

Principles of High
Performance Computing
(ICS 632)

Message Passing with MPI

Outline

 Message Passing

 MPI
Point-to-Point Communication

Collective Communication

Message Passing

 The above is a programming model and things may look
different in the actual implementation (e.g., MPI over
Shared Memory)

 Message Passing is popular because it is general:
 Pretty much any distributed system works by exchanging

messages, at some level
 Distributed- or shared-memory multiprocessors, networks of

workstations, uniprocessors
 It is not popular because it is easy (it’s not)

P

M

P

M

P

M
. . .

network

 Each processor runs a process
 Processes communicate by

exchanging messages
 They cannot share memory in

the sense that they cannot
address the same memory cells

Code Parallelization
 Shared-memory programming

 Parallelizing existing code can be very easy
 OpenMP: just add a few pragmas
 Pthreads: wrap work in do_work functions

 Understanding parallel code is easy
 Incremental parallelization is natural

 Distributed-memory programming
 parallelizing existing code can be very difficult

 No shared memory makes it impossible to “just”
reference variables

 Explicit message exchanges can get really tricky
 Understanding parallel code is difficult

 Data structured are split all over different memories
 Incremental parallelization can be challenging

Programming Message
Passing

 Shared-memory programming is simple conceptually
(sort of)

 Shared-memory machines are expensive when one
wants a lot of processors

 It’s cheaper (and more scalable) to build distributed
memory machines
 Distributed memory supercomputers (IBM SP series)
 Commodity clusters

 But then how do we program them?
 At a basic level, let the user deal with explicit

messages
 difficult
 but provides the most flexibility

Message Passing

 Isn’t exchanging messages completely known
and understood?
 That’s the basis of the IP idea
 Networked computers running programs that

communicate are very old and common
 DNS, e-mail, Web, ...

 The answer is that, yes it is, we have
“Sockets”
 Software abstraction of a communication between

two Internet hosts
 Provides and API for programmers so that they do

not need to know anything (or almost anything)
about TCP/IP and write code with programs that
communicate over the internet

Socket Library in UNIX
 Introduced by BSD in 1983

 The “Berkeley Socket API”
 For TCP and UDP on top of IP

 The API is known to not be very intuitive for first-time
programmers

 What one typically does is write a set of “wrappers” that hide
the complexity of the API behind simple function

 Fundamental concepts
 Server side

 Create a socket
 Bind it to a port numbers
 Listen on it
 Accept a connection
 Read/Write data

 Client side
 Create a socket
 Connect it to a (remote) host/port
 Write/Read data

Socket: server.c
int main(int argc, char *argv[])
{
 int sockfd, newsockfd, portno, clilen;
 char buffer[256];

struct sockaddr_in serv_addr, cli_addr;
 int n;

 sockfd = socket(AF_INET, SOCK_STREAM, 0);
bzero((char *) &serv_addr, sizeof(serv_addr));

 portno = 666;
 serv_addr.sin_family = AF_INET;
 serv_addr.sin_addr.s_addr = INADDR_ANY;
 serv_addr.sin_port = htons(portno);

bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr))
listen(sockfd,5);

 clilen = sizeof(cli_addr);
 newsockfd = accept(sockfd, (struct sockaddr *) &cli_addr, &clilen);
 bzero(buffer,256);
 n = read(newsockfd,buffer,255);
 printf("Here is the message: %s\n",buffer);
 n = write(newsockfd,"I got your message",18);
 return 0;
}

Socket: client.c
int main(int argc, char *argv[])
{
 int sockfd, portno, n;
 struct sockaddr_in serv_addr;
 struct hostent *server;

 char buffer[256];
 portno = 666;
 sockfd = socket(AF_INET, SOCK_STREAM, 0);
 server = gethostbyname(“server_host.univ.edu);
 bzero((char *) &serv_addr, sizeof(serv_addr));
 serv_addr.sin_family = AF_INET;
 bcopy((char *)server->h_addr,(char *)&serv_addr.sin_addr.s_addr,server->h_length);
 serv_addr.sin_port = htons(portno);
 connect(sockfd,&serv_addr,sizeof(serv_addr));
 printf("Please enter the message: ");
 bzero(buffer,256);
 fgets(buffer,255,stdin);

write(sockfd,buffer,strlen(buffer));
bzero(buffer,256);
read(sockfd,buffer,255);

 printf("%s\n",buffer);
 return 0;
}

Socket in C/UNIX

 The API is really not very simple
 And note that the previous code does not have

any error checking
 Network programming is an area in which you

should check ALL possible error code
 In the end, writing a server that receives a

message and sends back another one, with the
corresponding client, can require 100+ lines of C if
one wants to have robust code

