
Outlines

How to Efficiently Program
High Performance Architectures ?

Arnaud LEGRAND, CR CNRS, LIG/INRIA/Mescal
Jean-Louis ROCH, MCF ENSIMAG, LIG/INRIA/Moais

Vincent DANJEAN, MCF UJF, LIG/INRIA/Moais
Derick KONDO, CR INRIA, LIG/INRIA/Mescal

Jean-François MÉHAUT, PR UJF, LIG/INRIA/Mescal
Bruno RAFFIN, CR INRIA, LIG/INRIA/Moais
Alexandre TERMIER, MCF UJF, LIG/Hadas

Some slides come from Samuel THIBAULT, MCF Bordeaux, LaBRI/Runtime

October, 6th 2008

Outlines

High Performance Computing

Needs are always here
numerical or financial simulation, modelisation, virtual
reality virtuelle
more data, more details, . . .

Computing power will never be enough

One way to follow: using parallelism
Idea: change space into time
more resources to gain some time

Outlines

Part I: High Performance Architectures
Part II: Parallelism and Threads
Part III: Synchronisation
Part IV: Multithreading and Networking

High Performance Architectures

1 Parallel Machines with Shared Memory
ILP and multi-cores
Symmetric Multi Processors

2 Parallel Machines with Distributed Memory
Clusters
Grids

3 Current Architectures in HPC

Outlines

Part I: High Performance Architectures
Part II: Parallelism and Threads
Part III: Synchronisation
Part IV: Multithreading and Networking

Parallelism and Threads

4 Introduction to Threads

5 Kinds of threads
User threads
Kernel threads
Mixed models

6 User Threads and Blocking System Calls
Scheduler Activations

7 Thread Programming Interface
POSIX Threads
Linux POSIX Threads Libraries
Basic POSIX Thread API

Outlines

Part I: High Performance Architectures
Part II: Parallelism and Threads
Part III: Synchronisation
Part IV: Multithreading and Networking

Synchronisation

8 Hardware Support

9 Busy-waiting Synchronisation

10 High-level Synchronisation Primitives
Semaphores
Monitors

11 Some examples with Linux
Old Linux libpthread
New POSIX Thread Library

Outlines

Part I: High Performance Architectures
Part II: Parallelism and Threads
Part III: Synchronisation
Part IV: Multithreading and Networking

Multithreading and Networking

12 A Brief Overview of MPI

13 Mixing Threads and Communication in HPC
Problems arises
Discussion about solution

Parallel Machines with Shared Memory
Parallel Machines with Distributed Memory

Current Architectures in HPC

Part I

High Performance Architectures

Parallel Machines with Shared Memory
Parallel Machines with Distributed Memory

Current Architectures in HPC

Outlines: High Performance Architectures

1 Parallel Machines with Shared Memory
ILP and multi-cores
Symmetric Multi Processors

2 Parallel Machines with Distributed Memory
Clusters
Grids

3 Current Architectures in HPC

Parallel Machines with Shared Memory
Parallel Machines with Distributed Memory

Current Architectures in HPC

Parallel Architectures

Two main kinds
Architectures with shared memory and architectures with
distributed memory.

Multiprocessors

P

P

P

P
Mem

Clusters

Fast network

P Mem P Mem P Mem

Parallel Machines with Shared Memory
Parallel Machines with Distributed Memory

Current Architectures in HPC

ILP and multi-cores
Symmetric Multi Processors

Why several processors/cores ?

Limits for monocore processors
superscalar processors: instruction level parallelism
frequency
electrical power

What to do with place available on chips ?
caches (bigger and quicker)
several series of registers (hyperthreaded processors)
several series of cores (multi-core processors)
all of that

Parallel Machines with Shared Memory
Parallel Machines with Distributed Memory

Current Architectures in HPC

ILP and multi-cores
Symmetric Multi Processors

Symmetric Multi Processors

all processors have access to the same memory and I/O
most common multiprocessor systems today use an SMP
architecture
in case of multi-core processors, the SMP architecture
applies to the cores, treating them as separate processors

Non Uniform Memory Access Architectures
memory access time depends on the memory location
relative to a processor
better scaling hardware architecture
harder to program efficiently: trade off needed between
load-balancing and memory data locality

