Principles of High
Performance Computing

g (ICS 632)

Algorithms on a Grid
of Processors (ll)

*M 2-D Matrix Distribution

= We denote by a;; an

element of the matrix

= We denote by A; (or A;)
the block of the matrix

allocated to P,

m| o o o
ol | | m
M M M| M
SR
ol | N m
N M MM
— — — —
ol | | m
M M MM
ol o o] o
ol ~| & ™
MM MM MM
m| o o o
ol «| | m
| <[(<
IR Y
ol «| | o
(|| <
— — — —
ol «| o o
| <[(<
ol o o] o
ol «| & o
(|| <
m| mf o o
ol | | m
OO |10 |0
Nl N N
ol «| | o
OO0 |10 |0
—l = A~
ol | | o
OO0 |10 |0
ol o o] o
ol «| & ™
OO0 |10 |0

w The Cannon Algorithm

= This is a very old algorithm
" From the time of systolic arrays
= Adapted to a 2-D grid

*" The algorithm starts with a
redistribution of matrices A and B
= Called “preskewing”

®= Then the matrices are multiplied

" Then the matrices are re-
redistributed to match the initial
distribution

= Called “postskewing”

w Cannon’s Preskewing

= Matrix A: each block row of matrix A is
shifted so that each processor in the first
processor column holds a diagonal block
of the matrix

> > > >
> > >|>

N
o
N
=
N
N
N
w
N
w
N
=

>| > > >
>\ > > >
>| > | > | >
>| > | > | >

w Cannon’s Preskewing

"= Matrix B: each block column of matrix B is
shifted so that each processor in the first
processor row holds a diagonal block of

the matrix
BOO B01 BOZ BOB BOO B11 BZZ B33
BlO B11 Blz Bl3 B10 BZl B32 BO3
BZO BZl BZZ BZB BZO B31 BOZ BlB
BBO BBl BBZ B33 BBO B01 Blz B23

w Cannon’s Computation

®= The algorithm proceeds in g steps

= At each step each processor
performs the multiplication of its
block of A and B and adds the result
to its block of C

" Then blocks of A are shifted to the
left and blocks of B are shifted
upward

= Blocks of C never move
" Let's see it on a picture

mM mM m m mM m mM m m m
mM o — N | ™M (@] — N oM
nlo|ad| ol d Dl |m| o
N N N N N N N N N N
Nl ||l Dl ||| o
— — — — — — — — — —
— ~ ™ o | ~ ™M o —
Nl ||l s Nl oo m
(@) o o o oo O o o o o
Nl o olld ol || m

AOO AOl A02 AO3

All A12 A13 AlO
A22 A23 A20 A21

A33 A30 A31 A32

Aot Aoz TAos P00

Ass A TAss TAs

A01 AOZ A03 AOO
A12 A13 AlO All

A23 A20 A21 A22

A30 A31 A32 A33

C00 COl C02 C03

ClO Cll C12 C13

CZO C21 C22 C23

C30 C31 C32 C33

COO COl COZ C03

| :
Cio|Cia | Coa | Cos | [AisTALTAL AL sz Bs, | By, | Bes | Shifts
Coo | Cor | Con [Cos | A TAL TAL AL B3L B/|01 B, B/|~23

C30 C31 C32 C33

C00 COl C02 C03

ClO Cll C12 C13

CZO C21 C22 C23

C30 C31 C32 C33

&Mﬂ The Algorithm

Participate in preskewing of A
Partitipate in preskweing of B
For k =1 to q

Local C = C + A*B

Vertical shift of B

Horizontal shift of A
Participate in postskewing of A
Partitipate in postskewing of B

w Performance Analysis

" Let's do a simple performance analysis
with a 4-port model

= The 1-port model is typically more complicated

= Symbols
" n: size of the matrix
" gxQ: size of the processor grid
"m=n/qQ
= L: communication start-up cost
= w: time to do a basic computation (+=. *.)
= b: time to communicate a matrix element

