Principles of High Performance Computing (ICS 632)

Algorithms on a Ring

Parallel Matrix-Vector product

- y = A x
- Let n be the size of the matrix

```
int a[n][n];
int x[n];
for i = 0 to n-1 {
    y[i] = 0;
    for j = 0 to n-1
       y[i] = y[i] + a[i,j] * x[j];
}
```

How do we do this in parallel?

Section 4.1 in the book

Parallel Matrix-Vector product

- How do we do this in parallel?
- For example:
 - Computations of elements of vector y are independent
 - Each of these computations requires one row of matrix a and vector x
- In shared-memory:

```
#pragma omp parallel for private(i,j)
for i = 0 to n-1 {
    y[i] = 0;
    for j = 0 to n-1
        y[i] = y[i] + a[i,j] * x[j];
}
```


x[N]

Parallel Matrix-Vector Product

- In distributed memory, one possibility is that each process has a full copy of matrix a and of vector x
- Each processor declares a vector y of size n/p
 - We assume that p divides n
- Therefore, the code can just be

```
load(a); load(x)

p = NUM_PROCS(); r = MY_RANK();

for (i=r*n/p; i<(r+1)*n/p; i++) {
    for (j=0;j<n;j++)
    y[i-r*n/p] = a[i][j] * x[j];
}</pre>
```

- It's embarrassingly parallel
- What about the result?

What about the result?

- After the processes complete the computation, each process has a piece of the result
- One probably wants to, say, write the result to a file
 - Requires synchronization so that the I/O is done correctly
- For example

```
if (r != 0) {
    recv(&token,1);
}
open(file, "append");
for (j=0; j<n/p; j++)
    write(file, y[j]);
send(&token,1);
close(file)
barrier(); // optional</pre>
```

- Could also use a "gather" so that the entire vector is returned to processor 0
 - vector y fits in the memory of a single node

What if matrix a is too big?

- Matrix a may not fit in memory
 - Which is a motivation to use distributed memory implementations
- In this case, each processor can store only a piece of matrix a
- For the matrix-vector multiply, each processor can just store n/p rows of the matrix
 - Conceptually: A[n][n]
 - But the program declares a[n/p][n]
- This raises the (annoying) issue of global indices versus local indices

Global vs. Local indices

- When an array is split among processes
 - global index (I,J) that references an element of the matrix
 - local index (i,j) that references an element of the local array that stores a piece of the matrix
 - Translation between global and local indices
 - think of the algorithm in terms of global indices
 - implement it in terms of local indices

Global: A[5][3]

Local: a[1][3] on process P1

a[i,j] = A[(n/p)*rank + i][j]

Global Index Computation

- Real-world parallel code often implements actual translation functions
 - GlobalToLocal()
 - LocalToGlobal()
- This may be a good idea in your code, although for the ring topology the computation is pretty easy, and writing functions may be overkill
- We'll see more complex topologies with more complex associated data distributions and then it's probably better to implement such functions

Distributions of arrays

- At this point we have
 - 2-D array a distributed
 - 1-D array y distributed
 - 1-D array x replicated
- Having distributed arrays makes it possible to partition work among processes
 - But it makes the code more complex due to global/local indices translations
 - It may require synchronization to load/save the array elements to file

All vector distributed?

- So far we have array x replicated
- It is usual to try to have all arrays involved in the same computation be distributed in the same way
 - makes it easier to read the code without constantly keeping track of what's distributed and what's not
 - e.g., "local indices for array y are different from the global ones, but local indices for array x are the same as the global ones" will lead to bugs
- What one would like it for each process to have
 - N/n rows of matrix A in an array a[n/p][n]
 - N/n components of vector x in an array x[n/p]
 - N/n components of vector y in an array y[n/p]
- Turns out there is an elegant solution to do this

