L JAlgorithm

tempS ~ tempR

Matrix
Multiplication
I =X
i =%
j =X

Courtesy of Henri Casanova
133 /272

Parallel
Algorithms

for (step=0; step<p; step++) { /* p steps */
SEND (tempS, r*N)
|| RECV(tempR, r*N)
|| for (1=0; 1l<p; 1++)
for (i=0; i<N/p; i++)
for (j=0; j<N/p; j++)
for (k=0; k<N/p; k++)
C[i,1lr+j] < C[i,1r+j] + A[i,r((rank - step)3$p)+k] * tempS[k,lr+j]

L JAlgorithm

tempS ~ tempR

Mt ! I step=1

Multiplication I *

Courtesy of Henri Casanova
134 /272

Parallel
Algorithms

for (step=0; step<p; step++) { /* p steps */
SEND (tempS, r*N)
|| RECV(tempR, r*N)
|| for (1=0; 1l<p; 1++)
for (i=0; i<N/p; i++)
for (j=0; j<N/p; j++)
for (k=0; k<N/p; k++)
C[i,1lr+j] < C[i,1r+j] + A[i,r((rank - step)3$p)+k] * tempS[k,lr+j]

L JAlgorithm

tempS ~ tempR

= =
Multiplication I =*

Courtesy of Henri Casanova
135 /272

Parallel
Algorithms

for (step=0; step<p; step++) { /* p steps */
SEND (tempS, r*N)
|| RECV(tempR, r*N)
|| for (1=0; 1l<p; 1++)
for (i=0; i<N/p; i++)
for (j=0; j<N/p; j++)
for (k=0; k<N/p; k++)
C[i,1lr+j] < C[i,1r+j] + A[i,r((rank - step)3$p)+k] * tempS[k,lr+j]

L JAlgorithm

tempS ~ tempR

Matrix
Multiplication
I =X
i =%
j =X

Courtesy of Henri Casanova
136 /272

Parallel
Algorithms

LEL. serformance

= Performance Analysis is straightforward

= p steps and each step takes time:

max (nr2w, L + nrb)
* p rxr matrix products = pr® = nr2 operations

= Hence, the running time is:
" T(p) = p max (nr2w, L + nrb)
Hultplcston = Note that a naive algorithm computing n

Matrix-vector products in sequence using
our previous algorithm would take time

T(p) = p max(nr2w, nL + nrb)
= We just saved network latencies!

Courtesy of Henri Casanova
137 /272

QOutline

Parallel
Algorithms

@ Stencil Application
@ Principle

stencil @ Greedy Version

o @ Reducing the Granularity

138 /272

Parallel

Stencil Application (>ection

= We've talked about stencil applications in the
context of shared-memory programs

o[1]2]3][4]s 1]
2 s /s |7 el
2|35 7|8
SAISA7]8]9 new = update(old,W,N)
5
5681789411
Principle 7189 1112

= We found that we had to cut the matrix in “small”
blocks

= On aring the same basic idea applies, but let’s do it step-
by'Step Courtesy of Henri Casanova
139 /272

Parallel
Algorithms

Principle

LEL. Htencil Application

Let us, for now, consider that the domain is of size nxn and
that we have p=n processors

= Classic way to first approach a problem

Each processor is responsible for computing one row of the
domain (at each iteration)

Each processor holds one row of the domain and has the
following declaration:
var A: array[0..n-1] of real

One first simple idea is to have each processor send each
cell value to its neighbor as soon as that cell value is
computed

Basic principle: do communication as early as possible to
get your “neighbors” started as early as possible

= Remember that one of the goals of a parallel program is to

reduce idle time on the processors

We call this algorithm the Greedy algorithm, and seek an
evaluation of its performance

Courtesy of Henri Casanova
140 /272

Parallel
Algorithms

L 4T he Greedy Algorithm

q = MY_NUM()
p = NUM_PROCS
if (q == 0) then 3
A[0] = Update(A[0],nil,nil)
Send(A[0],1)
else > First element of the row
Recv(v,1)
A[0] = Update(A[0],nil,v)
endif
forj=1ton-1
if (@ == 0) then
Alj] = Update(Alj], Alj-11, nil)
Send(Al[j],1)
elsif (q == p-1) then
Recv(v,1)
Alj] = Update(Alj], A[j-1], v) }

- o

Other elements

Greedy Version

else
Send(A[j-11, 1) || Recv(v,1)
Aljl = Update(Alj], Alj-11], v)
endif
endfor) note the use of “nil”

for borders and corners
Courtesy of Henri Casanova

141 /272

Parallel
Algorithms

Nﬁi 4Greedy Algorithm

= This is all well and good, but typically we have n > p

= Assuming that p divides n, each processor will hold n/p
rows
= Good for load balancing

"= The goal of a greedy algorithm is always to allow
processors to start computing as early as possible

® This suggests a cyclic allocation of rows among processors

[AVISE

* P1 can start computing after PO has computed its gk, G4 casanova

142 /272

Parallel
Algorithms

LEL. 4Greedy Algorithm

= Each processor holds n/p rows of the domain
®= Thus it declares:
var A[0..n/p-1,n] of real

= Which is a contiguous array of rows, with these
rows not contiguous in the domain
* Therefore we have a non-trivial mapping
between global indices and local indices, but
we'll see that they don’t appear in the code

= | et us rewrite the algorithm

Greedy Version

Courtesy of Henri Casanova
143 /272

Parallel
Algorithms

L 4T he Greedy Algorithm

D |
p = MY_NUM()
q = NUM_PROCS
Fori=0ton/p-1
if (@ == 0) and (i == 0) then
A[0,0] = Update(A[0,0],nil,nil)
Send(A[0],1)
else
Recv(v,1)
Ali,0] = Update(A[i,0],nil,v)
endif
forj=1ton-1
if (0 == 0) and (i == 0) then
Ali,j] = Update(Al[i,j], Ali,j-1], nil)
Send(Ali,j1,1)
elsif (q == p-1) and (i = n/p-1) then
Recv(v,1)
Ali,j] = Update(Ali,jl, Ali-1,j], v)

Greedy Version

else
Send(Ali,j-11, 1) || Recv(v,1)
Ali,j] = Update(Ali,jl, Ali-1,j-1], v)
endif
endfor
endfor

Courtesy of Henri Casanova
144 /272

Parallel
Algorithms

L;,L, serformance Analysis

= Let T(n,p) denote the computation time of the algorithm for
a nxn domain and with p processors
= A each step a processor does at most three things
= Receive a cell
= Send a cell
= Update a cell
® The algorithm is “clever” because at each step k, the
sending of messages from step k is overlapped with the
receiving of messages at step k+1
® Therefore, the time needed to compute one algorithm step

is the sum of
= Time to send/receive a cell: L+b
(Eizztiy et = Time to perform a cell update: w

= So, if we can count the number of steps, we can simply
multiply and get the overall execution time

Courtesy of Henri Casanova
145 /272

Parallel
Algorithms

Greedy Version

L,L_ JLLerformance Analysis

It takes p-1 steps before processor P, can start computing
its first cell
Thereafter, this processor can compute one cell at every step
The processor holds n*n/p cells
Therefore, the whole program takes: p-1+n*n/p steps
And the overall execution time:
T(n,p) =(p-1+n?p)(w+L+Db)
The sequential time is: n2w
The Speedup, S(n,p) = n2w / T(n,p)
When n gets large, T(n,p) ~ n?/p (w + L + b)
Therefore, Eff(n,p) ~w/(w + L+ b)
This could be WAY below one
= |n practice, and often, L+ b >>w
Therefore, this greedy algorithm is probably not a good idea
at all!

Courtesy of Henri Casanova
146 /272

Parallel
Algorithms

Reducing the
Granularity

LEL. 4Granularity

How do we improve on performance?

What really kills performance is that we have to

do so much communication

= Many bytes of data

= Many individual messages

So we we want is to augment the granularity of

the algorithm

= Qur “tasks” are not going to be “update one
cell” but instead “update multiple cells”

This will allow us to reduce both the amount of
data communicated and the number of messages
exchanged

Courtesy of Henri Casanova
147 /272

Parallel
Algorithms

liuL- sReducing the Granularity

= A simple approach: have a processor compute k
cells in sequence before sending them

® This is in conflict with the “get processors to
compute as early as possible” principle we based
our initial greedy algorithm on
= So we will reduce communication cost, but will
increase idle time
= Let use assume that k divides n
= Each row now consists of n/k segments
* If k does not divide n we have left over cells
R i and it complicates the program and the
Srndany performance analysis and as usual doesn’t
change the asymptotic performance analysis

Courtesy of Henri Casanova
148 /272

Parallel
Algorithms

NEL. HIReducing the Granularity
k

PO O
PL T T 2 T 3 T 4
P2 SRS
P3 I T a5 T 6
PO A S

®= The algorithm computes segment after segment

R i = The time before P1 can start computing is the
time for PO to compute a whole segment

= Therefore, it will take longer until P_, can start
com put| ng Courtesy of Henri Casanova

149 / 272

Granularity

Parallel

e Li JMore
i

Reducing the
Granularity

Reducing the Granularity

So far, we’ve allocated non-contiguous rows of
the domain to each processor

But we can reduce communication by allocating
processors groups of contiguous rows

* |f two contiguous rows are on the same
processors, there is no communication
involved to update the cells of the second row

Let us use say that we allocate blocks of rows of
size r to each processor

= We assume that r*p divides n

Processor Pi holds rows j such that
i = floor(j/r) mod p

This is really a “block cyclic” allocation

Courtesy of Henri Casanova
150 /272

NEL- 4sReducing the Granularity

PO
P1
P2
P3
PO

Courtesy of Henri Casanova
151 /272

Parallel
Algorithms

Reducing the
Granularity

LEL. Jdle Time?

One question is: does any processor stay idle?
Processor P, computes all values in its first block
of rows in n/k algorithm steps

After that, processor P, must wait for cell values
from processor P,

But P, , cannot start computing before p steps
Therefore:

= If p >=n/k, P, is idle

= If p < n/k, P, is not idle

If p < n/k, then processors had better be able to
buffer received cells while they are still

computing
. . . . Courtesy of Henri Casanova
= Possible increase in memorv consumntion 152 /272

Parallel
Algorithms

Reducing the
Granularity

L;,L, serformance Analysis

It is actually very simple
At each step a processor is involved at most in
= Receiving k cells from its predecessor
= Sending k cells to its successor
= Updating k*r cells
Since sending and receiving are overlapped, the
time to perform astepis L+ kb +krw
Question: How many steps?
Answer: It takes p-1 steps before Pp-1 can start
doing any thing. Pp-1 holds n?/(pkr) blocks
Execution time:

T(n,p,r,k) = (p-1 + n?/(pkr)) (L + kb + k r w)

Courtesy of Henri Casanova
153 /272

Parallel
Algorithms

Reducing the
Granularity .

