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L§_ aParallel Matrix-Vector product

= y=AX
= |Let n be the size of the matrix
int a[n][n];
int x[n];
for i = 0 to n-1 {
yii] = 0;
for j = 0 to n-1
yli] = y[i] + a[i, j] * x[j];
}

X[N]

"= How do we do this In
parallel?

yIN]

Section 4.1 in the book

a[N][N]



g maParallel Matrix-Vector product
mill Wl ]

= How do we do this in parallel?

= For example:

= Computations of elements of
vector y are independent

= Each of these computations
requires one row of matrix a and
vector x

= |n shared-memory:

X[N]

#pragma omp parallel for private (i, j)
for i = 0 to n-1 { EEEEEEEEN
yli] = 0;
for j = 0 to n-1
yli] = y[i] + al[i,j] * x[j];
} a[N][N]

yIN]




g maParallel Matrix-Vector Product

=
= |n distributed memory, one possibility is that
each process has a full copy of matrix a and of
vector X
= Each processor declares a vector y of size n/p
= We assume that p divides n

= Therefore, the code can just be

load(a),; load(x)
p = NUM PROCS(); r = MY RANK();
for (i=r*n/p; i<(r+1l)*n/p; i++) {
for (j=0;j<n; j++)
yli-r*n/p] = a[i][j] * x[3j];

}
= |t's embarrassingly parallel

= \What about the result?



kg sVhat about the result?
=l

= After the processes complete the computation, each
process has a piece of the result

= One probably wants to, say, write the result to a file
= Requires synchronization so that the I/O is done correctly

= For example

if (r !=0) {
recv(&token,1);

}

open(file, “append”);

for (j=0; j<n/p ; Jj++)
write (file, y[3j]);

send (&token, 1) ;

close(file)

barrier(); // optional

®= Could also use a “gather” so that the entire vector is
returned to processor O

= vector y fits in the memory of a single node



g maWhat if matrix a is too big?
mil WU i

= Matrix a may not fit in memory

= Which is a motivation to use distributed memory
implementations

= |n this case, each processor can store only a
piece of matrix a

= For the matrix-vector multiply, each processor
can just store n/p rows of the matrix
= Conceptually: A[n][n]
= But the program declares a[n/p][n]

= This raises the (annoying) issue of global indices
versus local indices




4Global vs. Local indices

= When an array is split among processes
= global index (l,]) that references an element of the matrix
= |ocal index (i,j) that references an element of the local array
that stores a piece of the matrix

= Translation between global and local indices
* think of the algorithm in terms of global indices
* implement it in terms of local indices

==

v

A

g

Global: A[5][3]
Local: a[ll][3] on process P1

ali,jl = Al(n/p)*rank + i][j]



g maGlobal Index Computation
il A

= Real-world parallel code often implements actual
translation functions

= GlobalToLocal()
= LocalToGlobal()

= This may be a good idea in your code, although
for the ring topology the computation is pretty
easy, and writing functions may be overkill

= We'll see more complex topologies with more
complex associated data distributions and then
it’s probably better to implement such functions




g maDistributions of arrays
mil WU ]

= At this point we have
= 2-D array a distributed
= 1-D array y distributed
= 1-D array x replicated

= Having distributed arrays makes it possible to
partition work among processes

= But it makes the code more complex due to
global/local indices translations

" |t may require synchronization to load/save the
array elements to file
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|'A\” vector distributed?

So far we have array x replicated

It is usual to try to have all arrays involved in the
same computation be distributed in the same
way

" makes it easier to read the code without constantly
keeping track of what'’s distributed and what’s not

" e.g., “local indices for array y are different from the global
ones, but local indices for array x are the same as the
global ones” will lead to bugs

What one would like it for each process to have
= N/n rows of matrix A in an array a[n/plln]
= N/n components of vector x in an array x[n/p]
= N/n components of vector y in an array y[n/p]

Turns out there is an elegant solution to do this
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= Uses two buffers
= tempS for sending and tempR to receiving

float A[n/p][n], x[n/p], y[n/p];
r « n/p
tempS ~ x /* My piece of the vector (n/p elements) */
for (step=0; step<p, step++) { /* p steps */