P _o	$ \begin{bmatrix} A_{00} & A_{01} & A_{02} & A_{03} & A_{04} & A_{05} & A_{06} & A_{0} \\ A_{10} & A_{11} & A_{12} & A_{13} & A_{14} & A_{15} & A_{16} & A_{1} \end{bmatrix} $	$\begin{bmatrix} \mathbf{x}_0 \\ \mathbf{x}_1 \end{bmatrix}$
P ₁	$A_{20} A_{21} A_{22} A_{23} A_{24} A_{25} A_{26} A_{27} A_{30} A_{31} A_{32} A_{33} A_{34} A_{35} A_{36} A_{37}$	$\begin{bmatrix} \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix}$
P ₂	A_{40} A_{41} A_{42} A_{43} A_{44} A_{45} A_{46} A_{45} A_{50} A_{51} A_{52} A_{53} A_{54} A_{55} A_{56} A_{5}	$\begin{bmatrix} \mathbf{x_4} \\ \mathbf{x_5} \end{bmatrix}$
P ₃		$\begin{bmatrix} x_6 \\ x_7 \end{bmatrix}$

Initial data distribution for:

$$n = 8$$

 $p = 4$
 $n/p = 2$

P ₀	$\begin{bmatrix} A_{00} \ A_{01} \bullet & \bullet & \bullet & \bullet & \bullet \\ A_{10} \ A_{11} \bullet & \bullet & \bullet & \bullet & \bullet \end{bmatrix}$	$\begin{bmatrix} x_0 \\ x_1 \end{bmatrix}$
P_1	$\begin{bmatrix} A_{00} & A_{01} & \bullet & \bullet & \bullet & \bullet \\ A_{10} & A_{11} & \bullet & \bullet & \bullet & \bullet \end{bmatrix}$ $\begin{bmatrix} \bullet & \bullet & A_{22} & A_{23} & \bullet & \bullet & \bullet \\ \bullet & \bullet & A_{32} & A_{33} & \bullet & \bullet & \bullet \end{bmatrix}$	$\begin{bmatrix} x_2 \\ x_3 \end{bmatrix}$
	$\begin{bmatrix} \bullet & \bullet & \bullet & \bullet & A_{44} A_{45} \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet A_{54} A_{55} \bullet & \bullet \end{bmatrix}$	
P_3	$\begin{bmatrix} \bullet & \bullet & \bullet & \bullet & \bullet & A_{66} \; A_{67} \\ \bullet & \bullet & \bullet & \bullet & \bullet & A_{76} \; A_{77} \end{bmatrix}$	$\begin{bmatrix} x_6 \\ x_7 \end{bmatrix}$

P _o	$ \begin{bmatrix} A_{00} & A_{01} & \bullet & \bullet & \bullet & \bullet \\ A_{10} & A_{11} & \bullet & \bullet & \bullet & \bullet \end{bmatrix} $	$\begin{bmatrix} \mathbf{x}_0 \\ \mathbf{x}_1 \end{bmatrix}$
P_1	$\begin{bmatrix} \bullet & \bullet & A_{22} A_{23} & \bullet & \bullet & \bullet \\ \bullet & \bullet & A_{32} A_{33} & \bullet & \bullet & \bullet \end{bmatrix}$	$\begin{bmatrix} \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix}$
P ₂	$\begin{bmatrix} \bullet & \bullet & \bullet & \bullet & A_{44} A_{45} \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet & A_{54} A_{55} \bullet & \bullet \end{bmatrix}$	$\begin{bmatrix} X_4 \\ X_5 \end{bmatrix}$
P ₃	$\begin{bmatrix} \bullet & \bullet & \bullet & \bullet & \bullet & A_{66} \; A_{67} \\ \bullet & \bullet & \bullet & \bullet & \bullet & A_{76} \; A_{77} \end{bmatrix}$	$\begin{bmatrix} x_6 \\ x_7 \end{bmatrix}$

The final exchange of vector x is not strictly necessary, but one may want to have it distributed as the end of the computation like it was distributed at the beginning.