L;,L, serformance Analysis

Our naive greedy algorithm had asymptotic efficiency equal
to w/(w+L+b)
This algorithm does better: Assympt. Eff = w / (w + L/rk +
b/r)

= Divide n2w by p T(n,p,r,k)

= And make n large

In the formula for the efficiency we clearly see the effect of
the granularity increase
Asymptotic efficiency is higher

But not equal to 1
Therefore, this is a “difficult” application to parallelize

= We can try to do the best we can by increasing r and k, but it's

never going to be perfect

One can compute the optimal values of r and k using
numerical solving

= See the book for details

Courtesy of Henri Casanova
154 /272

QOutline

Parallel
Algorithms

@ LU Factorization
@ Gaussian Elimination
o LU

LU Factorization

155 /272

Parallel
Algorithms

L;,L, Holving Linear Systems of Eq.

= Method for solving Linear Systems
" The need to solve linear systems arises in an estimated 75% of all scientific
computing problems [Dahlquist 1974]
= Gaussian Elimination is perhaps the most well-known
method
= based on the fact that the solution of a linear system is
invariant under scaling and under row additions
* One can multiply a row of the matrix by a constant as long as one
multiplies the corresponding element of the right-hand side by the
same constant
= One can add a row of the matrix to another one as long as one
adds the corresponding elements of the right-hand side
= |dea: scale and add equations so as to transform matrix A in
an upper triang ix:

X

Gaussian
Elimination

equation n-i has i unknowns, with

Courtesy of Henri Casanova
156 /272

Parallel
Algorithms

1

1

1

1

Gaussian
Elimination

Solving equations in

L;,L, 4Gaussian Elimination

Subtract row 1 from rows 2 and 3

Multiple row 3 by 3 and add row 2

-5x; = 10 X3 = -2

3, +x, =4 EEy= -2

reverse order (backsolving) x, + x, + x, = 0 X, =4

Courtesy of Henri Casanova
157 /272

Parallel
Algorithms

L;,L, 4Gaussian Elimination

= The algorithm goes through the matrix from the
top-left corner to the bottom-right corner

= the ith step eliminates non-zero sub-diagonal
elements in column i, substracting the ith row
scaled by a;/a; from row j, for j=i+1,..,n.

values already computed

pivot.row. i

values yet to be
updated

to.be zeroed

Gaussian
Elimination

| Courtesy of Henri Casanova
158 /272

st Sequential Gaussian
B maElimination

Simple sequential algorithm

// for each column i
// zero it out below the diagonal by adding
// multiples of row i to later rows
for i = 1 to n-1
// for each row j below row i
for j = i+l to n
// add a multiple of row i to row j
for k =i ton
A(j, k) = A(j, k) - (A(j,i)/A(i,i)) * A(i, k)

= Several “tricks” that do not change the spirit of the
algorithm but make implementation easier and/or more
efficient

= Right-hand side is typically kept in column n+1 of the matrix
and one speaks of an augmented matrix

= Compute the A(i,j)/A(i,i) term outside of the loop

Gaussian
Elimination

Courtesy of Henri Casanova
159 /272

Parallel
Algorithms

lui. JLivoting: Motivation

0|1
A few pathological cases| 777

= Division by small numbers - round-off error in computer
arithmetic

= Consider the following system
0.0001x, + x, = 1.000
X, + X, = 2.000
= exact solution: x,=1.00010 and x2 = 0.99990
= say we round off after 3 digits after the decimal point
= Multiply the first equation by 104 and subtract it from the second
equation
= (1-1)x, +(1-10%x,=2-10*
= But, in finite precision with only 3 digits:
Gaussian = 1-10% =-0.9999 E+4 ~ -0.999 E+4
mination * 2-10° =-0.9998 E+4 ~ -0.999 E+4 _
= Therefore, x. = 1 and x. = 0 (from the first eauation) Courtesy of He""ﬁ:;a;g;a

Parallel
Algorithms

JLartial Pivoting
Lﬁ D |
= One can just swap rows
X, + x, = 2.000
0.0001x, + x, = 1.000
= Multiple the first equation my 0.0001 and subtract it from the second
equation gives:
(1-0.0001)x2 =1-0.0001
0.9999 x, = 0.9999 => X, =

andthenx, =1
= Final solution is closer to the real solution. (Magical?)

= Partial Pivoting

= For numerical stability, one doesn’t go in order, but pick the next row in rows i to
n that has the largest element in row i

= This row is swapped with row i (along with elements of the right hand side)
before the subtractions
= the swap is not done in memory but rather one keeps an indirection array
= Total Pivoting
= Look for the greatest element ANYWHERE in the matrix
= Swap columns

Gaussian .
Elimination Swap rows

Courtesy of Henri Casanova

= Numerical stability is really a difficult field 161 /272

Parallel
Algorithms

Parallel Gaussian
A LmEllmlnatlon?

= Assume that we have one processor per matrix element

B B B

N il
max aj nee ed to compute
to find the max a; tHe scgling factof Independent computation
f the pcaling factor
Reduction Broadcast Compute

B B

Every update needs the
scaling factor and the
element from the pivot row

Independent
computations

Broadcasts Compute

Gaussian
Elimination

Courtesy of Henri Casanova
162 /272

Parallel
Algorithms

L;,L, Holving Linear Systems of Eq.

= Method for solving Linear Systems
" The need to solve linear systems arises in an estimated 75% of all scientific
computing problems [Dahlquist 1974]
= Gaussian Elimination is perhaps the most well-known
method
= based on the fact that the solution of a linear system is
invariant under scaling and under row additions
* One can multiply a row of the matrix by a constant as long as one
multiplies the corresponding element of the right-hand side by the
same constant
= One can add a row of the matrix to another one as long as one
adds the corresponding elements of the right-hand side
= |dea: scale and add equations so as to transform matrix A in
an upper triang ix:

X

equation n-i has i unknowns, with

Courtesy of Henri Casanova
163 /272

Parallel
Algorithms

L;,L, 4Gaussian Elimination

a
1(1]1 0
11212 x= 4
1(2]-1 2
Subtract row 1 from rows 2 and 3
1|1 0
0|3|1|x= 4
0| 1]|-2 2
Multiple row 3 by 3 and add row 2
1|1 0
0|3|1|x= 4
IERE 1
-5x; = 10 X3 = -2
Solving equations in 3y, + x, =4 D=2
reverse order (backsolving) x, + x, + x; = 0 X, =4

Courtesy of Henri Casanova
164 /272

Parallel
Algorithms

L;,L, 4Gaussian Elimination

= The algorithm goes through the matrix from the
top-left corner to the bottom-right corner

= the ith step eliminates non-zero sub-diagonal
elements in column i, substracting the ith row
scaled by a;/a; from row j, for j=i+1,..,n.

values already computed

pivot.row. i

values yet to be
updated

to.be zeroed

| Courtesy of Henri Casanova
165 /272

Parallel
Algorithms

Sequential Gaussian
L J£limination

Simple sequential algorithm

// for each column i
// zero it out below the diagonal by adding
// multiples of row i to later rows
for i = 1 to n-1
// for each row j below row i
for j = i+l to n
// add a multiple of row i to row j
for k =i ton
A(j, k) = A(j, k) - (A(j,i)/A(i,i)) * A(i, k)

= Several “tricks” that do not change the spirit of the
algorithm but make implementation easier and/or more
efficient

= Right-hand side is typically kept in column n+1 of the matrix
and one speaks of an augmented matrix

= Compute the A(i,j)/A(i,i) term outside of the loop

Courtesy of Henri Casanova
166 /272

Parallel
Algorithms

lui. JLivoting: Motivation

0|1
A few pathological cases| 777

= Division by small numbers - round-off error in computer
arithmetic

= Consider the following system
0.0001x, + x, = 1.000
X, + X, = 2.000
= exact solution: x,=1.00010 and x2 = 0.99990
= say we round off after 3 digits after the decimal point
= Multiply the first equation by 104 and subtract it from the second
equation
= (1-1)x, +(1-10%x,=2-10*
= But, in finite precision with only 3 digits:
= 1-10* =-0.9999 E+4 ~-0.999 E+4
= 2-10% =-0.9998 E+4 ~ -0.999 E+4)
= Therefore. x. = 1 and x. = 0 (from the first equation) Courtesy of ”e""ﬁ;fa!‘;?

Parallel
Algorithms

-

JLartial Pivoting

One can just swap rows

X, + x, = 2.000

0.0001x, + x, = 1.000
Multiple the first equation my 0.0001 and subtract it from the second
equation gives:

(1-0.0001)x2 =1-0.0001

0.9999 x, = 0.9999 => X, =

andthenx, =1
Final solution is closer to the real solution. (Magical?)

Partial Pivoting
= For numerical stability, one doesn’t go in order, but pick the next row in rows i to
n that has the largest element in row i
= This row is swapped with row i (along with elements of the right hand side)
before the subtractions
= the swap is not done in memory but rather one keeps an indirection array
Total Pivoting
= Look for the greatest element ANYWHERE in the matrix
= Swap columns
= Swap rows

Courtesy of Henri Casanova

Numerical stability is really a difficult field 168 /272

Parallel
Algorithms

Parallel Gaussian

lui. sElimination?

B B

= Assume that we have one processor per matrix element

—I_‘

scaling factor and the
element from the pivot row

N il
max aj nee ed to compute
to find the max a; tHe scgling factof Independent computation
f the pcaling factor
Reduction Broadcast Compute
Every update needs the Independent

computations

Broadcasts Compute

Courtesy of Henri Casanova
169 /272

Parallel
Algorithms

« galU Factorization (Section 4.4)

= Gaussian Elimination is simple but
= What if we have to solve many Ax = b systems for different values of b?
= This happens a LOT in real applications

= Another method is the “LU Factorization”

= Ax=b

= Say we could rewrite A = L U, where L is a lower triangular matrix, and U is
an upper triangular matrix O(n3)

= ThenAx =b iswritten LUx=b

= SolvelLy=b 0(n2?)

= SolveUx=y 0(n?)

triangular system solves are easy

equation i has i unknowns equation n-i has i unknowns
Courtesy of Henri Casanova
170 /272

Parallel
Algorithms

L,L_ 4LU Factorization: Principle

= |t works just like the Gaussian Elimination, but instead of zeroing
out elements, one “saves” scaling coefficients.

