

Principles of High
Performance Computing
(ICS 632)

Heterogeneous
Parallel Computing

Heterogeneous Platforms
(Ch. 6)

 So far we’ve only talked about platforms in which all
processors/nodes are identical
 representative of most supercomputers

 Clusters often “end up” heterogeneous
 Built as homogeneous
 New nodes are added and have faster CPUs

 A cluster that stays up 3 years will likely have several generations
of processors in it

 Network of workstations are heterogeneous
 couple together all machines in your lab to run a parallel

applications (became popular with PVM)
 “Grids”

 couple together different clusters, supercomputers, and
workstations

 It is important to develop parallel applications that can
leverage heterogeneous platforms

Heterogeneous Load
Balancing

 There is an impressively large literature on load-balancing
for heterogeneous platforms

 In this lecture we’re looking only at “static” load balancing
 before execution we know how much load is given to each

processor
 e.g., as opposed to some dynamic algorithm that assigns work

to processors when they’re “ready”
 We’ll come back to that idea when we talk about scheduling

 We will look at:
 2 simple load-balancing algorithms
 application to our 1-D stencil application
 application to the 1-D distributed LU factorization
 discussion of load-balancing for 2-D data distributions

 We assume homogeneous network and heterogeneous
compute nodes in this lecture

Static task allocation (Sec.
6.1.1/2)

 Let’s consider p processors
 Let t1,..., tp be the “cycle times” of the processors

 i.e., time to process one elemental unit of computation (work
units) for the application (Tcomp)

 Let B be the number of (identical) work units
 Let c1,..., cp be the number of work units processed by each

processor
c1 + ... + cp = B

 Perfect load balancing happens if
ci x ti is constant

or
computing speed

Static task allocation

 if B is a multiple of

then we can have perfect load balancing
 But in general, the formula for ci does not give an

integer solution
 There is a simple algorithm that give the optimal

(integer) allocation of work units to processors in
O(p2)

Simple Algorithm

// initialize with fractional values

// rounded down

For i = 1 to p

// iteratively increase the ci values

while (c1 + ... + cp < B)

 find k in {1,...,p} such that

 tk(ck + 1) = min {ti(ci + 1)}

 ck = ck + 1

Simple Algorithm

 3
processors

 10 work
units

 p1 p2 p3

p1 p2 p3

3
5

8

c1 = 5
c2 = 3
c3 = 2

An incremental algorithm

 Note that the previous algorithm can be modified slightly to
record the optimal allocation for B=1, B=2, etc...

 One can write the result as a list of processors
 B=1: P1

 B=2: P1, P2

 B=3: P1, P2, P1

 B=4: P1, P2, P1, P3

 B=5: P1, P2, P1, P3, P1

 B=6: P1, P2, P1, P3, P1, P2

 B=7: P1, P2, P1, P3, P1, P2, P1

 etc.
 We will see how this comes in handy for some load-

balancing problems (e.g., LU factorization)

Stencil Application (Sec.
6.1.3)

k

r

t+1

t+1 t t

t

 4 Processors
 Each processor

handles many rxk
blocks

 What if the
processors are
heterogeneous?

Simple Load Balancing

k

t+1

t+1 t t

t

 Just give rows to
processors
proportionally to their
speed

 Still in a cyclic pattern
 Should have perfect

efficiency
 But there could of

course be the usual
notions of rounding off
 e.g., what if a

processor is 1.0001
faster than another?

LU Decomposition

Reduction Broadcast Compute

Broadcasts Compute

to find the max aji

max aji needed to compute
the scaling factor Independent computation

of the scaling factor

Every update needs the
scaling factor and the
element from the pivot row

Independent
computations

requires
load-balancing

Load-balancing (Sect. 6.1.4)

 Our original cyclic distribution doesn’t
work well in a heterogeneous setting

At each step all processors
have the same amount of work

to do

Rebalancing at each step?
 Start with a non-cyclic distribution
 At each (or every k) steps, rebalance

Redistribution
is expensive
in terms of
communications

Cyclic and non-uniform

 Just do what we did for the stencil application

Ok... But not
great

Load-balancing

 Use the distribution obtained with the
incremental algorithm we saw before, reversed
 B=10: P1, P2, P1, P3, P1, P2, P1, P1, P2, P3

optimal load-balancing
for 10 columns

optimal load-balancing
for 7 columns

optimal load-balancing
for 4 columns

. . .

