
Outlines

How to Efficiently Program
High Performance Architectures ?

Arnaud LEGRAND, CR CNRS, LIG/INRIA/Mescal
Jean-Louis ROCH, MCF ENSIMAG, LIG/INRIA/Moais

Vincent DANJEAN, MCF UJF, LIG/INRIA/Moais
Derick KONDO, CR INRIA, LIG/INRIA/Mescal

October, 5th 2009

Outlines

High Performance Computing

Needs are always here
numerical or financial simulation, modelisation, virtual
reality virtuelle
more data, more details, . . .

Computing power will never be enough

One way to follow: using parallelism
Idea: change space into time
more resources to gain some time

Outlines

Part I: High Performance Architectures
Part II: Parallelism and Threads
Part III: Synchronisation
Part IV: MPI

High Performance Architectures

1 Parallel Machines with Shared Memory
ILP and multi-cores
Symmetric Multi Processors

2 Parallel Machines with Distributed Memory
Clusters
Grids

3 Current Architectures in HPC

Outlines

Part I: High Performance Architectures
Part II: Parallelism and Threads
Part III: Synchronisation
Part IV: MPI

Parallelism and Threads

4 Introduction to Threads

5 Kinds of threads
User threads
Kernel threads
Mixed models

6 User Threads and Blocking System Calls
Scheduler Activations

7 Thread Programming Interface
POSIX Threads
Linux POSIX Threads Libraries
Basic POSIX Thread API

Outlines

Part I: High Performance Architectures
Part II: Parallelism and Threads
Part III: Synchronisation
Part IV: MPI

Synchronisation

8 Hardware Support

9 Busy-waiting Synchronisation

10 High-level Synchronisation Primitives
Semaphores
Monitors

11 Some examples with Linux
Old Linux libpthread
New POSIX Thread Library

Outlines

Part I: High Performance Architectures
Part II: Parallelism and Threads
Part III: Synchronisation
Part IV: MPI

MPI

12 Message Passing

13 Introduction to MPI

14 Point-to-Point Communications

15 Collective Communications

Parallel Machines with Shared Memory
Parallel Machines with Distributed Memory

Current Architectures in HPC

Part I

High Performance Architectures

Parallel Machines with Shared Memory
Parallel Machines with Distributed Memory

Current Architectures in HPC

Outlines: High Performance Architectures

1 Parallel Machines with Shared Memory
ILP and multi-cores
Symmetric Multi Processors

2 Parallel Machines with Distributed Memory
Clusters
Grids

3 Current Architectures in HPC

Parallel Machines with Shared Memory
Parallel Machines with Distributed Memory

Current Architectures in HPC

Parallel Architectures

Two main kinds
Architectures with shared memory and architectures with
distributed memory.

Multiprocessors

P

P

P

P
Mem

Clusters

Fast network

P Mem P Mem P Mem

Parallel Machines with Shared Memory
Parallel Machines with Distributed Memory

Current Architectures in HPC

ILP and multi-cores
Symmetric Multi Processors

Why several processors/cores ?

Limits for monocore processors
superscalar processors: instruction level parallelism
frequency
electrical power

What to do with place available on chips ?
caches (bigger and quicker)
several series of registers (hyperthreaded processors)
several series of cores (multi-core processors)
all of that

Parallel Machines with Shared Memory
Parallel Machines with Distributed Memory

Current Architectures in HPC

ILP and multi-cores
Symmetric Multi Processors

Symmetric Multi Processors

all processors have access to the same memory and I/O
most common multiprocessor systems today use an SMP
architecture
in case of multi-core processors, the SMP architecture
applies to the cores, treating them as separate processors

Non Uniform Memory Access Architectures
memory access time depends on the memory location
relative to a processor
better scaling hardware architecture
harder to program efficiently: trade off needed between
load-balancing and memory data locality

Towards more and more
hierarchical computers

P P M P P M

P P M P P M

P P M P P M

M

M

M

● SMT
(HyperThreading)

● Multi-core
● NUMA

Courtesy of Samuel Thibault

Parallel Machines with Shared Memory
Parallel Machines with Distributed Memory

Current Architectures in HPC

ILP and multi-cores
Symmetric Multi Processors

AMD Quad-Core

M

P P
L2 $

P P
L2 $ L2 $ L2 $

L3 $

P P
€ L2

P P
€ L2 € L2 € L2

€ L3

...

Shared L3 cache

NUMA factor ~1.1-1.5

M

P P
L2 $

P P
L2 $ L2 $ L2 $

L3 $M

P P
L2 $

P P
L2 $ L2 $ L2 $

L3 $M

Courtesy of Samuel Thibault

Parallel Machines with Shared Memory
Parallel Machines with Distributed Memory

Current Architectures in HPC

ILP and multi-cores
Symmetric Multi Processors

Intel Quad-Core

P P
L2 $

P P
L2 $

M
P P

L2 $

P P
L2 $

...

