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Heterogeneous Platforms 
(Ch. 6)

 So far we’ve only talked about platforms in which all 
processors/nodes are identical
 representative of most supercomputers

 Clusters often “end up” heterogeneous
 Built as homogeneous
 New nodes are added and have faster CPUs

 A cluster that stays up 3 years will likely have several generations 
of processors in it

 Network of workstations are heterogeneous
 couple together all machines in your lab to run a parallel 

applications (became popular with PVM)
 “Grids”

 couple together different clusters, supercomputers, and 
workstations

  It is important to develop parallel applications that can 
leverage heterogeneous platforms



Heterogeneous Load 
Balancing

 There is an impressively large literature on load-balancing 
for heterogeneous platforms

 In this lecture we’re looking only at “static” load balancing
 before execution we know how much load is given to each 

processor
 e.g., as opposed to some dynamic algorithm that assigns work 

to processors when they’re “ready”
 We’ll come back to that idea when we talk about scheduling

 We will look at:
 2 simple load-balancing algorithms
 application to our 1-D stencil application
 application to the 1-D distributed LU factorization
 discussion of load-balancing for 2-D data distributions

 We assume homogeneous network and heterogeneous 
compute nodes in this lecture



Static task allocation (Sec. 
6.1.1/2)

 Let’s consider p processors
 Let t1,..., tp be the “cycle times” of the processors

 i.e., time to process one elemental unit of computation (work 
units) for the application (Tcomp)

 Let B be the number of (identical) work units
 Let c1,..., cp be the number of work units processed by each 

processor
c1 + ... + cp = B

 Perfect load balancing happens if
ci x ti  is constant

or
computing speed



Static task allocation

 if B is a multiple of

then we can have perfect load balancing
 But in general, the formula for ci does not give an 

integer solution
 There is a simple algorithm that give the optimal 

(integer) allocation of work units to processors in 
O(p2)



Simple Algorithm

// initialize with fractional values

// rounded down

For i = 1 to p

// iteratively increase the ci values

while (c1 + ... + cp < B)

  find k in {1,...,p} such that

    tk(ck + 1) = min {ti(ci + 1)}

  ck = ck + 1



Simple Algorithm

 3 
processors

 10 work 
units

    p1   p2   p3

p1    p2     p3

3
5

8

c1 = 5
c2 = 3
c3 = 2



An incremental algorithm

 Note that the previous algorithm can be modified slightly to 
record the optimal allocation for B=1, B=2, etc... 

 One can write the result as a list of processors
 B=1: P1

 B=2: P1, P2

 B=3: P1, P2, P1

 B=4: P1, P2, P1, P3

 B=5: P1, P2, P1, P3, P1

 B=6: P1, P2, P1, P3, P1, P2

 B=7: P1, P2, P1, P3, P1, P2, P1

 etc.
 We will see how this comes in handy for some load-

balancing problems (e.g., LU factorization)



Stencil Application (Sec. 
6.1.3)
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 4 Processors
 Each processor 

handles many rxk 
blocks

 What if the 
processors are 
heterogeneous?



Simple Load Balancing
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 Just give rows to 
processors 
proportionally to their 
speed

 Still in a cyclic pattern
 Should have perfect 

efficiency
 But there could of 

course be the usual 
notions of rounding off
 e.g., what if a 

processor is 1.0001 
faster than another?



LU Decomposition

Reduction Broadcast Compute

Broadcasts Compute

to find the max aji

max aji needed to compute
the scaling factor Independent computation

of the scaling factor

Every update needs the
scaling factor and the 
element from the pivot row

Independent
computations

requires
load-balancing



Load-balancing (Sect. 6.1.4)

 Our original cyclic distribution doesn’t 
work well in a heterogeneous setting

At each step all processors 
have the same amount of work

to do



Rebalancing at each step?
 Start with a non-cyclic distribution
 At each (or every k) steps, rebalance

Redistribution
is expensive
in terms of
communications



Cyclic and non-uniform

 Just do what we did for the stencil application

Ok... But not 
great



Load-balancing

 Use the distribution obtained with the 
incremental algorithm we saw before, reversed
 B=10: P1, P2, P1, P3, P1, P2, P1, P1, P2, P3

optimal load-balancing
for 10 columns

optimal load-balancing
for 7 columns

optimal load-balancing
for 4 columns

. . .