SEND (tempS, r)

RECV (tempR, r)

for (i=0; i<n/p; i++)

for (j=0; j <n/p; 3j++)
y[i] < y[i] + a[i, (rank - step mod p) * n/p + j] * tempS[j]

tempS o tempR

}

= |In our example, process of rank 2 at step 3 would work with
the 2x2 matrix block starting at column ((2 - 3) mod 4)*8/4
=3*8/4 = 6;



g a oA few General Principles

mill
= [arge data needs to be distributed among

processes (running on different nodes of a cluster
for instance)

= causes many arithmetic expressions for index
computation

= People who do this for a leaving always end up writing
local to global() and global to local() functions

= Data may need to be loaded/written before/after
the computation
" requires some type of synchronization among processes

= Typically a good idea to have all data structures
distributed similarly to avoid confusion about
which indices are global and which ones are local

= |n our case, all indices are local

= |n the end the code looks much more complex
than the equivalent OpenMP implementation



- Performance
mill Wl

®" There are p identical steps

" During each step each processor performs
three activities: computation, receive, and
sending
= Computation: rzw

= w: time to perform one +=* operation
= Receiving: L+ rb
= Sending: L+rb

T(p) = p (r*w + 2L + 2rb)



B a#Asymptotic Performance
mill Wl

" T(p) = p(r2w + 2L + 2rb)
= Speedup(p) = n2w [/ p (rPw + 2L + 2rb)
= n2w / (n2w/p + 2pL + 2nb)
= Eff(p) = n?w / (n2w+ 2p2L + 2pnb)
= For p fixed, when n is large, Eff(p) ~ 1

= Conclusion: the algorithm is
asymptotically optimal



g maPerformance (2)

= Note that an algorithm that initially broadcasts the
entire vector to all processors and then have every
processor compute independently would be in time

(p-1)(L + n b) + pr2w
= Could use the pipelined broadcast
= which:
= has the same asymptotic performance
" |s a simpler algorithm
= wastes only a tiny little bit of memory
= |s arguably much less elegant

= |t is important to think of simple solutions and see
what works best given expected matrix size, etc.



gBack to the Algorithm
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float A[n/p][n], x[n/p], y[n/p];
r « n/p
tempS ~ x /* My piece of the vector (n/p elements) */
for (step=0, step<p; step++) { /* p steps */
SEND (tempS, r)
RECV (tempR, r)
for (i=0; i<n/p; i++)
for (j=0; j <n/p; j++)
yv[i] < y[i] + a[i, (rank - step mod p) * n/p + j] * tempS[7j]
tempS o tempR
}
= |n the above code, at each iteration, the SEND, the RECV,

and the computation can all be done in parallel

= Therefore, one can overlap communication and
computation by using non-blocking SEND and RECV if
available

= MPI provides MPI _ISend() and MPI_IRecv() for this purpose



kg JNore Concurrent Algorithm
— _

= Notation for concurrent activities:

float A[n/p][n], x[n/pP], y[n/pP];
tempS ~ x /* My piece of the vector (n/p elements) */
r « n/p
for (step=0; step<p, step++) { /* p steps */
SEND (tempS, r)
| | RECV (tempR, r)
|| for (i=0, i<n/p; i++)
for (j=0; j <n/p; j++)
yv[i] « yl[i]+a[i, (rank-step mod p) *n/p+7j] *tempS[7]

tempS ~ tempR

}



§ msBetter Performance
mill Wl

®" There are p identical steps

" During each step each processor performs
three activities: computation, receive, and
sending
= Computation: r’w
= Receiving: L+ rb
= Sending: L+ rb

T(p) = p max(r’w, L + rb)

Same asymptotic performance as above, but
better performance for smaller values of n
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= We have said many times that multi-core
architectures are about to become the standard

= When building a cluster, the nodes you will buy will
be multi-core

= Question: how to exploit the multiple cores?

