

Principles of High
Performance Computing
(ICS 632)

Algorithms on a Grid
of Processors

2-D Grid (Chapter 5)

 Consider p=q2 processors
 We can think of them arranged in a square grid

 A rectangular grid is also possible, but we’ll
stick to square grids for most of our algorithms

 Each processor is identified as Pi,j

 i: processor row
 J: processor column

P0,0 P0,1 P0,2

P1,0 P1,1 P1,2

P2,0 P2,1 P2,2

2-D Torus

 Wrap-around links from edge to edge
 Each processor belongs to 2 different rings

 Will make it possible to reuse algorithms we develop for
the ring topology

 Mono-directional links OR Bi-directional links
 Depending on what we need the algorithm to do and on

what makes sense for the physical platform

P0,0 P0,1 P0,2

P1,0 P1,1 P1,2

P2,0 P2,1 P2,2

Concurrency of Comm. and
Comp.

 When developing performance models we will
assume that a processor can do all three activities in
parallel
 Compute
 Send
 Receive

 What about the bi-directional assumption?
 Two models

 Half-duplex: two messages on the same link
going in opposite directions contend for the
link’s bandwidth

 Full-duplex: it’s as if we had two links in
between each neighbor processors

 The validity of the assumption depends on the
platform

Multiple concurrent
communications?

 Now that we have 4 (logical) links at each
processor, we need to decide how many
concurrent communications can happen at the
same time
 There could be 4 sends and 4 receives in the

bi-directional link model
 If we assume that 4 sends and 4 receives can

happened concurrently without loss of
performance, we have a multi-port model

 If we only allow 1 send and 1 receive to occur
concurrently we have a single-port model

So what?

 We have many options:
 Grid or torus
 Mono- or bi-directional
 Single-or multi-port
 Half- or full-duplex

 We’ll mostly use the torus, bi-directional, full-
duplex assumption

 We’ll discuss the multi-port and the single-port
assumptions

 As usual, it’s straightforward to modify the
performance analyses to match with whichever
assumption makes sense for the physical
platform

How realistic is a grid
topology?

 Some parallel computers are built as
physical grids (2-D or 3-D)
 Example: IBM’s Blue Gene/L

 If the platform uses a switch with all-to-all
communication links, then a grid is
actually not a bad assumption
 Although the full-duplex or multi-port

assumptions may not hold
 We will see that even if the physical

platform is a shared single medium (e.g.,
a non-switched Ethernet), it’s sometimes
preferable to think of it as a grid when
developing algorithms!

Communication on a Grid

 As usual we won’t write MPI here, but
some pseudo code

 A processor can call two functions to
known where it is in the grid:
 My_Proc_Row()
 My_Proc_Col()

 A processor can find out how many
processors there are in total by:
 Num_Procs()
 Recall that here we assume we have a square

grid
 In programming assignment we may need to

use a rectangular grid

Communication on the Grid

 We have two point-to-point functions
 Send(dest, addr, L)
 Recv(src, addr, L)

 We will see that it’s convenient to have
broadcast algorithms within processor
rows or processor columns
 BroadcastRow(i, j, srcaddr, dstaddr, L)
 BroadcastCol(i, j, srcaddr, dstaddr, L)

 We assume that a a call to these functions by
a processor not on the relevant processor row
or column simply returns immediately

 How do we implement these broadcasts?

Row and Col Broadcasts?

 If we have a torus
 If we have mono-directional links, then we can reuse the

broadcast that we developed on a ring of processors
 Either pipelined or not

 It we have bi-directional links AND a multi-port model,
we can improved performance by going both-ways
simultaneously on the ring

 We’ll see that the asymptotic performance is not changed
 If we have a grid

 If links are bi-directional then messages can be sent
both ways from the source processor

 Either concurrently or not depending on whether we have a
one-port or multi-port model

