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High Performance Computing

Needs are always here
numerical or financial simulation, modelisation, virtual
reality virtuelle
more data, more details, . . .

Computing power will never be enough

One way to follow: using parallelism
Idea: change space into time
more resources to gain some time
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Parallel Architectures

Two main kinds
Architectures with shared memory and architectures with
distributed memory.

Multiprocessors
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Parallel Machines with Shared Memory
Parallel Machines with Distributed Memory

Current Architectures in HPC

ILP and multi-cores
Symmetric Multi Processors

Why several processors/cores ?

Limits for monocore processors
superscalar processors: instruction level parallelism
frequency
electrical power

What to do with place available on chips ?
caches (bigger and quicker)
several series of registers (hyperthreaded processors)
several series of cores (multi-core processors)
all of that



Parallel Machines with Shared Memory
Parallel Machines with Distributed Memory

Current Architectures in HPC

ILP and multi-cores
Symmetric Multi Processors

Symmetric Multi Processors

all processors have access to the same memory and I/O
most common multiprocessor systems today use an SMP
architecture
in case of multi-core processors, the SMP architecture
applies to the cores, treating them as separate processors

Non Uniform Memory Access Architectures
memory access time depends on the memory location
relative to a processor
better scaling hardware architecture
harder to program efficiently: trade off needed between
load-balancing and memory data locality
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Current Architectures in HPC

ILP and multi-cores
Symmetric Multi Processors
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Current Architectures in HPC

Clusters
Grids

Clusters

Composed of a few to hundreds of machines
often homogeneous

same processor, memory, etc.
often linked with a high speed, low latency network

Myrinet, InfinityBand, Quadrix, etc.

Biggest clusters can be split in several parts
computing nodes
I/O nodes
front (interactive) node
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Current Architectures in HPC

Clusters
Grids

Grids

Lots of heterogeneous resources

aggregation of clusters and/or standalone nodes
high latency network (Internet for example)
often dynamic resources (clusters/nodes appear and
disappear)
different architectures, networks, etc.
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Current Architectures in HPC

Hierarchical Architectures
HT technology
multi-core processor
multi processors machine
cluster of machines
grid of clusters and individual machines

Even more complexity
computing on GPU

require specialized codes but hardware far more powerful
FPGA

hardware can be specialized on demand
still lots of work on interface programming here
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Introduction to Threads

Why threads ?
To take profit from shared memory parallel architectures

SMP, hyperthreaded, multi-core, NUMA, etc. processors
future Intel processors: several hundreds cores

To describe the parallelism within the applications
independent tasks, I/O overlap, etc.

What will use threads ?
User application codes

directly (with thread libraries)
POSIX API (IEEE POSIX 1003.1C norm) in C, C++, . . .

with high-level programming languages (Ada, OpenMP, . . . )
Middleware programming environments

demonized tasks (garbage collector, . . . ), . . .
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Kernel threads
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User threads

by the kernel
Entities managed

Operating system

Processors

Multithreaded process

threads

Kernel scheduler

User level
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Efficiency + Flexibility + SMP - Blocking syscalls -
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User threads
Kernel threads
Mixed models

Mixed models

Characteristics
Library Efficiency Flexibility SMP Blocking syscalls

User + + - -
Kernel - - + +
Mixed + + + limited

Summary
Mixed libraries seems more attractive however they are more
complex to develop. They also suffer from the blocking system
call problem.
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Scheduler Activations

User Threads and Blocking System Calls

User level library

Kernel scheduler

User scheduler

Mixed library

Kernel scheduler

User scheduler
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Scheduler Activations

Idea proposed by Anderson et al. (91)
Dialogue (and not monologue) between the user and kernel
schedulers

the user scheduler uses system calls
the kernel scheduler uses upcalls

Upcalls
Notify the application of scheduling kernel events

Activations
a new structure to support upcalls
a kinf of kernel thread or virtual processor

creating and destruction managed by the kernel
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Scheduler Activations

Instead of:

InterruptionExternal request

space
User

Kernel Time

...better use the following schema:

