

Principles of High
Performance Computing
(ICS 632)

Algorithms on a Grid
of Processors (II)

2-D Matrix Distribution

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B33B32B31B30

B23B22B21B20

B13B12B11B10

B03B02B01B00

P0,0 P0,1 P0,2

P1,0 P1,1 P1,2

P2,0 P2,1 P2,2

P0,2

P1,2

P2,2

P2,0 P2,1 P2,2 P2,2

 We denote by ai,j an

element of the matrix
 We denote by Ai,j (or Aij)

the block of the matrix
allocated to Pi,j

The Cannon Algorithm

 This is a very old algorithm
 From the time of systolic arrays
 Adapted to a 2-D grid

 The algorithm starts with a
redistribution of matrices A and B
 Called “preskewing”

 Then the matrices are multiplied
 Then the matrices are re-

redistributed to match the initial
distribution
 Called “postskewing”

Cannon’s Preskewing

 Matrix A: each block row of matrix A is
shifted so that each processor in the first
processor column holds a diagonal block
of the matrix

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

A32A31A30A33

A21A20A23A22

A14A13A12A11

A03A02A01A00

Cannon’s Preskewing

 Matrix B: each block column of matrix B is
shifted so that each processor in the first
processor row holds a diagonal block of
the matrix

B33B32B31B30

B23B22B21B20

B13B12B11B10

B03B02B01B00

B23B12B01B30

B13B02B31B20

B03B32B21B10

B33B22B11B00

Cannon’s Computation

 The algorithm proceeds in q steps
 At each step each processor

performs the multiplication of its
block of A and B and adds the result
to its block of C

 Then blocks of A are shifted to the
left and blocks of B are shifted
upward
 Blocks of C never move

 Let’s see it on a picture

Cannon’s Steps

A32A31A30A33

A21A20A23A22

A10A13A12A11

A03A02A01A00

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B23B12B01B30

B13B02B31B20

B03B32B21B10

B33B22B11B00

local
computation
on proc (0,0)

A33A32A31A30

A22A21A20A23

A11A10A13A12

A00A03A02A01

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B33B22B11B00

B23B12B01B30

B13B02B31B20

B03B32B21B10

Shifts

A33A32A31A30

A22A21A20A23

A11A10A13A12

A00A03A02A01

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B33B22B11B00

B23B12B01B30

B13B02B31B20

B03B32B21B10

local
computation
on proc (0,0)

The Algorithm

Participate in preskewing of A
Partitipate in preskweing of B
For k = 1 to q
 Local C = C + A*B
 Vertical shift of B
 Horizontal shift of A
Participate in postskewing of A
Partitipate in postskewing of B

Performance Analysis

 Let’s do a simple performance analysis
with a 4-port model
 The 1-port model is typically more complicated

 Symbols
 n: size of the matrix
 qxq: size of the processor grid
 m = n / q
 L: communication start-up cost
 w: time to do a basic computation (+= . * .)
 b: time to communicate a matrix element

 T(m,q) = Tpreskew + Tcompute +
Tpostskew

Pre/Post-skewing times

 Let’s consider the horizontal shift
 Each row must be shifted so that the diagonal block ends

up on the first column
 On a mono-directional ring:

 The last row needs to be shifted (q-1) times
 All rows can be shifted in parallel
 Total time needed: (q-1) (L + m2 b)

 On a bi-directional ring, a row can be shifted left or right,
depending on which way is shortest!
 A row is shifted at most floor(q/2) times
 All rows can be shifted in parallel
 Total time needed: floor(q/2) (L + m2 b)

 Because of the 4-port assumption, preskewing of A and B
can occur in parallel (horizontal and vertical shifts do not
interfere)

 Therefore: Tpreskew = Tpostskew = floor(q/2) (L+m2b)

Time for each step

 At each step, each processor computes an
mxm matrix multiplication
 Compute time: m3 w

 At each step, each processor
sends/receives a mxm block in its
processor row and its processor column
 Both can occur simultaneously with a 4-port

model
 Takes time L+ m2b

 Therefore, the total time for the q steps is:
Tcompute = q max (L + m2b, m3w)

Cannon Performance Model

 T(m,n) =2* floor(q/2) (L + m2b) +
 q max(m3w, L + m2b)

 This performance model is easily
adapted
 If one assumes mono-directional links,

then the “floor(q/2)” above becomes
“(q-1)”

 If one assumes 1-port, there is a factor 2
added in front of communication terms

 If one assumes no overlap of
communication and computation at a
processor, the “max” above becomes a
sum

The Fox Algorithm

 This algorithm was originally developed to
run on a hypercube topology
 But in fact it uses a grid, embedded in the

hypercube
 This algorithm requires no pre- or post-

skewing
 It relies on horizontal broadcasts of the

diagonals of matrix A and on vertical shifts
of matrix B

 Sometimes called the “multiply-broadcast-
roll” algorithm

 Let’s see it on a picture
 Although it’s a bit awkward to draw because of

the broadcasts

Execution Steps...

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B33B32B31B30

B23B22B21B20

B13B12B11B10

B03B02B01B00

initial
state

A33A33A33A33

A22A22A22A22

A11A11A11A11

A00A00A00A00

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00
Broadcast of
A’s 1st diag.
(stored in a
Separate
 buffer)

Local
computation

A33A33A33A33

A22A22A22A22

A11A11A11A11

A00A00A00A00

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B33B32B31B30

B23B22B21B20

B13B12B11B10

B03B02B01B00

B33B32B31B30

B23B22B21B20

B13B12B11B10

B03B02B01B00

Execution Steps...

