Principles of High
Performance Computing
gl(lcs 632)
k I

Algcrithms on a Rlng

L§_ aParallel Matrix-Vector product

= y=AX
= |Let n be the size of the matrix
int a[n][n];
int x[n];
for i = 0 to n-1 {
yii] = 0;
for j = 0 to n-1
yli] = y[i] + a[i, j] * x[j];
}

X[N]

"= How do we do this In
parallel?

yIN]

Section 4.1 in the book

a[N][N]

g maParallel Matrix-Vector product
mill Wl]

= How do we do this in parallel?

= For example:

= Computations of elements of
vector y are independent

= Each of these computations
requires one row of matrix a and
vector x

= |n shared-memory:

X[N]

#pragma omp parallel for private (i, j)
for i = 0 to n-1 { EEEEEEEEN
yli] = 0;
for j = 0 to n-1
yli] = y[i] + al[i,j] * x[j];
} a[N][N]

yIN]

g maParallel Matrix-Vector Product

=
= |n distributed memory, one possibility is that
each process has a full copy of matrix a and of
vector X
= Each processor declares a vector y of size n/p
= We assume that p divides n

= Therefore, the code can just be

load(a),; load(x)
p = NUM PROCS(); r = MY RANK();
for (i=r*n/p; i<(r+1l)*n/p; i++) {
for (j=0;j<n; j++)
yli-r*n/p] = a[i][j] * x[3j];

}
= |t's embarrassingly parallel

= \What about the result?

kg sVhat about the result?
=l

= After the processes complete the computation, each
process has a piece of the result

= One probably wants to, say, write the result to a file
= Requires synchronization so that the I/O is done correctly

= For example

if (r !=0) {
recv(&token,1);

}

open(file, “append”);

for (j=0; j<n/p ; Jj++)
write (file, y[3j]);

send (&token, 1) ;

close(file)

barrier(); // optional

®= Could also use a “gather” so that the entire vector is
returned to processor O

= vector y fits in the memory of a single node

g maWhat if matrix a is too big?
mil WU i

= Matrix a may not fit in memory

= Which is a motivation to use distributed memory
implementations

= |n this case, each processor can store only a
piece of matrix a

= For the matrix-vector multiply, each processor
can just store n/p rows of the matrix
= Conceptually: A[n][n]
= But the program declares a[n/p][n]

= This raises the (annoying) issue of global indices
versus local indices

4Global vs. Local indices

= When an array is split among processes
= global index (l,]) that references an element of the matrix
= |ocal index (i,j) that references an element of the local array
that stores a piece of the matrix

= Translation between global and local indices
* think of the algorithm in terms of global indices
* implement it in terms of local indices

==

v

A

g

Global: A[5][3]
Local: a[ll][3] on process P1

ali,jl = Al(n/p)*rank + i][j]

g maGlobal Index Computation
il A

= Real-world parallel code often implements actual
translation functions

= GlobalToLocal()
= LocalToGlobal()

= This may be a good idea in your code, although
for the ring topology the computation is pretty
easy, and writing functions may be overkill

= We'll see more complex topologies with more
complex associated data distributions and then
it’s probably better to implement such functions

g maDistributions of arrays
mil WU]

= At this point we have
= 2-D array a distributed
= 1-D array y distributed
= 1-D array x replicated

= Having distributed arrays makes it possible to
partition work among processes

= But it makes the code more complex due to
global/local indices translations

" |t may require synchronization to load/save the
array elements to file

\\
b

|'A\” vector distributed?

So far we have array x replicated

It is usual to try to have all arrays involved in the
same computation be distributed in the same
way

" makes it easier to read the code without constantly
keeping track of what'’s distributed and what’s not

" e.g., “local indices for array y are different from the global
ones, but local indices for array x are the same as the
global ones” will lead to bugs

What one would like it for each process to have
= N/n rows of matrix A in an array a[n/plln]
= N/n components of vector x in an array x[n/p]
= N/n components of vector y in an array y[n/p]

Turns out there is an elegant solution to do this

iple of the Algorithm

INC

k§ al

Initial data distribution

N
00 < |
N a
.. =
. C O C
@)
Yy—
f X X | X X | X X5\ f 3 X
<< | < <| <<| <<
<< | < <| <<| <<
g | < <| << <<
<< | <<| << <<
<<g< | <<| << <<

1 brinciple of the Algorithm

h

O.I_J N ™M <t N \6_/
X X X X X X X X
® ~
R N
8 R
¢ o o © o o < <
< 18
® o g o0 | T g| @ o
S A
¢ o o 0| L < | © o
m ™M
AN
o o
S 3
o — ol m
(ol (ol (ol o

