

Principles of High
Performance Computing
(ICS 632)

Virtual Topologies for
Distributed Memory

Computing

Beyond MPI_Comm_rank()?

 So far, MPI gives us a unique number for each
processor

 With this one can do anything
 But it’s pretty inconvenient because one can do

anything with it
 Typically, one likes to impose constraints about

which processor/process can talk to which other
processor/process

 With this constraint, one can then think of the
algorithm in simpler terms
 There are fewer options for communications between

processors
 So there are fewer choices to implementing an

algorithm

Virtual Topologies?

 MPI provides an abstraction over physical computers
 Each host has an IP address
 MPI hides this address with a convenient numbers
 There could be multiple such numbers mapped to the same

IP address
 All “numbers” can talk to each other

 A Virtual Topology provides an abstraction over MPI
 Each process has a number, which may be different from

the MPI number
 There are rules about which “numbers” a “number” can talk

to
 A virtual topology is defined by specifying the

neighbors of each process

Implementing a Virtual
Topology

0 1 2 3 4 5 6

0,0

1,0 1,1

2,0 2,1 2,2

3,0

(i,j) = (floor(log2(rank+1)), rank - 2max(i,0)+1)
rank = j -1 + 2max(i,0)

2,3

7

Implementing a Virtual
Topology

0 1 2 3 4 5 6

0,0

1,0 1,1

2,0 2,1 2,2

3,0

(i,j) = (floor(log2(rank+1)), rank - 2max(i,0)+1)
rank = j -1 + 2max(i,0)

2,3

7

my_parent(i,j) = (i-1, floor(j/2))
my_left_child(i,j) = (i+1, j*2), if any
my_right_child(i,j) = (i+1, j*2+1), if any

Implementing a Virtual
Topology

0 1 2 3 4 5 6

0,0

1,0 1,1

2,0 2,1 2,2

3,0

(i,j) = (floor(log2(rank+1)), rank - 2max(i,0)+1)
rank = j -1 + 2max(i,0)

2,3

7

my_parent(i,j) = (i-1, floor(j/2))
my_left_child(i,j) = (i+1, j*2), if any
my_right_child(i,j) = (i+1, j*2+1), if any

MPI_Send(…, rank(my_parent(i,j)), …)

MPI_Recv(…, rank(my_left_child(i,j)), …)

Typical Topologies

 Common Topologies (see Section 3.1.2)
 Linear Array
 Ring
 2-D grid
 2-D torus
 One-level Tree
 Fully connected graph
 Arbitrary graph

 Two options for all topologies:
 Monodirectional links: more constrained but

simpler
 Bidirectional links: less constrained but

potential more complicated
 By “complicated” we typically mean more bug-prone

 We’ll look at Ring and Grid in detail

Main Assumption and Big
Question

 The main assumption is that once we’ve defined the virtual
topology we forget it’s virtual and write parallel algorithms
assuming it’s physical
 We assume communications on different (virtual) links do not

interfere with each other
 We assume that computations on different (virtual) processors

do not interfere with each other
 The big question: How well do these assumptions hold?

 The question being mostly about the network
 Two possible “bad” cases
 Case #1: the assumptions do not hold and there are

interferences
 We’ll most likely achieve bad performance
 Our performance models will be broken and reasoning about

performance improvements will be difficult
 Case #2: the assumptions do hold but we leave a lot of the

network resources unutilized
 We could perhaps do better with another virtual topology

Which Virtual Topology to
Pick

 We will see that some topologies are really well
suited to certain algorithms

 The question is whether they are well-suite to the
underlying architecture

 The goal is to strike a good compromise
 Not too bad given the algorithm
 Not too bad given the platform

 Fortunately, many platforms these days use
switches, which support naturally many virtual
topologies
 Because they support concurrent communications

between disjoint pairs of processors
 As part of a programming assignment, you will

explore whether some virtual topology makes
sense on our cluster

Topologies and Data
Distribution

 One of the common steps when writing a
parallel algorithm is to distribute some
data (array, data structure, etc.) among
the processors in the topology
 Typically, one does data distribution in a way

that matches the topology
 E.g., if the data is 3-D, then it’s nice to have a

3-D virtual topology
 One question that arises then is: how is

the data distributed across the topology?
 In the next set of slides we look at our first

topology: a ring

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