Hierarchical cache levels
P P

L2 $

P P
L2 $

Courtesy of Samuel Thibault

Parallel Machines with Shared Memory
Parallel Machines with Distributed Memory

Current Architectures in HPC

ILP and multi-cores
Symmetric Multi Processors

5

dual-quad-core

M

P1 P5 P3 P7

P0 P2P4 P6

● Intel
● Hierarchical cache levels

Courtesy of Samuel Thibault

Parallel Machines with Shared Memory
Parallel Machines with Distributed Memory

Current Architectures in HPC

ILP and multi-cores
Symmetric Multi Processors

Parallel Machines with Shared Memory
Parallel Machines with Distributed Memory

Current Architectures in HPC

Clusters
Grids

Clusters

Composed of a few to hundreds of machines
often homogeneous

same processor, memory, etc.
often linked with a high speed, low latency network

Myrinet, InfinityBand, Quadrix, etc.

Biggest clusters can be split in several parts
computing nodes
I/O nodes
front (interactive) node

Parallel Machines with Shared Memory
Parallel Machines with Distributed Memory

Current Architectures in HPC

Clusters
Grids

Grids

Lots of heterogeneous resources

aggregation of clusters and/or standalone nodes
high latency network (Internet for example)
often dynamic resources (clusters/nodes appear and
disappear)
different architectures, networks, etc.

Parallel Machines with Shared Memory
Parallel Machines with Distributed Memory

Current Architectures in HPC

Current Architectures in HPC

Hierarchical Architectures
HT technology
multi-core processor
multi processors machine
cluster of machines
grid of clusters and individual machines

Even more complexity
computing on GPU

require specialized codes but hardware far more powerful
FPGA

hardware can be specialized on demand
still lots of work on interface programming here

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Part II

Parallelism and Threads

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Outlines: Parallelism and Threads

4 Introduction to Threads

5 Kinds of threads
User threads
Kernel threads
Mixed models

6 User Threads and Blocking System Calls
Scheduler Activations

7 Thread Programming Interface
POSIX Threads
Linux POSIX Threads Libraries
Basic POSIX Thread API

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Programming on Shared Memory Parallel Machines

Using process

Processors

Operating system Resources management
(files, memory, CPU, network, etc)

Process

Mem Mem Mem Mem

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Programming on Shared Memory Parallel Machines

Using threads

process

Processors

Operating system Resources management
(files, memory, CPU, network, etc)

Process

Multithreaded process

Memory

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Introduction to Threads

Why threads ?
To take profit from shared memory parallel architectures

SMP, hyperthreaded, multi-core, NUMA, etc. processors
future Intel processors: several hundreds cores

To describe the parallelism within the applications
independent tasks, I/O overlap, etc.

What will use threads ?
User application codes

directly (with thread libraries)
POSIX API (IEEE POSIX 1003.1C norm) in C, C++, . . .

with high-level programming languages (Ada, OpenMP, . . .)
Middleware programming environments

demonized tasks (garbage collector, . . .), . . .

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

User threads
Kernel threads
Mixed models

User threads

by the kernel
Entities managed

Operating system

Processors

Multithreaded process

threads

Kernel scheduler

User level

User scheduler

Efficiency + Flexibility + SMP - Blocking syscalls -

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

User threads
Kernel threads
Mixed models

Kernel threads

by the kernel
Entities managed

Operating system

Processors

Multithreaded process

threads

Kernel scheduler

Kernel level

Efficiency - Flexibility - SMP + Blocking syscalls +

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

User threads
Kernel threads
Mixed models

Mixed models

by the kernel
Entities managed

Operating system

Processors

Multithreaded process

threads

Kernel scheduler

User level

User scheduler

Efficiency + Flexibility + SMP + Blocking syscalls limited

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

User threads
Kernel threads
Mixed models

Mixed models

Characteristics
Library Efficiency Flexibility SMP Blocking syscalls

User + + - -
Kernel - - + +
Mixed + + + limited

Summary
Mixed libraries seems more attractive however they are more
complex to develop. They also suffer from the blocking system
call problem.

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Scheduler Activations

User Threads and Blocking System Calls

User level library

Kernel scheduler

User scheduler

Mixed library

Kernel scheduler

User scheduler

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Scheduler Activations

Scheduler Activations

Idea proposed by Anderson et al. (91)
Dialogue (and not monologue) between the user and kernel
schedulers

the user scheduler uses system calls
the kernel scheduler uses upcalls

Upcalls
Notify the application of scheduling kernel events

Activations
a new structure to support upcalls
a kinf of kernel thread or virtual processor

creating and destruction managed by the kernel

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Scheduler Activations

Scheduler Activations

Instead of:

InterruptionExternal request

space
User

Kernel Time

...better use the following schema:

Interruption

Act. A

External request

space
User

Kernel Time
upcall(unblocked, preempted, new)

Act. C
Act. A (next)

Act. B

upcall(blocked, new)

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Scheduler Activations

Scheduler Activations

Instead of:

InterruptionExternal request

space
User

Kernel Time

...better use the following schema:

Interruption

Act. A

External request

space
User

Kernel Time
upcall(unblocked, preempted, new)

Act. C
Act. A (next)

Act. B

upcall(blocked, new)

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Scheduler Activations

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

threads

User scheduler

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Scheduler Activations

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

threads

Upcall(New)

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Scheduler Activations

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

threads

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Scheduler Activations

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

threads

Upcall(New)