1(2]- 1|2 - 1] 2] -] gaussian 1121 -
N t lon
3Ty o 3| o] 3| e [2] 3
§ facto s . 5
21213 2 3 FERE scaling 21215
factor)
gaussian
Timinati 1121
..... 100 121
e [4]5]5 L={4]1]o0 U=|o]s]s
scaling 2 251 3
factor 2 (2511 0|03

* Magically, A=LxU !
= Should be done with pivoting as well

Courtesy of Henri Casanova
171 /272

Parallel
Algorithms

L 4LU Factorization

= We're going to look at the simplest possible version

= No pivoting:just creates a bunch of indirections that are easy but make
the code look complicated without changing the overall principle

LU-sequential (A,n) {

for k = 0 to n-2 { stores the scaling factors
// preparing column k
for i = k+1 to n-1 /
Qi < Ty / Qi
for j = k+1 to n-1
// Task T,;: update of column j
for i=k+l1 to n-1 K

a;; — a;; +a, *a

4 \

Courtesy of Henri Casanova
172 /272

Parallel
Algorithms

lui. 4LU Factorization

= We're going to look at the simplest possible version

= No pivoting:just creates a bunch of indirections that are easy
but make the code look complicated without changing the
overall principle
LU-sequential (A,n) {
for k = 0 to n-2 {
// preparing column k
for i = k+1 to n-1
Ay < Tayu / A
for j = k+1 to n-1
// Task T,: update of column j
for i=k+1 to n-1 - update

a;; — a;; +ta, *a,

'of Henri Casanova
173 /272

Parallel
Algorithms

L,L_ JgLarallel LU on a ring

Since the algorithm operates by columns from left to right,
we should distribute columns to processors

Principle of the algorithm

= At each step, the processor that owns column k does the
“prepare” task and then broadcasts the bottom part of column
k to all others
= Annoying if the matrix is stored in row-major fashion

= Remember that one is free to store the matrix in anyway one

wants, as long as it's coherent and that the right output is
generated

= After the broadcast, the other processors can then update
their data.

Assume there is a function alloc(k) that returns the rank of
the processor that owns column k

= Basically so that we don’t clutter our program with too many
global-to-local index translations

In fact we will first write everythlng in terms of gleda@ly of Henri casanova

PP D R | [SR

PR il P

174 /272

Parallel
Algorithms

L 4LU-broadcast algorithm

LU-broadcast (A,n) {
q ~ MY NUM()
p « NUM_PROCS ()
for k = 0 to n-2 {
if (alloc(k) == q)
// preparing column k
for i = k+1 to n-1
buffer[i-k-1] < a;,, « =-a; / a,
broadcast (alloc (k) ,buffer, n-k-1)
for j = k+1 to n-1
if (alloc(j) == q)
// update of column j
for i=k+l1 to n-1

a; « a; + buffer[i-k-1] * a,;

Courtesy of Henri Casanova
175 /272

Parallel
Algorithms

L;,L, 4sPealing with local indices

= Assume that p divides n

= Each processor needs to store r=n/p columns and
its local indices go from 0 to r-1

= After step k, only columns with indices greater
than k will be used

= Simple idea: use a local index, |, that everyone
initializes to 0

= At step k, processor alloc(k) increases its local

index so that next time it will point to its next
local column

Courtesy of Henri Casanova
176 /272

Parallel
Algorithms

L 4LU-broadcast algorithm

double a[n-1][r-1];

q — My _NUM()
p « NUM_PROCS()
1 -0
for k = 0 to n-2 {
if (alloc(k) == q)
for i = k+1 to n-1
buffer[i-k-1] « a[i, k] ~ -a[i,1] / a[k,1]
1 < 1+1
broadcast (alloc (k) ,buffer, n-k-1)
for j =1 to r-1
for i=k+1 to n-1
afi,j] « a[i,j] + buffer[i-k-1] * a[k,j]

Courtesy of Henri Casanova
177 /272

VWhat about the AlloC

Parallel

A L Junction?
i

= One thing we have left completely unspecified is
how to write the alloc function: how are columns
distributed among processors

®= There are two complications:
= The amount of data to process varies throughout the
algorithm’s execution
= At step k, columns k+1 to n-1 are updated
* Fewer and fewer columns to update
= The amount of computation varies among columns
= e.g., column n-1 is updated more often than column 2
* Holding columns on the right of the matrix leads to much
more work
= There is a strong need for load balancing
= All processes should do the same amount of work

Courtesy of Henri Casanova

178 /272

Parallel
Algorithms

L,L_ Bad Ioad balancing

P2 P3 P4

already
done
already
done working
on it

Courtesy of Henri Casanova
179 /272

Parallel
Algorithms

N;,L, 4Good Load Balancing?

already
done
already
done .
working
on it

Cyclic distribution

Courtesy of Henri Casanova
180 /272

Parallel
Algorithms

il

Proor that load balancing Is
sood

The computation consists of two types of operations
= column preparations
= matrix element updates
There are many more updates than preparations, so we really
care about good balancing of the preparations
Consider column j
Let’s count the number of updates performed by the processor
holding column j
Column j is updated at steps k=0, ..., j-1
At step k, elements i=k+1, ..., n-1 are updates
* indices start at 0
Therefore, at step k, the update of column j entails n-k-1 updates
The total number of updates for column j in the execution is:

Jj—1 L.
. Jg—-1
Z(n—k—l)z](n—l)— %
k=0 Courtesy of Henri Casanova
181 /272

Parallel
Algorithms

l

Proor that load balancing Is
sood

Consider processor P, which holds columns Ip+i for I=0, ..., n/p -1
Processor P, needs to perform this many updates:

n/p—1 _ -
Y (p+i)(n—1) - (lp+’b)(l§+z - 1))

=0

Turns out this can be computed

" separate terms

= use formulas for sums of integers and sums of squares
What it all boils down to is:

n3

3p
This does not depend on i !!
Therefore it is (asymptotically) the same for all P, processors

Therefore we have (asymptotically) perfect load balanc'Eglg,.!esy of Henri Casanova
182 /272

+O(n?)

Parallel
Algorithms

L a-oad-balanced program

double a[n-1][r-1];

q — My _NUM()
p « NUM_PROCS()
1l -0
for k = 0 to n-2 {
if (k mod p == q)
for i = k+1 to n-1
buffer[i-k-1] ~ a[i,k] -a[i,1] / alk,1]
1 « 1+1
broadcast (alloc (k) ,buffer, n-k-1)
for j =1 to r-1
for i=k+1 to n-1
afi,j] « a[i,j] + buffer[i-k-1] * a[k,j]

Courtesy of Henri Casanova
183 /272

L;,L, serformance Analysis

How long does this code take to run?

This is not an easy question because there are
many tasks and many communications

A little bit of analysis shows that the execution
time is the sum of three terms

®= n-1 communications: nL + (n%/2) b + O(1)

® n-1 column preparations: (n?/2) w’ + O(1)

= column updates: (n3/3p) w + O(n32)

Therefore, the execution time is ~ (n3/3p) w

Note that the sequential time is: (n3/3) w
Therefore, we have perfect asymptotic efficiency!
This is good, but isn’t always the best in practice
How can we improve this algorithm?

Courtesy of Henri Casanova
184 /272

Parallel
Algorithms

LEL. +Lipelining on the Ring

So far, the algorithm we’ve used a simple
broadcast

Nothing was specific to being on a ring of

processors and it's portable

= in fact you could just write raw MPI that just looks like
our pseudo-code and have a very limited, inefficient for
small n, LU factorization that works only for some
number of processors

But it’s not efficient

= The n-1 communication steps are not overlapped with
computations

= Therefore Amdahl’s law, etc.

Turns out that on a ring, with a cyclic distribution

of the columns, one can interleave pieces of the

broadcast with the computation

= |t almost looks like inserting the source code fr@me’mé”e"'i;a;a;g;a

Parallel
Algorithms

Part V

A Complete Example on an Heterogeneous Ring

186 /272

The Context: Distributed Heterogeneous Platforms

Parallel
Algorithms

The Problem

How to embed a ring in a complex network [LRRV04].
Sources of problems

> Heterogeneity of processors (computational power, memory, etc.)
» Heterogeneity of communications links.

> Irregularity of interconnection network.

187 /272

Targeted Applications: Iterative Algorithms

Parallel
Algorithms

The Problem

> A set of data (typically, a matrix)
» Structure of the algorithms:

© Each processor performs a computation on its chunk of data

@ Each processor exchange the “border” of its chunk of data with
its neighbor processors

© We go back at Step 1

188 /272

Targeted Applications: Iterative Algorithms

Parallel
Algorithms

The Problem

> A set of data (typically, a matrix)
» Structure of the algorithms:

© Each processor performs a computation on its chunk of data

@ Each processor exchange the “border” of its chunk of data with
its neighbor processors

© We go back at Step 1

Question: how can we efficiently execute such an algorithm on such
a platform?

188 /272

The Questions

Parallel
Algorithms

The Problem

» Which processors should be used ?
» What amount of data should we give them 7
» How do we cut the set of data ?

189 /272

First of All, a Simplification: Slicing the Data

Parallel
Algorithms

» Data: a 2-D array

The Problem

Py P
()]
o]
Py Py

190 /272

First of All, a Simplification: Slicing the Data

Parallel
Algorithms

The Problem > Data: a 2-D array

Py P

()]
R S S

o]

Py Py

» Unidimensional cutting into vertical slices

190 /272

First of All, a Simplification: Slicing the Data

Parallel
Algorithms

The Problem » Data: a 2-D array

Py P

()]
R S S

o]

Py Py

» Unidimensional cutting into vertical slices
» Consequences:

190 /272

First of All, a Simplification: Slicing the Data

Parallel
Algorithms

The Problem » Data: a 2-D array

Py P
()]
R S S
o]
Py Py

» Unidimensional cutting into vertical slices
» Consequences:

© Borders and neighbors are easily defined

190 /272

First of All, a Simplification: Slicing the Data

Parallel
Algorithms

The Problem » Data: a 2-D array

Py P

()]
R S S

o]

Py Py

» Unidimensional cutting into vertical slices
» Consequences:

© Borders and neighbors are easily defined
@ Constant volume of data exchanged between neighbors: D

190 /272

First of All, a Simplification: Slicing the Data

Parallel
Algorithms

» Data: a 2-D array

The Problem

Py Pyl Py |P3

P; Py

» Unidimensional cutting into vertical slices

» Consequences:

© Borders and neighbors are easily defined
@ Constant volume of data exchanged between neighbors: D
© Processors are virtually organized into a ring

190 /272

Notations

Parallel
Algorithms

The Problem

Processors: P, ..., Pp

» Processor P; executes a unit task in a time w;
» Overall amount of work D,,:
Share of P;: «;.D,, processed in a time «;.D,,.w;
(0 >0, % 0) = 1)
> Cost of a unit-size communication from P; to P;: ¢;;
» Cost of a sending from P; to its successor in the ring: Dc.Cj succ(i)

191 /272

Communications: 1-Port Model (Full-Duplex)

Parallel
Algorithms

The Problem

A processor can:
» send at most one message at any time;
> receive at most one message at any time;

» send and receive a message simultaneously.