Parallel Machines with Shared Memory
Parallel Machines with Distributed Memory

Current Architectures in HPC

ILP and multi-cores
Symmetric Multi Processors

Towards more and more
hierarchical computers

P P M P P M

P P M P P M

P P M P P M

M

M

M

● SMT
(HyperThreading)

● Multi-core
● NUMA

Parallel Machines with Shared Memory
Parallel Machines with Distributed Memory

Current Architectures in HPC

ILP and multi-cores
Symmetric Multi Processors

AMD Quad-Core

M

P P
L2 $

P P
L2 $ L2 $ L2 $

L3 $

P P
€ L2

P P
€ L2 € L2 € L2

€ L3

...

Shared L3 cache

NUMA factor ~1.1-1.5

M

P P
L2 $

P P
L2 $ L2 $ L2 $

L3 $M

P P
L2 $

P P
L2 $ L2 $ L2 $

L3 $M

Parallel Machines with Shared Memory
Parallel Machines with Distributed Memory

Current Architectures in HPC

ILP and multi-cores
Symmetric Multi Processors

Intel Quad-Core

P P
L2 $

P P
L2 $

M
P P

L2 $

P P
L2 $

...

Hierarchical cache levels
P P

L2 $

P P
L2 $

Parallel Machines with Shared Memory
Parallel Machines with Distributed Memory

Current Architectures in HPC

ILP and multi-cores
Symmetric Multi Processors

5

dual-quad-core

M

P1 P5 P3 P7

P0 P2P4 P6

● Intel
● Hierarchical cache levels

Parallel Machines with Shared Memory
Parallel Machines with Distributed Memory

Current Architectures in HPC

Clusters
Grids

Clusters

Composed of a few to hundreds of machines
often homogeneous

same processor, memory, etc.
often linked with a high speed, low latency network

Myrinet, InfinityBand, Quadrix, etc.

Biggest clusters can be split in several parts
computing nodes
I/O nodes
front (interactive) node

Parallel Machines with Shared Memory
Parallel Machines with Distributed Memory

Current Architectures in HPC

Clusters
Grids

Grids

Lots of heterogeneous resources

aggregation of clusters and/or standalone nodes
high latency network (Internet for example)
often dynamic resources (clusters/nodes appear and
disappear)
different architectures, networks, etc.

Parallel Machines with Shared Memory
Parallel Machines with Distributed Memory

Current Architectures in HPC

Current Architectures in HPC

Hierarchical Architectures
HT technology
multi-core processor
multi processors machine
cluster of machines
grid of clusters and individual machines

Even more complexity
computing on GPU

require specialized codes but hardware far more powerful
FPGA

hardware can be specialized on demand
still lots of work on interface programming here

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Part II

Parallelism and Threads

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Outlines: Parallelism and Threads

4 Introduction to Threads

5 Kinds of threads
User threads
Kernel threads
Mixed models

6 User Threads and Blocking System Calls
Scheduler Activations

7 Thread Programming Interface
POSIX Threads
Linux POSIX Threads Libraries
Basic POSIX Thread API

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Programming on Shared Memory Parallel Machines

Using process

Processors

Operating system Resources management
(files, memory, CPU, network, etc)

Process

Mem Mem Mem Mem

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Programming on Shared Memory Parallel Machines

Using threads

process

Processors

Operating system Resources management
(files, memory, CPU, network, etc)

Process

Multithreaded process

Memory

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Introduction to Threads

Why threads ?
To take profit from shared memory parallel architectures

SMP, hyperthreaded, multi-core, NUMA, etc. processors
future Intel processors: several hundreds cores

To describe the parallelism within the applications
independent tasks, I/O overlap, etc.

What will use threads ?
User application codes

directly (with thread libraries)
POSIX API (IEEE POSIX 1003.1C norm) in C, C++, . . .

with high-level programming languages (Ada, OpenMP, . . .)
Middleware programming environments

demonized tasks (garbage collector, . . .), . . .

