
1

Parallel Algorithms

Design
and

Implementation

 Jean-Louis.Roch at imag.fr

MOAIS / Lab. Informatique Grenoble, INRIA,
 France

2

Overview

•! Machine model and work-stealing!
•!Work and depth!

•! Fundamental theorem !
•! Parallel divide & conquer!
•! Examples!

•!Accumulate!
•!Monte Carlo simulations!
•!Prefix/partial sum!

•! Work-stealing theorem !

•! Course 2: Work-first principle - Amortizing the overhead of parallelism!
•!Sorting and merging"

•! Course 3: Amortizing the overhead of synchronization and communications!
•!Numerical computations : FFT, marix computations; Domain decompositions"

3

Interactive

Distributed

Simulation
3D-reconstruction
+ simulation
+ rendering
[B Raffin &E Boyer]
- 1 monitor
- 5 cameras,
- 6 PCs

Any application is “parallel”:
•!composition of several programs / library procedures (possibly concurrent) ;

•!each procedure written independently and also possibly parallel itself.

Interactive parallel computation?
4

!! Parallel chips & multi-core architectures: "
-! MPSoCs (Multi-Processor Systems-on-Chips)"

-! GPU : graphics processors (and programmable: Shaders; Cuda SDK)"

-! Dual Core processors (Opterons, Itanium, etc.)"

-! Heteregoneous multi-cores : CPUs + GPUs + DSPs+ FPGAs (Cell)"

!! Commodity SMPs:"
-! 8 way PCs equipped with multi-core processors (AMD Hypertransport) + 2 GPUs"

!! Clusters: "

-! 72% of top 500 machines"

-! Trends: more processing units, faster networks (PCI- Express)"

-! Heterogeneous (CPUs, GPUs, FPGAs)"

!! Grids:"

- Heterogeneous networks"

-! Heterogeneous administration policies"

-! Resource Volatility"

!! Dedicated platforms: eg Virtual Reality/Visualization Clusters:"

-! Scientific Visualization and Computational Steering"

-! PC clusters + graphics cards + multiple I/O devices #
" "(cameras, 3D trackers, multi-projector displays)"

!! "

New parallel supports from small too large

Grimage platform

5

Dynamic architecture : non-fixed number of resources, variable speeds

 eg: grid, … but not only: SMP server in multi-users mode

The problem
To design a single algorithm that computes efficiently prefix(a) on

an arbitrary dynamic architecture

Sequential
algorithm

parallel
P=2 parallel

P=100

parallel
P=max

. . .

Multi-user SMP server Grid Heterogeneous network

?
Which algorithm

to choose ?

… …

6

Dynamic architecture : non-fixed number of resources, variable speeds
 eg: grid, SMP server in multi-users mode,….

 => motivates the design of «processor-oblivious» parallel algorithm that:

 + is independent from the underlying architecture:
 no reference to p nor !i(t) = speed of processor i at time t nor …

 + on a given architecture, has performance guarantees :
 behaves as well as an optimal (off-line, non-oblivious) one

Processor-oblivious algorithms

7

2. Machine model and work stealing

!! Heterogeneous machine model and work-depth framework"

!! Distributed work stealing#

!! Work-stealing implementation : work first principle #

!! Examples of implementation and programs: #
""Cilk , Kaapi/Athapascan #

!! Application: Nqueens on an heterogeneous grid "

8

Processor speeds are assumed to change arbitrarily and adversarially:!
model [Bender,Rabin 02] !i(t) = instantaneous speed of processor i at time t

 (in #unit operations per second)

 Assumption : Maxi,t { !i(t) } < constant . Mini,t { !i(t) }

Def: for a computation with duration T

•! total speed: !tot = !i=0,..,P !t=0,..,T !i(t)

•! average speed per processor: !ave = !tot / P

Heterogeneous processors, work and depth

“Work” W = #total number operations performed

“Depth” D = #operations on a critical path

 (~parallel “time” on " resources)

For any greedy maximum utilization schedule:
 [Graham69, Jaffe80, Bender-Rabin02]

 makespan

!

"
W

p.#ave

+ 1$
1

p

%

&
'

(

)
*

D

 #ave

9

The work stealing algorithm

!! A distributed and randomized algorithm that

 computes a greedy schedule :
"! Each processor manages a local task (depth-first execution)

P0 P2 P1 P3

10

P0 P2 P1 P3

"! When idle, a processor steals the topmost task on a remote -non idle- victim processor
 (randomly

chosen)

"! Theorem: With good probability, [Acar,Blelloch, Blumofe02, BenderRabin02]

"! #steals < p.D

"! execution time

"! Interest:
 if W independent of p and D is small, work stealing achieves near-optimal schedule

steal

The work stealing algorithm

!! A distributed and randomized algorithm that

 computes a greedy schedule :
"! Each processor manages a local stack (depth-first execution)

!

"
W

p.#ave

+O
D

#ave

$

%
&

'

(
)

11

Work stealing implementation

Difficult in general (coarse grain)
But easy if D is small [Work-stealing]

 Execution time

 (fine grain)

Expensive in general (fine grain)
But small overhead if a small
number of tasks

 (coarse grain)

Scheduling
efficient policy

(close to optimal)
control of the policy

(realisation)

If D is small, a work stealing algorithm performs a small number of steals

=> Work-first principle: “scheduling overheads should be borne by the critical path
of the computation” [Frigo 98]

Implementation: since all tasks but a few are executed in the local stack, overhead
of task creation should be as close as possible as sequential function call

At any time on any non-idle processor,
 efficient local degeneration of the parallel program in a sequential execution

!