Load-balancing

 Of course, this should be done for blocks of 
columns, and not individual columns

 Also, should be done in a “motif” that spans 
some number of columns (B=10 in our example) 
and is repeated cyclically throughout the matrix
 provided that B is large enough, we get a good 

approximation of the optimal load-balance



2-D Data Distributions (Sec 
6.2)

 What we’ve seen so far works well for 1-D data 
distributions
 use the simple algorithm
 use the allocation pattern over block in a cyclic 

fashion
 We have seen that a 2-D distribution is what’s 

most appropriate, for instance for matrix 
multiplication

 We use matrix multiplication as our driving 
example



2-D Matrix Multiplication

 C = A x B
 Let us assume that we have a pxp processor grid, and that 

p=q=n
 all 3 matrices are distributed identically

P3,3P3,2P3,1

P2,3P2,2P2,1

P1,3P1,2P1,1

Processor Grid A3,3A3,2A3,1

A2,3A2,2A2,1

A1,3A1,2A1,1



2-D Matrix Multiplication

 We have seen 3 algorithms to do a matrix 
multiplication (Cannon, Fox, Snyder)
 Pretty difficult to generalize them for a 

heterogeneous platform
 The outer product is much simpler, and 

thus easier to adapt and modify
 Let’s look at the outer product algorithm 

on a heterogeneous 2-D distribution



Outer-product Algorithm

 Proceeds in k=1,...,n steps
 Horizontal broadcasts: Pi,k, for all i=1,...,p, 

broadcasts aik to processors in its processor row

 Vertical broadcasts: Pk,j, for all j=1,...,q, 
broadcasts akj to processors in its processor 
column

 Independent computations: processor Pi,j can 
update cij = cij + aik x akj



Outer-product Algorithm



Load-balancing

 Let ti,j be the cycle time of processor Pi,j

 We assign to processor Pi,j a rectangle of size ri x 
cj

P3,3P3,2P3,1

P2,3P2,2P2,1

P1,3P1,2P1,1

c1       c2         c3

r1

r2

r3



Load-balancing

 First, let us note that it is not always possible to 
achieve perfect load-balacing
 There are some theorems that show that it’s 

only possible if the processor grid matrix, with 
processor cycle times, tij, put in their spot is of 
rank 1

 Each processor computes for ri x cj x tij time
 Therefore, the total execution time is

T = maxi,j {ri x cj x tij}



Load-balancing as 
optimization

 Load-balancing can be expressed as 
a constrained minimization problem

 minimize maxi,j {ri x cj x tij}
 with the constraints



Load-balancing as 
optimization

 The load-balancing problem is in fact much more 
complex
 One can place processors in any place of the processor 

grid
 One must look for the optimal given all possible 

arrangements of processors in the grid (and thus solve 
an exponential number of the the optimization problem 
defined on the previous slide)

 The load-balancing problem is NP-hard
 Complex proof
 A few (non-guaranteed) heuristics have been 

developed
 they are quite complex



“Free” 2-D distribution

 So far we’ve looked at things that looked like this

 But how about?



Free 2-D distribution

 Each rectangle must have a surface that’s 
proportional to the processor speed

 One can “play” with the width and the height of 
the rectangles to try to minimize communication 
costs
 A communication involves sending/receiving rectangles’ 

half-perimeters
 One must minimize the sum of the half-perimeters if 

communications happen sequentially
 One must minimize the maximum of the half-perimeters 

if communications happen in parallel



Problem Formulation

 Let us consider p numbers s1, ..., sp such that 
s1+...+sp = 1
 we just normalize the sum of the processors’ 

cycle times so that they all sum to 1
 Find a partition of the unit square in p rectangles 

with area si, and with shape hixvi such that

h1+v1 + h2+v2 + ... + hp+vp 

   is minimized.
 This problem is NP-hard



Guaranteed Heuristic

 There is a guaranteed heuristic (that is within some fixed 
factor of the optimal)
 non-trivial  (look in the Section 6.3 if you’re curious)

 It only works with processor columns



Heterogeneous Load-
Balancing

 This all we’re going to say about heterogeneous 
load balancing

 We’ll talk more about heterogeneity when we talk 
about scheduling

 The terms “scheduling” and “load balancing” are 
often confused

 In the class, when we say “load-balancing” we 
mean a static data distribution that matches 
amount of work to processors capabilities

 When we say “scheduling” we mean that there is 
a notion of timing, sequencing when assigning 
work to processors (as we shall see in an 
upcoming lecture)
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