 This is OK for UNIX programmers, but not for
everyone

 However, nowadays, most applications written
require some sort of Internet communication

Sockets in Java

 Socket class in java.net
 Makes things a bit simpler
 Still the same general idea
 With some Java stuff

 Server
try { serverSocket = new ServerSocket(666);
} catch (IOException e) { <something> }
Socket clientSocket = null;
try { clientSocket = serverSocket.accept();
} catch (IOException e) { <something> }
PrintWriter out = new

PrintWriter(clientSocket.getOutputStream()
, true);

BufferedReader in = new BufferedReader(new
InputStreamReader(clientSocket.getInputStream()));

// read from “in”, write to “out”

Sockets in Java

 Java client
try {socket = new Socket(”server.univ.edu", 666);}

 catch { <something> }

out = new PrintWriter(socket.getOutputStream(), true);

in = new BufferedReader(new InputStreamReader(
 socket.getInputStream()));

 // write to out, read from in

 Much simpler than the C
 Note that if one writes a client-server program one

typically creates a Thread after an accept, so that
requests can be handled concurrently

Using Sockets for parallel
programming?

 One could thing of writing all parallel code on a
cluster using sockets
 n nodes in the cluster
 Each node creates n-1 sockets on n-1 ports
 All nodes can communicate

 Problems with this approach
 Complex code
 Only point-to-point communication
 No notion of types messages
 But

 All this complexity could be “wrapped” under a higher-level API
 And in fact, we’ll see that’s the basic idea

 Does not take advantage of fast networking within a cluster/
MPP

 Sockets have “Internet stuff” in them that’s not necessary
 TPC/IP may not even be the right protocol!

Message Passing for Parallel
Programs

 Although “systems” people are happy
with sockets, people writing parallel
applications need something better
 easier to program to
 able to exploit the hardware better within a

single machine
 This “something better” right now is

MPI
 We will learn how to write MPI programs

 Let’s look at the history of message
passing for parallel computing

A Brief History of Message
Passing

 Vendors started building dist-memory machines in the late 80’s
 Each provided a message passing library

 Caltech’s Hypercube and Crystalline Operating System (CROS) -
1984

 communication channels based on the hypercube topology
 only collective communication at first, moved to an address-based

system
 only 8 byte messages supported by CROS routines!
 good for very regular problems only

 Meiko CS-1 and Occam - circa 1990
 transputer based (32-bit processor with 4 communication links, with fast

multitasking/multithreading)
 Occam: formal language for parallel processing:

chan1 ! data sending data (synchronous)
chan1 ? data receiving data
par, seq parallel or sequential block

 Easy to write code that deadlocks due to synchronicity
 Still used today to reason about parallel programs (compilers available)
 Lesson: promoting a parallel language is difficult, people have to

embrace it
 better to do extensions to an existing (popular) language
 better to just design a library

A Brief History of Message
Passing

...
 The Intel iPSC1, Paragon and NX

 Originally close to the Caltech Hypercube and CROS
 iPSC1 had commensurate message passing and computation

performance
 hiding of underlying communication topology (process rank),

multiple processes per node, any-to-any message passing, non-
syn chronous messages, message tags, variable message
lengths

 On the Paragon, NX2 added interrupt-driven communications,
some notion of filtering of messages with wildcards, global
synchronization, arithmetic reduction operations

 ALL of the above are part of modern message passing
 IBM SPs and EUI
 Meiko CS-2 and CSTools,
 Thinking Machine CM5 and the CMMD Active Message Layer

(AML)

A Brief History of Message
Passing

 We went from a highly restrictive system like the Caltech
hypercube to great flexibility that is in fact very close to today’s
state-of-the-art of message passing

 The main problem was: impossible to write portable code!
 programmers became expert of one system
 the systems would die eventually and one had to relearn a new

system
 for instance, I learned NX!