192 /272

Objective

Parallel
Algorithms

The Problem

© Select g processors among p

193 /272

Objective

Parallel
Algorithms

The Problem

@ Select g processors among p
@ Order them into a ring

193 /272

Objective

Parallel
Algorithms

The Problem

@ Select g processors among p
@ Order them into a ring
© Distribute the data among them

193 /272

Objective

Parallel
Algorithms

The Problem

@ Select g processors among p
@ Order them into a ring

© Distribute the data among them

So as to minimize:

max I{i}[ct;. Dy .w; + Dc.(Ci pred(iy + Cisuce(i))]

Where I{i}[x] = x if P; participates in the computation, and 0 other-
wise

193 /272

Special Hypotheses

Parallel
Algorithms

Fully
Homogeneous
Network

@ There exists a communication link between any two processors

@ All links have the same capacity
(Fe,Vi,jcij=c)

194 /272

Consequences

Parallel
Algorithms

Fully .
T m— » Either the most powerful processor performs all the work, or all

Network
the processors participate

195 /272

Consequences

Parallel
Algorithms

Fully .
Hoﬁogfneous » Either the most powerful processor performs all the work, or all
etwork
the processors participate
» If all processors participate, all end their share of work simultane-

ously

195 /272

Consequences

Parallel
Algorithms

Fully .
Hoﬁogfneous » Either the most powerful processor performs all the work, or all
etwork
the processors participate
» If all processors participate, all end their share of work simultane-
— — T
ously(37, ;.Dy.w;=7,s01=73" 5)

195 /272

Consequences

Parallel
Algorithms

Fully .
Hoﬁogfneous » Either the most powerful processor performs all the work, or all
etwork

the processors participate

» If all processors participate, all end their share of work simultane-
ously(37, «;.Dy.w;=7,501=>.+7—)

i Dy, .w;

» Time of the optimal solution:

. 1
Tstep = min {Dw-Wmina Dwﬁ + 2.DC.C}

195 /272

Special hypothesis

Parallel
Algorithms

Heterogeneous
Network

(Complete) @ There exists a communication link between any two processors

196 /272

All the Processors Participate: Study (1)

Parallel
Algorithms

Heterogeneous
Network
(Complete)

P> P3 Py Ps Processors

All processors end simultaneously

197 /272

All the Processors Participate: Study (2)

Parallel
Algorithms

» All processors end simultaneously

Heterogeneous _
Network Tstep =a;.Dy.w; + Dc-(ci,succ(i) + Ci,pred(i))

(Complete)

198 /272

All the Processors Participate: Study (2)

Parallel
Algorithms

» All processors end simultaneously

Heterogeneous _
Network Tstep =a;.Dy.w; + Dc-(ci,succ(i) + Ci,pred(i))

(Complete)

, Za/ —1 = Z Tstep — Dc (i suce(i) T Ci,pred(i)) — 1. Thus

D,,.w;
Tstep _ Dc j : Ci,succ(+ Ci pred(i)
Dy - Weumul w
i=1
h _ 1
where weymul = 5=
rowp

i

198 /272

All the Processors Participate: Interpretation

Parallel
Algorithms

Tstep D. £ Cisucc(i)+ci pred(7)
g 14 Doy Semth L
Dy,

Heterogeneous .
Network Dy - Weumul Wi
(Complete)

i=1

199 /272

All the Processors Participate: Interpretation

Parallel
Algorithms

Tstep D. £ Cisucc(i)+ci pred(7)
g 14 Doy Semth L
Dy,

Heterogeneous .
Network Dy - Weumul Wi
(Complete)

i=1

P.c
Tstep is minimal when g
i=1

i,succ(i) =+ Ci pred(i)
Wi

is minimal

199 /272

All the Processors Participate: Interpretation

Parallel
Algorithms

Tstep D. £ Cisucc(i)+ci pred(7)
g 14 Doy Semth L
Dy,

Heterogeneous

Network Dy -Weumul 1 wi
(Complete) 1=
P
. .. Ci,succ(i + Ci,pred(i) . ..
Tstep is minimal when g (0 pred(7) is minimal
- Wi
i=1

Look for an hamiltonian cycle of minimal weight in a graph where the
edge from P; to P; has a weight of d;; = % + &t

wj

199 /272

All the Processors Participate: Interpretation

Parallel
Algorithms

+ Ci pred(i)
Wi

Tstep D. £ Ci succ(i)
g =14 23S
Dy,

Heterogeneous
Network Dy -Weumul 1
(Complete) 1=

p

. . Ci i) + Ci pred(i) - ..
Tstep is minimal when Z Frsuce(i) Frpred(i) is minimal
- Wi
i=1
Look for an hamiltonian cycle of minimal weight in a graph where the

edge from P; to P; has a weight of d;; = % +

NP-complete problem

199 /272

All the Processors Participate: Linear Program

Parallel
Algorithms

P P v, .
MINIMIZE 377, Y37 dijXi s
Heterogeneous
Network

() SATISFYING THE (IN)EQUATIONS
(1) Xjaxij=1 1<i<p
(2) Xfyxij=1 1<j<p
(3) Xij € {0, 1} I<ij<p
B ui—u+pxi;<p—1 2<i,j<p,i#]j
(5) uj integer, u; =0 2<i<p

xij = 1 if, and only if, the edge from P; to P; is used

200 /272

General Case: Linear program

Parallel
Algorithms

Best ring made of g processors

MINIMIZE T SATISFYING THE (IN)EQUATIONS

Nermogeneets (1) xi; € 10,1} 1<ij<p
(Complete) (2) 25:1 Xl',jp< 1 1<j<p
(3) Z,‘:l Zj;l Xi,j =4
(4) X = X7 1<j<p
(5) 3Py =1 |
(6) @i < Z%l Xi.j 1<i<p
(7) ajwi + & Zle(xi,jci,j +x,ici)<T 1<i<p
(8) X,vi=1 . .
9) —pyi—pyj+ui—u+qx;<qg—1 1<ij<pi#]j
(10) y; € {0,1} 1<i<p
(11) u; integer,u; >0 1<i<p

201 /272

Linear Programming

Parallel
Algorithms

Heterogeneous
Network

(Complete) » Problems with rational variables: can be solved in polynomial time
(in the size of the problem).

» Problems with integer variables: solved in exponential time in the
worst case.

» No relaxation in rationals seems possible here. ..

202 /272

And, in Practice 7

Parallel
Algorithms

All processors participate. One can use a heuristic to solve the
ra——_ traveling salesman problem (as Lin-Kernighan's one)

Network
(Complete)

203 /272

And, in Practice 7

Parallel
Algorithms

All processors participate. One can use a heuristic to solve the
ra——_ traveling salesman problem (as Lin-Kernighan's one)

Network

(Complete) No guarantee, but excellent results in practice.

203 /272

And, in Practice 7

Parallel
Algorithms

All processors participate. One can use a heuristic to solve the
ra——_ traveling salesman problem (as Lin-Kernighan's one)

Network

(Complete) No guarantee, but excellent results in practice.
General case.

© Exhaustive search: feasible until a dozen of processors. . .

@ Greedy heuristic: initially we take the best pair of processors; for
a given ring we try to insert any unused processor in between any
pair of neighbor processors in the ring. ..

203 /272

New Difficulty: Communication Links Sharing

Parallel
Algorithms

Heterogeneous
Network
(General Case)

P; P3

Heterogeneous platform Virtual ring

Ps

204 /272

New Difficulty: Communication Links Sharing

Parallel
Algorithms

Heterogeneous
Network
(General Case)

P3

Heterogeneous platform Virtual ring

Ps

204 /272

New Difficulty: Communication Links Sharing

Parallel
Algorithms

Heterogeneous
Network
(General Case)

P3

Heterogeneous platform Virtual ring

Ps

204 /272

New Difficulty: Communication Links Sharing

Parallel
Algorithms

Heterogeneous
Network
(General Case)

P3

Heterogeneous platform Virtual ring

Ps

We must take communication link sharing into account.

204 /272

New Notations

Parallel
Algorithms

A set of communications links: ey, ..., e,

» Bandwidth of link e,,: b,

> There is a path S; from P; to P,y in the network
Heterogeneous
(Coneral Case) » S; uses a fraction s; , of the bandwidth b, of link en

. 1 .
> P; needs a time D..————— to send to its successor a mes-
MiNe,,eS; Si,m
sage of size D,

» Constraints on the bandwidth of e,,: Z Sim < b
1<i<p
» Symmetrically, there is a path P; from P; to Peq(;y in the network,
which uses a fraction p; , of the bandwidth b, of link e,

€m

205 /272

Toy Example: Choosing the Ring

Parallel
Algorithms

Heterogeneous
Network
(General Case)

» 7 processors and 8 bidirectional communications links

» We choose a ring of 5 processors:
Py — P, — P3 — Py — Ps (we use neither Q, nor R)

206 /272

Toy Example: Choosing the Ring

Parallel
Algorithms

Heterogeneous
Network
(General Case)

» 7 processors and 8 bidirectional communications links

» We choose a ring of 5 processors:
Py — P, — P3 — Py — Ps (we use neither Q, nor R)

206 /272

Toy Example: Choosing the Paths

Parallel
Algorithms

Heterogeneous
Network
(General Case)

207 /272

Toy Example: Choosing the Paths

Parallel
Algorithms

Heterogeneous
Network
(General Case)

From P; to P,, we use the links a and b: S; = {a, b}.

207 /272

Toy Example: Choosing the Paths

Parallel
Algorithms

Heterogeneous
Network
(General Case)

From P; to P,, we use the links a and b: S; = {a, b}.
From P, to P;, we use the links b, g and h: P, = {b, g, h}.

207 /272

Toy Example: Choosing the Paths

Parallel
Algorithms

Heterogeneous
Network
(General Case)

From P; to P,, we use the links a and b: S; = {a, b}.
From P, to P;, we use the links b, g and h: P, = {b, g, h}.

From Py: to Py, S1 = {a, b} and to P5, Py = {h}
From Py: to P3, Sp = {c, d} and to P, Pp = {b, g, h}
From P3: to P4, S3 = {d, e} and to Pp, P3 = {d, e, f}
From P4: to Pg, Sy = {f, b, g} and to P3, Pg = {e, d}
From Pg: to Py, Sg = {h} and to Py, P5 = {g, b, f}

207 /272

Toy Example: Bandwidth Sharing

Parallel
Algorithms

From P; to P, we use links a and b: ¢; 5 =)
,a 3y
1

From P; to Ps we use the link h: ¢;5 = e

Heterogeneous
Network
(General Case)

208 /272

Toy Example: Bandwidth Sharing

Parallel
Algorithms

Heterogeneous
Network

From P; to P, we use links a and b: ¢; 5 =

min(si,a,51,6) "
1

From P; to Ps we use the link h: ¢;5 = —.