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

User threads
Kernel threads
Mixed models

User threads

by the kernel
Entities managed

Operating system

Processors

Multithreaded process

threads

Kernel scheduler

User level

User scheduler

Efficiency + Flexibility + SMP - Blocking syscalls -

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

User threads
Kernel threads
Mixed models

Kernel threads

by the kernel
Entities managed

Operating system

Processors

Multithreaded process

threads

Kernel scheduler

Kernel level

Efficiency - Flexibility - SMP + Blocking syscalls +

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

User threads
Kernel threads
Mixed models

Mixed models

by the kernel
Entities managed

Operating system

Processors

Multithreaded process

threads

Kernel scheduler

User level

User scheduler

Efficiency + Flexibility + SMP + Blocking syscalls limited

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

User threads
Kernel threads
Mixed models

Mixed models

Characteristics
Library Efficiency Flexibility SMP Blocking syscalls

User + + - -
Kernel - - + +
Mixed + + + limited

Summary
Mixed libraries seems more attractive however they are more
complex to develop. They also suffer from the blocking system
call problem.

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Scheduler Activations

User Threads and Blocking System Calls

User level library

Kernel scheduler

User scheduler

Mixed library

Kernel scheduler

User scheduler

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Scheduler Activations

Scheduler Activations

Idea proposed by Anderson et al. (91)
Dialogue (and not monologue) between the user and kernel
schedulers

the user scheduler uses system calls
the kernel scheduler uses upcalls

Upcalls
Notify the application of scheduling kernel events

Activations
a new structure to support upcalls
a kinf of kernel thread or virtual processor

creating and destruction managed by the kernel

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Scheduler Activations

Scheduler Activations

Instead of:

InterruptionExternal request

space
User

Kernel Time

...better use the following schema:

Interruption

Act. A

External request

space
User

Kernel Time
upcall(unblocked, preempted, new)

Act. C
Act. A (next)

Act. B

upcall(blocked, new)

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Scheduler Activations

Scheduler Activations

Instead of:

InterruptionExternal request

space
User

Kernel Time

...better use the following schema:

Interruption

Act. A

External request

space
User

Kernel Time
upcall(unblocked, preempted, new)

Act. C
Act. A (next)

Act. B

upcall(blocked, new)

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Scheduler Activations

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

threads

User scheduler

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Scheduler Activations

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

threads

Upcall(New)

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Scheduler Activations

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

threads

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Scheduler Activations

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

threads

Upcall(New)

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Scheduler Activations

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

system
call

Blocking

threads

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Scheduler Activations

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

system
call

Blocking

threads

Upcall(Blocked, New)

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Scheduler Activations

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

system
call

Blocking

threads

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Scheduler Activations

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

system
call

Blocking

threads

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Scheduler Activations

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

threads

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Scheduler Activations

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

threads

Upcall(Unblocked,Preempted,New)

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

POSIX Threads
Linux POSIX Threads Libraries
Basic POSIX Thread API

Normalisation of the thread interface

Before the norm
each Unix had its (slightly) incompatible interface
but same kinds of features was present

POSIX normalisation
IEEE POSIX 1003.1C norm (also called POSIX threads
norm)
Only the API is normalised (not the ABI)

POSIX thread libraries can easily be switched at source
level but not at runtime

POSIX threads own
processor registers, stack, etc.
signal mask

POSIX threads can be of any kind (user, kernel, etc.)

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

POSIX Threads
Linux POSIX Threads Libraries
Basic POSIX Thread API

Linux POSIX Threads Libraries

LinuxThread (1996) : kernel level, Linux standard thread
library for a long time, not fully POSIX compliant

GNU-Pth (1999) : user level, portable, POSIX
NGPT (2002) : mixed, based on GNU-Pth, POSIX, not

developed anymore
NPTL (2002) : kernel level, POSIX, current Linux

standard thread library
PM2/Marcel (2001) : mixed, POSIX compliant, lots of

extensions for HPC (scheduling control, etc.)

