Parallel Algorithms
Design

and
Implementation

Jean-Louis.Roch at imag.fr

MOAIS / Lab. Informatique Grenoble, INRIA,
France

Overview

® Machine model and work-stealing
*Work and depth
¢ Fundamental theorem
¢ Parallel divide & conquer
¢ Examples
eAccumulate
*Monte Carlo simulations
*Prefix/partial sum

» Work-stealing theorem

e Course 2: Work-first principle - Amortizing the overhead of parallelism
*Sorting and merging

* Course 3: Amortizing the overhead of synchronization and communications
*Numerical computations : FFT, marix computations; Domain decompositions

Interactive parallel computation?

Any application is “parallel’:
ecomposition of several programs / library procedures (possibly concurrent) ;

eeach procedure written independently and also possibly parallel itself.

Interactive
Distributed

Simulation
3D-reconstruction
+ simulation

+ rendering

[B Raffin &E Boyer]
- 1 monitor

- 5 cameras,

-6 PCs

NEW pal‘a||3| SUppOI‘tS from small too large

Parallel chips & multi-core architectures:
- MPSoCs (Multi-Processor Systems-on-Chips)
- GPU : graphics processors (and programmable: Shaders; Cuda SDK) M
- Dual Core processors (Opterons, Itanium, etc.)
- Heteregoneous multi-cores : CPUs + GPUs + DSPs+ FPGAs (Cell)

Commodity SMPs:
- 8 way PCs equipped with multi-core processors (AMD Hypertransport) + 2 GPUs

Clusters:
- 72% of top 500 machines
- Trends: more processing units, faster networks (PCI- Express)
- Heterogeneous (CPUs, GPUs, FPGAs)

Grids:
- Heterogeneous networks
- Heterogeneous administration policies
- Resource Volatility

Dedicated platforms: eg Virtual Reality/Visualization Clusters:
- Scientific Visualization and Computational Steering

- PC clusters + graphics cards + multiple I/O devices
(cameras, 3D trackers, multi-projector displays)

Grimage platform

4

The problem

To design a single algorithm that computes efficiently prefix(a) on
an arbitrary dynamic_architecture

Sequential parallel / parallel
algorithm p=2 P=100 E

parallel
P=max

Which algorithm
to choose ?

I A x> " wy

Heterogeneous network Multi-user SMP server Grid

Dynamic architecture : non-fixed number of resources, variable speeds
eg: grid, ... but not only: SMP server in multi-users mode

2. Machine model and work stealing

Heterogeneous machine model and work-depth framework
Distributed work stealing

Work-stealing implementation : work first principle

Examples of implementation and programs:
Cilk , Kaapi/Athapascan

Application: Nqueens on an heterogeneous grid

Processor-oblivious algorithms

Dynamic architecture : non-fixed number of resources, variable speeds
eg: grid, SMP server in multi-users mode,....

Networkof workstitions

=> motivates the design of «processor-oblivious» parallel algorithm that:

+ is independent from the underlying architecture:
no reference to p nor II(t) = speed of processor i at time t nor ...

+ on a given architecture, has performance guarantees :
behaves as well as an optimal (off-line, non-oblivious) one

Processor speeds are assumed to change arbitrarily and adversarially:
model [Bender,Rabin 02] IT(t) = instantaneous speed of processor i at time t

(in #unit operations per second)
Assumption : Max;{ IL(t) } < constant . Min; { IT(t) }

Def: for a computation with duration T

+ total speed: I = 2o, p Zeep, 7 TI(1)
* average speed per processor: ,,.=1,,/P
Q\ “Work” W = #total number operations performed

/)\ “Depth” D = #operations on a critical path

({ (~parallel “time” on <« resources)

Q Q For any greedy maximum utilization schedule:

[Graham69, Jaffe80, Bender-Rabin02]
g O W ()D
+

1
< 1-—
makespan o1l ») T

ave

= A distributed and randomized algorithm that
computes a greedy schedule :

» Each processor manages a local task (depth-first execution)

- 10 &

= Adistributed and randomized algorithm that
computes a greedy schedule :

» Each processor manages a local stack (depth-first execution)

- 0=
® o ® e

» When idle, a processor steals the topmost task on a remote -non idle- victim processor
(randomly
chosen)

» Theorem: With good probability, [Acar,Blelloch, Blumofe02, BenderRabin02]

> E
#steals < p.D = w +0(D)

2280

> execution time

> Interest:
if Windependent of p and D is small, work stealing achieves near-optimal schedule

10

Work stealing implementation
Scheduling

efficient policy control of the policy
(close to optimal) (realisation)

Expensive in general (fine grain)
But small overhead if a small
number of tasks

Difficult in general (coarse grain)
But easy if D is small worsteaing

w
Execution time = +0 —
pl,, \I.) - -
(fine grain) (coarse grain)

If D is small, a work stealing algorithm performs a small number of steals

=> Work-first principle: “scheduling overheads should be borne by the critical path
of the computation” [Frigo 98]

Implementation: since all tasks but a few are executed in the local stack, overhead
of task creation should be as close as possible as sequential function call

At any time on any non-idle processor,
efficient local degeneration of the parallel program in a sequential execution

Work-stealing implementations following
the work-first principle : Cilk

= Cilk-5 nttp://supertech.csail.mit.edu/cilk/ : C extension
= Spawn f(a); sync (serie-parallel programs)
= Requires a shared-memory machine
= Depth-first execution with synchronization (on sync) with the end of a task :
- Spawned tasks are pushed in double-ended queue

= “Two-clone” compilation strategy [Frigo-Leiserson-Randall9g] :
« on a successfull steal, a thief executes the continuation on the topmost ready task ;
* When the continuation hasn’t been stolen, “sync” = nop ; else synchronization with its thief