 People started writing “portable” message passing libraries
 Tricks with macros, PICL, P4, PVM, PARMACS, CHIMPS, Express, etc.

 The main problems was performance
 if I invest millions in an IBM-SP, do I really want to use some library

that uses (slow) sockets??
 There was no clear winner for a long time

 although PVM had won in the end
 After a few years of intense activity and competition, it was

agreed that a message passing standard should be developed
 Designed by committee

The MPI Standard
 MPI Forum setup as early as 1992 to come up with a de facto

standard with the following goals:
 source-code portability
 allow for efficient implementation (e.g., by vendors)
 support for heterogeneous platforms

 MPI is not
 a language
 an implementation (although it provides hints for

implementers)
 June 1995: MPI v1.1 (we’re now at MPI v1.2)

 http://www-unix.mcs.anl.gov/mpi/
 C and FORTRAN bindings
 We will use MPI v1.1 from C in the class

 Implementations:
 well-adopted by vendors
 free implementations for clusters: MPICH, LAM, CHIMP/MPI
 research in fault-tolerance: MPICH-V, FT-MPI, MPIFT, etc.

http://www-unix.mcs.anl.gov/mpi/

SPMD Programs
 It is rare for a programmer to write a different program for each

process of a parallel application
 In most cases, people write Single Program Multiple Data

(SPMD) programs
 the same program runs on all participating processors
 processes can be identified by some rank
 This allows each process to know which piece of the problem to

work on
 This allows the programmer to specify that some process does

something, while all the others do something else (common in
master-worker computations)

main(int argc, char **argv) {
 if (my_rank == 0) { /* master */
 ... load input and dispatch ...
 } else { /* workers */
 ... wait for data and compute ...
 }

MPI Concepts

 Fixed number of processors
 When launching the application one must specify the

number of processors to use, which remains unchanged
throughout execution

 Communicator
 Abstraction for a group of processes that can communicate
 A process can belong to multiple communicators
 Makes is easy to partition/organize the application in

multiple layers of communicating processes
 Default and global communicator: MPI_COMM_WORLD

 Process Rank
 The index of a process within a communicator
 Typically user maps his/her own virtual topology on top of

just linear ranks
 ring, grid, etc.

MPI Communicators

MPI_COMM_WORLD

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

User-created
Communicator

21

3 4 5

876

0

1

0

User-created
Communicator

A First MPI Program
#include <unistd.h>
#include <mpi.h>
int main(int argc, char **argv) {
 int my_rank, n;
 char hostname[128];
 MPI_init(&argc,&argv);
 MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);
 MPI_Comm_size(MPI_COMM_WORLD,&n);
 gethostname(hostname,128);
 if (my_rank == 0) { /* master */
 printf(“I am the master: %s\n”,hostname);
 } else { /* worker */
 printf(“I am a worker: %s (rank=%d/%d)\n”,
 hostname,my_rank,n1);
 }
 MPI_Finalize();
 exit(0);
}

Has to be called first, and once

Has to be called last, and once

Compiling/Running it

 Compile with mpicc
 Run with mpirun

% mpirun np 4 my_program <args>
 requests 4 processors for running my_program with command-

line arguments
 see the mpirun man page for more information
 in particular the machinefile option that is used to run on a

network of workstations
 Some systems just run all programs as MPI programs and

no explicit call to mpirun is actually needed
 Previous example program:
% mpirun np 3 machinefile hosts my_program
 I am the master: somehost1
 I am a worker: somehost2 (rank=2/2)
 I am a worker: somehost3 (rank=1/2)

(stdout/stderr redirected to the process calling mpirun)