Final state

- Uses two buffers
 - tempS for sending and tempR to receiving

```
float A[n/p][n], x[n/p], y[n/p]; r \leftarrow n/p tempS \leftarrow x \quad /* \ My \ piece \ of \ the \ vector \ (n/p \ elements) \ */ for \ (step=0; \ step<p; \ step++) \ \{ \quad /* \ p \ steps \ */ SEND \ (tempS,r) RECV \ (tempR,r) for \ (i=0; \ i<n/p; \ i++) for \ (j=0; \ j < n/p; \ j++) y[i] \leftarrow y[i] + a[i, (rank - step \ mod \ p) \ * \ n/p + j] \ * \ tempS[j] tempS \leftrightarrow tempR \}
```

In our example, process of rank 2 at step 3 would work with the 2x2 matrix block starting at column ((2 - 3) mod 4)*8/4 = 3 * 8 / 4 = 6:

A few General Principles

- Large data needs to be distributed among processes (running on different nodes of a cluster for instance)
 - causes many arithmetic expressions for index computation
 - People who do this for a leaving always end up writing local_to_global() and global_to_local() functions
- Data may need to be loaded/written before/after the computation
 - requires some type of synchronization among processes
- Typically a good idea to have all data structures distributed similarly to avoid confusion about which indices are global and which ones are local
 - In our case, all indices are local
- In the end the code looks much more complex than the equivalent OpenMP implementation

Performance

- There are p identical steps
- During each step each processor performs three activities: computation, receive, and sending
 - Computation: r² w
 - w: time to perform one += * operation
 - Receiving: L + r b
 - Sending: L + r b

$$T(p) = p (r^2w + 2L + 2rb)$$

Asymptotic Performance

- $T(p) = p(r^2w + 2L + 2rb)$
 - Speedup(p) = $n^2w / p (r^2w + 2L + 2rb)$ = $n^2w / (n^2w/p + 2pL + 2nb)$
 - $Eff(p) = n^2w / (n^2w + 2p^2L + 2pnb)$
 - For p fixed, when n is large, Eff(p) ~ 1
- Conclusion: the algorithm is asymptotically optimal

Performance (2)

 Note that an algorithm that initially broadcasts the entire vector to all processors and then have every processor compute independently would be in time

$$(p-1)(L + n b) + pr^2 w$$

- Could use the pipelined broadcast
- which:
 - has the same asymptotic performance
 - is a simpler algorithm
 - wastes only a tiny little bit of memory
 - is arguably much less elegant
- It is important to think of simple solutions and see what works best given expected matrix size, etc.

Back to the Algorithm

```
float A[n/p][n], x[n/p], y[n/p];

r \leftarrow n/p

tempS \leftarrow x /* My piece of the vector (n/p elements) */

for (step=0; step<p; step++) { /* p steps */

    SEND(tempS,r)

    RECV(tempR,r)

    for (i=0; i<n/p; i++)

        for (j=0; j <n/p; j++)

        y[i] \leftarrow y[i] + a[i, (rank - step mod p) * n/p + j] * tempS[j]

tempS \leftrightarrow tempR
```

- In the above code, at each iteration, the SEND, the RECV, and the computation can all be done in parallel
- Therefore, one can overlap communication and computation by using non-blocking SEND and RECV if available
- MPI provides MPI_ISend() and MPI_IRecv() for this purpose

Nore Concurrent Algorithm

Notation for concurrent activities:

```
float A[n/p][n], x[n/p], y[n/p];

tempS \leftarrow x /* My piece of the vector (n/p elements) */

r \leftarrow n/p

for (step=0; step<p; step++) { /* p steps */

    SEND(tempS,r)

    || RECV(tempR,r)

    || for (i=0; i<n/p; i++)

        for (j=0; j <n/p; j++)

        y[i] \leftarrow y[i]+a[i, (rank-step mod p)*n/p+j]*tempS[j]

tempS \leftrightarrow tempR

}
```

Better Performance

- There are p identical steps
- During each step each processor performs three activities: computation, receive, and sending
 - Computation: r²w
 - Receiving: L + rb
 - Sending: L + rb

$$T(p) = p \max(r^2w, L + rb)$$

Same asymptotic performance as above, but better performance for smaller values of n

Hybrid parallelism

- We have said many times that multi-core architectures are about to become the standard
- When building a cluster, the nodes you will buy will be multi-core
- Question: how to exploit the multiple cores?
 - Or in our case how to exploit the multiple processors in each node
- Option #1: Run multiple processes per node
 - Causes more overhead and more communication
 - In fact will cause network communication among processes within a node!
 - MPI will not know that processes are colocated

