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Outlines

High Performance Computing

Needs are always here
numerical or financial simulation, modelisation, virtual
reality virtuelle
more data, more details, . . .

Computing power will never be enough

One way to follow: using parallelism
Idea: change space into time
more resources to gain some time
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Parallel Architectures

Two main kinds
Architectures with shared memory and architectures with
distributed memory.

Multiprocessors
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Parallel Machines with Shared Memory
Parallel Machines with Distributed Memory

Current Architectures in HPC

ILP and multi-cores
Symmetric Multi Processors

Why several processors/cores ?

Limits for monocore processors
superscalar processors: instruction level parallelism
frequency
electrical power

What to do with place available on chips ?
caches (bigger and quicker)
several series of registers (hyperthreaded processors)
several series of cores (multi-core processors)
all of that
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Symmetric Multi Processors

all processors have access to the same memory and I/O
most common multiprocessor systems today use an SMP
architecture
in case of multi-core processors, the SMP architecture
applies to the cores, treating them as separate processors

Non Uniform Memory Access Architectures
memory access time depends on the memory location
relative to a processor
better scaling hardware architecture
harder to program efficiently: trade off needed between
load-balancing and memory data locality



  

Towards more and more 
hierarchical computers
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Current Architectures in HPC

Clusters
Grids

Clusters

Composed of a few to hundreds of machines
often homogeneous

same processor, memory, etc.
often linked with a high speed, low latency network

Myrinet, InfinityBand, Quadrix, etc.

Biggest clusters can be split in several parts
computing nodes
I/O nodes
front (interactive) node



Parallel Machines with Shared Memory
Parallel Machines with Distributed Memory

Current Architectures in HPC

Clusters
Grids

Grids

Lots of heterogeneous resources

aggregation of clusters and/or standalone nodes
high latency network (Internet for example)
often dynamic resources (clusters/nodes appear and
disappear)
different architectures, networks, etc.



Parallel Machines with Shared Memory
Parallel Machines with Distributed Memory

Current Architectures in HPC

Current Architectures in HPC

Hierarchical Architectures
HT technology
multi-core processor
multi processors machine
cluster of machines
grid of clusters and individual machines

Even more complexity
computing on GPU

require specialized codes but hardware far more powerful
FPGA

hardware can be specialized on demand
still lots of work on interface programming here
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Operating system Resources management
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Introduction to Threads

Why threads ?
To take profit from shared memory parallel architectures

SMP, hyperthreaded, multi-core, NUMA, etc. processors
future Intel processors: several hundreds cores

To describe the parallelism within the applications
independent tasks, I/O overlap, etc.

What will use threads ?
User application codes

directly (with thread libraries)
POSIX API (IEEE POSIX 1003.1C norm) in C, C++, . . .

with high-level programming languages (Ada, OpenMP, . . . )
Middleware programming environments

demonized tasks (garbage collector, . . . ), . . .
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User threads
Kernel threads
Mixed models

Mixed models

Characteristics
Library Efficiency Flexibility SMP Blocking syscalls

User + + - -
Kernel - - + +
Mixed + + + limited

Summary
Mixed libraries seems more attractive however they are more
complex to develop. They also suffer from the blocking system
call problem.
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User Threads and Blocking System Calls

User level library

Kernel scheduler

User scheduler

Mixed library

Kernel scheduler

User scheduler
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Scheduler Activations

Idea proposed by Anderson et al. (91)
Dialogue (and not monologue) between the user and kernel
schedulers

the user scheduler uses system calls
the kernel scheduler uses upcalls

Upcalls
Notify the application of scheduling kernel events

Activations
a new structure to support upcalls
a kinf of kernel thread or virtual processor

creating and destruction managed by the kernel
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Scheduler Activations

Instead of:

InterruptionExternal request

space
User

Kernel Time

...better use the following schema:

Interruption

Act. A

External request

space
User

Kernel Time
upcall(unblocked, preempted, new)

Act. C
Act. A (next)

Act. B

upcall(blocked, new)
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Normalisation of the thread interface

Before the norm
each Unix had its (slightly) incompatible interface
but same kinds of features was present

POSIX normalisation
IEEE POSIX 1003.1C norm (also called POSIX threads
norm)
Only the API is normalised (not the ABI)