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Scheduler Activations

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

system
call

Blocking

threads

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Scheduler Activations

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

system
call

Blocking

threads

Upcall(Blocked, New)

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Scheduler Activations

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

system
call

Blocking

threads

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Scheduler Activations

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

system
call

Blocking

threads

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Scheduler Activations

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

threads

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Scheduler Activations

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

threads

Upcall(Unblocked,Preempted,New)

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

POSIX Threads
Linux POSIX Threads Libraries
Basic POSIX Thread API

Normalisation of the thread interface

Before the norm
each Unix had its (slightly) incompatible interface
but same kinds of features was present

POSIX normalisation
IEEE POSIX 1003.1C norm (also called POSIX threads
norm)
Only the API is normalised (not the ABI)

POSIX thread libraries can easily be switched at source
level but not at runtime

POSIX threads own
processor registers, stack, etc.
signal mask

POSIX threads can be of any kind (user, kernel, etc.)

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

POSIX Threads
Linux POSIX Threads Libraries
Basic POSIX Thread API

Linux POSIX Threads Libraries

LinuxThread (1996) : kernel level, Linux standard thread
library for a long time, not fully POSIX compliant

GNU-Pth (1999) : user level, portable, POSIX
NGPT (2002) : mixed, based on GNU-Pth, POSIX, not

developed anymore
NPTL (2002) : kernel level, POSIX, current Linux

standard thread library
PM2/Marcel (2001) : mixed, POSIX compliant, lots of

extensions for HPC (scheduling control, etc.)

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

POSIX Threads
Linux POSIX Threads Libraries
Basic POSIX Thread API

Basic POSIX Thread API

Creation/destruction
int pthread_create(pthread_t *thread, const
pthread_attr_t *attr, void

*(*start_routine)(void*), void *arg)

void pthread_exit(void *value_ptr)

int pthread_join(pthread_t thread, void

**value_ptr)

Synchronisation (semaphores)
int sem_init(sem_t *sem, int pshared, unsigned
int value)

int sem_wait(sem_t *sem)

int sem_post(sem_t *sem)

int sem_destroy(sem_t *sem)

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

POSIX Threads
Linux POSIX Threads Libraries
Basic POSIX Thread API

Basic POSIX Thread API (2)

Synchronisation (mutex)
int pthread_mutex_init(pthread_mutex_t *mutex,
const pthread_mutexattr_t *attr)

int pthread_mutex_lock(pthread_mutex_t *mutex)

int pthread_mutex_unlock(pthread_mutex_t
*mutex)

int pthread_mutex_destroy(pthread_mutex_t
*mutex)

Synchronisation (conditions)
int pthread_cond_init(pthread_cond_t *cond,
const pthread_condattr_t *attr)

int pthread_cond_wait(pthread_cond_t *cond,
pthread_mutex_t *mutex)

int pthread_cond_signal(pthread_cond_t *cond)

int pthread_cond_broadcast(pthread_cond_t
*cond)

int pthread_cond_destroy(pthread_cond_t *cond)

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

POSIX Threads
Linux POSIX Threads Libraries
Basic POSIX Thread API

Basic POSIX Thread API (3)

Per thread data
int pthread_key_create(pthread_key_t *key, void
(*destr_function) (void*))

int pthread_key_delete(pthread_key_t key)

int pthread_setspecific(pthread_key_t key,
const void *pointer)

void * pthread_getspecific(pthread_key_t key)

The new __thread C keyword
used for a global per-thread variable
need support from the compiler and the linker at compile
time and execute time
libraries can have efficient per-thread variables without
disturbing the application

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

POSIX Threads
Linux POSIX Threads Libraries
Basic POSIX Thread API

Basic POSIX Thread API (3)

Per thread data
int pthread_key_create(pthread_key_t *key, void
(*destr_function) (void*))

int pthread_key_delete(pthread_key_t key)

int pthread_setspecific(pthread_key_t key,
const void *pointer)

void * pthread_getspecific(pthread_key_t key)

The new __thread C keyword
used for a global per-thread variable
need support from the compiler and the linker at compile
time and execute time
libraries can have efficient per-thread variables without
disturbing the application

Hardware Support
Busy-waiting Synchronisation

High-level Synchronisation Primitives
Some examples with Linux

Part III

Synchronisation

Hardware Support
Busy-waiting Synchronisation

High-level Synchronisation Primitives
Some examples with Linux

Outlines: Synchronisation

8 Hardware Support

9 Busy-waiting Synchronisation

10 High-level Synchronisation Primitives
Semaphores
Monitors

11 Some examples with Linux
Old Linux libpthread
New POSIX Thread Library

Hardware Support
Busy-waiting Synchronisation

High-level Synchronisation Primitives
Some examples with Linux

Hardware Support

What happens with incrementations in parallel?

for (i=0; i<10; i++){

var++;

for (i=0; i<10; i++){

var++;

Hardware support required
TAS atomic test and set instruction

cmpexchge compare and exchange
atomic operation incrementation, decrementation, adding, etc.