OpenMP MPI Program

- Option #2: Run a single multi-threaded process per node
 - Much lower overhead, fast communication within a node
 - Done by combining MPI with OpenMP!
- Just write your MPI program
- Add OpenMP pragmas around loops
- Let's look back at our Matrix-Vector multiplication example

Hybrid Parallelism

```
float A[n/p][n], x[n/p], y[n/p];
tempS \leftarrow x /* My piece of the vector (n/p elements) */
for (step=0; step<p; step++) { /* p steps */</pre>
     SEND (tempS, r)
  // RECV(tempR, r)
  || #pragma omp parallel for private(i, j)
     for (i=0; i<n/p; i++)
        for (j=0; j <n/p; j++)
          y[i] \leftarrow y[i] + a[i, (rank - step mod p) *n/p+j] *
                       tempS[j]
  tempS \leftrightarrow tempR
```

- This is called Hybrid Parallelism
- Communication via the network among nodes
- Communication via the shared memory within nodes

Getting it Compiled and Linked

- It can be tricky to compile and link a hybrid program
 - Because mpicc and ompcc do their own things to make our lives simple, they don't play well with each other
- My solution: use any gcc after 4.2
- The cluster has gcc 3.4 installed by default
 - Because the cluster is managed using a software that rolls out particular RedHat distributions, and so far, we're stuck with this
- BUT, any gcc after 4.2 supports openMP:
 - gcc whatever.c -o whatever -fopenmp
 - We could've used it for HW #1
- So I installed gcc 4.2 in /home/casanova/public/bin/gcc
- Compiling with mpicc is however no longer possible
- So I put an example Makefile in /home/casanova/public/ Makefile.hybrid
 - Let's look at it...

Matrix Multiplication on the Ring

- See Section 4.2
- Turns out one can do matrix multiplication in a way very similar to matrix-vector multiplication
 - A matrix multiplication is just the computation of n² scalar products, not just n
- We have three matrices, A, B, and C
- We want to compute C = A*B
- We distribute the matrices to that each processor "owns" a block row of each matrix
 - Easy to do if row-major is used because all matrix elements owned by a processor are contiguous in memory