POSIX thread libraries can easily be switched at source
level but not at runtime

POSIX threads own
processor registers, stack, etc.
signal mask

POSIX threads can be of any kind (user, kernel, etc.)
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Linux POSIX Threads Libraries

LinuxThread (1996) : kernel level, Linux standard thread
library for a long time, not fully POSIX compliant

GNU-Pth (1999) : user level, portable, POSIX
NGPT (2002) : mixed, based on GNU-Pth, POSIX, not

developed anymore
NPTL (2002) : kernel level, POSIX, current Linux

standard thread library
PM2/Marcel (2001) : mixed, POSIX compliant, lots of

extensions for HPC (scheduling control, etc.)
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Basic POSIX Thread API

Creation/destruction
int pthread_create(pthread_t *thread, const
pthread_attr_t *attr, void

*(*start_routine)(void*), void *arg)

void pthread_exit(void *value_ptr)

int pthread_join(pthread_t thread, void

**value_ptr)

Synchronisation (semaphores)
int sem_init(sem_t *sem, int pshared, unsigned
int value)

int sem_wait(sem_t *sem)

int sem_post(sem_t *sem)

int sem_destroy(sem_t *sem)
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Basic POSIX Thread API (2)

Synchronisation (mutex)
int pthread_mutex_init(pthread_mutex_t *mutex,
const pthread_mutexattr_t *attr)

int pthread_mutex_lock(pthread_mutex_t *mutex)

int pthread_mutex_unlock(pthread_mutex_t
*mutex)

int pthread_mutex_destroy(pthread_mutex_t
*mutex)

Synchronisation (conditions)
int pthread_cond_init(pthread_cond_t *cond,
const pthread_condattr_t *attr)

int pthread_cond_wait(pthread_cond_t *cond,
pthread_mutex_t *mutex)

int pthread_cond_signal(pthread_cond_t *cond)

int pthread_cond_broadcast(pthread_cond_t
*cond)

int pthread_cond_destroy(pthread_cond_t *cond)
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Basic POSIX Thread API (3)

Per thread data
int pthread_key_create(pthread_key_t *key, void
(*destr_function) (void*))

int pthread_key_delete(pthread_key_t key)

int pthread_setspecific(pthread_key_t key,
const void *pointer)

void * pthread_getspecific(pthread_key_t key)

The new __thread C keyword
used for a global per-thread variable
need support from the compiler and the linker at compile
time and execute time
libraries can have efficient per-thread variables without
disturbing the application
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What happens with incrementations in parallel?

for (i=0; i<10; i++){

var++;

for (i=0; i<10; i++){

var++;

Hardware support required
TAS atomic test and set instruction

cmpexchge compare and exchange
atomic operation incrementation, decrementation, adding, etc.
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while (! TAS(&var))

;
/* in critical section */
var=0;

Busy waiting
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+ no OS or lib support required

- use a processor while not doing anything

- does not scale if there are lots of waiters
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Critical section with busy waiting

Example of code
while (! TAS(&var))

while (var) ;
/* in critical section */
var=0;

Busy waiting

+ very reactive

+ no OS or lib support required

- use a processor while not doing anything

- does not scale if there are lots of waiters
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Semaphores
Monitors

Semaphores

Internal state: a counter initialised to a positive or null value
Two methods:

P(s) wait for a positive counter then decrease it
once

V(s) increase the counter

Common analogy: a box with tokens
Initial state: the box has n tokens in it
One can put one more token in the box (V)
One can take one token from the box (P) waiting if none is
available
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Semaphores
Monitors

Monitors

Mutex
Two states: locked or not
Two methods:

lock(m) take the mutex
unlock(m) release the mutex (must be done by the

thread owning the mutex)

Conditions
waiting thread list (conditions are not related with tests)
Three methods:

wait(c, m) sleep on the condition. The mutex is released
atomically during the wait.

signal(c) one sleeping thread is wake up
broadcast(c) all sleeping threads are wake up
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Old Linux libpthread
New POSIX Thread Library

Old Linux libpthread

First Linux kernel thread library
limited kernel support available
provides POSIX primitives (mutexes, conditions,
semaphores, etc.)

