Principles of High
Performance Computing

g (ICS 632)

Virtual Topologies for

Distributed Memory
Computing




&W Beyond MPI Comm_rank()?

So far, MPI gives us a unique number for each
processor

= With this one can do anything

= But it's pretty inconvenient because one can do
anything with it
= Typically, one likes to impose constraints about

which processor/process can talk to which other
processor/process

= With this constraint, one can then think of the
algorithm in simpler terms

" There are fewer options for communications between
processors

= So there are fewer choices to implementing an
algorithm



&W Virtual Topologies?

= MPI provides an abstraction over physical computers
= Each host has an IP address
= MPI hides this address with a convenient numbers

"= There could be multiple such numbers mapped to the same
IP address
= All “numbers” can talk to each other

= A Virtual Topology provides an abstraction over MPI
= Each process has a number, which may be different from
the MPI number
"= There are rules about which “numbers” a “number” can talk
to
= A virtual topology is defined by specifying the
neighbors of each process




impliementing a virtual
Topology

NCVRCIRERONCNRCD

@ (i,j) = (floor(log2(rank+1)), rank - 2maxi.041])

rank = j -1 + 2maxi0)
19 41

20 @1 22 @3
3.0



implementing a virtual
Topology

NCVRCIRERONCNRCD

@ (i,j) = (floor(log2(rank+1)), rank - 2maxi.041])
rank = j -1 + 2max(0)
my_parent(i,j) = (i-1, floor(j/2))
my _left child(i,j) = (i+1, j*2), if any
@ @ @ @ my_right_child(i,j) = (i+1, j*2+1), if any

3.0



implementing a virtual
Topology

@ (1,J) = (floor(log2(rank+1)), rank - 2max(il0)47)
rank = j -1 + 2max(0)
my_parent(i,j) = (i-1, floor(j/2))
my _left child(i,j) = (i+1, j*2), if any

@ @ @ @ my_right_child(i,j) = (i+1, j*2+1), if any

@ MPI_Send(..., rank(my_parent(i,j)), ...)

MPI_Recv(..., rank(my left child(i,j)), ...)



&W Typical Topologies

= Common Topologies (see Section 3.1.2)
= Linear Array
= Ring

2-D grid

2-D torus

One-level Tree

Fully connected graph

Arbitrary graph

= Two options for all topologies:
" Monodirectional links: more constrained but
simpler
= Bidirectional links: less constrained but

potential more complicated
= By “complicated” we typically mean more bug-prone

= \We'll look at Ring and Grid in detail




Main Assumption and Big
Question

The main assumption is that once we’ve defined the virtual
topology we forget it’s virtual and write parallel algorithms
assuming it’s physical

= We assume communications on different (virtual) links do not
interfere with each other

= We assume that computations on different (virtual) processors
do not interfere with each other

The big question: How well do these assumptions hold?
= The question being mostly about the network
Two possible “bad” cases

Case #1: the assumptions do not hold and there are
interferences

= We'll most likely achieve bad performance

= Qur performance models will be broken and reasoning about
performance improvements will be difficult

Case #2: the assumptions do hold but we leave a lot of the
network resources unutilized

= We could perhaps do better with another virtual topology



vvnicn Vircual 10poiogy to
Pick

We will see that some topologies are really well
suited to certain algorithms

The question is whether they are well-suite to the
underlying architecture

The goal is to strike a good compromise
= Not too bad given the algorithm
= Not too bad given the platform

Fortunately, many platforms these days use

switches, which support naturally many virtual

topologies

= Because they support concurrent communications
between disjoint pairs of processors

As part of a programming assignment, you will

explore whether some virtual topology makes

sense on our cluster



1 OpOologles and Uata
Distribution

"= One of the common steps when writing a
parallel algorithm is to distribute some
data (array, data structure, etc.) among
the processors in the topology

= Typically, one does data distribution in a way
that matches the topology

= E.g., If the data is 3-D, then it's nice to have a
3-D virtual topology
= One question that arises then is: how is
the data distributed across the topology?

" |n the next set of slides we look at our first
topology: a ring



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