Hardware Support
Busy-waiting Synchronisation

High-level Synchronisation Primitives
Some examples with Linux

Hardware Support

What happens with incrementations in parallel?
for (i=0; i<10; i++){
var++;

}

for (i=0; i<10; i++){
var++;

}

Hardware support required
TAS atomic test and set instruction

cmpexchge compare and exchange
atomic operation incrementation, decrementation, adding, etc.

Hardware Support
Busy-waiting Synchronisation

High-level Synchronisation Primitives
Some examples with Linux

Hardware Support

What happens with incrementations in parallel?
for (i=0; i<10; i++){
var++;

}

for (i=0; i<10; i++){
var++;

}

Hardware support required
TAS atomic test and set instruction

cmpexchge compare and exchange
atomic operation incrementation, decrementation, adding, etc.

Hardware Support
Busy-waiting Synchronisation

High-level Synchronisation Primitives
Some examples with Linux

Critical section with busy waiting

Example of code
while (! TAS(&var))

;
/* in critical section */
var=0;

Busy waiting

+ very reactive

+ no OS or lib support required

- use a processor while not doing anything

- does not scale if there are lots of waiters

Hardware Support
Busy-waiting Synchronisation

High-level Synchronisation Primitives
Some examples with Linux

Critical section with busy waiting

Example of code
while (! TAS(&var))

while (var) ;
/* in critical section */
var=0;

Busy waiting

+ very reactive

+ no OS or lib support required

- use a processor while not doing anything

- does not scale if there are lots of waiters

Hardware Support
Busy-waiting Synchronisation

High-level Synchronisation Primitives
Some examples with Linux

Critical section with busy waiting

Example of code
while (! TAS(&var))

while (var) ;
/* in critical section */
var=0;

Busy waiting

+ very reactive

+ no OS or lib support required

- use a processor while not doing anything

- does not scale if there are lots of waiters

Hardware Support
Busy-waiting Synchronisation

High-level Synchronisation Primitives
Some examples with Linux

Semaphores
Monitors

Semaphores

Internal state: a counter initialised to a positive or null value
Two methods:

P(s) wait for a positive counter then decrease it
once

V(s) increase the counter

Common analogy: a box with tokens
Initial state: the box has n tokens in it
One can put one more token in the box (V)
One can take one token from the box (P) waiting if none is
available

Hardware Support
Busy-waiting Synchronisation

High-level Synchronisation Primitives
Some examples with Linux

Semaphores
Monitors

Monitors

Mutex
Two states: locked or not
Two methods:

lock(m) take the mutex
unlock(m) release the mutex (must be done by the

thread owning the mutex)

Conditions
waiting thread list (conditions are not related with tests)
Three methods:

wait(c, m) sleep on the condition. The mutex is released
atomically during the wait.

signal(c) one sleeping thread is wake up
broadcast(c) all sleeping threads are wake up

Hardware Support
Busy-waiting Synchronisation

High-level Synchronisation Primitives
Some examples with Linux

Old Linux libpthread
New POSIX Thread Library

Old Linux libpthread

First Linux kernel thread library
limited kernel support available
provides POSIX primitives (mutexes, conditions,
semaphores, etc.)

All internal synchronisation built on signals

lots of play with signal masks
one special (manager) thread used internally to manage
thread state and synchronisation
race conditions not always handled (not enough kernel
support)

Hardware Support
Busy-waiting Synchronisation

High-level Synchronisation Primitives
Some examples with Linux

Old Linux libpthread
New POSIX Thread Library

NPTL: New POSIX Thread Library

New Linux kernel thread library
requires new kernel support (available from Linux 2.6)
specific support in the libc
a lot more efficient
fully POSIX compliant

Internal synchronisation based on futex
new kernel object
mutex/condition/semaphore can be fully handled in user
space unless there is contention

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

Part IV

MPI

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

Outlines: MPI

12 Message Passing

13 Introduction to MPI

14 Point-to-Point Communications

15 Collective Communications

Message Passing

 The above is a programming model and things may look
different in the actual implementation (e.g., MPI over
Shared Memory)

 Message Passing is popular because it is general:
 Pretty much any distributed system works by exchanging

messages, at some level
 Distributed- or shared-memory multiprocessors, networks of

workstations, uniprocessors
 It is not popular because it is easy (it’s not)

P

M

P

M

P

M
. . .

network

 Each processor runs a process
 Processes communicate by

exchanging messages
 They cannot share memory in

the sense that they cannot
address the same memory cells

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

Code Parallelization
 Shared-memory programming

 Parallelizing existing code can be very easy
 OpenMP: just add a few pragmas
 Pthreads: wrap work in do_work functions

 Understanding parallel code is easy
 Incremental parallelization is natural

 Distributed-memory programming
 parallelizing existing code can be very difficult

 No shared memory makes it impossible to “just”
reference variables

 Explicit message exchanges can get really tricky
 Understanding parallel code is difficult

 Data structured are split all over different memories
 Incremental parallelization can be challenging

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

Programming Message
Passing

 Shared-memory programming is simple conceptually
(sort of)

 Shared-memory machines are expensive when one
wants a lot of processors

 It’s cheaper (and more scalable) to build distributed
memory machines
 Distributed memory supercomputers (IBM SP series)
 Commodity clusters

 But then how do we program them?
 At a basic level, let the user deal with explicit

messages
 difficult
 but provides the most flexibility

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

Message Passing

 Isn’t exchanging messages completely known
and understood?
 That’s the basis of the IP idea
 Networked computers running programs that

communicate are very old and common
 DNS, e-mail, Web, ...