All internal synchronisation built on signals

lots of play with signal masks
one special (manager) thread used internally to manage
thread state and synchronisation
race conditions not always handled (not enough kernel
support)
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Old Linux libpthread
New POSIX Thread Library

NPTL: New POSIX Thread Library

New Linux kernel thread library
requires new kernel support (available from Linux 2.6)
specific support in the libc
a lot more efficient
fully POSIX compliant

Internal synchronisation based on futex
new kernel object
mutex/condition/semaphore can be fully handled in user
space unless there is contention
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Message Passing

 The above is a programming model and things may look 
different in the actual implementation (e.g., MPI over 
Shared Memory)

 Message Passing is popular because it is general:
 Pretty much any distributed system works by exchanging 

messages, at some level
 Distributed- or shared-memory multiprocessors, networks of 

workstations, uniprocessors
 It is not popular because it is easy (it’s not) 

P

M

P

M

P

M
. . .

network

 Each processor runs a process
 Processes communicate by 

exchanging messages
 They cannot share memory in 

the sense that they cannot 
address the same memory cells

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications



Code Parallelization
 Shared-memory programming

 Parallelizing existing code can be very easy
 OpenMP: just add a few pragmas
 Pthreads: wrap work in do_work functions

 Understanding parallel code is easy
 Incremental parallelization is natural

 Distributed-memory programming
 parallelizing existing code can be very difficult

 No shared memory makes it impossible to “just” 
reference variables

 Explicit message exchanges can get really tricky
 Understanding parallel code is difficult

 Data structured are split all over different memories
 Incremental parallelization can be challenging

Courtesy of Henri Casanova
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Programming Message 
Passing

 Shared-memory programming is simple conceptually 
(sort of)

 Shared-memory machines are expensive when one 
wants a lot of processors

 It’s cheaper (and more scalable) to build distributed 
memory machines
 Distributed memory supercomputers (IBM SP series)
 Commodity clusters

 But then how do we program them?
 At a basic level, let the user deal with explicit 

messages
 difficult
 but provides the most flexibility

Courtesy of Henri Casanova
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Message Passing

 Isn’t exchanging messages completely known 
and understood?
 That’s the basis of the IP idea
 Networked computers running programs that 

communicate are very old and common
 DNS, e-mail, Web, ...

 The answer is that, yes it is, we have 
“Sockets”
 Software abstraction of a communication between 

two Internet hosts
 Provides and API for programmers so that they do 

not need to know anything (or almost anything) 
about TCP/IP and write code with programs that 
communicate over the internet

Courtesy of Henri Casanova
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Using Sockets for parallel 
programming?

 One could thing of writing all parallel code on a 
cluster using sockets
 n nodes in the cluster
 Each node creates n-1 sockets on n-1 ports
 All nodes can communicate

 Problems with this approach
 Complex code
 Only point-to-point communication
 No notion of types messages
 But

 All this complexity could be “wrapped” under a higher-level API
 And in fact, we’ll see that’s the basic idea

 Does not take advantage of fast networking within a cluster/
MPP

 Sockets have “Internet stuff” in them that’s not necessary
 TPC/IP may not even be the right protocol!

Courtesy of Henri Casanova
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Message Passing for Parallel 
Programs

 Although “systems” people are happy 
with sockets, people writing parallel 
applications need something better
 easier to program to
 able to exploit the hardware better within a 

single machine
 This “something better” right now is 

MPI
 We will learn how to write MPI programs

 Let’s look at the history of message 
passing for parallel computing

Courtesy of Henri Casanova
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The MPI Standard
 MPI Forum setup as early as 1992 to come up with a de facto 

standard with the following goals:
 source-code portability
 allow for efficient implementation (e.g., by vendors)
 support for heterogeneous platforms

 MPI is not
 a language
 an implementation (although it provides hints for 

implementers)
 June 1995: MPI v1.1  (we’re now at MPI v1.2)

 http://www-unix.mcs.anl.gov/mpi/
 C and FORTRAN bindings
 We will use MPI v1.1 from C in the class

 Implementations:
 well-adopted by vendors
 free implementations for clusters: MPICH, LAM, CHIMP/MPI
 research in fault-tolerance: MPICH-V, FT-MPI, MPIFT, etc.