01 cilk int fib (int n) 1 int £ib (int n)

2
02 { 3 frame pointer
03 if (n < 2) return n; g n“;c«’te /v]:;ne

initialize frame

04 else 6 it (n<2) {

7 free(f, sizeof(*f)); free frame
05 { 8 return n;
06 int x, y; M Y e
07 1

. 12 save PC

08 x = spawn fib (n-1); 13 save live vars
09 y = spawn fib (n-2); :: lm‘v;l'/_‘[:'v:::w pointer
10 16 do C call

17 it (pap(x) = nu.m) pop frame
11 sync; 18 return 0; frame stolen
12 19 . ‘second spawn

20 f sync is free!
13 return (x+y); 2 z::i:.(;:;;?r(-m; Jree frame
14 } 23 ¥

24}
15 }

= won the 2006 award "Best Combination of Elegance and Performance” at HPC Challenge Class 2,
SC'06, Tampa, Nov 14 2006 [Kuszmaul] on SGI ALTIX 3700 with 128 bi-Ithanium]

Work-stealing implementations following
the work-first principle : KAAPI

= Kaapi/ Athapascan http:/kaapi.gforge.inria.fr : C++ library
= Fork<f>()(a, ...) with access mode to parameters (value;read;write;r/w;cw) specified

Experimental results on SOFA [CIMIT-ETZH-INRIIG

in f prototype (macro dataflow programs)

Supports distributed and shared memory machines; heterogeneous processors

Depth-first (reference order) execution with synchronization on data access :
« Double-end queue (mutual exclusion with compare-and-swap)
« on a successful steal, one-way data communication (write&signal)

7N [Allard 06]
0w
Bar-fem-implicit-32 Bar-fem-implicit-32
» 8x8x9x4 e Tlm 8x8x9x4
v axax16 P lv axax16
4 6x6x26 T roaahaaa a 6x6x26 ——
+ 8x8x36

X 10x10x46 | §

o BxBX36 [y
X 10x10x46 3 T

y

/

o

g Y
-

g A

Wy =2k

Preliminary results on GPU NVIDIA 8800 GTX
e speed-up ~9 on Bar 10x10x46 to Athlon64 2 4GHz
128 “cores” in 16 groups
*CUDA SDK : “BSP”-like, 16 X [16 .. 512] threads
*Supports most operations available on CPU
*~2000 lines CPU-side + 1000 GPU-side

Speedup

Kaapi (C++, ~500 lines)

10
o Jmoans

6x625
8 Qe

00123 456 78 910111213141516 0123 456 78 910111213141516

Cilk (c, ~240 lines)

Speedup GPU Bar-spring-euler

7

6
5
P
3
2

1 struct sum { B L
2 void operator() (Shared_r < int > a,
3 Shared r < int > b,
4 Shared w < int > r)
5 { r.write(a.read() + b.read()); }
6 };
7
anasais
8 struct fib {
9 void operator() (int n, Shared w<int> r)
10 { if (n <2) r.write(n);
11 else
12 { int rl1, r2;
13 Fork< fib >() (n-1, rl) ;
14 Fork< fib >() (n-2, r2) ;
15 Fork< sum >() (rl, r2, r) ;
16 }
17 } Topuck
18 '} ; :
) Shared inks

Kaapi won the 2006 award “Prix special du Jury” for the best performance at NQueens contest, Plugtests-
Grid&Work’06, Nice, Dec.1, 2006 [Gautier-Guelton] on Grid’5000 1458 processors with different speeds.

Algorithm design

= Cascading divide & Conquer
= W(n) = a.W(n/K) + f(n)
= D(n) = D(n/K) + f(n)

= D(n) = D(sqrt(n)) + log n

1

o T T T T T

4 8
Objects

16

Examples

Accumulate:
= Sequential
= Parallel

Matrix-vector product — Matrix multiplication

Triangular matrix inversion

Maximum on CRCW

Partial sum

Example: Recursive and Monte Carlo
computations

= X Besseron, T. Gautier, E Gobet, &G Huard won the nov. 2008 Plugtest-
Grid&Work’08 contest — Financial mathematics application (Options pricing)

= In 2007, the team won the Nqueens contest; Some facts [on on Grid’5000, a grid
of processors of heterogeneous speeds]
- NQueens(21)in 78 s on about 1000 processors
- Nqueens (22)in 502.9s on 1458 processors
- Nqueens(23) in 4435s on 1422 processors [~24.1033 solutions]
- 0.625% idle time per processor
- < 20s to deploy up to 1000 processes on 1000 machines [Taktuk, Huard]
= - 15% of improvement ?frtlﬁ%(ﬁﬁ)q}{ﬁm'ﬁ(l) due to C++ (tel e orsay G Tt our

1Zal

during contest : *”l m
Grids000 Grid Load Tast day oo ~ i
e wser cre. O wice e cru

6 instances Nqueens(22)

ig
;8

Network

Orsay Notvork Tast hour

Competitor Z
Grid’5000 free
N-Queens(23)

ol
w e
g 8
T D
S &
E £
S 3
O O

B mon

- - 18
Parallelism induces overhead :
e.g. Parallel prefix on fixed architecture
® Prefix problem : =
*input:ag, ay, ..., a, ™= H aj,
s output : =y, ..., m, with k=0
® Sequential algorithm :
® for (n0]=a[0], i=1:i<=n; i++) afi]=ali-1]-a[i]; | performs only n operations

® Fine grain optimal parallel algorithm :
aja;a,aza, ... a

-1 8n

Ladner- iti ime =
! adner = Critical time = 2. log n Parallel
but performs 2.n ops requires
twice more
operations
than
* Tight lower bound on p identical processors: sequential !!

Optimal time T, =2n / (p+1)
but performs 2.n.p/(p+1) ops