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B03B02B01B00

B33B32B31B30

B23B22B21B20

B13B12B11B10

Shift of B

A30A30A30A30

A23A23A23A23

A12A12A12A12

A01A01A01A01

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

Local
computation

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B03B02B01B00

B33B32B31B30

B23B22B21B20

B13B12B11B10

A30A30A30A30

A23A23A23A23

A12A12A12A12

A01A01A01A01

B03B02B01B00

B33B32B31B30

B23B22B21B20

B13B12B11B10

Broadcast of
A’s 2nd diag.
(stored in a
Separate
 buffer)

Fox’s Algorithm

// No initial data movement
for k = 1 to q in parallel
 Broadcast A’s kth diagonal
 Local C = C + A*B
 Vertical shift of B
// No final data movement

 Again note that there is an additional array to
store incoming diagonal block

 This is the array we use in the A*B multiplication

Performance Analysis

 You’ll have to do it in a homework
assignment
 Write pseudo-code of the algorithm in

more details
 Write the performance analysis

Snyder’s Algorithm (1992)

 More complex than Cannon’s or

Fox’s

 First transposes matrix B

 Uses reduction operations (sums) on

the rows of matrix C

 Shifts matrix B

Execution Steps...

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B33B32B31B30

B23B22B21B20

B13B12B11B10

B03B02B01B00

initial
state

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

Transpose B

Local
computation

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B33B23B13B03

B32B22B12B02

B31B21B11B01

B30B20B10B00

B33B23B13B03

B32B22B12B02

B31B21B11B01

B30B20B10B00

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

Execution Steps...

Shift B

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B30B20B10B00

B32B23B13B03

B32B22B12B02

B31B21B11B01

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B30B20B10B00

B32B23B13B03

B32B22B12B02

B31B21B11B01

Global
sum
on the rows
of C

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B30B20B10B00

B32B23B13B03

B32B22B12B02

B31B21B11B01

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

Local
computation

Execution Steps...

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

Shift B

B31B21B11B01

B30B20B10B00

B33B23B13B03

B32B22B12B02

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

B31B21B11B01

B30B20B10B00

B33B23B13B03

B32B22B12B02
Global
sum
on the rows
of C

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

B31B21B11B01

B30B20B10B00

B33B23B13B03

B32B22B12B02

Local
computation

The Algorithm

var A,B,C: array[0..m-1][0..m-1] of real
var bufferC: array[0..m-1][0..m-1] of real
Transpose B
MatrixMultiplyAdd(bufferC, A, B, m)
Vertical shifts of B
For k = 1 to q-1

Global sum of bufferC on proc rows into Ci,(i+k-1)%q

MatrixMultiplyAdd(bufferC, A, B, m)
Vertical shift of B

Global sum of bufferC on proc rows into Ci,(i+k-1)%q

Transpose B

Performance Analysis

 The performance analysis isn’t
fundamentally different than what
we’ve done so far

 But it’s a bit cumbersome
 See the textbook

 in particular the description of the
matrix transposition (see also Exercise
5.1)

Which Data Distribution?

 So far we’ve seen:
 Block Distributions
 1-D Distributions
 2-D Distributions
 Cyclic Distributions

 One may wonder what a good choice
is for a data distribution?

 Many people argue that a good
“Swiss Army knife” is the “2-D block
cyclic distribution

The 2-D block cyclic
distribution

 Goal: try to have all the advantages
of both the horizontal and the
vertical 1-D block cyclic distribution
 Works whichever way the computation

“progresses”
 left-to-right, top-to-bottom, wavefront, etc.

 Consider a number of processors p =
r * c
 arranged in a rxc matrix

 Consider a 2-D matrix of size NxN
 Consider a block size b (which

divides N)

The 2-D block cyclic
distribution

b

b

N

P0 P1 P2

P5P4P3

The 2-D block cyclic
distribution

P2

P5

P1

P4

P0

P3

b

b

N

P0 P1 P2

P5P4P3

The 2-D block cyclic
distribution

P2 P0 P1 P2 P0 P1

P5 P3 P4 P5 P3 P4

P1

P4

P0

P3

b

b

N

P0 P1 P2

P5P4P3

P2 P0 P1 P2 P0 P1

P5 P3 P4 P5 P3 P4

P1

P4

P0

P3

P2 P0 P1 P2 P0 P1

P5 P3 P4 P5 P3 P4

P1

P4

P0

P3

P2 P0 P1 P2 P0 P1P1P0

 Slight load imbalance
 Becomes negligible with

many blocks
 Index computations had

better be implemented in
separate functions

 Also: functions that tell a
process who its neighbors
are

 Overall, requires a whole
infrastructure, but many
think you can’t go wrong
with this distribution

Conclusion

 All the algorithms we have seen in the
semester can be implemented on a 2-D
block cyclic distribution

 The code ends up much more complicated
 But one may expect several benefits “for

free”
 The ScaLAPAK library recommends to use

the 2-D block cyclic distribution
 Although its routines support all other

distributions

	Principles of High Performance Computing (ICS 632)
	2-D Matrix Distribution
	The Cannon Algorithm
	Cannon’s Preskewing
	Slide 5
	Cannon’s Computation
	Cannon’s Steps
	The Algorithm
	Performance Analysis
	Pre/Post-skewing times
	Time for each step
	Cannon Performance Model
	The Fox Algorithm
	Execution Steps...
	Slide 15
	Fox’s Algorithm
	Slide 17
	Snyder’s Algorithm (1992)
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Which Data Distribution?
	The 2-D block cyclic distribution
	Slide 26
	Slide 27
	Slide 28
	Conclusion