" T(m,q) = Tpreskew + Tcompute +
Tpostskew

%W Pre/Post-skewing times

Let’s consider the horizontal shift

= Each row must be shifted so that the diagonal block ends
up on the first column
= On a mono-directional ring:
= The last row needs to be shifted (g-1) times
= All rows can be shifted in parallel
= Total time needed: (g-1) (L + m? b)
= On a bi-directional ring, a row can be shifted left or right,
depending on which way is shortest!
= A row is shifted at most floor(qg/2) times
= All rows can be shifted in parallel
= Total time needed: floor(g/2) (L + m2 b)
= Because of the 4-port assumption, preskewing of A and B

can occur in parallel (horizontal and vertical shifts do not
interfere)

= Therefore: Tpreskew = Tpostskew = floor(g/2) (L+m?2b)

w Time for each step

= At each step, each processor computes an
mxm matrix multiplication
= Compute time: m3 w

= At each step, each processor
sends/receives a mxm block in its
processor row and its processor column

= Both can occur simultaneously with a 4-port
model

= Takes time L+ m2b

"= Therefore, the total time for the g steps is:
Tcompute = g max (L + m?b, m3w)

w Cannon Performance Model

" T(m,n) =2* floor(g/2) (L + m?b) +
g max(m3w, L + m?b)

®= This performance model is easily
adapted

" |If one assumes mono-directional links,
then the “floor(qg/2)” above becomes

ll(q_l)"
" |If one assumes 1-port, there is a factor 2
added in front of communication terms

" |If one assumes no overlap of
communication and computation at a

w The Fox Algorithm

= This algorithm was originally developed to
run on a hypercube topology

= But in fact it uses a grid, embedded in the
hypercube

®= This algorithm requires no pre- or post-
skewing

" |t relies on horizontal broadcasts of the
diagonals of matrix A and on vertical shifts
of matrix B

= Sometimes called the “multiply-broadcast-
roll” algorithm

= Let's see it on a picture
= Although it’s a bit awkward to draw because of

w Execution Steps...

y— .

OmJa

)

n = <

cO =3 _

C._&wmr

TRO59

O wn Mw Q "5

" Yo

M<T<=Wm
m (0] m (0] m (0] m (0] m (0] m (0]
o — N m o — AN m o — AN m
M O MM N0 0Nl M| mMm
N o (@] o N o (@] o N o (@] N
o —i (] oM o —i (] oM o —i (] oM
MM O MN[0 Ml M
— — — — — — — — — — — —
o — N m o — N m o — N m
M O MN[0 0Nl mMm
o o o o o o o o o o o o
o —i (] oM o —i (] oM o —i (] oM
M O MMM M|l 0| M

Aoo | Ao1 | Aoz | Aos
A, A AL A
Az | A1 [Ag | Ags
Az | Asr |Asp | Ass

Aoo | Aco | Ago | Aco
A 1A AL A
Ay | Ay | Ay | Ay
Asz | Asz | Ass |Ags

AOO AOO A00 AOO

All All All All
A22 A22 A22 A22
A33 A33 A33 A33

sl o o gl 8l a g &l g = a 8
O|J |0 |0||U|J 0|00 0|00
=]] DT I] | = I I N1 | = Rt] N
O|J |0 |0||U |00 |0||U|J]0|0
=] =1 T | =T =T~] | = =1 T
O|J |0 |0||U|J 0|00 0|00
| ©| o©o| ojJ] 9| o©o| o o]} ©| o] o] o
ol «=H| N m]] o] «=H]| | o)y ©O| «=H| | m
OO |0 |O||U|0 |0 |0JO|J 0|0

w Execution Steps...

f.
°© 2w
e =
m n o S o
r_nlu U © T ._m -
T SO0 S0
4 o (N — O y—
= o O O
c L T
n i®)
wn M<CT=—WM
m (0] m oM m (0] m mM m (0] m mM
— N m o — (] mM o — (] mM o
MM <A AN MN[0 M AN MN[0 M
N o N N N o N N N o N o
— N mM o — N mM o — N mM o
(aaPANag PiiNaa Piliaa] M MO0 Mm M MO0 Mm
— — — — — — — — — — —
— N o — (] mM o — (] mM o
<< A AN M 0N| M AN MN[0 M
o o o o o o o o o o o
~ N —o — o m o — o m o
M| M mM M MO0 Mm O MMM Mm

