

Principles of High
Performance Computing
(ICS 632)

Virtual Topologies for
Distributed Memory

Computing

Beyond MPI_Comm_rank()?

 So far, MPI gives us a unique number for each
processor

 With this one can do anything
 But it’s pretty inconvenient because one can do

anything with it
 Typically, one likes to impose constraints about

which processor/process can talk to which other
processor/process

 With this constraint, one can then think of the
algorithm in simpler terms
 There are fewer options for communications between

processors
 So there are fewer choices to implementing an

algorithm

Virtual Topologies?

 MPI provides an abstraction over physical computers
 Each host has an IP address
 MPI hides this address with a convenient numbers
 There could be multiple such numbers mapped to the same

IP address
 All “numbers” can talk to each other

 A Virtual Topology provides an abstraction over MPI
 Each process has a number, which may be different from

the MPI number
 There are rules about which “numbers” a “number” can talk

to
 A virtual topology is defined by specifying the

neighbors of each process

Implementing a Virtual
Topology

0 1 2 3 4 5 6

0,0

1,0 1,1

2,0 2,1 2,2

3,0

(i,j) = (floor(log2(rank+1)), rank - 2max(i,0)+1)
rank = j -1 + 2max(i,0)

2,3

7

Implementing a Virtual
Topology

0 1 2 3 4 5 6

0,0

1,0 1,1

2,0 2,1 2,2

3,0

(i,j) = (floor(log2(rank+1)), rank - 2max(i,0)+1)
rank = j -1 + 2max(i,0)

2,3

7

my_parent(i,j) = (i-1, floor(j/2))
my_left_child(i,j) = (i+1, j*2), if any
my_right_child(i,j) = (i+1, j*2+1), if any

Implementing a Virtual
Topology

0 1 2 3 4 5 6

0,0

1,0 1,1

2,0 2,1 2,2

3,0

(i,j) = (floor(log2(rank+1)), rank - 2max(i,0)+1)
rank = j -1 + 2max(i,0)

2,3

7

my_parent(i,j) = (i-1, floor(j/2))
my_left_child(i,j) = (i+1, j*2), if any
my_right_child(i,j) = (i+1, j*2+1), if any

MPI_Send(…, rank(my_parent(i,j)), …)

MPI_Recv(…, rank(my_left_child(i,j)), …)

Typical Topologies

 Common Topologies (see Section 3.1.2)
 Linear Array
 Ring
 2-D grid
 2-D torus
 One-level Tree
 Fully connected graph
 Arbitrary graph

 Two options for all topologies:
 Monodirectional links: more constrained but

simpler
 Bidirectional links: less constrained but

potential more complicated
 By “complicated” we typically mean more bug-prone

 We’ll look at Ring and Grid in detail

Main Assumption and Big
Question

 The main assumption is that once we’ve defined the virtual
topology we forget it’s virtual and write parallel algorithms
assuming it’s physical
 We assume communications on different (virtual) links do not

interfere with each other
 We assume that computations on different (virtual) processors

do not interfere with each other
 The big question: How well do these assumptions hold?

 The question being mostly about the network
 Two possible “bad” cases
 Case #1: the assumptions do not hold and there are

interferences
 We’ll most likely achieve bad performance
 Our performance models will be broken and reasoning about

performance improvements will be difficult
 Case #2: the assumptions do hold but we leave a lot of the

network resources unutilized
 We could perhaps do better with another virtual topology

Which Virtual Topology to
Pick

 We will see that some topologies are really well
suited to certain algorithms

 The question is whether they are well-suite to the
underlying architecture

 The goal is to strike a good compromise
 Not too bad given the algorithm
 Not too bad given the platform

 Fortunately, many platforms these days use
switches, which support naturally many virtual
topologies
 Because they support concurrent communications

between disjoint pairs of processors
 As part of a programming assignment, you will

explore whether some virtual topology makes
sense on our cluster

Topologies and Data
Distribution

 One of the common steps when writing a
parallel algorithm is to distribute some
data (array, data structure, etc.) among
the processors in the topology
 Typically, one does data distribution in a way

that matches the topology
 E.g., if the data is 3-D, then it’s nice to have a

3-D virtual topology
 One question that arises then is: how is

the data distributed across the topology?
 In the next set of slides we look at our first

topology: a ring

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