Step 0

1 brinciple of the Algorithm

h

O _/J o — o~ DJJ \4 1
X X X X X X X X
~ I~
AoAl ¢ o o © o o
© 3
< < ¢ o o © o o
o R
e © o O o © AA
S N
e © e O o © AA
mM mM
e ©) A4A5 e o
g A o o
o © o o
(o] m
o o << o o o o
o o
(V] m
o o | LI | o o | © ©
o — ol m
(al (al (al (al

Step 1

1 brinciple of the Algorithm

h

o~ 01w23;
X X X X X X
SN
<<| ®®| o0
o O
< <| ®®| o0
o © e o o ©
o © e O o ©
e | o o 8 =
< <
o © o o & =
L < <
<t un
o o < < o o
s 3
o o | L | o o
— o ™M
(ol (ol (ol

Step 2

1 brinciple of the Algorithm

h

N DJJ < Te) (o) ~ \0 —
X X X X X X X X
\ ® ¥ _o o o
* N I g
e R
o © o o A4A o o
~
o © < < o © o o
< <
N m
o © < < o © e o
S 4 o o o
< < ° o o
AmAu ®© & o 0| o o
— —
(o] N~
o o e o o o < <
3 =
o e ® 0| o o | I«
o — ol m
(ol (ol (ol (all

Step 3

2L Principle of the Algorithm
I _

M
ero Aoy ® ¢ & o o Xo
PO A Apy @ ¢ o X1
- . The final exchange of
P o o Aj Ay e o o o X, vector x is not strictly
Lo o AjA;3 0 o 0 0] (Xj necessary, but one may
want to have it
P, : : : : 244 245 : : i“ distributed as the end of
54 7755 5 the computation like it
e o o o o o A A [x was distributed at the
Py e 6 o o o o ALAL %] beginning.

Final state

Algorithm

.
uif

= Uses two buffers
= tempS for sending and tempR to receiving

float A[n/p][n], x[n/p], y[n/p];
r « n/p
tempS ~ x /* My piece of the vector (n/p elements) */
for (step=0; step<p, step++) { /* p steps */

SEND (tempS, r)

RECV (tempR, r)

for (i=0; i<n/p; i++)

for (j=0; j <n/p; 3j++)
y[i] < y[i] + a[i, (rank - step mod p) * n/p + j] * tempS[j]

tempS o tempR

}

= |In our example, process of rank 2 at step 3 would work with
the 2x2 matrix block starting at column ((2 - 3) mod 4)*8/4
=3*8/4 = 6;

g a oA few General Principles

mill
= [arge data needs to be distributed among

processes (running on different nodes of a cluster
for instance)

= causes many arithmetic expressions for index
computation

= People who do this for a leaving always end up writing
local to global() and global to local() functions

= Data may need to be loaded/written before/after
the computation
" requires some type of synchronization among processes

= Typically a good idea to have all data structures
distributed similarly to avoid confusion about
which indices are global and which ones are local

= |n our case, all indices are local

= |n the end the code looks much more complex
than the equivalent OpenMP implementation

- Performance
mill Wl

®" There are p identical steps

" During each step each processor performs
three activities: computation, receive, and
sending
= Computation: rzw

= w: time to perform one +=* operation
= Receiving: L+ rb
= Sending: L+rb

T(p) = p (r*w + 2L + 2rb)

B a#Asymptotic Performance
mill Wl

" T(p) = p(r2w + 2L + 2rb)
= Speedup(p) = n2w [/ p (rPw + 2L + 2rb)
= n2w / (n2w/p + 2pL + 2nb)
= Eff(p) = n?w / (n2w+ 2p2L + 2pnb)
= For p fixed, when n is large, Eff(p) ~ 1

= Conclusion: the algorithm is
asymptotically optimal

g maPerformance (2)

= Note that an algorithm that initially broadcasts the
entire vector to all processors and then have every
processor compute independently would be in time

(p-1)(L + n b) + pr2w
= Could use the pipelined broadcast
= which:
= has the same asymptotic performance
" |s a simpler algorithm
= wastes only a tiny little bit of memory
= |s arguably much less elegant

= |t is important to think of simple solutions and see
what works best given expected matrix size, etc.

gBack to the Algorithm

.
uif

float A[n/p][n], x[n/p], y[n/p];
r « n/p
tempS ~ x /* My piece of the vector (n/p elements) */
for (step=0, step<p; step++) { /* p steps */
SEND (tempS, r)
RECV (tempR, r)
for (i=0; i<n/p; i++)
for (j=0; j <n/p; j++)
yv[i] < y[i] + a[i, (rank - step mod p) * n/p + j] * tempS[7j]
tempS o tempR
}
= |n the above code, at each iteration, the SEND, the RECV,

and the computation can all be done in parallel

= Therefore, one can overlap communication and
computation by using non-blocking SEND and RECV if
available