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

POSIX Threads
Linux POSIX Threads Libraries
Basic POSIX Thread API

Basic POSIX Thread API

Creation/destruction
int pthread_create(pthread_t *thread, const
pthread_attr_t *attr, void

*(*start_routine)(void*), void *arg)

void pthread_exit(void *value_ptr)

int pthread_join(pthread_t thread, void

**value_ptr)

Synchronisation (semaphores)
int sem_init(sem_t *sem, int pshared, unsigned
int value)

int sem_wait(sem_t *sem)

int sem_post(sem_t *sem)

int sem_destroy(sem_t *sem)

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

POSIX Threads
Linux POSIX Threads Libraries
Basic POSIX Thread API

Basic POSIX Thread API (2)

Synchronisation (mutex)
int pthread_mutex_init(pthread_mutex_t *mutex,
const pthread_mutexattr_t *attr)

int pthread_mutex_lock(pthread_mutex_t *mutex)

int pthread_mutex_unlock(pthread_mutex_t
*mutex)

int pthread_mutex_destroy(pthread_mutex_t
*mutex)

Synchronisation (conditions)
int pthread_cond_init(pthread_cond_t *cond,
const pthread_condattr_t *attr)

int pthread_cond_wait(pthread_cond_t *cond,
pthread_mutex_t *mutex)

int pthread_cond_signal(pthread_cond_t *cond)

int pthread_cond_broadcast(pthread_cond_t
*cond)

int pthread_cond_destroy(pthread_cond_t *cond)

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

POSIX Threads
Linux POSIX Threads Libraries
Basic POSIX Thread API

Basic POSIX Thread API (3)

Per thread data
int pthread_key_create(pthread_key_t *key, void
(*destr_function) (void*))

int pthread_key_delete(pthread_key_t key)

int pthread_setspecific(pthread_key_t key,
const void *pointer)

void * pthread_getspecific(pthread_key_t key)

The new __thread C keyword
used for a global per-thread variable
need support from the compiler and the linker at compile
time and execute time
libraries can have efficient per-thread variables without
disturbing the application

Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

POSIX Threads
Linux POSIX Threads Libraries
Basic POSIX Thread API

Basic POSIX Thread API (3)

Per thread data
int pthread_key_create(pthread_key_t *key, void
(*destr_function) (void*))

int pthread_key_delete(pthread_key_t key)

int pthread_setspecific(pthread_key_t key,
const void *pointer)

void * pthread_getspecific(pthread_key_t key)

The new __thread C keyword
used for a global per-thread variable
need support from the compiler and the linker at compile
time and execute time
libraries can have efficient per-thread variables without
disturbing the application

Hardware Support
Busy-waiting Synchronisation

High-level Synchronisation Primitives
Some examples with Linux

Part III

Synchronisation

Hardware Support
Busy-waiting Synchronisation

High-level Synchronisation Primitives
Some examples with Linux

Outlines: Synchronisation

8 Hardware Support

9 Busy-waiting Synchronisation

10 High-level Synchronisation Primitives
Semaphores
Monitors

11 Some examples with Linux
Old Linux libpthread
New POSIX Thread Library

Hardware Support
Busy-waiting Synchronisation

High-level Synchronisation Primitives
Some examples with Linux

Hardware Support

What happens with incrementations in parallel?

for (i=0; i<10; i++){

var++;

for (i=0; i<10; i++){

var++;

Hardware support required
TAS atomic test and set instruction

cmpexchge compare and exchange
atomic operation incrementation, decrementation, adding, etc.

Hardware Support
Busy-waiting Synchronisation

High-level Synchronisation Primitives
Some examples with Linux

Hardware Support

What happens with incrementations in parallel?
for (i=0; i<10; i++){
var++;

}

for (i=0; i<10; i++){
var++;

}

Hardware support required
TAS atomic test and set instruction

cmpexchge compare and exchange
atomic operation incrementation, decrementation, adding, etc.

Hardware Support
Busy-waiting Synchronisation

High-level Synchronisation Primitives
Some examples with Linux

Hardware Support

What happens with incrementations in parallel?
for (i=0; i<10; i++){
var++;

}

for (i=0; i<10; i++){
var++;

}

Hardware support required
TAS atomic test and set instruction

cmpexchge compare and exchange
atomic operation incrementation, decrementation, adding, etc.