AOO A01 A02 A03

AlO All A12 A13

A30 A31 A32 A33

A01 A01 A01 A01

Az | A |An | A

A23 A23 A23 A23

A30 A30 A30 A30

A01 AOl AOl AOl

Az | A |An | A

A23 A23 A23 A23

A30 A30 A30 A30

CZO C21 C22 C23 A20 A21 A22 A23 B;O ¢31

< all gl 2| &f 8|l g 8 r| @
OO Jl|v|o|o|J||v]|o|o|U
= o | TS N] | =TT B
OO Ollv|o|o|o|lu|o|u|u
3| = [l el 2| = &l 8] & & @
OO Jl|v|o|o|J||v]|o|o|U
| ©O ojf] ©| o©| o o]} ©| o] o] o
ol M|y o©| —=H| | o) ©O| «=H| | m
OO Ollv|o|o|o|folo|o|u

w Fox's Algorithm

// No initial data movement

for k =1 to g in parallel
Broadcast A’s k*' diagonal
Local C = C + A*B
Vertical shift of B

// No final data movement

= Again note that there is an additional array to
store incoming diagonal block

®= This is the array we use in the A*B multiplication

*W Performance Analysis

= You'll have to do it in a homework
assignment

= Write pseudo-code of the algorithm In
more details

= Write the performance analysis

w Snyder’s Algorithm (1992)

= More complex than Cannon’s or
Fox's
= First transposes matrix B

= Uses reduction operations (sums) on

the rows of matrix C

= Shifts matrix B

&M Execution Steps...

COO COl C02 C03

Transpose B

m oM m m o — o m o — o m
o — o m m M oM m (28] (28] oM m
O NN OO0 M| m
N N N o o — N oM o — N oM
o — o mM o~ o N N o N N N
M OO0 N0 jjd 00|
— — — — o — o m o — o m
(@) — o mM — — — — —l — — —
O OO0 M| m
o o o o o — N m o — N m
o — o oM o o o o o o o o
MO0 N0 jjd 00|

Aoo | Ao1 | Aoz | Aos
A, A AL A
Az | A1 [Ag | Ags
Az | Asr |Asp | Ass

Aoo | Ao1 | Aoz | Aos
A, A AL A
Az | A1 [Ag | Ags
Az | Asr |Asp | Ass

Ago | Aor | Aoz | Aoz
A, A AL A
Az | Azr | Az | A
Az | Asy [Asz | Ass

ClO Cll C12 C13

CZO C21 C22 C23

C30 C31 C32 C33

COO COl C02 C03

ClO Cll C12 C13

CZO C21 C22 C23

C30 C31 C32 C33

C00 C01 C02 C03
ClO C11 C12 C13

CZO C21 C22 C23

C30 C31 C32 C33

wn
=
@)
—
m _
Q
©
)
= SE®O
% — 35 C 4
O n oo
— N N o — N N o — N N o
mM mM mM (e8] mM mM mM (e8] m mM mM mM
N /Mol 0|j@| 0|0 |m
— N m o — N m o — N m o
N N N N N N N N N N N N
ndoodmdn|ilmo | m|ld || m|m
— (V] o — (V] mM o — (V] mM o
— — — — — — — — — — —
. | M Mmoo m |l | m|m|m
— N o —l N m o — N m o
o o o o o o o o o o o
M M« |l m |l m|m|m

A10 All A12 A13

A30 A31 A32 A33

Ago | Ao1 | Aoz | Aos
AL AL AL A
Ao A | Ay | A
Ay [Asp | Asy | Agg
Ago | Aoy | Aoz | Ao
A, [A; AL A
A A Ay, |As
Asg | Asy | As;y | Ass

&M Execution Steps...