Courtesy of Henri Casanova
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SPMD Programs
 It is rare for a programmer to write a different program for each 

process of a parallel application
 In most cases, people write Single Program Multiple Data 

(SPMD) programs
 the same program runs on all participating processors
 processes can be identified by some rank
 This allows each process to know which piece of the problem to 

work on
 This allows the programmer to specify that some process does 

something, while all the others do something else (common in 
master-worker computations)

main(int argc, char **argv) {
   if (my_rank == 0) { /* master */
     ... load input and dispatch ...
   } else { /* workers */
     ... wait for data and compute ...
   }
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MPI Concepts

 Fixed number of processors
 When launching the application one must specify the 

number of processors to use, which remains unchanged 
throughout execution

 Communicator
 Abstraction for a group of processes that can communicate
 A process can belong to multiple communicators
 Makes is easy to partition/organize the application in 

multiple layers of communicating processes
 Default and global communicator: MPI_COMM_WORLD

 Process Rank
 The index of a process within a communicator
 Typically user maps his/her own virtual topology on top of 

just linear ranks
 ring, grid, etc.
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MPI Communicators

MPI_COMM_WORLD

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

User-created
Communicator

21

3 4 5

876

0

1

0

User-created
Communicator
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A First MPI Program
#include <unistd.h>
#include <mpi.h>
int main(int argc, char **argv) {
  int my_rank, n;
  char hostname[128];
  MPI_init(&argc,&argv);
  MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);
  MPI_Comm_size(MPI_COMM_WORLD,&n);
  gethostname(hostname,128);
  if (my_rank == 0) { /* master */
    printf(“I am the master: %s\n”,hostname);
  } else { /* worker */
    printf(“I am a worker: %s (rank=%d/%d)\n”,
           hostname,my_rank,n­1);
  }
  MPI_Finalize();
  exit(0);
}

Has to be called first, and once

Has to be called last, and once
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Compiling/Running it

 Compile with mpicc
 Run with mpirun

% mpirun ­np 4 my_program <args>
 requests 4 processors for running my_program with command-

line arguments
 see the mpirun man page for more information
 in particular the ­machinefile option that is used to run on a 

network of workstations
 Some systems just run all programs as MPI programs and 

no explicit call to mpirun is actually needed
 Previous example program:
% mpirun ­np 3 ­machinefile hosts my_program 
  I am the master: somehost1
  I am a worker: somehost2 (rank=2/2)
  I am a worker: somehost3 (rank=1/2)

(stdout/stderr redirected to the process calling mpirun)
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Point-to-Point Communication

 Data to be communicated is described by three 
things:
 address
 data type of the message
 length of the message

 Involved processes are described by two things
 communicator
 rank

 Message is identified by a “tag” (integer) that 
can be chosen by the user

P

M

P

M
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Point-to-Point Communication

 Two modes of communication:
 Synchronous: Communication does not 

complete until the message has been 
received

 Asynchronous: Completes as soon as the 
message is “on its way”, and hopefully it 
gets to destination

 MPI provides four versions
 synchronous, buffered, standard, ready
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Synchronous/Buffered sending in 
MPI

 Synchronous with MPI_Ssend
 The send completes only once the receive has 

succeeded
 copy data to the network, wait for an ack
 The sender has to wait for a receive to be posted
 No buffering of data

 Buffered with MPI_Bsend
 The send completes once the message has been 

buffered internally by MPI
 Buffering incurs an extra memory copy
 Doe not require a matching receive to be posted
 May cause buffer overflow if many bsends and no 

matching receives have been posted yet
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Standard/Ready Send

 Standard with MPI_Send
 Up to MPI to decide whether to do synchronous or 

buffered, for performance reasons
 The rationale is that a correct MPI program should 

not rely on buffering to ensure correct semantics
 Ready with MPI_Rsend

 May be started only if the matching receive has 
been posted

 Can be done efficiently on some systems as no 
hand-shaking is required
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MPI_RECV

 There is only one MPI_Recv, which returns when the data has 
been received.
 only specifies the MAX number of elements to receive

 Why all this junk?
 Performance, performance, performance
 MPI was designed with constructors in mind, who would endlessly 

tune code to extract the best out of the platform (LINPACK 
benchmark).

 Playing with the different versions of MPI_?send can improve 
performance without modifying program semantics

 Playing with the different versions of MPI_?send can modify 
program semantics

 Typically parallel codes do not face very complex distributed 
system problems and it’s often more about performance than 
correctness.