Hardware Support
Busy-waiting Synchronisation

High-level Synchronisation Primitives
Some examples with Linux

Critical section with busy waiting

Example of code
while (! TAS(&var))

;
/* in critical section */
var=0;

Busy waiting

+ very reactive

+ no OS or lib support required

- use a processor while not doing anything

- does not scale if there are lots of waiters

Hardware Support
Busy-waiting Synchronisation

High-level Synchronisation Primitives
Some examples with Linux

Critical section with busy waiting

Example of code
while (! TAS(&var))

while (var) ;
/* in critical section */
var=0;

Busy waiting

+ very reactive

+ no OS or lib support required

- use a processor while not doing anything

- does not scale if there are lots of waiters

Hardware Support
Busy-waiting Synchronisation

High-level Synchronisation Primitives
Some examples with Linux

Critical section with busy waiting

Example of code
while (! TAS(&var))

while (var) ;
/* in critical section */
var=0;

Busy waiting

+ very reactive

+ no OS or lib support required

- use a processor while not doing anything

- does not scale if there are lots of waiters

Hardware Support
Busy-waiting Synchronisation

High-level Synchronisation Primitives
Some examples with Linux

Semaphores
Monitors

Semaphores

Internal state: a counter initialised to a positive or null value
Two methods:

P(s) wait for a positive counter then decrease it
once

V(s) increase the counter

Common analogy: a box with tokens
Initial state: the box has n tokens in it
One can put one more token in the box (V)
One can take one token from the box (P) waiting if none is
available

Hardware Support
Busy-waiting Synchronisation

High-level Synchronisation Primitives
Some examples with Linux

Semaphores
Monitors

Monitors

Mutex
Two states: locked or not
Two methods:

lock(m) take the mutex
unlock(m) release the mutex (must be done by the

thread owning the mutex)

Conditions
waiting thread list (conditions are not related with tests)
Three methods:

wait(c, m) sleep on the condition. The mutex is released
atomically during the wait.

signal(c) one sleeping thread is wake up
broadcast(c) all sleeping threads are wake up

Hardware Support
Busy-waiting Synchronisation

High-level Synchronisation Primitives
Some examples with Linux

Old Linux libpthread
New POSIX Thread Library

Old Linux libpthread

First Linux kernel thread library
limited kernel support available
provides POSIX primitives (mutexes, conditions,
semaphores, etc.)

All internal synchronisation built on signals

lots of play with signal masks
one special (manager) thread used internally to manage
thread state and synchronisation
race conditions not always handled (not enough kernel
support)

Hardware Support
Busy-waiting Synchronisation

High-level Synchronisation Primitives
Some examples with Linux

Old Linux libpthread
New POSIX Thread Library

NPTL: New POSIX Thread Library

New Linux kernel thread library
requires new kernel support (available from Linux 2.6)
specific support in the libc
a lot more efficient
fully POSIX compliant

Internal synchronisation based on futex
new kernel object
mutex/condition/semaphore can be fully handled in user
space unless there is contention

A Brief Overview of MPI
Mixing Threads and Communication in HPC

Part IV

Multithreading and Networking

A Brief Overview of MPI
Mixing Threads and Communication in HPC

Outlines: Multithreading and Networking

12 A Brief Overview of MPI

13 Mixing Threads and Communication in HPC
Problems arises
Discussion about solution

A Brief Overview of MPI
Mixing Threads and Communication in HPC

Standard in industry
frequently used by engineers, physicians, etc.
MPI2 begin to be available

See MPI presentation

A Brief Overview of MPI
Mixing Threads and Communication in HPC

Problems arises
Discussion about solution

Example of problems with MPI

Token circulation while com-
puting on 4 nodes

if (mynode!=0)
MPI_Recv();

req=MPI_Isend(next);
Work(); /* about 1s */
MPI_Wait(req);

if (mynode==0)
MPI_Recv();

expected time: ~ 1 s
observed time: ~ 4 s

A Brief Overview of MPI
Mixing Threads and Communication in HPC

Problems arises
Discussion about solution

Example of problems with MPI

Token circulation while com-
puting on 4 nodes

if (mynode!=0)
MPI_Recv();

req=MPI_Isend(next);
Work(); /* about 1s */
MPI_Wait(req);

if (mynode==0)
MPI_Recv();