 If links are mono-directional, then we can’t implement
the broadcasts at all

Matrix Multiplication on a
Grid

 Matrix multiplication on a Grid has been studied a
lot because
 Multiplying huge matrices fast is always

important in many, many fields
 Each year there is at least a new paper on

the topic
 It’s a really good way to look at and learn

many different issues with a grid topology
 Let’s look at the natural matrix distribution

scheme induced by a grid/torus

2-D Matrix Distribution

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B33B32B31B30

B23B22B21B20

B13B12B11B10

B03B02B01B00

P0,0 P0,1 P0,2

P1,0 P1,1 P1,2

P2,0 P2,1 P2,2

P0,2

P1,2

P2,2

P2,0 P2,1 P2,2 P2,2

 We denote by ai,j an

element of the matrix
 We denote by Ai,j (or Aij)

the block of the matrix
allocated to Pi,j

How do Matrices Get Distributed? (Sec.
4.7)

 Data distribution can be completely ad-hoc
 But what about when developing a library that will be used by others?
 There are two main options:
 Centralized

 when calling a function (e.g., matrix multiplication)
 the input data is available on a single “master” machine (perhaps in a file)
 the input data must then be distributed among workers
 the output data must be undistributed and returned to the “master” machine (perhaps in a file)

 More natural/easy for the user
 Allows for the library to make data distribution decisions transparently to the user
 Prohibitively expensive if one does sequences of operations

 and one almost always does so
 Distributed

 when calling a function (e.g., matrix multiplication)
 Assume that the input is already distributed
 Leave the output distributed

 May lead to having to “redistribute” data in between calls so that distributions match,
which is harder for the user and may be costly as well

 For instance one may want to change the block size between calls, or go from a non-cyclic to a
cyclic distribution

 Most current software adopt the distributed approach
 more work for the user
 more flexibility and control

 We’ll always assume that the data is magically already distributed by the user

Four Matrix Multiplication
Algorithms

 We’ll look at four algorithms
 Outer-Product
 Cannon
 Fox
 Snyder

 The first one is used in practice
 The other three are more “historical” but are

really interesting to discuss
 We’ll have a somewhat hand-wavy discussion

here, rather than look at very detailed code

The Outer-Product Algorithm

 Consider the “natural” sequential matrix multiplication
algorithm

for i=0 to n-1
for j=0 to n-1

for k=0 to n-1
ci,j += ai,k * bk,j

 This algorithm is a sequence of inner-products (also called
scalar products)

 We have seen that we can switch loops around
 Let’s consider this version

for k=0 to n-1
for i=0 to n-1

for j=0 to n-1
ci,j += ai,k * bk,j

 This algorithm is a sequence of outer-products!

The Outer-Product Algorithm

for k=0 to n-1
 for i=0 to n-1
 for j=0 to n-1
 ci,j += ai,k * bk,j

C += x

K=0 B

A C += x

K=1 B

A

The outer-product algorithm
 Why do we care about switching the loops around to view the matrix

multiplication as a sequence of outer products?
 Because it makes it possible to design a very simple parallel algorithm on

a grid of processors!
 First step: view the algorithm in terms of the blocks assigned to the

processors

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B33B32B31B30

B23B22B21B20

B13B12B11B10

B03B02B01B00

for k=0 to q-1
 for i=0 to q-1
 for j=0 to q-1
 Ci,j += Ai,k * Bk,j

The Outer-Product Algorithm

 At step k, processor Pi,j needs Ai,k and Bk,j

 If k = j, then the processor already has the
needed block of A

 Otherwise, it needs to get it from Pi,k

 If k = I, then the processor already has the
needed block of B

 Otherwise, it needs to get it from Pk,j

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B3

3

B3

2

B3

1

B3

0

B2

3

B2

2

B2

1

B2

0

B1

3

B1

2

B1

1

B1

0

B0

3

B0

2

B0

1

B0

0

for k=0 to q-1
 for i=0 to q-1
 for j=0 to q-1
 Ci,j += Ai,k * Bk,j

The Outer-Product Algorithm

 Based on the previous statements, we can now
see how the algorithm works

 At step k
 Processor Pi,k broadcasts its block of matrix A

to all processors in processor row i
 True for all i

 Processor Pk,j broadcasts its block of matrix B
to all processor in processor column j

 True for all j
 There are q-1 steps

The Outer Product Algorithm

P33P32A31P30

P23P22A21P20

P13P12A11P10

P03P02A01P00

P33P32P31P30

P23P22P21P20

B13B12B11B10

P03P02P01P00

Step k=1 of the algorithm

The Outer-Product Algorithm
// m = n/q
var A, B, C: array[0..m-1, 0..m-1] of real
var bufferA, bufferB: array[0..m-1, 0..m-1] of real
var myrow, mycol
myrow = My_Proc_Row()
mycol = My_Proc_Col()
for k = 0 to q-1