Data Distribution

First Step

p=4
let's look at processor P₁

A_{1,0} A_{1,1} A_{1,2} A_{1,3}

Shifting of block rows of B

Second step

p=4
let's look at processor P₁

A_{1,0} A_{1,1} A_{1,2} A_{1,3}

- In the end, every Ci,j block has the correct value: $A_{i,0}B_{0,j} + A_{i,1}B_{1,j} + ...$
- Basically, this is the same algorithm as for matrix-vector multiplication, replacing the partial scalar products by submatrix products (gets tricky with loops and indices)

```
float A[N/p][N], B[N/p][N], C[N/p][N];
r \leftarrow N/p
tempS \leftarrow B
q \leftarrow MY_RANK()
for (step=0; step<p; step++) { /* p steps */</pre>
    SEND (tempS, r*N)
 || RECV(tempR, r*N)
 // for (1=0; 1<p; 1++)</pre>
      for (i=0; i<N/p; i++)
       for (j=0; j<N/p; j++)
        for (k=0; k<N/p; k++)
           C[i,1*r+j] \leftarrow C[i,1*r+j] + A[i,r((q-step)*p)+k] * tempS[k,1*r+j]
  tempS \leftrightarrow tempR
```

```
for (step=0; step<p; step++) { /* p steps */</pre>
    SEND (tempS, r*N)
 || RECV(tempR, r*N)
 // for (1=0; 1<p; 1++)
     for (i=0; i<N/p; i++)
      for (j=0; j<N/p; j++)
       for (k=0; k<N/p; k++)
         C[i,lr+j] \leftarrow C[i,lr+j] + A[i,r((rank - step) p)+k] * tempS[k,lr+j]
  tempS \leftrightarrow tempR
                                                     step=0
                                                      I=0
                                                      i=0
                                                     j=0
```

```
for (step=0; step<p; step++) { /* p steps */</pre>
    SEND (tempS, r*N)
 || RECV(tempR, r*N)
 // for (1=0; 1<p; 1++)
     for (i=0; i<N/p; i++)
      for (j=0; j<N/p; j++)
       for (k=0; k<N/p; k++)
         C[i,lr+j] \leftarrow C[i,lr+j] + A[i,r((rank - step) p)+k] * tempS[k,lr+j]
 tempS \leftrightarrow tempR
                                                    step=0
                                                    I=0
                                                    i=0
```

```
for (step=0; step<p; step++) { /* p steps */</pre>
    SEND (tempS, r*N)
 || RECV(tempR, r*N)
 // for (1=0; 1<p; 1++)
     for (i=0; i<N/p; i++)
      for (j=0; j<N/p; j++)
       for (k=0; k<N/p; k++)
         C[i,lr+j] \leftarrow C[i,lr+j] + A[i,r((rank - step) p)+k] * tempS[k,lr+j]
  tempS \leftrightarrow tempR
                                                       step=0
                                                       I=0
```

```
for (step=0; step<p; step++) { /* p steps */</pre>
    SEND (tempS, r*N)
 || RECV(tempR, r*N)
 // for (1=0; 1<p; 1++)
     for (i=0; i<N/p; i++)
      for (j=0; j<N/p; j++)
       for (k=0; k<N/p; k++)
         C[i,lr+j] \leftarrow C[i,lr+j] + A[i,r((rank - step) p)+k] * tempS[k,lr+j]
  tempS \leftrightarrow tempR
                                                       step=0
                                                       l=1
```

```
for (step=0; step<p; step++) { /* p steps */</pre>
    SEND (tempS, r*N)
 || RECV(tempR, r*N)
 // for (1=0; 1<p; 1++)
     for (i=0; i<N/p; i++)
      for (j=0; j<N/p; j++)
       for (k=0; k<N/p; k++)
         C[i,lr+j] \leftarrow C[i,lr+j] + A[i,r((rank - step) p)+k] * tempS[k,lr+j]
  tempS \leftrightarrow tempR
                                                       step=0
```

```
for (step=0; step<p; step++) { /* p steps */</pre>
    SEND (tempS, r*N)
 || RECV(tempR, r*N)
 // for (1=0; 1<p; 1++)
     for (i=0; i<N/p; i++)
      for (j=0; j<N/p; j++)
       for (k=0; k<N/p; k++)
         C[i,lr+j] \leftarrow C[i,lr+j] + A[i,r((rank - step) p)+k] * tempS[k,lr+j]
  tempS \leftrightarrow tempR
                                                       step=1
```

```
for (step=0; step<p; step++) { /* p steps */</pre>
    SEND (tempS, r*N)
 || RECV(tempR, r*N)
 // for (1=0; 1<p; 1++)
     for (i=0; i<N/p; i++)
      for (j=0; j<N/p; j++)
       for (k=0; k<N/p; k++)
         C[i,lr+j] \leftarrow C[i,lr+j] + A[i,r((rank - step) p)+k] * tempS[k,lr+j]
  tempS \leftrightarrow tempR
                                                       step=2
```

```
for (step=0; step<p; step++) { /* p steps */</pre>
    SEND (tempS, r*N)
 || RECV(tempR, r*N)
 // for (1=0; 1<p; 1++)
     for (i=0; i<N/p; i++)
      for (j=0; j<N/p; j++)
       for (k=0; k<N/p; k++)
         C[i,lr+j] \leftarrow C[i,lr+j] + A[i,r((rank - step) p)+k] * tempS[k,lr+j]
  tempS \leftrightarrow tempR
                                                       step=3
```

Performance

- Performance Analysis is straightforward
- p steps and each step takes time: max (nr² w, L + nrb)
 - p $r_x r$ matrix products = $pr^3 = nr^2$ operations
- Hence, the running time is:
 T(p) = p max (nr² w , L + nrb)
- Note that a naive algorithm computing n Matrix-vector products in sequence using our previous algorithm would take time T(p) = p max(nr² w, nL + nrb)
- We just saved network latencies!

Conclusion

- This was our first foray in the realm of distributed memory parallel algorithms
- In a programming assignment you'll write things like these in MPI and see what happens
- In the next set of slides we'll look at more complex algorithms that involve interesting performance trade-offs