MPI on our Cluster

 OpenMPI
 /usr/bin/mpirun
 /usr/bin/mpicc

 MPICH
 /opt/mpich/gnu/bin/mpirun
 /opt/mpich/gnu/bin/mpicc

 Your batch script should ask for >=1 nodes and call mpirun
appropriately

 Remember the example we ran in class:
#
#PBS -l nodes=6
#PBS -l walltime=5:00:00
#PBS -o myprogram.out
#PBS -e myprogram.err

cd $PBS_O_WORKDIR
mpirun -np 6 -machinefile $PBS_NODEFILE ./hello_world

Outline

 Introduction to message passing and

MPI

 Point-to-Point Communication

 Collective Communication

 MPI Data Types

 One slide on MPI-2

Point-to-Point Communication

 Data to be communicated is described by three
things:
 address
 data type of the message
 length of the message

 Involved processes are described by two things
 communicator
 rank

 Message is identified by a “tag” (integer) that
can be chosen by the user

P

M

P

M

Point-to-Point Communication

 Two modes of communication:
 Synchronous: Communication does not

complete until the message has been
received

 Asynchronous: Completes as soon as the
message is “on its way”, and hopefully it
gets to destination

 MPI provides four versions
 synchronous, buffered, standard, ready

Synchronous/Buffered sending in
MPI

 Synchronous with MPI_Ssend
 The send completes only once the receive has

succeeded
 copy data to the network, wait for an ack
 The sender has to wait for a receive to be posted
 No buffering of data

 Buffered with MPI_Bsend
 The send completes once the message has been

buffered internally by MPI
 Buffering incurs an extra memory copy
 Doe not require a matching receive to be posted
 May cause buffer overflow if many bsends and no

matching receives have been posted yet

Standard/Ready Send

 Standard with MPI_Send
 Up to MPI to decide whether to do synchronous or

buffered, for performance reasons
 The rationale is that a correct MPI program should

not rely on buffering to ensure correct semantics
 Ready with MPI_Rsend

 May be started only if the matching receive has
been posted

 Can be done efficiently on some systems as no
hand-shaking is required

MPI_RECV

 There is only one MPI_Recv, which returns when the data has
been received.
 only specifies the MAX number of elements to receive

 Why all this junk?
 Performance, performance, performance
 MPI was designed with constructors in mind, who would endlessly

tune code to extract the best out of the platform (LINPACK
benchmark).

 Playing with the different versions of MPI_?send can improve
performance without modifying program semantics

 Playing with the different versions of MPI_?send can modify
program semantics

 Typically parallel codes do not face very complex distributed
system problems and it’s often more about performance than
correctness.

 You’ll want to play with these to tune the performance of your code
in your assignments

Example: Sending and
Receiving

#include <unistd.h>
#include <mpi.h>
int main(int argc, char **argv) {
 int i, my_rank, nprocs, x[4];
 MPI_Init(&argc,&argv);
 MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);
 if (my_rank == 0) { /* master */
 x[0]=42; x[1]=43; x[2]=44; x[3]=45;
 MPI_Comm_size(MPI_COMM_WORLD,&nprocs);
 for (i=1;i<nprocs;i++)
 MPI_Send(x,4,MPI_INT,i,0,MPI_COMM_WORLD);
 } else { /* worker */
 MPI_Status status;
 MPI_Recv(x,4,MPI_INT,0,0,MPI_COMM_WORLD,&status);
 }
 MPI_Finalize();
 exit(0);
}

destination
and

source

user-defined
tag

Max number of
elements to receive

Can be examined via calls
like MPI_Get_count(), etc.

Example: Deadlock

...

MPI_Ssend()

MPI_Recv()

...

...

MPI_Buffer_attach()

MPI_Bsend()

MPI_Recv()

...

...

MPI_Buffer_attach()

MPI_Bsend()

MPI_Recv()

...

...

MPI_Ssend()

MPI_Recv()

...

...

MPI_Buffer_attach()

MPI_Bsend()

MPI_Recv()

...

...

MPI_Ssend()

MPI_Recv()

...

Deadlock

No
Deadlock

No
Deadlock

What about MPI_Send?

 MPI_Send is either synchronous or
buffered....

 With , running “some” version of MPICH
...

MPI_Send()

MPI_Recv()

...

...

MPI_Send()

MPI_Recv()

...

Deadlock

No
Deadlock

Data size > 127999 bytes

Data size < 128000 bytes

 Rationale: a correct MPI program should not rely
on buffering for semantics, just for performance.

 So how do we do this then? ...