P1,h

Set of all sharing constraints:

(General Case) Lien a: s1. < b,

Lien
Lien
Lien
Lien
Lien

Lien

Lien b: si,p + sa.6 + p2,b + Ps,p < by

S2,¢c < be

© S2,d +S3,d + P3,d + Pad < ba

S3.e + P3,e + Pae < be
Sa.f + p3,f + ps,r < br
St + P2g + Psg < by
Ss,h + P1,h + P2,n < by

208 /272

Toy Example: Final Quadratic System

Parallel
Algorithms

MINIMIZE maxigics (j.Dw.wi + Dc.(¢jj—1 + Cjj+1)) UNDER THE CONSTRAINTS

Yiai=1
o S1,a < ba Si,b+ Sa,b+ P2b+ P5b < by S2.c < be
NV 52,0 + S3,d + P3,d + Pad S bd S3.e - P3e + pae < be Sa,f + p3,f + Ps,f < by
Sa.g+P2.g+ Psg < bg S5.h + P1,h + P2,n < bp
S1,a.Cc12 =1 sy pc12 =1 p1,p-C15 =1
$2,c.C23 =1 $2,d-C23 21 p2,b-C21 =1
p2g-c21 21 p2,p-C2,1 =1 $3,4-C3,4 = 1
S3,e.C34 21 P3,d-G32 =1 p3e-Cc32 =1
p3,f-c32 =1 S4r-Ca5 =1 S4,b-Cas = 1
S4.g-Ca5 =1 Pae-ca3 21 P4,d-Ca3 =1
S5,h-C5,1 2= 1 ps,g-Csa =1 Ps,b-Csa =1

ps,f-Cs.4 =1

209 /272

Toy Example: Conclusion

Parallel
Algorithms

The problem sums up to a quadratic system if
@ The processors are selected;

@ The processors are ordered into a ring;

Heterogeneous
Network

(General Case) © The communication paths between the processors are known.
In other words: a quadratic system if the ring is known.

210 /272

Toy Example: Conclusion

Parallel
Algorithms

The problem sums up to a quadratic system if
@ The processors are selected;

@ The processors are ordered into a ring;

Heterogeneous
Network

(General Case) © The communication paths between the processors are known.

In other words: a quadratic system if the ring is known.

If the ring is known:
» Complete graph: closed-form expression;
» General graph: quadratic system.

210 /272

And, in Practice 7

Parallel
Algorithms

We adapt our greedy heuristic:
@ Initially: best pair of processors
@ For each processor Py (not already included in the ring)

Heterogeneous

Network > For each pair (P;, P;) of neighbors in the ring

(General Case)
@ We build the graph of the unused bandwidths
(Without considering the paths between P; and P;)
@® We compute the shortest paths (in terms of bandwidth) between
Py and P; and P;
© We evaluate the solution

© We keep the best solution found at step 2 and we start again

+ refinements (max-min fairness, quadratic solving).

211 /272

Is This Meaningful ?

Parallel
Algorithms

» No guarantee, neither theoretical, nor practical

H, . .
Network - » Simple solution:

(General Case)

© we build the complete graph whose edges are labeled with the
bandwidths of the best communication paths

@ we apply the heuristic for complete graphs

© we allocate the bandwidths

212 /272

Example: an Actual Platform (L

Parallel
Algorithms

| routerbackbone |
EalraEa

Heterogeneous
Network
(General Case)

Topology

Po [PL P [P [P[P P[P] P
[0.02060.02060.0206]0.0206]0.0291 | 0.0206] 0.0087| 0.0206] 0.0206

Po [Po [Pu | Po [Pis | Pu] Ps | P |
[0.0206]0.0206[0.0206]0.0201/0.0451 0 | 0 | 0 |

Processors processing times (in seconds par megaflop)

213 /272

Results

Parallel

Algorithms First heuristic building the ring without taking link sharing into ac-

count

programing)

Second heuristic taking into account link sharing (and with quadratic

Heterogeneous ‘ Ratio DC/DW H H1 ‘ H2 ‘ Gain ‘
. 0.64 0.008738 (1) | 0.008738 (1) | 0%
0.064 0.018837 (13) | 0.006639 (14) | 64.75%
0.0064 || 0.003819 (13) | 0.001975 (14) | 48.28%
| Ratio D./D,, | H1 ‘ H2 | Gain |
0.64 0.005825 (1) | 0.005825 (1) | 0 %
0.064 0.027919 (8) | 0.004865 (6) | 82.57%
0.0064 || 0.007218 (13) | 0.001608 (8) | 77.72%

Table: Tgep/ D,y for each heuristic on Lyon's and Strasbourg’s platforms (the
numbers in parentheses show the size of the rings built).

214 /272

Conclusion

Parallel
Algorithms

Even though this is a very basic application, it illustrates many diffi-
culties encountered when:

Hetwogenens » Processors have different characteristics
letworl

(General Case) » Communications links have different characteristics
» There is an irregular interconnection network with complex band-
width sharing issues.

We need to use a realistic model of networks... Even though a more
realistic model leads to a much more complicated problem, this is worth
the effort as derived solutions are more efficient in practice.

215 /272

Parallel
Algorithms

Part VI

Algorithms on a Grid

216 /272

QOutline

Parallel
Algorithms

Communications

@ Communications

217 /272

Parallel
Algorithms

- lui. +#-D Grid (Chapter 5)

= Consider p=Q? processors
= We can think of them arranged in a square grid

= A rectangular grid is also possible, but we’ll
stick to square grids for most of our algorithms

= Each processor is identified as P;;
" j: processor row
= |: processor column

Courtesy of Henri Casanova
218 /272

Parallel
Algorithms

L;,L_ +2-D Torus

Communications

= Wrap-around links from edge to edge

= Each processor belongs to 2 different rings
= Will make it possible to reuse algorithms we develop for
the ring topology
= Mono-directional links OR Bi-directional links

= Depending on what we need the algorithm to do and on
what makes sense for the physical platform

Courtesy of Henri Casanova
219 /272

Parallel

Concurrency of Comm. and

li;. ‘-IComp.

Communications

= When developing performance models we will
assume that a processor can do all three activities in
parallel

= Compute
= Send
= Receive
= What about the bi-directional assumption?
= Two models

* Half-duplex: two messages on the same link
going in opposite directions contend for the
link’s bandwidth

* Full-duplex: it’s as if we had two links in
between each neighbor processors

= The validity of the assumption depends on the
pIath rm Courtesy of Henri Casanova

220 /272

Parallel

Multiple concurrent
A L gcommunications?
Communications .

= Now that we have 4 (logical) links at each
processor, we need to decide how many
concurrent communications can happen at the
same time
* There could be 4 sends and 4 receives in the

bi-directional link model

= |f we assume that 4 sends and 4 receives can
happened concurrently without loss of
performance, we have a multi-port model

= |f we only allow 1 send and 1 receive to occur
concurrently we have a single-port model

Courtesy of Henri Casanova
221 /272

Parallel
Algorithms

Communications

LEL. 1!50 what?

= We have many options:
= Grid or torus
= Mono- or bi-directional
= Single-or multi-port
= Half- or full-duplex
= We’'ll mostly use the torus, bi-directional, full-
duplex assumption

= We’'ll discuss the multi-port and the single-port
assumptions

= As usual, it's straightforward to modify the
performance analyses to match with whichever
assumption makes sense for the physical
platform

Courtesy of Henri Casanova
222 /272

How realistic IS a grid
L;,L, -Itopology?

= Some parallel computers are built as
physical grids (2-D or 3-D)
= Example: IBM’s Blue Gene/L

= If the platform uses a switch with all-to-all
communication links, then a grid is
actually not a bad assumption
= Although the full-duplex or multi-port

assumptions may not hold

= We will see that even if the physical
platform is a shared single medium (e.q.,
a non-switched Ethernet), it's sometimes
preferable to think of it as a grid when
developing algorithms!

Courtesy of Henri Casanova
223 /272

Parallel
Algorithms

LEL. 4«Lommunication on a Grid
i

Communications

= As usual we won't write MPI here, but
some pseudo code
= A processor can call two functions to
known where it is in the grid:
= My Proc_Row()
= My Proc_Col()
= A processor can find out how many
processors there are in total by:
= Num_Procs()
= Recall that here we assume we have a square
grid
* |[n programming assignment we may need to
use a rectangular grid

Courtesy of Henri Casanova
224 /272

Parallel
Algorithms

liuL- s«Lommunication on the Grid

Communications

= We have two point-to-point functions
* Send(dest, addr, L)
= Recv(src, addr, L)

= We will see that it’s convenient to have
broadcast algorithms within processor
rows or processor columns
= BroadcastRow(i, j, srcaddr, dstaddr, L)
= BroadcastCol(i, j, srcaddr, dstaddr, L)

= We assume that a a call to these functions by

a processor not on the relevant processor row
or column simply returns immediately

= How do we implement these broadcasts?

Courtesy of Henri Casanova
225 /272

Parallel
Algorithms

Communications

L;,L_ LRow and Col Broadcasts?

= |f we have a torus
= If we have mono-directional links, then we can reuse the
broadcast that we developed on a ring of processors
= Either pipelined or not
= |t we have bi-directional links AND a multi-port model,
we can improved performance by going both-ways
simultaneously on the ring
= We’'ll see that the asymptotic performance is not changed

= |f we have a grid
= |f links are bi-directional then messages can be sent
both ways from the source processor
= Either concurrently or not depending on whether we have a
one-port or multi-port model
= |f links are mono-directional, then we can’t implement
the broadcasts at all

Courtesy of Henri Casanova
226 /272

QOutline

Parallel
Algorithms

Matrix
Multiplication

@ Matrix Multiplication
@ Quter Product
@ Grid Rocks!
e Cannon
@ Fox
@ Snyder
@ Data Distribution

227 /272

Parallel
Algorithms

MatrixX Multiplication on a
b4 Oric
a

Multiplication = Matrix multiplication on a Grid has been studied a
lot because
= Multiplying huge matrices fast is always
important in many, many fields
* Each year there is at least a new paper on
the topic
" |t's a really good way to look at and learn
many different issues with a grid topology
= Let’s look at the natural matrix distribution
scheme induced by a grid/torus

Courtesy of Henri Casanova
228 /272

Parallel
Algorithms

\\L +2-D Matrix Distribution

Matrix
Multiplication

= We denote by a;; an
element of the matrix

= We denote by A;; (or A;)
the block of the matrix
allocated to P;;

COO COl COZ C03 AOO A01 AOZ AO3 BOO BOl BOZ BO3
ClO Cll C12 C13 A10 All A12 Al3 BlO Bll BlZ Bl3
CZO C21 CZZ C23 AZO A21 A22 A23 BZO B21 BZZ BZ3
C30 C31 C32 C33 A30 A31 A32 A33 B30 BSI B,32 BJ33: Jenri Casanova

229 /272

Parallel
Algorithms

) L]
Matrix

Multiplication .