CZO C21 C22 C23 A20 A21 A22 A23 ;BOB Ab13

3| o afl e = =ball 8 = g @
10O OO 10|10 01O 10 O 0
3| o SIS]| B ey N
0110 OO 1O 1010|1010 |00
3| = I R N
10O OO O 10 10O 10|00
3| a8l sl g gl 8 s g ¢
0110 OO 1O 1001010 |00

&M Execution Steps...

on the rows

= s
)
O
= SETO
T el Y—
O wn o
oN o — NN m o — (g m o —
m m mM m mM m mM mM mM m mM
aa i Wea ol | ool an ey aaly | o iaalyiyaaiyan
N o — N m o — N m o —
o o o N oN N N (gl oN N N
M L Ndm MM MM MMM O N MM
oN o — N m o — (gl m o —
— — — —i — —l — — — —l —
aa i N/ Mmoo A o m m
S 3| || .8 8| 8| 3|8 8| 8| =
M L Ndm MM MM MMM O N MM

A30 A31 A32 A33

AOO A01 AOZ A03

AlO All A12 A13

A20 A21 A22 A23

A3O A31 A32 A33

AOO A01 A02 A03
AlO All A12 A13

A20 A21 A22 A23

A3O A31 A32 A33

Cyo|Cuy | Crz [Cus | [Aso [A | Asz | Ass || Bos | Bus | Bas | Ba:

C30 | Ca1 [C3p | G

ml mf ™| mjf M| o] ™M™ ™M
ol = ™| m]j] ©S| —=H| ™| ™M
OO O|O|U 0|0
sial a8l s R s
OO0 |0(||O|U |00
gl o = a8 = = =&
O|U|0|0[|O|U|0|0
| ©|] o} o] ©| o| o| o
ol «=H| «~f mj] ©| —=H| | ™M
O|0 00|00 |00

&M The Algorithm

var A,B,C: array[0..m-1][0..m-1] of real
var bufferC: array[0..m-1][0..m-1] of real
Transpose B
MatrixMultiplyAdd(bufferC, A, B, m)
Vertical shifts of B
Fork =1toqg-1
Global sum of bufferC on proc rows into C, 1,44
MatrixMultiplyAdd(bufferC, A, B, m)
Vertical shift of B
Global sum of bufferC on proc rows into C, ., 1)%q

Transpose B

&W Performance Analysis

" The performance analysis isn’t
fundamentally different than what
we’'ve done so far

" But it’s a bit cumbersome

= See the textbook

" in particular the description of the
matrix transposition (see also Exercise
5.1)

&W Which Data Distribution?

= So far we've seen:
= Block Distributions
= 1-D Distributions
= 2-D Distributions
= Cyclic Distributions

" One may wonder what a good choice
Is for a data distribution?

= Many people argue that a good
“Swiss Army knife” is the “2-D block
cyclic distribution

lnNe £Z-D DIOCK CYCIIC
distribution

" Goal: try to have all the advantages
of both the horizontal and the
vertical 1-D block cyclic distribution

= Works whichever way the computation
“progresses”

" |eft-to-right, top-to-bottom, wavefront, etc.
= Consider a number of processors p =
r*c
= arranged in a rxc matrix
" Consider a 2-D matrix of size NxN

= Consider a block size b (which
AinvidAdac N

lNne Z-D DIOCK CYCIIC
distribution

PO

P1

P2

P3

P4

P5

lNne Z-D DIOCK CYCIIC
distribution

PO

P1

P2

P3

P4

P5

lNne Z-D DIOCK CYCIIC
distribution

PO|P1|P2
P3|P4|P5

= Slight load imbalance
= Becomes negligible with
many blocks
®= Index computations had
better be implemented in
separate functions

= Also: functions that tell a
process who its neighbors
are

= Qverall, requires a whole
infrastructure, but many
think you can’t go wrong
with this distribution

w Conclusion

= All the algorithms we have seen in the
semester can be implemented on a 2-D

block cyclic distribution
®" The code ends up much more complicated
= But one may expect several benefits “for
free”
" The ScaLAPAK library recommends to use

the 2-D block cyclic distribution

= Although its routines support all other
distributions

	Principles of High Performance Computing (ICS 632)
	2-D Matrix Distribution
	The Cannon Algorithm
	Cannon’s Preskewing
	Slide 5
	Cannon’s Computation
	Cannon’s Steps
	The Algorithm
	Performance Analysis
	Pre/Post-skewing times
	Time for each step
	Cannon Performance Model
	The Fox Algorithm
	Execution Steps...
	Slide 15
	Fox’s Algorithm
	Slide 17
	Snyder’s Algorithm (1992)
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Which Data Distribution?
	The 2-D block cyclic distribution
	Slide 26
	Slide 27
	Slide 28
	Conclusion