Non-blocking
communications

 So far we’ve seen blocking communication:
 The call returns whenever its operation is

complete (MPI_SSEND returns once the message
has been received, MPI_BSEND returns once the
message has been buffered, etc..)

 MPI provides non-blocking communication:
the call returns immediately and there is
another call that can be used to check on
completion.

 Rationale: Non-blocking calls let the
sender/receiver do something useful while
waiting for completion of the operation
(without playing with threads, etc.).

Non-blocking Communication

 MPI_Issend, MPI_Ibsend, MPI_Isend, MPI_Irsend,
MPI_Irecv

 MPI_Request request;
 MPI_Isend(&x,1,MPI_INT,dest,tag,communicator,&request);

 MPI_Irecv(&x,1,MPI_INT,src,tag,communicator,&request);

 Functions to check on completion: MPI_Wait,
MPI_Test, MPI_Waitany, MPI_Testany, MPI_Waitall,
MPI_Testall, MPI_Waitsome, MPI_Testsome.
MPI_Status status;

MPI_Wait(&request, &status) /* block */

MPI_Test(&request, &status) /* doesn’t block */

Example: Non-blocking comm
#include <unistd.h>
#include <mpi.h>
int main(int argc, char **argv) {
 int i, my_rank, x, y;
 MPI_Status status;
 MPI_Request request;
 MPI_Init(&argc,&argv);
 MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);
 if (my_rank == 0) { /* P0 */
 x=42;
 MPI_Isend(&x,1,MPI_INT,1,0,MPI_COMM_WORLD,&request);
 MPI_Recv(&y,1,MPI_INT,1,0,MPI_COMM_WORLD,&status);
 MPI_Wait(&request,&status);
 } else if (my_rank == 1) { /* P1 */
 y=41;
 MPI_Isend(&y,1,MPI_INT,0,0,MPI_COMM_WORLD,&request);
 MPI_Recv(&x,1,MPI_INT,0,0,MPI_COMM_WORLD,&status);
 MPI_Wait(&request,&status);
 }
 MPI_Finalize(); exit(0);
}

No
Deadlock

Use of non-blocking comms

 In the previous example, why not just swap one pair
of send and receive?

 Example:
 A logical linear array of N processors, needing to exchange

data with their neighbor at each iteration of an application
 One would need to orchestrate the communications:

 all odd-numbered processors send first
 all even-numbered processors receive first

 Sort of cumbersome and can lead to complicated patterns
for more complex examples

 In this case: just use MPI_Isend and write much simpler code
 Furthermore, using MPI_Isend makes it possible to

overlap useful work with communication delays:
MPI_Isend()
<useful work>
MPI_Wait()

Iterative Application Example
for (iterations)

 update all cells
 send boundary values
 receive boundary values

 Would deadlock with MPI_Ssend, and maybe
deadlock with MPI_Send, so must be implemented
with MPI_Isend

 Better version that uses non-blocking
communication to achieve
communication/computation overlap (aka latency
hiding):
for (iterations)
 initiate sending of boundary values to neighbours;
 initiate receipt of boundary values from neighbours;
 update nonboundary cells;
 wait for completion of sending of boundary values;

 wait for completion of receipt of boundary values;
 update boundary cells;

 Saves cost of boundary value communication if
hardware/software can overlap comm and comp

Non-blocking
communications

 Almost always better to use non-blocking
 communication can be carried out during blocking system

calls
 communication and communication can overlap
 less likely to have annoying deadlocks
 synchronous mode is better than implementing acks by hand

though
 However, everything else being equal, non-blocking

is slower due to extra data structure bookkeeping
 The solution is just to benchmark

 When you do your programming assignments, you
will play around with different communication types

More information

 There are many more functions that allow
fine control of point-to-point communication

 Message ordering is guaranteed
 Detailed API descriptions at the MPI site at

ANL:
 Google “MPI”. First link.
 Note that you should check error codes, etc.