 The answer is that, yes it is, we have
“Sockets”
 Software abstraction of a communication between

two Internet hosts
 Provides and API for programmers so that they do

not need to know anything (or almost anything)
about TCP/IP and write code with programs that
communicate over the internet

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

Using Sockets for parallel
programming?

 One could thing of writing all parallel code on a
cluster using sockets
 n nodes in the cluster
 Each node creates n-1 sockets on n-1 ports
 All nodes can communicate

 Problems with this approach
 Complex code
 Only point-to-point communication
 No notion of types messages
 But

 All this complexity could be “wrapped” under a higher-level API
 And in fact, we’ll see that’s the basic idea

 Does not take advantage of fast networking within a cluster/
MPP

 Sockets have “Internet stuff” in them that’s not necessary
 TPC/IP may not even be the right protocol!

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

Message Passing for Parallel
Programs

 Although “systems” people are happy
with sockets, people writing parallel
applications need something better
 easier to program to
 able to exploit the hardware better within a

single machine
 This “something better” right now is

MPI
 We will learn how to write MPI programs

 Let’s look at the history of message
passing for parallel computing

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

Outlines: MPI

12 Message Passing

13 Introduction to MPI

14 Point-to-Point Communications

15 Collective Communications

The MPI Standard
 MPI Forum setup as early as 1992 to come up with a de facto

standard with the following goals:
 source-code portability
 allow for efficient implementation (e.g., by vendors)
 support for heterogeneous platforms

 MPI is not
 a language
 an implementation (although it provides hints for

implementers)
 June 1995: MPI v1.1 (we’re now at MPI v1.2)

 http://www-unix.mcs.anl.gov/mpi/
 C and FORTRAN bindings
 We will use MPI v1.1 from C in the class

 Implementations:
 well-adopted by vendors
 free implementations for clusters: MPICH, LAM, CHIMP/MPI
 research in fault-tolerance: MPICH-V, FT-MPI, MPIFT, etc.

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

SPMD Programs
 It is rare for a programmer to write a different program for each

process of a parallel application
 In most cases, people write Single Program Multiple Data

(SPMD) programs
 the same program runs on all participating processors
 processes can be identified by some rank
 This allows each process to know which piece of the problem to

work on
 This allows the programmer to specify that some process does

something, while all the others do something else (common in
master-worker computations)

main(int argc, char **argv) {
 if (my_rank == 0) { /* master */
 ... load input and dispatch ...
 } else { /* workers */
 ... wait for data and compute ...
 }

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

MPI Concepts

 Fixed number of processors
 When launching the application one must specify the

number of processors to use, which remains unchanged
throughout execution

 Communicator
 Abstraction for a group of processes that can communicate
 A process can belong to multiple communicators
 Makes is easy to partition/organize the application in

multiple layers of communicating processes
 Default and global communicator: MPI_COMM_WORLD

 Process Rank
 The index of a process within a communicator
 Typically user maps his/her own virtual topology on top of

just linear ranks
 ring, grid, etc.

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

MPI Communicators

MPI_COMM_WORLD

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

User-created
Communicator

21

3 4 5

876

0

1

0

User-created
Communicator

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

A First MPI Program
#include <unistd.h>
#include <mpi.h>
int main(int argc, char **argv) {
 int my_rank, n;
 char hostname[128];
 MPI_init(&argc,&argv);
 MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);
 MPI_Comm_size(MPI_COMM_WORLD,&n);
 gethostname(hostname,128);
 if (my_rank == 0) { /* master */
 printf(“I am the master: %s\n”,hostname);
 } else { /* worker */
 printf(“I am a worker: %s (rank=%d/%d)\n”,
 hostname,my_rank,n­1);
 }
 MPI_Finalize();
 exit(0);
}

Has to be called first, and once

Has to be called last, and once

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

Compiling/Running it

 Compile with mpicc
 Run with mpirun

% mpirun ­np 4 my_program <args>
 requests 4 processors for running my_program with command-

line arguments
 see the mpirun man page for more information
 in particular the ­machinefile option that is used to run on a

network of workstations
 Some systems just run all programs as MPI programs and

no explicit call to mpirun is actually needed
 Previous example program:
% mpirun ­np 3 ­machinefile hosts my_program
 I am the master: somehost1
 I am a worker: somehost2 (rank=2/2)
 I am a worker: somehost3 (rank=1/2)

(stdout/stderr redirected to the process calling mpirun)

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

Outlines: MPI

12 Message Passing

13 Introduction to MPI

14 Point-to-Point Communications

15 Collective Communications

Point-to-Point Communication

 Data to be communicated is described by three
things:
 address
 data type of the message
 length of the message

 Involved processes are described by two things
 communicator
 rank

 Message is identified by a “tag” (integer) that
can be chosen by the user

P

M

P

M

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

Point-to-Point Communication

 Two modes of communication:
 Synchronous: Communication does not

complete until the message has been
received

 Asynchronous: Completes as soon as the
message is “on its way”, and hopefully it
gets to destination