Interruption

Act. A

External request

space
User

Kernel Time
upcall(unblocked, preempted, new)

Act. C
Act. A (next)

Act. B

upcall(blocked, new)



Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Scheduler Activations

Scheduler Activations

Instead of:

InterruptionExternal request

space
User

Kernel Time

...better use the following schema:

Interruption

Act. A

External request

space
User

Kernel Time
upcall(unblocked, preempted, new)

Act. C
Act. A (next)

Act. B

upcall(blocked, new)



Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Scheduler Activations

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

threads

User scheduler



Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Scheduler Activations

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

threads

Upcall(New)



Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Scheduler Activations

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

threads



Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Scheduler Activations

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

threads

Upcall(New)



Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Scheduler Activations

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

system
call

Blocking

threads



Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Scheduler Activations

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

system
call

Blocking

threads

Upcall(Blocked, New)



Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Scheduler Activations

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

system
call

Blocking

threads



Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Scheduler Activations

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

system
call

Blocking

threads



Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Scheduler Activations

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

threads



Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

Scheduler Activations

Working principle

managed by the kernel
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Normalisation of the thread interface

Before the norm
each Unix had its (slightly) incompatible interface
but same kinds of features was present

POSIX normalisation
IEEE POSIX 1003.1C norm (also called POSIX threads
norm)
Only the API is normalised (not the ABI)

POSIX thread libraries can easily be switched at source
level but not at runtime

POSIX threads own
processor registers, stack, etc.
signal mask

POSIX threads can be of any kind (user, kernel, etc.)



Introduction to Threads
Kinds of threads

User Threads and Blocking System Calls
Thread Programming Interface

POSIX Threads
Linux POSIX Threads Libraries
Basic POSIX Thread API

Linux POSIX Threads Libraries

LinuxThread (1996) : kernel level, Linux standard thread
library for a long time, not fully POSIX compliant

GNU-Pth (1999) : user level, portable, POSIX
NGPT (2002) : mixed, based on GNU-Pth, POSIX, not

developed anymore
NPTL (2002) : kernel level, POSIX, current Linux

standard thread library
PM2/Marcel (2001) : mixed, POSIX compliant, lots of

extensions for HPC (scheduling control, etc.)
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Basic POSIX Thread API

Creation/destruction
int pthread_create(pthread_t *thread, const
pthread_attr_t *attr, void

*(*start_routine)(void*), void *arg)

void pthread_exit(void *value_ptr)

int pthread_join(pthread_t thread, void

**value_ptr)

Synchronisation (semaphores)
int sem_init(sem_t *sem, int pshared, unsigned
int value)

int sem_wait(sem_t *sem)

int sem_post(sem_t *sem)

int sem_destroy(sem_t *sem)
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Basic POSIX Thread API (2)

Synchronisation (mutex)
int pthread_mutex_init(pthread_mutex_t *mutex,
const pthread_mutexattr_t *attr)

int pthread_mutex_lock(pthread_mutex_t *mutex)

int pthread_mutex_unlock(pthread_mutex_t
*mutex)

int pthread_mutex_destroy(pthread_mutex_t
*mutex)

Synchronisation (conditions)
int pthread_cond_init(pthread_cond_t *cond,
const pthread_condattr_t *attr)

int pthread_cond_wait(pthread_cond_t *cond,
pthread_mutex_t *mutex)

int pthread_cond_signal(pthread_cond_t *cond)

int pthread_cond_broadcast(pthread_cond_t
*cond)

int pthread_cond_destroy(pthread_cond_t *cond)
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Basic POSIX Thread API (3)

Per thread data
int pthread_key_create(pthread_key_t *key, void
(*destr_function) (void*))

int pthread_key_delete(pthread_key_t key)

int pthread_setspecific(pthread_key_t key,
const void *pointer)

void * pthread_getspecific(pthread_key_t key)

The new __thread C keyword
used for a global per-thread variable
need support from the compiler and the linker at compile
time and execute time
libraries can have efficient per-thread variables without
disturbing the application
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Hardware Support

What happens with incrementations in parallel?