LA

How do Matrices Get Distributed? (Sec.

Data distribution can be completely ad-hoc
But what about when developing a library that will be used by others?
There are two main options:
Centralized
= when calling a function (e.g., matrix multiplication)
= the input data is available on a single “master” machine (perhaps in a file)
= the input data must then be distributed among workers
= the output data must be undistributed and returned to the “master” machine (perhaps in a file)
= More natural/easy for the user
= Allows for the library to make data distribution decisions transparently to the user
= Prohibitively expensive if one does sequences of operations
= and one almost always does so
Distributed
= when calling a function (e.g., matrix multiplication)
* Assume that the input is already distributed
= Leave the output distributed
= May lead to having to “redistribute” data in between calls so that distributions match,
which is harder for the user and may be costly as well

* Forinstance one may want to change the block size between calls, or go from a non-cyclic to a
cyclic distribution

Most current software adopt the distributed approach
= more work for the user
= more flexibility and control

We'll always assume that the data is magically already distributed G§Ut5& &@é‘?"";;“;‘;;a

Parallel
Algorithms

Four Matrix Multiplication

LEL. }!Algorithms

Multiplication = We’'ll look at four algorithms
= Quter-Product
= Cannon
= Fox
= Snyder
= The first one is used in practice

®= The other three are more “historical” but are
really interesting to discuss
= We'll have a somewhat hand-wavy discussion
here, rather than look at very detailed code

Courtesy of Henri Casanova
231 /272

Parallel
Algorithms

L,L_ qT he Outer-Product Algorithm

= Consider the “natural” sequential matrix multiplication
Outer Product algorithm
for i=0 to n-1
forj=0ton-1
for k=0 to n-1
G t+=a, *b
= This algorithm is a sequence of inner-products (also called
scalar products)
= We have seen that we can switch loops around
= Let's consider this version
for k=0 to n-1
fori=0ton-1
forj=0ton-1
C;t+=a, *b;
= This algorithm is a sequence of outer-products!

Courtesy of Henri Casanova
232 /272

Parallel
Algorithms

Nﬁi 41 he Outer-Product Algorithm

for k=0 to n-1
fori=0ton-1
for j=0to n-1

G +=a;, * by

.c +=‘ T

X —

Courtesy of Henri Casanova
233 /272

Parallel
Algorithms

L,L_ aThe outer-product algorithm

Why do we care about switching the loops around to view the matrix
Outer Product multiplication as a sequence of outer products?

= Because it makes it possible to design a very simple parallel algorithm on
a grid of processors!

= First step: view the algorithm in terms of the blocks assigned to the

processors
for k=0 to g-1
fori=0tog-1
for j=0to g-1
Cj+=A,*B,
COO COl COZ C03 AOO AOl AOZ A03 BOO BOl BOZ BO3
ClO Cll C12 C13 A10 A11 A12 A13 BlO Bll B12 Bl3
CZO C21 CZZ C23 AZO A21 A22 A23 BZO BZl BZZ BZ3
C30 C31 C32 C33 A30 A31 A32 A33 B30 BSl Bégu!te%ésf Henri Casanova

234 /272

Parallel
Algorithms

L;,L_ qIhe Outer-Product Algorithm

Coo | Cor | Coz | Cos | [Aoo | Aox | Acz | Ao | | Bo |Bo | By |B, | fOrk=0tog-1
Outer Product P
Cio | Cu | Coo | Cos | | A | A [A | A | [[B [B, |B) fori=0toqg-1
Coo | Con | oo | o | | Ao | A [A [A | [B, [B, [B, | B, forj=0tog-1
= *
Cy | Cy [Cyy | Cys A | As | As | Ags B, By [B; | By Civi+_ Aivk Bkvl
0 1 2 3

= At step k, processor P,; needs A;, and B,
= |f k = j, then the processor already has the
needed block of A
= Otherwise, it needs to get it from P,
= |f k = I, then the processor already has the
needed block of B
= Otherwise, it needs to get it from P

Courtesy of Henri Casanova
235 /272

Parallel
Algorithms

L;,L_ qIhe Outer-Product Algorithm

= Based on the previous statements, we can now
DU e see how the algorithm works
= At step k
= Processor P,, broadcasts its block of matrix A
to all processors in processor row i
* True for all i
= Processor P,; broadcasts its block of matrix B
to all processor in processor column j
* True for all j
®= There are g-1 steps

Courtesy of Henri Casanova
236 /272

L;,L_ qThe Outer Product Algorithm

I
w

I:)00

y

3

/'U//O'U

w

Bl&

13

V|
w

/ ©

on‘/

2 2/

P
B
P,

4

P3¢/

P3»/

/\

P.y/

Step k=1 of the algorithm

Courtesy of Henri Casanova

Parallel
Algorithms

L qIhe Outer-Product Algorithm

// m=n/q
var A, B, C: array[0..m-1, 0..m-1] of real
var bufferA, bufferB: array[0..m-1, 0..m-1] of real
var myrow, mycol
myrow = My_Proc_Row()
mycol = My_Proc_Col()
fork =0tog-1
// Broadcast A along rows
fori=0toqg-1
BroadcastRow(i,k,A,bufferA,m*m)
// Broadcast B along columns
for j=0to g-1
BroadcastCol(k,j,B,bufferB,m*m)

// Multiply Matrix blocks (assuming a convenient MatrixMultiplyAdd()
function)

if (myrow == k) and (mycol == k)
MatrixMultiplyAdd(C,A,B,m)

Outer Product

else if (myrow == k)
MatrixMultiplyAdd(C,bufferA,B,m)
else if (mycol == k)

MatrixMultiplyAdd(C, A, bufferB, m)
else

MatrixMultiplyAdd(C, bufferA, bufferB, m) Courtesy of He"ri;;?:a;‘;;a

Parallel
Algorithms

L;,L, serformance Analysis

" The performance analysis is straightforward
Outer Product = With a one-port model:

= The matrix multiplication at step k can occur in parallel with
the broadcasts at step k+1

= Both broadcasts happen in sequence
= Therefore, the execution time is equal to:

T(m,q) = 2 Tbcast + (g-1) max (2 Tbcast, m*> w) + m3 w
= w: elementary += * operation
= Tbcast: time necessary for the broadcast
= With a multi-port model:
= Both broadcasts can happen at the same time
T(m,q) = Tbcast + (g-1) max (Tbcast, m3 w) + m3 w
® The time for a broadcast, using the pipelined broadcast:
Tbcast = (sqrt((g-2)L) + sqrt(m2 b))2
= When n gets large: T(m,q) ~ g m3 =n3/ g2
= Thus, asymptotic parallel efficiency is 1!

Courtesy of Henri Casanova
239 /272

Parallel
Algorithms

Grid Rocks!

LEL. "ISO what?

On a ring platform we had already given an
asymptotically optimal matrix multiplication
algorithm on a ring in an earlier set of slides

So what’s the big deal about another
asymptotically optimal algorithm?

Once again, when n is huge, indeed we don’t
care

But communication costs are often non-negligible
and do matter

= When n is “moderate”

= When w/b is low

It turns out, that the grid topology is
advantageous for reducing communication costs!

Courtesy of Henri Casanova
240 /272

Parallel
Algorithms

L,L_ ing vs. Grid

When we discussed the ring, we found that the

communication cost of the matrix multiplication algorithm

was: n2b

= A each step, the algorithm sends n2/p matrix elements among
neighboring processors

= There are p steps

= For the algorithm on a grid:

= Each step involves 2 broadcasts of n2/p matrix elements
= Assuming a one-port model, not to give an “unfair” advantage to
the grid topology
= Using a pipelined broadcast, this can be done in approximately
the same time as sending n?/p matrix elements between
neighboring processors on each ring (unless n is really small)
= Therefore, at each step, the algorithm on a grid spends twice
as much time communicating as the algorithm on a ring
= But it does sqrt(p) fewer steps!
* Conclusion: the algorithm on a grid spends at least sqrt(p)
less time in communication than the algorithm on a ring

Courtesy of Henri Casanova
241 /272

Grid Rocks!

Parallel
Algorithms

LEL. 4Grid vs. Ring

= Why was the algorithm on a Grid much better?

Grid Rocks! = Reason: More communication links can be used
in parallel
= Point-to-point communication replaced by broadcasts

= Horizontal and vertical communications may be
concurrent

= More network links used at each step

= Of course, this advantage isn’t really an
advantage if the underlying physical platform
does not really look like a grid

= But, it turns out that the 2-D distribution is
inherently superior to the 1-D distribution, no
matter what the underlying platform is!

Courtesy of Henri Casanova
242 /272

Parallel
Algorithms

li;- 4Grid vs. Ring

= On aring
= The algorithm communicates p matrix block rows that each

Grid Rocks! contain n?/p elements, p times
= Total number of elements communicated: pn?

= On a grid
= Each step, 2sqrt(p) blocks of n?/p elements are sent, each to

sqrt(p)-1 processors, sqrt(p) times

= Total number of elements communicated: 2sqrt(p)n?

= Conclusion: the algorithm with a grid in mind
inherently sends less data around than the algorithm
on aring

= Using a 2-D data distribution would be better than
using a 1-D data distribution even if the underlying
platform were a non-switched Ethernet for instance!

= Which is really 1 network link, and one may argue is closer to
a ring (p comm links) than a grid (p2 comm links)

Courtesy of Henri Casanova
243 /272

Parallel
Algorithms

Grid Rocks!