 MPI provides four versions
 synchronous, buffered, standard, ready

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

Synchronous/Buffered sending in
MPI

 Synchronous with MPI_Ssend
 The send completes only once the receive has

succeeded
 copy data to the network, wait for an ack
 The sender has to wait for a receive to be posted
 No buffering of data

 Buffered with MPI_Bsend
 The send completes once the message has been

buffered internally by MPI
 Buffering incurs an extra memory copy
 Doe not require a matching receive to be posted
 May cause buffer overflow if many bsends and no

matching receives have been posted yet

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

Standard/Ready Send

 Standard with MPI_Send
 Up to MPI to decide whether to do synchronous or

buffered, for performance reasons
 The rationale is that a correct MPI program should

not rely on buffering to ensure correct semantics
 Ready with MPI_Rsend

 May be started only if the matching receive has
been posted

 Can be done efficiently on some systems as no
hand-shaking is required

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

MPI_RECV

 There is only one MPI_Recv, which returns when the data has
been received.
 only specifies the MAX number of elements to receive

 Why all this junk?
 Performance, performance, performance
 MPI was designed with constructors in mind, who would endlessly

tune code to extract the best out of the platform (LINPACK
benchmark).

 Playing with the different versions of MPI_?send can improve
performance without modifying program semantics

 Playing with the different versions of MPI_?send can modify
program semantics

 Typically parallel codes do not face very complex distributed
system problems and it’s often more about performance than
correctness.

 You’ll want to play with these to tune the performance of your code
in your assignments

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

Example: Sending and
Receiving

#include <unistd.h>
#include <mpi.h>
int main(int argc, char **argv) {
 int i, my_rank, nprocs, x[4];
 MPI_Init(&argc,&argv);
 MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);
 if (my_rank == 0) { /* master */
 x[0]=42; x[1]=43; x[2]=44; x[3]=45;
 MPI_Comm_size(MPI_COMM_WORLD,&nprocs);
 for (i=1;i<nprocs;i++)
 MPI_Send(x,4,MPI_INT,i,0,MPI_COMM_WORLD);
 } else { /* worker */
 MPI_Status status;
 MPI_Recv(x,4,MPI_INT,0,0,MPI_COMM_WORLD,&status);
 }
 MPI_Finalize();
 exit(0);
}

destination
and

source

user-defined
tag

Max number of
elements to receive

Can be examined via calls
like MPI_Get_count(), etc.

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

Example: Deadlock

...

MPI_Ssend()

MPI_Recv()

...

...

MPI_Buffer_attach()

MPI_Bsend()

MPI_Recv()

...

...

MPI_Buffer_attach()

MPI_Bsend()

MPI_Recv()

...

...

MPI_Ssend()

MPI_Recv()

...

...

MPI_Buffer_attach()

MPI_Bsend()

MPI_Recv()

...

...

MPI_Ssend()

MPI_Recv()

...

Deadlock

No
Deadlock

No
Deadlock

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

What about MPI_Send?

 MPI_Send is either synchronous or
buffered....

 With , running “some” version of MPICH
...

MPI_Send()

MPI_Recv()

...

...

MPI_Send()

MPI_Recv()

...

Deadlock

No
Deadlock

Data size > 127999 bytes

Data size < 128000 bytes

 Rationale: a correct MPI program should not rely
on buffering for semantics, just for performance.

 So how do we do this then? ...

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

Non-blocking
communications

 So far we’ve seen blocking communication:
 The call returns whenever its operation is

complete (MPI_SSEND returns once the message
has been received, MPI_BSEND returns once the
message has been buffered, etc..)

 MPI provides non-blocking communication:
the call returns immediately and there is
another call that can be used to check on
completion.

 Rationale: Non-blocking calls let the
sender/receiver do something useful while
waiting for completion of the operation
(without playing with threads, etc.).

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

Non-blocking Communication

 MPI_Issend, MPI_Ibsend, MPI_Isend, MPI_Irsend,
MPI_Irecv

 MPI_Request request;
 MPI_Isend(&x,1,MPI_INT,dest,tag,communicator,&request);

 MPI_Irecv(&x,1,MPI_INT,src,tag,communicator,&request);

 Functions to check on completion: MPI_Wait,
MPI_Test, MPI_Waitany, MPI_Testany, MPI_Waitall,
MPI_Testall, MPI_Waitsome, MPI_Testsome.
MPI_Status status;

MPI_Wait(&request, &status) /* block */

MPI_Test(&request, &status) /* doesn’t block */

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

Example: Non-blocking comm
#include <unistd.h>
#include <mpi.h>
int main(int argc, char **argv) {
 int i, my_rank, x, y;
 MPI_Status status;
 MPI_Request request;
 MPI_Init(&argc,&argv);
 MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);
 if (my_rank == 0) { /* P0 */
 x=42;
 MPI_Isend(&x,1,MPI_INT,1,0,MPI_COMM_WORLD,&request);
 MPI_Recv(&y,1,MPI_INT,1,0,MPI_COMM_WORLD,&status);
 MPI_Wait(&request,&status);
 } else if (my_rank == 1) { /* P1 */
 y=41;
 MPI_Isend(&y,1,MPI_INT,0,0,MPI_COMM_WORLD,&request);
 MPI_Recv(&x,1,MPI_INT,0,0,MPI_COMM_WORLD,&status);
 MPI_Wait(&request,&status);
 }
 MPI_Finalize(); exit(0);
}

No
Deadlock

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

Use of non-blocking comms

 In the previous example, why not just swap one pair
of send and receive?