 Everything you want to know about deadlocks
in MPI communication

 http://andrew.ait.iastate.edu/HPC/Papers/mpicheck2/mpicheck2.htm

http://andrew.ait.iastate.edu/HPC/Papers/mpicheck2/mpicheck2.htm
http://andrew.ait.iastate.edu/HPC/Papers/mpicheck2/mpicheck2.htm

Outline

 Introduction to message passing and

MPI

 Point-to-Point Communication

 Collective Communication

 MPI Data Types

 One slide on MPI-2

Collective Communication

 Operations that allow more than 2 processes
to communicate simultaneously
 barrier
 broadcast
 reduce

 All these can be built using point-to-point
communications, but typical MPI
implementations have optimized them, and
it’s a good idea to use them

 In all of these, all processes place the same
call (in good SPMD fashion), although
depending on the process, some arguments
may not be used

Barrier

 Synchronization of the calling processes
 the call blocks until all of the processes

have placed the call
 No data is exchanged
 Similar to an OpenMP barrier

...

MPI_Barrier(MPI_COMM_WORLD)

...

Broadcast

 One-to-many communication
 Note that multicast can be

implemented via the use of
communicators (i.e., to create
processor groups)
...

MPI_Bcast(x, 4, MPI_INT, 0,
MPI_COMM_WORLD)

...

Rank of the root

Broadcast example

 Let’s say the master must send the user
input to all workers

int main(int argc,char **argv) {

int my_rank;

 int input;

MPI_Init(&argc,&argv);

 MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);

 if (argc != 2) exit(1);

 if (sscanf(argv[1],”%d”,&input) != 1) exit(1);

MPI_Bcast(&input,1,MPI_INT,0,MPI_COMM_WORLD);

...

}

Scatter

 One-to-many communication
 Not sending the same message to all

root

destinations
...

MPI_Scatter(x, 100, MPI_INT, y, 100, MPI_INT, 0,
MPI_COMM_WORLD)

...

Rank of the root
Send buffer

Receive buffer

Data to send to each Data to receive

. . .

This is actually a bit tricky

 The root sends data to itself!

 Arguments #1, #2, and #3 are only
meaningful at the root

master node

work node

work node work node

work node

work node

Scatter Example

 Partitioning an array of input among
workers

int main(int argc,char **argv) {
int *a;
double *revbuffer;
...

 MPI_Comm_size(MPI_COMM_WORLD,&n);
<allocate array recvbuffer of size N/n>

if (my_rank == 0) { /* master */
<allocate array a of size N>

}
MPI_Scatter(a, N/n, MPI_INT,

 recvbuffer, N/n, MPI_INT,
 0, MPI_COMM_WORLD);
 ...
}

Scatter Example

 Without redundant sending at the root

int main(int argc,char **argv) {
int *a;
double *revbuffer;
...

 MPI_Comm_size(MPI_COMM_WORLD,&n);
if (my_rank == 0) { /* master */

<allocate array a of size N>
<allocate array recvbuffer of size N/n>

 MPI_Scatter(a, N/n, MPI_INT,
 MPI_IN_PLACE, N/n, MPI_INT,
 0, MPI_COMM_WORLD);
 } else { /* worker */

<allocate array recvbuffer of size N/n>
MPI_Scatter(NULL, 0, MPI_INT,

 recvbuffer, N/n, MPI_INT,
 0, MPI_COMM_WORLD);
 }
 ...
}

Gather

 Many-to-one communication
 Not sending the same message to the root

root

sources

...

MPI_Gather(x, 100, MPI_INT, y, 100, MPI_INT, 0, MPI_COMM_WORLD)
...

Rank of the root
Send buffer

Receive buffer

Data to send from each Data to receive

. . .

Gather-to-all

 Many-to-many communication
 Each process sends the same message to all
 Different Processes send different messages

...

MPI_Allgather(x, 100, MPI_INT, y, 100, MPI_INT, MPI_COMM_WORLD)
...

Send buffer

Receive bufferData to send to each

Data to receive

. . .

. . .

All-to-all
 Many-to-many communication
 Each process sends a different message to each other

process

...

MPI_Alltoall(x, 100, MPI_INT, y, 100, MPI_INT, MPI_COMM_WORLD)
...

Send buffer

Receive bufferData to send to each

Data to receive

. . .

. . .