 You’ll want to play with these to tune the performance of your code 
in your assignments
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Example: Sending and 
Receiving

#include <unistd.h>
#include <mpi.h>
int main(int argc, char **argv) {
  int i, my_rank, nprocs, x[4];
  MPI_Init(&argc,&argv);
  MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);
  if (my_rank == 0) { /* master */
    x[0]=42; x[1]=43; x[2]=44; x[3]=45;
    MPI_Comm_size(MPI_COMM_WORLD,&nprocs);
    for (i=1;i<nprocs;i++)
      MPI_Send(x,4,MPI_INT,i,0,MPI_COMM_WORLD);
  } else { /* worker */
    MPI_Status status;
    MPI_Recv(x,4,MPI_INT,0,0,MPI_COMM_WORLD,&status);
  }
  MPI_Finalize();
  exit(0);
}

destination
and

source

user-defined
tag

Max number of
elements to receive

Can be examined via calls
like MPI_Get_count(), etc.
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Example: Deadlock

...

MPI_Ssend()

MPI_Recv()

...

...

MPI_Buffer_attach()

MPI_Bsend()

MPI_Recv()

...

...

MPI_Buffer_attach()

MPI_Bsend()

MPI_Recv()

...

...

MPI_Ssend()

MPI_Recv()

...

...

MPI_Buffer_attach()

MPI_Bsend()

MPI_Recv()

...

...

MPI_Ssend()

MPI_Recv()

...

Deadlock

No
Deadlock

No
Deadlock
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What about MPI_Send? 

 MPI_Send is either synchronous or 
buffered.... 

 With , running “some” version of MPICH
...

MPI_Send()

MPI_Recv()

...

...

MPI_Send()

MPI_Recv()

...

Deadlock

No
Deadlock

Data size > 127999 bytes

Data size < 128000 bytes

 Rationale: a correct MPI program should not rely 
on buffering for semantics, just for performance. 

 So how do we do this then? ...
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Non-blocking 
communications

 So far we’ve seen blocking communication:
 The call returns whenever its operation is 

complete (MPI_SSEND returns once the message 
has been received, MPI_BSEND returns once the 
message has been buffered, etc..)

 MPI provides non-blocking communication: 
the call returns immediately and there is 
another call that can be used to check on 
completion. 

 Rationale: Non-blocking calls let the 
sender/receiver do something useful while 
waiting for completion of the operation 
(without playing with threads, etc.).
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Non-blocking Communication

 MPI_Issend, MPI_Ibsend, MPI_Isend, MPI_Irsend, 
MPI_Irecv

  MPI_Request request;
  MPI_Isend(&x,1,MPI_INT,dest,tag,communicator,&request);

  MPI_Irecv(&x,1,MPI_INT,src,tag,communicator,&request);

 Functions to check on completion:      MPI_Wait, 
MPI_Test, MPI_Waitany, MPI_Testany, MPI_Waitall, 
MPI_Testall, MPI_Waitsome, MPI_Testsome. 
MPI_Status status;

MPI_Wait(&request, &status) /* block */

MPI_Test(&request, &status) /* doesn’t block */
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Example: Non-blocking comm
#include <unistd.h>
#include <mpi.h>
int main(int argc, char **argv) {
  int i, my_rank, x, y;
  MPI_Status status;
  MPI_Request request;
  MPI_Init(&argc,&argv);
  MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);
  if (my_rank == 0) { /* P0 */
    x=42;
    MPI_Isend(&x,1,MPI_INT,1,0,MPI_COMM_WORLD,&request);
    MPI_Recv(&y,1,MPI_INT,1,0,MPI_COMM_WORLD,&status);
    MPI_Wait(&request,&status); 
 } else if (my_rank == 1) { /* P1 */
    y=41;
    MPI_Isend(&y,1,MPI_INT,0,0,MPI_COMM_WORLD,&request);
    MPI_Recv(&x,1,MPI_INT,0,0,MPI_COMM_WORLD,&status);
    MPI_Wait(&request,&status); 
  }
  MPI_Finalize(); exit(0);
}

No
Deadlock
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Use of non-blocking comms

 In the previous example, why not just swap one pair 
of send and receive?