L;,L_ 4«onclusion
a

= Writing algorithms on a grid topology is a little bit
more complicated than in a ring topology

= But there is often a payoff in practice and grid
topologies are very popular

Courtesy of Henri Casanova
244 /272

Parallel
Algorithms

2-D Matrix Distribution

= We denote by a;; an
element of the matrix

= We denote by A;; (or A;)
the block of the matrix
allocated to P;;

Cannon

Agz | Ao Boo | Box | Boz | Bos
A | A By |Bi |Byp [Bys
Azz A23 Bzo B21 BZZ 823
Az | Ass Bso | B | By BJ33r fenri Casanova

245 /272

& The Cannon Algorithm

® This is a very old algorithm
*= From the time of systolic arrays
= Adapted to a 2-D grid
® The algorithm starts with a
redistribution of matrices A and B
= Called “preskewing”
®= Then the matrices are multiplied
" Then the matrices are re-
redistributed to match the initial
distribution
= Called “postskewing” Courtesy of Henri Casanova

246 /272

Parallel
Algorithms

& Cannon’s Preskewing

= Matrix A: each block row of matrix A is
shifted so that each processor in the first
processor column holds a diagonal block
of the matrix

Cannon

00

S
=)

o
> | > > >

> | > > >

2

o
N
[t
N
w
N
N
N
w
N
o

A
A
A
A

> | > | > |>
> > >|>
> | > >| >
> | > >|>

W
S

> > > | >
B

30

w
w

Courtesy of Henri Casanova
247 /272

Parallel
Algorithms

& Cannon’s Preskewing

= Matrix B: each block column of matrix B is
shifted so that each processor in the first

camnen processor row holds a diagonal block of
the matrix
BOO BOl BOZ BO3 BOO Bll BZZ B33
Blo Bll Blz Bl3 BlO BZl B32 BOS
BZO le BZZ BZ3 BZO B31 BOZ Bl3
B30 BBl B32 BS3 B30 BOl Blz BZ3

Courtesy of Henri Casanova
248 /272

& Cannon’s Computation

= The algorithm proceeds in q steps

= At each step each processor
performs the multiplication of its
block of A and B and adds the result
to its block of C

" Then blocks of A are shifted to the
left and blocks of B are shifted
upward
= Blocks of C never move

= Let's see it on a picture

Courtesy of Henri Casanova
249 /272

Parallel
Algorithms

Cannon

Cannon’s Steps

Y

o
=1
o
R
o
@
S
@
N
N

@]
s
[elNe]

i
=y
iy
N
-
w
it
o
W
N

(@]

N
o
N
[
N
N
N
w
N
s
o
N}

@]

w
o
w
i
w
N
w
w
W
N
iy
N

@]

o
S
o
=
o
R
=}
@
S
S
W
N

@]

iy
15
i
[y
i
N
-
w
it
-y
S
N}

(@]

N
o
N
i
N
N
N
w
N
N
iy
N

@]

w
o
w
py
w
N}
w
w
W
w
N
N

o
=
o
R
o
@
S
S
W
N

@]
s
[elNe)]

i
=y
iy
N
iy
w
it
jy
o
N}

(@]

N
o
N
i
N
N
N
w
I
N
iy
N

[elRelKelNelIFelRelKelEelIFelKelKelKel
[elRelKelkelIFelRelKelkelIFelRelKel kel
W (0| 0|00l o|l0| ||

N
N

>>(>[>|[E]2 B[Elz]>>]>

@]

w
o
w
py
w
N
w
w
W
w

local
computation
on proc (0,0)

Shifts

local
computation
on proc (0,0)

Courtesy of Henri Casanova
250 /272

Parallel

* The Algorithm

Participate in preskewing of A

Partitipate in preskweing of B
For k =1 to g

Local C = C + A*B

Vertical shift of B

Horizontal shift of A
Participate in postskewing of A
Partitipate in postskewing of B

Courtesy of Henri Casanova
251 /272

Parallel
Algorithms

& Performance Analysis

= Let’'s do a simple performance analysis
with a 4-port model
* The 1-port model is typically more complicated

= Symbols
" n: size of the matrix
" gxQ: size of the processor grid
"m=n/q
® L: communication start-up cost
= w: time to do a basic computation (+=. *.)
* b: time to communicate a matrix element
= T(m,q) = Tpreskew + Tcompute +
Tpostskew

Courtesy of Henri Casanova
252 /272

Parallel
Algorithms

& Pre/Post-skewing times

Let’s consider the horizontal shift
= Each row must be shifted so that the diagonal block ends
up on the first column
= On a mono-directional ring:
= The last row needs to be shifted (g-1) times
= All rows can be shifted in parallel
= Total time needed: (g-1) (L + m2 b)
= On a bi-directional ring, a row can be shifted left or right,
depending on which way is shortest!
= A row is shifted at most floor(qg/2) times
= All rows can be shifted in parallel
= Total time needed: floor(g/2) (L + m2 b)
= Because of the 4-port assumption, preskewing of A and B
can occur in parallel (horizontal and vertical shifts do not
interfere)
" Therefore: Tpreskew = Tpostskew = floor(qg/2) (L+m?2b)

Courtesy of Henri Casanova
253 /272

Cannon

Parallel
Algorithms

& Time for each step

= At each step, each processor computes an
mxm matrix multiplication
= Compute time: m3 w

= At each step, each processor
sends/receives a mxm block in its
processor row and its processor column

= Both can occur simultaneously with a 4-port
model

" Takes time L+ m2b
= Therefore, the total time for the q steps is:
Tcompute = g max (L + m2b, m3w)

Courtesy of Henri Casanova
254 /272

& Cannon Performance Model

®= T(m,n) =2* floor(q/2) (L + m2b) +
g max(m3w, L + m2Db)
= This performance model is easily
adapted
= [f one assumes mono-directional links,
then the “floor(qg/2)” above becomes
“(g-1)"
= |f one assumes 1-port, there is a factor 2
added in front of communication terms

= |f one assumes no overlap of
communication and computation @eger Hemi casanova

255 /272

Parallel
Algorithms

& The Fox Algorithm

This algorithm was originally developed to

run on a hypercube topology

= But in fact it uses a grid, embedded in the
hypercube

This algorithm requires no pre- or post-

skewing

It relies on horizontal broadcasts of the
diagonals of matrix A and on vertical shifts
of matrix B

Sometimes called the “multiply-broadcast-
roll” algorithm

Let's see it on a picture

= Although it’s a bit awkward to draw becatsd o cmow

272

& Execution Steps...

2
3=
"k
& S
& &

<

257 /272

s
H
H
Y= . S
O ow m e
78 c FER
8058~ s 5
C..&dmr S o
© O Ba2ce — o 8
BB ooy = H]
.Lum m,S..Leu o] 8
£% n<cln= mm
m m m m m m m m m m m m
<R It S Il | I) ST I | I I R)
Mmoo mn|m [sa el aa i Naa] [sa i aa] ol Naa]
N R I I N Y I Y
IR | BEIFRIBR B BRI RN
[sa] ealianlnaal | ol an i oa ol | Woa N iaal an i Naa]
[Y) | e N T T e
o — o m o — o m o — o~ m
[an g o' iy laa [| o ian [o' R wn Y f Waa R o a Y a n a'a]}
o o o o o o o o o o o
8| 2|]| Rl 8| 28| & & S|]| R
[sa i aa R ol an] mnomn|m B-B o |m
m m m m o — o~ m o — o~ m
3 2 XA 8 A N S| 8] 2| N &
| < | < ||| ||| || <
ol w wl wll o Al & el o A af @
o — o~ m o — o~ m o — o~ m
| < | < |C|| || C ||| || <
al Al o all el A & ol o A o =
sl 2] Al 8| 2] N S| 8] 2| N ®
| | < |C|| < | C ||| | <
ol o o <oll o =] «| = al o m
sl 2| & Rl 8| A & B o 8| @
| < | < ||| | < A-A < | <
ol o o ofl of of o @] o o of o
Pl I Il] | Il) N I | I] R)
QOO |OJO|O|OIO|JO|O |00
NEI R RN Y I Y
o — o~ m o - o~ m o - o~ m
QOO |OJO|O|OIO||O|O|0O |0
al al ol Al =l Al o 2l =] A o] o
sl 2| | all 8| 2] & &l 8] = & 0@
QOO |OJJO|O|OIO|JO|O |0 |0
o o o o o o o o o o o
8| 2| & Rl 8| 2| & ® al] @
OQ|OIO|O|O|0O |0 C-C 01|10

& Execution Steps...

2
3=
"k
& S
& &

<

258 /272

s
3
H
Y - ©
o c bt
° 2 5
== o 5}
m woTE o = I
© s} © Pt
b OTCT ©T = °
o TS OL0 2 %
= © N = © 4 «|ap b
£ ghsot SEf
B o
< S Y5 o O o
n n<ln a3
m m m m m m m m m m m m
B T] | B R R | B R R
Q<< [sa sl aa] Naa] [sa sl ol ea]
NN IR I
M BRI | DI BRI BRI | BRI BRI I]
N4 MmMdQ | 00 m|o|m| Moo
Al al a2l Al a2 2l 2] =] o] =
— o [ul o — o m o — o m o
[aniymaalypaalypyaa | ol an ol el | Waa R iaa i lan [aa]
o o o o o o o o o o o
NN —O — o m o o m o
0o mn|m mnomn|m B-B o |m
oM m m m - o~ m o - o~ m o
3| 2| I &S| 8| S I 8l 8] S S 8
| < | < ||| ||| || <
o o ol ol 2]] o ol 2]] o o
o — o~ m o — o~ m o — o~ m
| < | < |C|| || C ||| || <
— — — - - o~ m o - o~ m o
S| 4| X =] 8| S I Al 8] & S 8
| | < |C|| < | C ||| | <
o o o ol =] ~| o o ~| o o
3| 2|] Il 8| J| [I o & R
<< |<C|C || < A-A << | <
o o of ofl of of of «of] of of of =
3| 4| Q| & 3| Al I &) 8] S S @
OO0 |I0||O|O|O|0]||O|0O |0 |0
NI Y I Y
o — o~ m o - o~ m o - o~ m
OOV |0l |00 |0 |0
al al a2l =l Al =] 2l =] =] o] =
s| 4| | &l 8] A || =] 8] =] S @
OO0 |0||lO|O|O|0O||O|O |0 |0
o o o o o o o o o o o
3| al | A 8| 3| || I a| || A
OO0 0|00 |0 C-C 00

Parallel

& Fox’'s Algorithm

// No initial data movement

for k = 1 to g in parallel
Broadcast A’s kt" diagonal
Local C = C + A*B
Vertical shift of B

// No final data movement

= Again note that there is an additional array to
store incoming diagonal block

= This is the array we use in the A*B multiplication

Courtesy of Henri Casanova
259 /272

& Performance Analysis

= You’'ll have to do it in a homework
assignment

= Write pseudo-code of the algorithm in
more details

= Write the performance analysis

Courtesy of Henri Casanova
260 /272

& Snyder’s Algorithm (1992)

= More complex than Cannon’s or
Fox's
® First transposes matrix B

= Uses reduction operations (sums) on
the rows of matrix C

= Shifts matrix B

Courtesy of Henri Casanova
261 /272

& Execution Steps...