Block i from proc j goes to block j on proc i

Reduction Operations

 Used to compute a result from data that is
distributed among processors
 often what a user wants to do anyway

 e.g., compute the sum of a distributed array
 so why not provide the functionality as a single API

call rather than having people keep re-
implementing the same things

 Predefined operations:
 MPI_MAX, MPI_MIN, MPI_SUM, etc.

 Possibility to have user-defined operations

MPI_Reduce, MPI_Allreduce

 MPI_Reduce: result is sent out to the root
 the operation is applied element-wise for each

element of the input arrays on each processor
 An output array is returned

 MPI_Allreduce: result is sent out to
everyone

...

MPI_Reduce(x, r, 10, MPI_INT, MPI_MAX, 0, MPI_COMM_WORLD)
...

output arrayinput array array size root

...

MPI_Allreduce(x, r, 10, MPI_INT, MPI_MAX, MPI_COMM_WORLD)
...

MPI_Reduce example

3 4 2 8 12 1P0

5 2 5 1 7 11P1

2 4 4 10 4 5P2

1 6 9 3 1 1P3

11 16 20 22 24 18P0

sbuf

rbuf

MPI_Reduce(sbuf,rbuf,6,MPI_INT,MPI_SUM,0,MPI_COMM_WORLD)

MPI_Scan: Prefix reduction
 Process i receives data reduced on

process 0 to i.

3 4 2 8 12 1P0

5 2 5 1 7 11P1

2 4 4 10 4 5P2

1 6 9 3 1 1P3

3 4 2 8 12 1P0

8 6 7 9 19 12P1

10 10 11 19 23 17P2

11 16 12 22 24 18P3

MPI_Scan(sbuf,rbuf,6,MPI_INT,MPI_SUM,MPI_COMM_WORLD)

sbuf rbuf

And more...

 Most broadcast operations come with a
version that allows for a stride (so that blocks
do not need to be contiguous)
 MPI_Gatherv(), MPI_Scatterv(), MPI_Allgatherv(),

MPI_Alltoallv()
 MPI_Reduce_scatter(): functionality

equivalent to a reduce followed by a scatter
 All the above have been created as they are

common in scientific applications and save
code

 All details on the MPI Webpage

Example: computing π

int n; /* Number of rectangles */

int nproc, myrank;

MPI_Init(&argc,&argv);

MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);

MPI_Comm_Size(MPI_COMM_WORLD,&nproc);

if (my_rank == 0) read_from_keyboard(&n);

/* broadcast number of rectangles from root

 process to everybody else */

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

mypi = integral((n/nproc) * my_rank, (n/nproc) * (1+my_rank) 1)

/* sum mypi across all processes, storing

 result as pi on root process */

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

Using MPI to increase memory

 One of the reasons to use MPI is to
increase the available memory
 I want to sort an array
 The array is 10GB
 I can use 10 computers with each 1GB of

memory
 Question: how do I write the code?

 I cannot declare
#define SIZE (10*1024*1024*1024)
char array[SIZE]

Global vs. Local Indices

 Since each node gets only 1/10th of the
array, each node declares only an array on
1/10th of the size
 processor 0: char array[SIZE/10];
 processor 1: char array[SIZE/10];
 ...
 processor p: char array[SIZE/10];

 When processor 0 references array[0] it
means the first element of the global array

 When processor i references array[0] it
means the (SIZE/10*i) element of the global
array

Global vs. Local Indices

 There is a mapping from/to local indices and
global indices
 It can be a mental gymnastic

 requires some potentially complex arithmetic expressions
for indices

 One can actually write functions to do this
 e.g. global2local()
 When you would write “a[i] * b[k]” for the sequential

version of the code, you should write
“a[global2local(i)]*b[global2local(k)]”

 This may become necessary when index computations
become too complicated

 More on this when we see actual algorithms

Outline

 Introduction to message passing and

MPI

 Point-to-Point Communication

 Collective Communication

 MPI Data Types

 One slide on MPI-2

More Advanced Messages

 Regularly strided data

 Data structure
struct {

 int a;

 double b;

 }

 A set of variables
int a; double b; int x[12];

Blocks/Elements of a matrix

Problems with current messages

 Packing strided data into temporary
arrays wastes memory

 Placing individual MPI_Send calls for
individual variables of possibly different
types wastes time