Load-balancing

 Of course, this should be done for blocks of
columns, and not individual columns

 Also, should be done in a “motif” that spans
some number of columns (B=10 in our example)
and is repeated cyclically throughout the matrix
 provided that B is large enough, we get a good

approximation of the optimal load-balance

2-D Data Distributions (Sec
6.2)

 What we’ve seen so far works well for 1-D data
distributions
 use the simple algorithm
 use the allocation pattern over block in a cyclic

fashion
 We have seen that a 2-D distribution is what’s

most appropriate, for instance for matrix
multiplication

 We use matrix multiplication as our driving
example

2-D Matrix Multiplication

 C = A x B
 Let us assume that we have a pxp processor grid, and that

p=q=n
 all 3 matrices are distributed identically

P3,3P3,2P3,1

P2,3P2,2P2,1

P1,3P1,2P1,1

Processor Grid A3,3A3,2A3,1

A2,3A2,2A2,1

A1,3A1,2A1,1

2-D Matrix Multiplication

 We have seen 3 algorithms to do a matrix
multiplication (Cannon, Fox, Snyder)
 Pretty difficult to generalize them for a

heterogeneous platform
 The outer product is much simpler, and

thus easier to adapt and modify
 Let’s look at the outer product algorithm

on a heterogeneous 2-D distribution

Outer-product Algorithm

 Proceeds in k=1,...,n steps
 Horizontal broadcasts: Pi,k, for all i=1,...,p,

broadcasts aik to processors in its processor row

 Vertical broadcasts: Pk,j, for all j=1,...,q,
broadcasts akj to processors in its processor
column

 Independent computations: processor Pi,j can
update cij = cij + aik x akj

Outer-product Algorithm

Load-balancing

 Let ti,j be the cycle time of processor Pi,j

 We assign to processor Pi,j a rectangle of size ri x
cj

P3,3P3,2P3,1

P2,3P2,2P2,1

P1,3P1,2P1,1

c1 c2 c3

r1

r2

r3

Load-balancing

 First, let us note that it is not always possible to
achieve perfect load-balacing
 There are some theorems that show that it’s

only possible if the processor grid matrix, with
processor cycle times, tij, put in their spot is of
rank 1

 Each processor computes for ri x cj x tij time
 Therefore, the total execution time is

T = maxi,j {ri x cj x tij}

Load-balancing as
optimization

 Load-balancing can be expressed as
a constrained minimization problem

 minimize maxi,j {ri x cj x tij}
 with the constraints

Load-balancing as
optimization

 The load-balancing problem is in fact much more
complex
 One can place processors in any place of the processor

grid
 One must look for the optimal given all possible

arrangements of processors in the grid (and thus solve
an exponential number of the the optimization problem
defined on the previous slide)

 The load-balancing problem is NP-hard
 Complex proof
 A few (non-guaranteed) heuristics have been

developed
 they are quite complex

“Free” 2-D distribution

 So far we’ve looked at things that looked like this

 But how about?

Free 2-D distribution

 Each rectangle must have a surface that’s
proportional to the processor speed

 One can “play” with the width and the height of
the rectangles to try to minimize communication
costs
 A communication involves sending/receiving rectangles’

half-perimeters
 One must minimize the sum of the half-perimeters if

communications happen sequentially
 One must minimize the maximum of the half-perimeters

if communications happen in parallel

Problem Formulation

 Let us consider p numbers s1, ..., sp such that
s1+...+sp = 1
 we just normalize the sum of the processors’

cycle times so that they all sum to 1
 Find a partition of the unit square in p rectangles

with area si, and with shape hixvi such that

h1+v1 + h2+v2 + ... + hp+vp

 is minimized.
 This problem is NP-hard

Guaranteed Heuristic

 There is a guaranteed heuristic (that is within some fixed
factor of the optimal)
 non-trivial (look in the Section 6.3 if you’re curious)

 It only works with processor columns

Heterogeneous Load-
Balancing

 This all we’re going to say about heterogeneous
load balancing

 We’ll talk more about heterogeneity when we talk
about scheduling

 The terms “scheduling” and “load balancing” are
often confused

 In the class, when we say “load-balancing” we
mean a static data distribution that matches
amount of work to processors capabilities

 When we say “scheduling” we mean that there is
a notion of timing, sequencing when assigning
work to processors (as we shall see in an
upcoming lecture)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