2
3=
T

o
& &

<

262 /272

s
3
g
2
m c bt
o) £
3 2
o] =
o +J o
-) 3 7
o O c = < 3
— © 4
.Lum © o £ m
£% - mm
3 2 R A 2 = &S 3 ol 8 =
Mmoo mn|m m oo omn|m m mn|m
Nl N[N[N ol H| of m™m —| o m
ol = o~ m Nl N[N[N N N[N
N m|mo|m|m mim|m
Al A = ol «| «| = Al wf m
ol H| o~ m — | A ~ | |
oo Mmoo m o m m|m
o o o o of o o m | o m
ol H| ~Nf ™ ol ol ol o ol o o
[sa i aa R ol an] [sa sl aa i aa] momn|m
ol o o @ ol o o = o o o
S| A & W S| A & W o S m
| < | < | << ||| < < | < | <
S| S X & S| S [& S N ®
<< qC|<C ||| < (< | <
P Y R ol Al o = al | =
S| A]| = S| A 8| W o SN o
| < |C|< << | < < (< | <
ol ol ol o ol ol ol o ol o o
S| =] & & S| A & & S S @
| < | < ||| < | < | <
ol o o @ ol o o = m| o =
S| 4| & = S| 4| & = al S @
OQIOIO|OJO|O |0 |0 (OREORRS)
Nl N[NN Nl N NN Nl NN
of = o ™m of = o ™m | o m
OO0 |I0||O0O 0|0 OO0 |0
|l Al o o ol Al o = al | =
sl 4] | = S| 4| & = =1 I
OQ|IOIO|OJO|O |0 |0 OO0 |0
o| ol o o ol ol ol o ol o o
gl =] & @ S| =] & @ = Q& @
OQIOIO|OJO|O]0O |0 OO0 |0

2
3=
T

o
& &
<

Courtesy of Henri Casanova

Y S

5 2

< ©

= +J

@ T 9 -2

= SE®TVL =

- 2 Y—

2] O noo S8
- o~ o~ o - o o o o o o
m m m m m m m m m m m
on/m/o/n||lo|o|o|m m|m|m
— o m o — o m o o~ m o
o~ o~ o~ o~ o~ o~ o~ o~ o~ o o~
odmdmdn||n|m|m|m m|m|m
- o~ m o — o~ m o o~ m o
= st I =1 | =1 et Rl =t o I =
o /m/oln||lo|mo|m|m m|o|m
- o~ m o - o~ m o o~ m o
o o o o o o o o o o o
odododa||lo|m|o|m m|m|m

13

A

12

A

11

A

AOO AOl AOZ A03

A10 A11 A12 A13
AZO A21 A22 A23

A30 A31 A32 A33

AOO A01 AOZ AO3
A10 A11 A12 A13
AZO A21 A22 A23

A30 A31 A32 A33

10

A

AZO A21 A22 A23

A30 A31 A32 A33

mf m| m m mf ™o m
al o R R ol & R
J|J|J 8 J|J|J
sl af sl af
OO0 |0 OO0 |0
a2l &l @ 2| &l =
OO0 |0 OO0 |0
sl 8| 8 | | 8
OO0 |0 OO0 |0

263 /272

* Execution Steps...

o
R
T E
5O
o &

<

264 /272

s
3
H
S
0 < e
ES S 3
o s T
s © Py
m _ - °
c 2 a2 3
_....m mehLC «lap M
< |Ounf S & CW

0 O noo S8
o m o - o~ m o — m o —
[ul m m m oM ™M M m m m m
n/m/mo/m||0|0 | m|o m|m|m
~l o o <l & o o] = m| o o
N 2l] RIl 8| & & R | K| R
mdmdmd4m||m|m|m|m m m|m
o~ m o — o~ m o — m o -
N ol el =2 8 A 8] 2 2l 2| =
n/o/m/m||o|o|mo|m m|m|m
o~ m o - o m o — m o —
o o o o o o o o o o o
mndmdmdm||o|m|m|m m m|m
al o x B 3 2 [M 2 R O®
< | < |< ||| |<C << < (< | <
o~ o~ o~ o~ o~ o~ o~ o o~ o~ o~
o — o~ m o ~— o m o~ o m
<< ||| || < < | < | <
gl 2 = Rl 8] 2| N & =1
<< |<<|<<||<C|<C|<C| < (< | <
o o o o o o o (=3 o o o
o — o m o — o m — o m
| < |< ||| ||| < < (< | <
m m m m m
o — m o~ m
[ORNE) O 00
o o~ o o~ o
S| o & NI
[ORRS) O OO0
ol A o ol o
o — m o~ [al
[ORN©) O OO0
o o o o o
o — m o~ m
Q|0 O 00

Parallel

& The Algorithm

var A,B,C: array[0..m-1][0..m-1] of real
var bufferC: array[0..m-1][0..m-1] of real
Transpose B
MatrixMultiplyAdd(bufferC, A, B, m)
Vertical shifts of B
Fork =1toqg-1
Global sum of bufferC on proc rows into C, ;,, 14
MatrixMultiplyAdd(bufferC, A, B, m)
Vertical shift of B
Global sum of bufferC on proc rows into C, ., 14,

Transpose B

Snyder

Courtesy of Henri Casanova
265 /272

& Performance Analysis

®= The performance analysis isn’t
fundamentally different than what
we’ve done so far

= But it's a bit cumbersome

= See the textbook

* in particular the description of the
matrix transposition (see also Exercise
5.1)

Courtesy of Henri Casanova
266 /272

& Which Data Distribution?

= So far we’ve seen:
= Block Distributions
= 1-D Distributions
= 2-D Distributions
= Cyclic Distributions

®= One may wonder what a good choice
is for a data distribution?

= Many people argue that a good
“Swiss Army knife” is the “2-D block
cyclic distribution

Courtesy of Henri Casanova
267 /272

I he 2-D block cyclic
distribution

= Goal: try to have all the advantages
of both the horizontal and the
vertical 1-D block cyclic distribution

= Works whichever way the computation
“progresses”
= left-to-right, top-to-bottom, wavefront, etc.

= Consider a number of processors p =
r*c
= arranged in a rxc matrix

= Consider a 2-D matrix of size NxN

= Consider a block size b (which _
f‘“\lif’IQC I\I\ Courtesy of Henrlzizsa;t;;a

Nl I he 2-D block cyclic
distribution

PO|P1|P2
P3|P4(P5

Courtesy of Henri Casanova
269 /272

Nl I he 2-D block cyclic
distribution

PO|P1|P2
P3|P4(P5

Courtesy of Henri Casanova
270 /272

Nl I he 2-D block cyclic
distribution

PO|P1|P2
P3|P4|P5

Data
Distribution

= Slight load imbalance
= Becomes negligible with
many blocks

= Index computations had
better be implemented in
separate functions

= Also: functions that tell a
process who its neighbors
are

= Overall, requires a whole
infrastructure, but many
think you can’t go wrong
with this distribution

Courtesy of Henri Casanova
271 /272

Parallel
Algorithms

& Conclusion

= All the algorithms we have seen in the
semester can be implemented on a 2-D
block cyclic distribution

®= The code ends up much more complicated

= But one may expect several benefits “for
free”

= The ScalLAPAK library recommends to use
the 2-D block cyclic distribution

= Although its routines support all other
distributions

Courtesy of Henri Casanova
272 /272

Parallel
Algorithms

Data
Distribution

ﬁ A. Alexandrov, M. lonescu, K. Schauser, and C. Scheiman.

LogGP: Incorporating long messages into the LogP model for par-
allel computation.
Journal of Parallel and Distributed Computing, 44(1):71-79, 1997.

D. Culler, R. Karp, D. Patterson, A. Sahay, E. Santos,
K. Schauser, R. Subramonian, and T. von Eicken.

LogP: a practical model of parallel computation.

Communication of the ACM, 39(11):78-85, 1996.

R. W. Hockney.

The communication challenge for mpp : Intel paragon and meiko
cs-2.

Parallel Computing, 20:389-398, 1994.

B. Hong and V.K. Prasanna.
Distributed adaptive task allocation in heterogeneous computing
environments to maximize throughput.

272 /272

_— In International Parallel and Distributed Processing Symposium
LRI IPDPS’2004. IEEE Computer Society Press, 2004.

@ T. Kielmann, H. E. Bal, and K. Verstoep.
Fast measurement of LogP parameters for message passing plat-
forms.
In Proceedings of the 15th IPDPS. Workshops on Parallel and
Distributed Processing, 2000.

Drstibution @ Steven H. Low.
A duality model of TCP and queue management algorithms.
IEEE/ACM Transactions on Networking, 2003.

@ Dong Lu, Yi Qiao, Peter A. Dinda, and Fabidn E. Bustamante.
Characterizing and predicting tcp throughput on the wide area
network.

In Proceedings of the 25th IEEE International Conference on Dis-
tributed Computing Systems (ICDCS’05), 2005.

272 /272

Parallel
Algorithms

Data
Distribution

ﬁ Arnaud Legrand, Hélene Renard, Yves Robert, and Frédéric

Vivien.

Mapping and load-balancing iterative computations on heteroge-
neous clusters with shared links.

IEEE Trans. Parallel Distributed Systems, 15(6):546-558, 2004.

Maxime Martinasso.

Analyse et modélisation des communications concurrentes dans
les réseaux haute performance.

PhD thesis, Université Joseph Fourier de Grenoble, 2007.

Laurent Massoulié and James Roberts.
Bandwidth sharing: Objectives and algorithms.
In INFOCOM (3), pages 1395-1403, 1999.

Loris Marchal, Yang Yang, Henri Casanova, and Yves Robert.
Steady-state scheduling of multiple divisible load applications on
wide-area distributed computing platforms.

272 /272

Parallel
Algorithms

Data
Distribution

2006.

B8 Frédéric Wagner.
Redistribution de données a travers un réseau haut débit.
PhD thesis, Université Henri Poincaré Nancy 1, 2005.

Int. Journal of High Performance Computing Applications, (3),

272 /272

	Performance Evaluation
	Performance: Definition?
	Time?
	Rate?
	Peak performance
	Benchmarks

	Speedup and Efficiency
	Speedup
	Amdahl's Law

	Performance Measures
	Measuring Time

	Performance Improvement
	Finding Bottlenecks
	Profiling Sequential Programs
	Profiling Parallel Programs

	Network Models
	Point to Point Communication Models
	Hockney
	LogP and Friends
	TCP

	Modeling Concurency
	Multi-port
	Single-port (Pure and Full Duplex)
	Flows

	Remind This is a Model, Hence Imperfect
	Topology
	A Few Examples
	Virtual Topologies

	Communications on a Ring
	Assumptions
	Broadcast
	Scatter
	All-to-All
	Broadcast: Going Faster

	Algorithms on a Ring
	Matrix Vector Product
	Open MP Version
	First MPI Version
	Distributing Matrices
	Second MPI Version
	Third MPI Version
	Mixed Parallelism Version

	Matrix Multiplication
	Stencil Application
	Principle
	Greedy Version
	Reducing the Granularity

	LU Factorization
	Gaussian Elimination
	LU

	A Complete Example on an Heterogeneous Ring
	The Problem
	Fully Homogeneous Network
	Heterogeneous Network (Complete)
	Heterogeneous Network (General Case)

	Algorithms on a Grid
	Communications
	Matrix Multiplication
	Outer Product
	Grid Rocks!
	Cannon
	Fox
	Snyder
	Data Distribution