 Example:
 A logical linear array of N processors, needing to exchange

data with their neighbor at each iteration of an application
 One would need to orchestrate the communications:

 all odd-numbered processors send first
 all even-numbered processors receive first

 Sort of cumbersome and can lead to complicated patterns
for more complex examples

 In this case: just use MPI_Isend and write much simpler code
 Furthermore, using MPI_Isend makes it possible to

overlap useful work with communication delays:
MPI_Isend()
<useful work>
MPI_Wait()

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

Iterative Application Example
for (iterations)

 update all cells
 send boundary values
 receive boundary values

 Would deadlock with MPI_Ssend, and maybe
deadlock with MPI_Send, so must be implemented
with MPI_Isend

 Better version that uses non-blocking
communication to achieve
communication/computation overlap (aka latency
hiding):
for (iterations)
 initiate sending of boundary values to neighbours;
 initiate receipt of boundary values from neighbours;
 update non­boundary cells;
 wait for completion of sending of boundary values;

 wait for completion of receipt of boundary values;
 update boundary cells;

 Saves cost of boundary value communication if
hardware/software can overlap comm and comp

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

Non-blocking
communications

 Almost always better to use non-blocking
 communication can be carried out during blocking system

calls
 communication and communication can overlap
 less likely to have annoying deadlocks
 synchronous mode is better than implementing acks by hand

though
 However, everything else being equal, non-blocking

is slower due to extra data structure bookkeeping
 The solution is just to benchmark

 When you do your programming assignments, you
will play around with different communication types

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

More information

 There are many more functions that allow
fine control of point-to-point communication

 Message ordering is guaranteed
 Detailed API descriptions at the MPI site at

ANL:
 Google “MPI”. First link.
 Note that you should check error codes, etc.

 Everything you want to know about deadlocks
in MPI communication

 http://andrew.ait.iastate.edu/HPC/Papers/mpicheck2/mpicheck2.htm

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

Outlines: MPI

12 Message Passing

13 Introduction to MPI

14 Point-to-Point Communications

15 Collective Communications

Collective Communication

 Operations that allow more than 2 processes
to communicate simultaneously
 barrier
 broadcast
 reduce

 All these can be built using point-to-point
communications, but typical MPI
implementations have optimized them, and
it’s a good idea to use them

 In all of these, all processes place the same
call (in good SPMD fashion), although
depending on the process, some arguments
may not be used

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

Barrier

 Synchronization of the calling processes
 the call blocks until all of the processes

have placed the call
 No data is exchanged
 Similar to an OpenMP barrier

...

MPI_Barrier(MPI_COMM_WORLD)

...

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

Broadcast

 One-to-many communication
 Note that multicast can be

implemented via the use of
communicators (i.e., to create
processor groups)
...

MPI_Bcast(x, 4, MPI_INT, 0,
MPI_COMM_WORLD)

...

Rank of the root

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

Broadcast example

 Let’s say the master must send the user
input to all workers

int main(int argc,char **argv) {

int my_rank;

 int input;

MPI_Init(&argc,&argv);

 MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);

 if (argc != 2) exit(1);

 if (sscanf(argv[1],”%d”,&input) != 1) exit(1);

MPI_Bcast(&input,1,MPI_INT,0,MPI_COMM_WORLD);

...

}

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

Scatter

 One-to-many communication
 Not sending the same message to all

root

destinations
...

MPI_Scatter(x, 100, MPI_INT, y, 100, MPI_INT, 0,
MPI_COMM_WORLD)

...

Rank of the root
Send buffer

Receive buffer

Data to send to each Data to receive

. . .

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

This is actually a bit tricky

 The root sends data to itself!

 Arguments #1, #2, and #3 are only
meaningful at the root

master node

work node

work node work node

work node

work node

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

Scatter Example

 Partitioning an array of input among
workers

int main(int argc,char **argv) {
int *a;
double *revbuffer;
...

 MPI_Comm_size(MPI_COMM_WORLD,&n);
<allocate array recvbuffer of size N/n>

if (my_rank == 0) { /* master */
<allocate array a of size N>

}
MPI_Scatter(a, N/n, MPI_INT,

 recvbuffer, N/n, MPI_INT,
 0, MPI_COMM_WORLD);
 ...
}

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

Scatter Example

 Without redundant sending at the root

int main(int argc,char **argv) {
int *a;
double *revbuffer;
...