for (i=0; i<10; i++){

var++;

for (i=0; i<10; i++){

var++;

Hardware support required
TAS atomic test and set instruction

cmpexchge compare and exchange
atomic operation incrementation, decrementation, adding, etc.
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Critical section with busy waiting

Example of code
while (! TAS(&var))

;
/* in critical section */
var=0;

Busy waiting

+ very reactive

+ no OS or lib support required

- use a processor while not doing anything

- does not scale if there are lots of waiters
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Critical section with busy waiting

Example of code
while (! TAS(&var))

while (var) ;
/* in critical section */
var=0;

Busy waiting

+ very reactive

+ no OS or lib support required

- use a processor while not doing anything

- does not scale if there are lots of waiters
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Semaphores
Monitors

Semaphores

Internal state: a counter initialised to a positive or null value
Two methods:

P(s) wait for a positive counter then decrease it
once

V(s) increase the counter

Common analogy: a box with tokens
Initial state: the box has n tokens in it
One can put one more token in the box (V)
One can take one token from the box (P) waiting if none is
available
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Semaphores
Monitors

Monitors

Mutex
Two states: locked or not
Two methods:

lock(m) take the mutex
unlock(m) release the mutex (must be done by the

thread owning the mutex)

Conditions
waiting thread list (conditions are not related with tests)
Three methods:

wait(c, m) sleep on the condition. The mutex is released
atomically during the wait.

signal(c) one sleeping thread is wake up
broadcast(c) all sleeping threads are wake up
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Old Linux libpthread
New POSIX Thread Library

Old Linux libpthread

First Linux kernel thread library
limited kernel support available
provides POSIX primitives (mutexes, conditions,
semaphores, etc.)

All internal synchronisation built on signals

lots of play with signal masks
one special (manager) thread used internally to manage
thread state and synchronisation
race conditions not always handled (not enough kernel
support)
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Old Linux libpthread
New POSIX Thread Library

NPTL: New POSIX Thread Library

New Linux kernel thread library
requires new kernel support (available from Linux 2.6)
specific support in the libc
a lot more efficient
fully POSIX compliant

Internal synchronisation based on futex
new kernel object
mutex/condition/semaphore can be fully handled in user
space unless there is contention
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Standard in industry
frequently used by engineers, physicians, etc.
MPI2 begin to be available

See MPI presentation
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Problems arises
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Example of problems with MPI

Token circulation while com-
puting on 4 nodes

if (mynode!=0)
MPI_Recv();

req=MPI_Isend(next);
Work(); /* about 1s */
MPI_Wait(req);

if (mynode==0)
MPI_Recv();

expected time: ~ 1 s
observed time: ~ 4 s
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Example of problems with MPI

Recv
0 1 2

Isend

Calculus

req

Recv

Calculus

Wait

Isend

data

Recv

Calculus

Wait

Isend

data

req

ack

ack

req

Ignored message
No reactivity

Token circulation while com-
puting on 4 nodes

if (mynode!=0)
MPI_Recv();

req=MPI_Isend(next);
Work(); /* about 1s */
MPI_Wait(req);

if (mynode==0)
MPI_Recv();

expected time: ~ 1 s
observed time: ~ 4 s
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Problems arises
Discussion about solution

Improving MPI reactivity

Possible solutions
add calls to MPI_test() in the code
using a multithreaded MPI version
+ parallelism, communication progression independent from

computations
- busy waiting synchronisation less efficient
- scrutation must be managed
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Problems arises
Discussion about solution

Integrate a scrutation server into the scheduler

Scheduler: required for optimal behaviour
system is known by the scheduler

it can choose the best strategy to use

Efficient and reactive scrutation
less context switches
guarantee frequency

independent with respect to the number of threads in the
application

instead of
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threads scheduler
User level

Application
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Running the scrutation server
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{

poll
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group
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Conclusion

Multi-threading

cannot be avoided in current HPC
directly or through languages/middlewares
difficulties to get a efficient scheduling

no perfect universal scheduler
threads must be scheduled with respect to memory (NUMA)
threads and communications must be scheduled together
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