 Example:
 A logical linear array of N processors, needing to exchange 

data with their neighbor at each iteration of an application
 One would need to orchestrate the communications:

 all odd-numbered processors send first
 all even-numbered processors receive first

 Sort of cumbersome and can lead to complicated patterns 
for more complex examples

 In this case: just use MPI_Isend and write much simpler code 
 Furthermore, using MPI_Isend makes it possible to 

overlap useful work with communication delays:
MPI_Isend()
<useful work>
MPI_Wait()
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Iterative Application Example
for (iterations)

    update all cells
    send boundary values
    receive boundary values

 Would deadlock with MPI_Ssend, and maybe 
deadlock with MPI_Send, so must be implemented 
with MPI_Isend

 Better version that uses non-blocking 
communication to achieve 
communication/computation overlap (aka latency 
hiding):
for (iterations) 
  initiate sending of boundary values to neighbours;
  initiate receipt of boundary values from neighbours;
  update non­boundary cells;         
  wait for completion of sending of boundary values;    
     
  wait for completion of receipt of boundary values;
  update boundary cells;

 Saves cost of boundary value communication if 
hardware/software can overlap comm and comp
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Non-blocking 
communications

 Almost always better to use non-blocking
 communication can be carried out during blocking system 

calls
 communication and communication can overlap
 less likely to have annoying deadlocks
 synchronous mode is better than implementing acks by hand 

though
 However, everything else being equal, non-blocking 

is slower due to extra data structure bookkeeping
 The solution is just to benchmark

 When you do your programming assignments, you 
will play around with different communication types
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More information

 There are many more functions that allow 
fine control of point-to-point communication

 Message ordering is guaranteed
 Detailed API descriptions at the MPI site at 

ANL:
 Google “MPI”. First link.
 Note that you should check error codes, etc.

 Everything you want to know about deadlocks 
in MPI communication

   http://andrew.ait.iastate.edu/HPC/Papers/mpicheck2/mpicheck2.htm
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Collective Communication 

 Operations that allow more than 2 processes 
to communicate simultaneously
 barrier
 broadcast
 reduce

 All these can be built using point-to-point 
communications, but typical MPI 
implementations have optimized them, and 
it’s a good idea to use them

 In all of these, all processes place the same 
call (in good SPMD fashion), although 
depending on the process, some arguments 
may not be used
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Barrier

 Synchronization of the calling processes
 the call blocks until all of the processes 

have placed the call
 No data is exchanged
 Similar to an OpenMP barrier

...

MPI_Barrier(MPI_COMM_WORLD)

...
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Broadcast

 One-to-many communication
 Note that multicast can be 

implemented via the use of 
communicators (i.e., to create 
processor groups)
...

MPI_Bcast(x, 4, MPI_INT, 0, 
MPI_COMM_WORLD) 

...

Rank of the root

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications



Broadcast example

 Let’s say the master must send the user 
input to all workers

int main(int argc,char **argv) {

int my_rank;

 int input;

MPI_Init(&argc,&argv);

  MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);

 if (argc != 2) exit(1);

   if (sscanf(argv[1],”%d”,&input) != 1) exit(1);

MPI_Bcast(&input,1,MPI_INT,0,MPI_COMM_WORLD);

...

}
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Scatter

 One-to-many communication
 Not sending the same message to all

root

destinations
...

MPI_Scatter(x, 100, MPI_INT, y, 100, MPI_INT, 0, 
MPI_COMM_WORLD) 

...

Rank of the root
Send buffer

Receive buffer

Data to send to each Data to receive

.  .  .
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This is actually a bit tricky

 The root sends data to itself!

 Arguments #1, #2, and #3 are only 
meaningful at the root

master node

work node

work node work node

work node

work node
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Scatter Example

 Partitioning an array of input among 
workers

int main(int argc,char **argv) {
int *a;
double *revbuffer;
... 

 MPI_Comm_size(MPI_COMM_WORLD,&n);
<allocate array recvbuffer of size N/n>

if (my_rank == 0) { /* master */
<allocate array a of size N>

}
MPI_Scatter(a, N/n, MPI_INT, 

                   recvbuffer, N/n, MPI_INT, 
                   0, MPI_COMM_WORLD); 
 ...
}
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Scatter Example

 Without redundant sending at the root

int main(int argc,char **argv) {
int *a;
double *revbuffer;
... 