= Or in our case how to exploit the multiple
processors in each node

= Option #1: Run multiple processes per node

= Causes more overhead and more
communication

= |n fact will cause network communication among
processes within a node!

= MPI will not know that processes are co-
located



|||OpenMP MPI Prog ram
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= Option #2: Run a single multi-threaded process
per node

= Much lower overhead, fast communication
within a node

= Done by combining MPI with OpenMP!
= Just write your MPI program
= Add OpenMP pragmas around loops

= Let’'s look back at our Matrix-Vector multiplication
example



JHybrid Parallelism

float A[n/p][n], x[n/p], y[n/pP];
tempS ~ x /* My piece of the vector (n/p elements) */
for (step=0; step<p, step++) { /* p steps */
SEND (tempS, r)
| | RECV (tempR, r)
| | #pragma omp parallel for private(i, j)
for (i=0, i<n/p; i++)
for (j=0; j <n/p; jt++)
yv[i] « y[i] + a[i, (rank - step mod p)*n/p+j]*
tempS[5]
tempS o tempR
}

= This is called Hybrid Parallelism

Communication via the network among nodes
Communication via the shared memory within nodes
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Getting It Lomplied and

It can be tricky to compile and link a hybrid program

= Because mpicc and ompcc do their own things to make our
lives simple, they don’t play well with each other

My solution: use any gcc after 4.2

The cluster has gcc 3.4 installed by default

= Because the cluster is managed using a software that rolls out
particular RedHat distributions, and so far, we’'re stuck with
this
BUT, any gcc after 4.2 supports openMP:
= gcc whatever.c -o whatever -fopenmp

= We could’'ve used it for HW #1
So | installed gcc 4.2 in /home/casanova/public/bin/gcc
Compiling with mpicc is however no longer possible

So | put an example Makefile in /home/casanova/public/
Makefile.hybrid

= Let's look at it...



Matrix Multiplication on the
RING
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= See Section 4.2

= Turns out one can do matrix multiplication in a
way very similar to matrix-vector multiplication

= A matrix multiplication is just the computation
of n2 scalar products, not just n

= \We have three matrices, A, B, and C
= We want to compute C = A*B

= We distribute the matrices to that each processor
“owns” a block row of each matrix

= Easy to do if row-major is used because all
matrix elements owned by a processor are
contiguous in memory
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af irst Step

let’s look at
processor P,

p=4

N

]

ab=
A1,1XBl,O

ab=
A1,1XBl,1

ab=
A1,1XBl,2

ab=
A1,1XBl,3




sg._m.smfting of block rows of B

p=4 1
let’s look at
processor P,

N
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zoecond step

let’s look at
processor P,

p=4

]

ab=
A1,0XBo,o

ab=
A1,oXBo,1

ab=
A1,oXBo,2

ab=
A1,0XBo,3
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In the end, every Ci,j block has the correct value: A ;B,, + A 1B, +

= Basically, this is the same algorithm as for matrix-vector
multiplication, replacing the partial scalar products by submatrix
products (gets tricky with loops and indices)

float A[N/p][N], B[N/p][N], C[N/p]I[N];
r « N/p
tempS < B
qg « MY RANK()
for (step=0; step<p; step++) { /* p steps */
SEND (tempS, r*N)
| | RECV (tempR, r*N)
|| for (1=0, 1l<p, 1++)
for (i=0; i<N/p; i++)
for (j=0; 3j<N/p; j++)
for (k=0; k<N/p; k++)
Cl[i,1*r+j] < C[i,1*r+j] + Al[i, r((q — step)3p)+k] * tempS[k,1*r+j]
tempS o tempR



for (step=0; step<p, step++) { /* p steps */
SEND (tempS, r*N)
| | RECV (tempR, r*N)
|| for (1=0, 1l<p, 1++)
for (i=0; i<N/p; i++)
for (j=0; 3j<N/p; j++)
for (k=0; k<N/p; k++)
Cl[i,1lr+j] « C[i,1r+j] + A[i,r((rank - step)%p)+k] * tempS[k,lr+j]
tempS o tempR