= MPI provides MPI _ISend() and MPI_IRecv() for this purpose

kg JNore Concurrent Algorithm
— _

= Notation for concurrent activities:

float A[n/p][n], x[n/pP], y[n/pP];
tempS ~ x /* My piece of the vector (n/p elements) */
r « n/p
for (step=0; step<p, step++) { /* p steps */
SEND (tempS, r)
| | RECV (tempR, r)
|| for (i=0, i<n/p; i++)
for (j=0; j <n/p; j++)
yv[i] « yl[i]+a[i, (rank-step mod p) *n/p+7j] *tempS[7]

tempS ~ tempR

}

§ msBetter Performance
mill Wl

®" There are p identical steps

" During each step each processor performs
three activities: computation, receive, and
sending
= Computation: r’w
= Receiving: L+ rb
= Sending: L+ rb

T(p) = p max(r’w, L + rb)

Same asymptotic performance as above, but
better performance for smaller values of n

||Hybrid Pa rallelism

\\
b

= We have said many times that multi-core
architectures are about to become the standard

= When building a cluster, the nodes you will buy will
be multi-core

= Question: how to exploit the multiple cores?

= Or in our case how to exploit the multiple
processors in each node

= Option #1: Run multiple processes per node

= Causes more overhead and more
communication

= |n fact will cause network communication among
processes within a node!

= MPI will not know that processes are co-
located

|||OpenMP MPI Prog ram

.
uif

= Option #2: Run a single multi-threaded process
per node

= Much lower overhead, fast communication
within a node

= Done by combining MPI with OpenMP!
= Just write your MPI program
= Add OpenMP pragmas around loops

= Let’'s look back at our Matrix-Vector multiplication
example

JHybrid Parallelism

float A[n/p][n], x[n/p], y[n/pP];
tempS ~ x /* My piece of the vector (n/p elements) */
for (step=0; step<p, step++) { /* p steps */
SEND (tempS, r)
| | RECV (tempR, r)
| | #pragma omp parallel for private(i, j)
for (i=0, i<n/p; i++)
for (j=0; j <n/p; jt++)
yv[i] « y[i] + a[i, (rank - step mod p)*n/p+j]*
tempS[5]
tempS o tempR
}

= This is called Hybrid Parallelism

Communication via the network among nodes
Communication via the shared memory within nodes

\\
.

Getting It Lomplied and

It can be tricky to compile and link a hybrid program

= Because mpicc and ompcc do their own things to make our
lives simple, they don’t play well with each other

My solution: use any gcc after 4.2

The cluster has gcc 3.4 installed by default

= Because the cluster is managed using a software that rolls out
particular RedHat distributions, and so far, we’'re stuck with
this
BUT, any gcc after 4.2 supports openMP:
= gcc whatever.c -o whatever -fopenmp

= We could’'ve used it for HW #1
So | installed gcc 4.2 in /home/casanova/public/bin/gcc
Compiling with mpicc is however no longer possible

So | put an example Makefile in /home/casanova/public/
Makefile.hybrid

= Let's look at it...

Matrix Multiplication on the
RING

A
uif

= See Section 4.2

= Turns out one can do matrix multiplication in a
way very similar to matrix-vector multiplication

= A matrix multiplication is just the computation
of n2 scalar products, not just n

= \We have three matrices, A, B, and C
= We want to compute C = A*B

= We distribute the matrices to that each processor
“owns” a block row of each matrix

= Easy to do if row-major is used because all
matrix elements owned by a processor are
contiguous in memory

.

gData Distribution

]

o
»

o

af irst Step

let’s look at
processor P,

p=4

N

]

ab=
A1,1XBl,O

ab=
A1,1XBl,1

ab=
A1,1XBl,2

ab=
A1,1XBl,3

sg._m.smfting of block rows of B

p=4 1
let’s look at
processor P,

N

.

zoecond step

let’s look at
processor P,

p=4

]

ab=
A1,0XBo,o

ab=
A1,oXBo,1

ab=
A1,oXBo,2

ab=
A1,0XBo,3

Algorithm

7
. B

In the end, every Ci,j block has the correct value: A ;B,, + A 1B, +

= Basically, this is the same algorithm as for matrix-vector
multiplication, replacing the partial scalar products by submatrix
products (gets tricky with loops and indices)

float A[N/p][N], B[N/p][N], C[N/p]I[N];
r « N/p
tempS < B
qg « MY RANK()
for (step=0; step<p; step++) { /* p steps */
SEND (tempS, r*N)
| | RECV (tempR, r*N)
|| for (1=0, 1l<p, 1++)
for (i=0; i<N/p; i++)
for (j=0; 3j<N/p; j++)
for (k=0; k<N/p; k++)
Cl[i,1*r+j] < C[i,1*r+j] + Al[i, r((q — step)3p)+k] * tempS[k,1*r+j]
tempS o tempR

for (step=0; step<p, step++) { /* p steps */
SEND (tempS, r*N)
| | RECV (tempR, r*N)
|| for (1=0, 1l<p, 1++)
for (i=0; i<N/p; i++)
for (j=0; 3j<N/p; j++)
for (k=0; k<N/p; k++)
Cl[i,1lr+j] « C[i,1r+j] + A[i,r((rank - step)%p)+k] * tempS[k,lr+j]
tempS o tempR