// Broadcast A along rows
for i = 0 to q-1

BroadcastRow(i,k,A,bufferA,m*m)
// Broadcast B along columns
for j=0 to q-1

BroadcastCol(k,j,B,bufferB,m*m)
// Multiply Matrix blocks (assuming a convenient MatrixMultiplyAdd()
function)
if (myrow == k) and (mycol == k)

MatrixMultiplyAdd(C,A,B,m)
else if (myrow == k)

MatrixMultiplyAdd(C,bufferA,B,m)
else if (mycol == k)

MatrixMultiplyAdd(C, A, bufferB, m)
else

MatrixMultiplyAdd(C, bufferA, bufferB, m)

Performance Analysis

 The performance analysis is straightforward
 With a one-port model:

 The matrix multiplication at step k can occur in parallel with
the broadcasts at step k+1

 Both broadcasts happen in sequence
 Therefore, the execution time is equal to:

T(m,q) = 2 Tbcast + (q-1) max (2 Tbcast, m3 w) + m3 w
 w: elementary += * operation
 Tbcast: time necessary for the broadcast

 With a multi-port model:
 Both broadcasts can happen at the same time

T(m,q) = Tbcast + (q-1) max (Tbcast, m3 w) + m3 w
 The time for a broadcast, using the pipelined broadcast:

Tbcast = (sqrt((q-2)L) + sqrt(m2 b))2

 When n gets large: T(m,q) ~ q m3 = n3 / q2
 Thus, asymptotic parallel efficiency is 1!

So what?

 On a ring platform we had already given an
asymptotically optimal matrix multiplication
algorithm on a ring in an earlier set of slides

 So what’s the big deal about another
asymptotically optimal algorithm?

 Once again, when n is huge, indeed we don’t
care

 But communication costs are often non-negligible
and do matter
 When n is “moderate”
 When w/b is low

 It turns out, that the grid topology is
advantageous for reducing communication costs!

Ring vs. Grid

 When we discussed the ring, we found that the
communication cost of the matrix multiplication algorithm
was: n2 b
 A each step, the algorithm sends n2/p matrix elements among

neighboring processors
 There are p steps

 For the algorithm on a grid:
 Each step involves 2 broadcasts of n2/p matrix elements

 Assuming a one-port model, not to give an “unfair” advantage to
the grid topology

 Using a pipelined broadcast, this can be done in approximately
the same time as sending n2/p matrix elements between
neighboring processors on each ring (unless n is really small)

 Therefore, at each step, the algorithm on a grid spends twice
as much time communicating as the algorithm on a ring

 But it does sqrt(p) fewer steps!
 Conclusion: the algorithm on a grid spends at least sqrt(p)

less time in communication than the algorithm on a ring

Grid vs. Ring

 Why was the algorithm on a Grid much better?
 Reason: More communication links can be used

in parallel
 Point-to-point communication replaced by broadcasts
 Horizontal and vertical communications may be

concurrent
 More network links used at each step

 Of course, this advantage isn’t really an
advantage if the underlying physical platform
does not really look like a grid

 But, it turns out that the 2-D distribution is
inherently superior to the 1-D distribution, no
matter what the underlying platform is!

Grid vs. Ring
 On a ring

 The algorithm communicates p matrix block rows that each
contain n2/p elements, p times

 Total number of elements communicated: pn2

 On a grid
 Each step, 2sqrt(p) blocks of n2/p elements are sent, each to

sqrt(p)-1 processors, sqrt(p) times
 Total number of elements communicated: 2sqrt(p)n2

 Conclusion: the algorithm with a grid in mind
inherently sends less data around than the algorithm
on a ring

 Using a 2-D data distribution would be better than
using a 1-D data distribution even if the underlying
platform were a non-switched Ethernet for instance!
 Which is really 1 network link, and one may argue is closer to

a ring (p comm links) than a grid (p2 comm links)

Conclusion

 Writing algorithms on a grid topology is a little bit
more complicated than in a ring topology

 But there is often a payoff in practice and grid
topologies are very popular

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