 Both the above would make the code
bloated

 Motivation for MPI’s “derived data
types”

Derived Data Types

 A data type is defined by a “type map”
 set of <type, displacement> pairs

 Created at runtime in two phases
 Construct the data type from existing types
 Commit the data type before it can be used

 Simplest constructor: contiguous type

 int MPI_Type_contiguous(int count,
 MPI_Datatype oldtype,
 MPI_Datatype *newtype)

MPI_Type_vector()

 int MPI_Type_vector(int count,
 int blocklength, int stride

 MPI_Datatype oldtype,

 MPI_Datatype *newtype)

block length stride

MPI_Type_indexed()

 int MPI_Type_indexed(int count,
 int *array_of_blocklengths,
 int *array_of_displacements,
 MPI_Datatype oldtype,
 MPI_Datatype *newtype)

MPI_Type_struct()

 int MPI_Type_struct(int count,
 int *array_of_blocklengths,

 MPI_Aint *array_of_displacements,

 MPI_Datatype *array_of_types,

 MPI_Datatype *newtype)

MPI_INT MPI_DOUBLE My_weird_type

Derived Data Types: Example

 Sending the 5th column of a 2-D matrix:
 double results[IMAX][JMAX];

 MPI_Datatype newtype;

 MPI_Type_vector (IMAX, 1, JMAX, MPI_DOUBLE, &newtype);

 MPI_Type_Commit (&newtype);

 MPI_Send(&(results[0][4]), 1, newtype, dest, tag, comm);

JMAX

IM
A

X

JMAX

IMAX * JMAX

Outline

 Introduction to message passing and

MPI

 Point-to-Point Communication

 Collective Communication

 MPI Data Types

 One slide on MPI-2

MPI-2
 MPI-2 provides for:

 Remote Memory
 put and get primitives, weak synchronization
 makes it possible to take advantage of fast hardware (e.g., shared memory)
 gives a shared memory twist to MPI

 Parallel I/O
 we’ll talk about it later in the class

 Dynamic Processes
 create processes during application execution to grow the pool of resources
 as opposed to “everybody is in MPI_COMM_WORLD at startup and that’s the

end of it”
 as opposed to “if a process fails everything collapses”
 a MPI_Comm_spawn() call has been added (akin to PVM)

 Thread Support
 multi-threaded MPI processes that play nicely with MPI

 Extended Collective Communications
 Inter-language operation, C++ bindings
 Socket-style communication: open_port, accept, connect (client-server)

 MPI-2 implementations are now available

	Principles of High Performance Computing (ICS 632)
	Outline
	Message Passing
	Code Parallelization
	Programming Message Passing
	Message Passing
	Socket Library in UNIX
	Socket: server.c
	Socket: client.c
	Socket in C/UNIX
	Sockets in Java
	Page 12
	Using Sockets for parallel programming?
	Message Passing for Parallel Programs
	A Brief History of Message Passing
	Page 16
	Page 17
	The MPI Standard
	SPMD Programs
	MPI Concepts
	MPI Communicators
	A First MPI Program
	Compiling/Running it
	MPI on our Cluster
	Page 25
	Point-to-Point Communication
	Page 27
	Synchronous/Buffered sending in MPI
	Standard/Ready Send
	MPI_RECV
	Example: Sending and Receiving
	Example: Deadlock
	What about MPI_Send?
	Non-blocking communications
	Non-blocking Communication
	Example: Non-blocking comm
	Use of non-blocking comms
	Iterative Application Example
	Page 39
	More information
	Page 41
	Collective Communication
	Barrier
	Broadcast
	Broadcast example
	Scatter
	This is actually a bit tricky
	Scatter Example
	Page 49
	Gather
	Gather-to-all
	All-to-all
	Reduction Operations
	MPI_Reduce, MPI_Allreduce
	MPI_Reduce example
	MPI_Scan: Prefix reduction
	And more...
	Example: computing
	Using MPI to increase memory
	Global vs. Local Indices
	Page 61
	Page 62
	More Advanced Messages
	Problems with current messages
	Derived Data Types
	MPI_Type_vector()
	MPI_Type_indexed()
	MPI_Type_struct()
	Derived Data Types: Example
	Page 70
	MPI-2