 MPI_Comm_size(MPI_COMM_WORLD,&n);
if (my_rank == 0) { /* master */

<allocate array a of size N>
<allocate array recvbuffer of size N/n>

 MPI_Scatter(a, N/n, MPI_INT,
 MPI_IN_PLACE, N/n, MPI_INT,
 0, MPI_COMM_WORLD);
 } else { /* worker */

<allocate array recvbuffer of size N/n>
MPI_Scatter(NULL, 0, MPI_INT,

 recvbuffer, N/n, MPI_INT,
 0, MPI_COMM_WORLD);
 }
 ...
}

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

Gather

 Many-to-one communication
 Not sending the same message to the root

root

sources

...

MPI_Gather(x, 100, MPI_INT, y, 100, MPI_INT, 0, MPI_COMM_WORLD)
...

Rank of the root
Send buffer

Receive buffer

Data to send from each Data to receive

. . .

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

Gather-to-all

 Many-to-many communication
 Each process sends the same message to all
 Different Processes send different messages

...

MPI_Allgather(x, 100, MPI_INT, y, 100, MPI_INT, MPI_COMM_WORLD)
...

Send buffer

Receive bufferData to send to each

Data to receive

. . .

. . .

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

All-to-all
 Many-to-many communication
 Each process sends a different message to each other

process

...

MPI_Alltoall(x, 100, MPI_INT, y, 100, MPI_INT, MPI_COMM_WORLD)
...

Send buffer

Receive bufferData to send to each

Data to receive

. . .

. . .

Block i from proc j goes to block j on proc i

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

Reduction Operations

 Used to compute a result from data that is
distributed among processors
 often what a user wants to do anyway

 e.g., compute the sum of a distributed array
 so why not provide the functionality as a single API

call rather than having people keep re-
implementing the same things

 Predefined operations:
 MPI_MAX, MPI_MIN, MPI_SUM, etc.

 Possibility to have user-defined operations

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

MPI_Reduce, MPI_Allreduce

 MPI_Reduce: result is sent out to the root
 the operation is applied element-wise for each

element of the input arrays on each processor
 An output array is returned

 MPI_Allreduce: result is sent out to
everyone

...

MPI_Reduce(x, r, 10, MPI_INT, MPI_MAX, 0, MPI_COMM_WORLD)
...

output arrayinput array array size root

...

MPI_Allreduce(x, r, 10, MPI_INT, MPI_MAX, MPI_COMM_WORLD)
...

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

MPI_Reduce example

3 4 2 8 12 1P0

5 2 5 1 7 11P1

2 4 4 10 4 5P2

1 6 9 3 1 1P3

11 16 20 22 24 18P0

sbuf

rbuf

MPI_Reduce(sbuf,rbuf,6,MPI_INT,MPI_SUM,0,MPI_COMM_WORLD)

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

MPI_Scan: Prefix reduction
 Process i receives data reduced on

process 0 to i.

3 4 2 8 12 1P0

5 2 5 1 7 11P1

2 4 4 10 4 5P2

1 6 9 3 1 1P3

3 4 2 8 12 1P0

8 6 7 9 19 12P1

10 10 11 19 23 17P2

11 16 12 22 24 18P3

MPI_Scan(sbuf,rbuf,6,MPI_INT,MPI_SUM,MPI_COMM_WORLD)

sbuf rbuf

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

And more...

 Most broadcast operations come with a
version that allows for a stride (so that blocks
do not need to be contiguous)
 MPI_Gatherv(), MPI_Scatterv(), MPI_Allgatherv(),

MPI_Alltoallv()
 MPI_Reduce_scatter(): functionality

equivalent to a reduce followed by a scatter
 All the above have been created as they are

common in scientific applications and save
code

 All details on the MPI Webpage

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications

Part V

Conclusion

Conclusion

Multi-threading

cannot be avoided in current HPC (Multi cores, GPU, etc.)
directly or through languages/middlewares
synchronisation is required

automatic but often not efficient
manually but difficult for the programmer

Message passing

cannot be avoided in current HPC (cluster, grid, etc.)
required for efficient distributed programs
middlewares as MPI can help the programmer

high-level concepts (communicators, etc.)
support for collective communications

Next week

Mixing threads and messages

part of MPI-2
very difficult to get an efficient implementation

reactivity to asynchronous messages
really overlaping computations over communications

efficient data and threads placements

Semantics in programming interfaces
How to avoid to rewrite its program each time a new
architecture is available ?

	Outlines
	Part I: High Performance Architectures
	Part II: Parallelism and Threads
	Part III: Synchronisation
	Part IV: MPI

	High Performance Architectures
	Parallel Machines with Shared Memory
	ILP and multi-cores
	Symmetric Multi Processors

	Parallel Machines with Distributed Memory
	Clusters
	Grids

	Current Architectures in HPC

	Parallelism and Threads
	Introduction to Threads
	Kinds of threads
	User threads
	Kernel threads
	Mixed models

	User Threads and Blocking System Calls
	Scheduler Activations

	Thread Programming Interface
	POSIX Threads
	Linux POSIX Threads Libraries
	Basic POSIX Thread API

	Synchronisation
	Hardware Support
	Busy-waiting Synchronisation
	High-level Synchronisation Primitives
	Semaphores
	Monitors

	Some examples with Linux
	Old Linux libpthread
	New POSIX Thread Library

	MPI
	Message Passing
	Introduction to MPI
	Point-to-Point Communications
	Collective Communications

	Conclusion