/ step=0
=0

0
0

h




for (step=0; step<p, step++) { /* p steps */
SEND (tempS, r*N)
| | RECV (tempR, r*N)
|| for (1=0, 1l<p, 1++)
for (i=0; i<N/p; i++)
for (j=0; 3j<N/p; j++)
for (k=0; k<N/p; k++)
Cl[i,1lr+j] « C[i,1r+j] + A[i,r((rank - step)%p)+k] * tempS[k,lr+j]
tempS o tempR

/ step=0




for (step=0; step<p, step++) { /* p steps */
SEND (tempS, r*N)
| | RECV (tempR, r*N)
|| for (1=0, 1l<p, 1++)
for (i=0; i<N/p; i++)
for (j=0; 3j<N/p; j++)
for (k=0; k<N/p; k++)
Cl[i,1lr+j] « C[i,1r+j] + A[i,r((rank - step)%p)+k] * tempS[k,lr+j]
tempS o tempR

/ step=0
=0

X

h




for (step=0; step<p, step++) { /* p steps */
SEND (tempS, r*N)
| | RECV (tempR, r*N)
|| for (1=0, 1l<p, 1++)
for (i=0; i<N/p; i++)
for (j=0; 3j<N/p; j++)
for (k=0; k<N/p; k++)
Cl[i,1lr+j] « C[i,1r+j] + A[i,r((rank - step)%p)+k] * tempS[k,lr+j]
tempS o tempR

/ step=0
=1

X

h




for (step=0; step<p, step++) { /* p steps */
SEND (tempS, r*N)
| | RECV (tempR, r*N)
|| for (1=0, 1l<p, 1++)
for (i=0; i<N/p; i++)
for (j=0; 3j<N/p; j++)
for (k=0; k<N/p; k++)
Cl[i,1lr+j] « C[i,1r+j] + A[i,r((rank - step)%p)+k] * tempS[k,lr+j]
tempS o tempR

/ step=0

|=*
X

h




for (step=0; step<p, step++) { /* p steps */
SEND (tempS, r*N)
| | RECV (tempR, r*N)
|| for (1=0, 1l<p, 1++)
for (i=0; i<N/p; i++)
for (j=0; 3j<N/p; j++)
for (k=0; k<N/p; k++)
Cl[i,1lr+j] « C[i,1r+j] + A[i,r((rank - step)%p)+k] * tempS[k,lr+j]
tempS o tempR

} I step=1

|=*
X

h




for (step=0; step<p, step++) { /* p steps */
SEND (tempS, r*N)
| | RECV (tempR, r*N)
|| for (1=0, 1l<p, 1++)
for (i=0; i<N/p; i++)
for (j=0; 3j<N/p; j++)
for (k=0; k<N/p; k++)
Cl[i,1lr+j] « C[i,1r+j] + A[i,r((rank - step)%p)+k] * tempS[k,lr+j]
tempS o tempR

f step=2
] | =

X

h




for (step=0; step<p, step++) { /* p steps */
SEND (tempS, r*N)
| | RECV (tempR, r*N)
|| for (1=0, 1l<p, 1++)
for (i=0; i<N/p; i++)
for (j=0; 3j<N/p; j++)
for (k=0; k<N/p; k++)
Cl[i,1lr+j] « C[i,1r+j] + A[i,r((rank - step)%p)+k] * tempS[k,lr+j]
tempS o tempR

/ step=3
— | =%

X

h




- Performance
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= Performance Analysis is straightforward

= p steps and each step takes time:

max (nrzw, L + nrb)
= p rxr matrix products = pr3 = nr? operations

= Hence, the running time is:
T(p) = p max (nhr2w, L + nrb)
= Note that a naive algorithm computing n

Matrix-vector products in sequence using
our previous algorithm would take time

T(p) = p max(nrw, nL + nrb)
= We just saved network latencies!



;$ Conclusion
mill Wl

= This was our first foray in the realm
of distributed memory parallel
algorithms

" |[n @ programming assignment you'll
write things like these in MPIl and see
what happens

" [n the next set of slides we'll look at
more complex algorithms that
iInvolve interesting performance
trade-offs
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