expected time: ~ 1 s
observed time: ~ 4 s

A Brief Overview of MPI
Mixing Threads and Communication in HPC

Problems arises
Discussion about solution

Example of problems with MPI

Recv
0 1 2

Isend

Calculus

req

Recv

Calculus

Wait

Isend

data

Recv

Calculus

Wait

Isend

data

req

ack

ack

req

Ignored message
No reactivity

Token circulation while com-
puting on 4 nodes

if (mynode!=0)
MPI_Recv();

req=MPI_Isend(next);
Work(); /* about 1s */
MPI_Wait(req);

if (mynode==0)
MPI_Recv();

expected time: ~ 1 s
observed time: ~ 4 s

A Brief Overview of MPI
Mixing Threads and Communication in HPC

Problems arises
Discussion about solution

Improving MPI reactivity

Possible solutions
add calls to MPI_test() in the code
using a multithreaded MPI version
+ parallelism, communication progression independent from

computations
- busy waiting synchronisation less efficient
- scrutation must be managed

A Brief Overview of MPI
Mixing Threads and Communication in HPC

Problems arises
Discussion about solution

Integrate a scrutation server into the scheduler

Scheduler: required for optimal behaviour
system is known by the scheduler

it can choose the best strategy to use

Efficient and reactive scrutation
less context switches
guarantee frequency

independent with respect to the number of threads in the
application

instead of

A Brief Overview of MPI
Mixing Threads and Communication in HPC

Problems arises
Discussion about solution

Running the scrutation server

}

{

poll
}

{

group

A

MPI call

threads scheduler
User level

Application

library

MPI

A Brief Overview of MPI
Mixing Threads and Communication in HPC

Problems arises
Discussion about solution

Running the scrutation server

}

{

poll
}

{

group

Callback functions:

Frequency
- poll
- group

init_server()

A

MPI call

threads scheduler
User level

Application

library

MPI

A Brief Overview of MPI
Mixing Threads and Communication in HPC

Problems arises
Discussion about solution

Running the scrutation server

}

{

poll
}

{

group

Req2

ev_wait()

ev_wait()

B
C

Req1

A

MPI call

threads scheduler
User level

Application

library

MPI

A Brief Overview of MPI
Mixing Threads and Communication in HPC

Problems arises
Discussion about solution

Running the scrutation server

}

{

poll
}

{

group

Req2

B
C

Req1

21

requests
Aggregated

A

MPI call

threads scheduler
User level

Application

library

MPI

A Brief Overview of MPI
Mixing Threads and Communication in HPC

Problems arises
Discussion about solution

Running the scrutation server

}

{

poll
}

{

group

Req2

B
C

Req1

21

requests
Aggregated

A

MPI call

threads scheduler
User level

Application

library

MPI

A Brief Overview of MPI
Mixing Threads and Communication in HPC

Problems arises
Discussion about solution

Running the scrutation server

}

{

poll
}

{

group

B
C

Req1

1

requests
Aggregated

A

MPI call

threads scheduler
User level

Application

library

MPI

Part V

Conclusion

Outlines: Conclusion

Conclusion

Multi-threading

cannot be avoided in current HPC
directly or through languages/middlewares
difficulties to get a efficient scheduling

no perfect universal scheduler
threads must be scheduled with respect to memory (NUMA)
threads and communications must be scheduled together

	Outlines
	Part I: High Performance Architectures
	Part II: Parallelism and Threads
	Part III: Synchronisation
	Part IV: Multithreading and Networking

	High Performance Architectures
	Parallel Machines with Shared Memory
	ILP and multi-cores
	Symmetric Multi Processors

	Parallel Machines with Distributed Memory
	Clusters
	Grids

	Current Architectures in HPC

	Parallelism and Threads
	Introduction to Threads
	Kinds of threads
	User threads
	Kernel threads
	Mixed models

	User Threads and Blocking System Calls
	Scheduler Activations

	Thread Programming Interface
	POSIX Threads
	Linux POSIX Threads Libraries
	Basic POSIX Thread API

	Synchronisation
	Hardware Support
	Busy-waiting Synchronisation
	High-level Synchronisation Primitives
	Semaphores
	Monitors

	Some examples with Linux
	Old Linux libpthread
	New POSIX Thread Library

	Multithreading and Networking
	A Brief Overview of MPI
	Mixing Threads and Communication in HPC
	Problems arises
	Discussion about solution

	Conclusion