 MPI_Comm_size(MPI_COMM_WORLD,&n);
if (my_rank == 0) { /* master */

<allocate array a of size N>
<allocate array recvbuffer of size N/n>

  MPI_Scatter(a, N/n, MPI_INT, 
                   MPI_IN_PLACE, N/n, MPI_INT, 
                   0, MPI_COMM_WORLD); 
   } else { /* worker */

<allocate array recvbuffer of size N/n>
MPI_Scatter(NULL, 0, MPI_INT, 

                   recvbuffer, N/n, MPI_INT, 
                   0, MPI_COMM_WORLD);
   }
 ...
}
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Gather

 Many-to-one communication
 Not sending the same message to the root

root

sources

...

MPI_Gather(x, 100, MPI_INT, y, 100, MPI_INT, 0, MPI_COMM_WORLD) 
...

Rank of the root
Send buffer

Receive buffer

Data to send from each Data to receive

.  .  .
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Gather-to-all

 Many-to-many communication
 Each process sends the same message to all
 Different Processes send different messages

...

MPI_Allgather(x, 100, MPI_INT, y, 100, MPI_INT, MPI_COMM_WORLD) 
...

Send buffer

Receive bufferData to send to each

Data to receive

.  .  .

.  .  .
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All-to-all
 Many-to-many communication
 Each process sends a different message to each other 

process

...

MPI_Alltoall(x, 100, MPI_INT, y, 100, MPI_INT, MPI_COMM_WORLD) 
...

Send buffer

Receive bufferData to send to each

Data to receive

.  .  .

.  .  .

Block i from proc j goes to block j on proc i
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Reduction Operations

 Used to compute a result from data that is 
distributed among processors
 often what a user wants to do anyway

 e.g., compute the sum of a distributed array
 so why not provide the functionality as a single API 

call rather than having people keep re-
implementing the same things

 Predefined operations:
 MPI_MAX, MPI_MIN, MPI_SUM, etc.

 Possibility to have user-defined operations
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MPI_Reduce, MPI_Allreduce

 MPI_Reduce: result is sent out to the root
 the operation is applied element-wise for each 

element of the input arrays on each processor
 An output array is returned

 MPI_Allreduce: result is sent out to 
everyone

...

MPI_Reduce(x, r, 10, MPI_INT, MPI_MAX, 0, MPI_COMM_WORLD) 
...

output arrayinput array array size root

...

MPI_Allreduce(x, r, 10, MPI_INT, MPI_MAX, MPI_COMM_WORLD) 
...
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MPI_Reduce example

3 4 2 8 12 1P0

5 2 5 1 7 11P1

2 4 4 10 4 5P2

1 6 9 3 1 1P3

11 16 20 22 24 18P0

sbuf

rbuf

MPI_Reduce(sbuf,rbuf,6,MPI_INT,MPI_SUM,0,MPI_COMM_WORLD)
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MPI_Scan: Prefix reduction
 Process i receives data reduced on 

process 0 to i.

3 4 2 8 12 1P0

5 2 5 1 7 11P1

2 4 4 10 4 5P2

1 6 9 3 1 1P3

3 4 2 8 12 1P0

8 6 7 9 19 12P1

10 10 11 19 23 17P2

11 16 12 22 24 18P3

MPI_Scan(sbuf,rbuf,6,MPI_INT,MPI_SUM,MPI_COMM_WORLD)

sbuf rbuf
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And more...

 Most broadcast operations come with a 
version that allows for a stride (so that blocks 
do not need to be contiguous)
 MPI_Gatherv(), MPI_Scatterv(), MPI_Allgatherv(), 

MPI_Alltoallv()
 MPI_Reduce_scatter(): functionality 

equivalent to a reduce followed by a scatter 
 All the above have been created as they are 

common in scientific applications and save 
code

 All details on the MPI Webpage

Courtesy of Henri Casanova

Message Passing
Introduction to MPI

Point-to-Point Communications
Collective Communications



Part V

Conclusion



Conclusion

Multi-threading

cannot be avoided in current HPC (Multi cores, GPU, etc.)
directly or through languages/middlewares
synchronisation is required

automatic but often not efficient
manually but difficult for the programmer

Message passing

cannot be avoided in current HPC (cluster, grid, etc.)
required for efficient distributed programs
middlewares as MPI can help the programmer

high-level concepts (communicators, etc.)
support for collective communications



Next week

Mixing threads and messages

part of MPI-2
very difficult to get an efficient implementation

reactivity to asynchronous messages
really overlaping computations over communications

efficient data and threads placements

Semantics in programming interfaces
How to avoid to rewrite its program each time a new
architecture is available ?
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