"
W

p.#ave

+O
D

#ave

$

%
&

'

(
)

12
Work-stealing implementations following
 the work-first principle : Cilk
!! Cilk-5 http://supertech.csail.mit.edu/cilk/ : C extension

!! Spawn f (a) ; sync (serie-parallel programs)
!! Requires a shared-memory machine

!! Depth-first execution with synchronization (on sync) with the end of a task :
-! Spawned tasks are pushed in double-ended queue

!! “Two-clone” compilation strategy [Frigo-Leiserson-Randall98] :
•! on a successfull steal, a thief executes the continuation on the topmost ready task ;
•! When the continuation hasn’t been stolen, “sync” = nop ; else synchronization with its thief

!! won the 2006 award "Best Combination of Elegance and Performance” at HPC Challenge Class 2,
 SC'06, Tampa, Nov 14 2006 [Kuszmaul] on SGI ALTIX 3700 with 128 bi-Ithanium]

01 cilk int fib (int n)!
02 {!

03 if (n < 2) return n;!
04 else!

05 {!
06 int x, y;!
07 !

08 x = spawn fib (n-1);!
09 y = spawn fib (n-2);!

10 !
11 sync;!
12 !

13 return (x+y);!
14 }!

15 }"

13
Work-stealing implementations following
 the work-first principle : KAAPI
!! Kaapi / Athapascan http://kaapi.gforge.inria.fr : C++ library

!! Fork<f>()(a, …) with access mode to parameters (value;read;write;r/w;cw) specified
 in f prototype (macro dataflow programs)

!! Supports distributed and shared memory machines; heterogeneous processors
!! Depth-first (reference order) execution with synchronization on data access :

•! Double-end queue (mutual exclusion with compare-and-swap)
•! on a successful steal, one-way data communication (write&signal)

•!

!! Kaapi won the 2006 award “Prix special du Jury” for the best performance at NQueens contest, Plugtests-
 Grid&Work’06, Nice, Dec.1, 2006 [Gautier-Guelton] on Grid’5000 1458 processors with different speeds.

 1 struct sum {!
 2 void operator()(Shared_r < int > a, "

 3 Shared_r < int > b, "
 4 Shared_w < int > r) "

 5 { r.write(a.read() + b.read()); }"
 6 } ;"
 7"

 8 struct fib {"
 9 void operator()(int n, Shared_w<int> r) "

 10 { if (n <2) r.write(n);"
 11 else "
 12 { int r1, r2;"

 13 Fork< fib >() (n-1, r1) ;"
 14 Fork< fib >() (n-2, r2) ;"

 15 Fork< sum >() (r1, r2, r) ;"
 16 } "
 17 } "

 18 } ;!

14
Experimental results on SOFA

 [Allard 06]

[CIMIT-ETZH-INRIA]

Kaapi (C++, ~500 lines)! Cilk (C, ~240 lines)!

Preliminary results on GPU NVIDIA 8800 GTX!
•! speed-up ~9 on Bar 10x10x46 to Athlon64 2.4GHz!

•!128 “cores” in 16 groups!
•!CUDA SDK : “BSP”-like, 16 X [16 .. 512] threads!
•!Supports most operations available on CPU!
•!~2000 lines CPU-side + 1000 GPU-side!

Algorithm design

!! Cascading divide & Conquer!

!!W(n) = a.W(n/K) + f(n) "

!!D(n) = D(n/K) + f(n)"

!!D(n) = D(sqrt(n)) + log n "

15

Examples

!! Accumulate:!

!! Sequential"

!! Parallel"

!! Matrix-vector product – Matrix multiplication!

!! Triangular matrix inversion!

!! Maximum on CRCW!

!! Partial sum!

16

17
Example: Recursive and Monte Carlo
 computations

!! X Besseron, T. Gautier, E Gobet, &G Huard won the nov. 2008 Plugtest-
 Grid&Work’08 contest – Financial mathematics application (Options pricing)

!! In 2007, the team won the Nqueens contest; Some facts [on on Grid’5000, a grid
 of processors of heterogeneous speeds]

-! NQueens(21) in 78 s on about 1000 processors
-! Nqueens (22) in 502.9s on 1458 processors
-! Nqueens(23) in 4435s on 1422 processors [~24.1033 solutions]
-! 0.625% idle time per processor
-! < 20s to deploy up to 1000 processes on 1000 machines [Taktuk, Huard]
-! 15% of improvement of the sequential due to C++ (template)

N
-Q

u
ee

n
s(

2
3
)!

G
rid

’5
00

0
fre

e!

Co
m

pe
tit

or
 Z
!

Co
m

pe
tit

or
 Y
!

Co
m

pe
tit

or
 X
!

CPU!

6 instances Nqueens(22)!

Network!

Grid’5000 utilization!

during contest!

18

•! Prefix problem :
•! input : a0, a1, …, an
•! output : "1, …, "n with

 Parallelism induces overhead :
 e.g. Parallel prefix on fixed architecture

•! Tight lower bound on p identical processors:
Optimal time Tp = 2n / (p+1)
but performs 2.n.p/(p+1) ops

[Nicolau&al. 1996]

Parallel

 requires

twice more

operations

 than

sequential !!

 performs only n operations

•! Sequential algorithm :
•! for ("[0] = a[0], i = 1 ; i <= n; i++) "[i] = "[i – 1] * a [i] ;

Critical time = 2. log n
but performs 2.n ops

[Ladner-
Fisher-81]

•! Fine grain optimal parallel algorithm :