/ step=0
=0

0
0

h

for (step=0; step<p, step++) { /* p steps */
SEND (tempS, r*N)
| | RECV (tempR, r*N)
|| for (1=0, 1l<p, 1++)
for (i=0; i<N/p; i++)
for (j=0; 3j<N/p; j++)
for (k=0; k<N/p; k++)
Cl[i,1lr+j] « C[i,1r+j] + A[i,r((rank - step)%p)+k] * tempS[k,lr+j]
tempS o tempR

/ step=0

for (step=0; step<p, step++) { /* p steps */
SEND (tempS, r*N)
| | RECV (tempR, r*N)
|| for (1=0, 1l<p, 1++)
for (i=0; i<N/p; i++)
for (j=0; 3j<N/p; j++)
for (k=0; k<N/p; k++)
Cl[i,1lr+j] « C[i,1r+j] + A[i,r((rank - step)%p)+k] * tempS[k,lr+j]
tempS o tempR

/ step=0
=0

X

h

for (step=0; step<p, step++) { /* p steps */
SEND (tempS, r*N)
| | RECV (tempR, r*N)
|| for (1=0, 1l<p, 1++)
for (i=0; i<N/p; i++)
for (j=0; 3j<N/p; j++)
for (k=0; k<N/p; k++)
Cl[i,1lr+j] « C[i,1r+j] + A[i,r((rank - step)%p)+k] * tempS[k,lr+j]
tempS o tempR

/ step=0
=1

X

h

for (step=0; step<p, step++) { /* p steps */
SEND (tempS, r*N)
| | RECV (tempR, r*N)
|| for (1=0, 1l<p, 1++)
for (i=0; i<N/p; i++)
for (j=0; 3j<N/p; j++)
for (k=0; k<N/p; k++)
Cl[i,1lr+j] « C[i,1r+j] + A[i,r((rank - step)%p)+k] * tempS[k,lr+j]
tempS o tempR

/ step=0

|=*
X

h

for (step=0; step<p, step++) { /* p steps */
SEND (tempS, r*N)
| | RECV (tempR, r*N)
|| for (1=0, 1l<p, 1++)
for (i=0; i<N/p; i++)
for (j=0; 3j<N/p; j++)
for (k=0; k<N/p; k++)
Cl[i,1lr+j] « C[i,1r+j] + A[i,r((rank - step)%p)+k] * tempS[k,lr+j]
tempS o tempR

} I step=1

|=*
X

h

for (step=0; step<p, step++) { /* p steps */
SEND (tempS, r*N)
| | RECV (tempR, r*N)
|| for (1=0, 1l<p, 1++)
for (i=0; i<N/p; i++)
for (j=0; 3j<N/p; j++)
for (k=0; k<N/p; k++)
Cl[i,1lr+j] « C[i,1r+j] + A[i,r((rank - step)%p)+k] * tempS[k,lr+j]
tempS o tempR

f step=2
] | =

X

h

for (step=0; step<p, step++) { /* p steps */
SEND (tempS, r*N)
| | RECV (tempR, r*N)
|| for (1=0, 1l<p, 1++)
for (i=0; i<N/p; i++)
for (j=0; 3j<N/p; j++)
for (k=0; k<N/p; k++)
Cl[i,1lr+j] « C[i,1r+j] + A[i,r((rank - step)%p)+k] * tempS[k,lr+j]
tempS o tempR

/ step=3
— | =%

X

h

- Performance

mill Wl
= Performance Analysis is straightforward

= p steps and each step takes time:

max (nrzw, L + nrb)
= p rxr matrix products = pr3 = nr? operations

= Hence, the running time is:
T(p) = p max (nhr2w, L + nrb)
= Note that a naive algorithm computing n

Matrix-vector products in sequence using
our previous algorithm would take time

T(p) = p max(nrw, nL + nrb)
= We just saved network latencies!

;$ Conclusion
mill Wl

= This was our first foray in the realm
of distributed memory parallel
algorithms

" |[n @ programming assignment you'll
write things like these in MPIl and see
what happens

" [n the next set of slides we'll look at
more complex algorithms that
iInvolve interesting performance
trade-offs

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

