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0 PREFACE

The first version of these lecture notes was composed for a new course on randomized
algorithms at Chalmers University of Technology, in the spring semester 2000. The amount
of material contained therein was not quite enough for an entire course, and the idea
was to use these notes together with the book “Randomized Algorithms” by Motwani &
Raghavan [MR]. The current version of 2001 has now, with the addition of three more
chapters (Chapters 8, 9 and 11), expanded into something more “course-sized”, but [MR]
is still recommended as supplementary reading.

The notes are sufficiently self-contained that they can be read separately, by anyone who
has previously taken some basic course in probability or mathematical statistics, plus some
introductory course in computer programming.

The core material falls naturally in two parts: Chapters 2—6 on the basic theory of Markov
chains, and Chapters 7-12 on applications to a number of randomized algorithms.

Markov chains are a class of random processes exhibiting a certain “memoryless property”,
and the study of these (sometimes referred to as Markov theory) is one of the main areas
in modern probability theory. This area cannot be avoided by a student aimed at learning
how to design randomized algorithms, because Markov chains are a fundamental ingredient
in the study of such algorithms. In fact, any randomized algorithm can (often fruitfully)
be viewed as a Markov chain.

I have chosen to restrict to discrete time Markov chains with finite state space. One reason
for doing so is that several of the most important ideas and concepts in Markov theory
arise already in this setting; these ideas are more digestible when they are not obscured by
the additional technicalities arising from continuous time and more general state spaces.
It can also be argued that the setting with discrete time and finite state space is the most
natural when the ultimate goal is to construct algorithms: Discrete time is natural because
computer programs operate in discrete steps. Finite state space is natural because of the
mere fact that a computer has a finite amount of memory, and therefore can only be in a
finite number of distinct “states”. Hence, the Markov chain corresponding to a randomized
algorithm implemented on a real computer has finite state space.

However, I do not claim that more general Markov chains are irrelevant to the study of
randomized algorithms. For instance, an infinite state space is sometimes useful as an
approximation to (and easier to analyze than) a finite but very large state space. For
students wishing to dig into the more general Markov theory, the final chapter provides
several suggestions for further reading.

Randomized algorithms are simply algorithms that make use of random number generators.



In Chapters 7-12, the Markov theory developed in previous chapters is applied to some
specific randomized algorithms. The Markov chain Monte Carlo (MCMC) method, studied
in Chapters 7 and 8, is a class of algorithms which provides one of the currently most
popular methods for simulation of complicated stochastic systems. In Chapter 9, MCMC
is applied to the problem of counting the number of objects in a complicated combinatorial
set. Then, in Chapters 10 and 11, we study a recent improvement of standard MCMC,
known as the Propp—Wilson algorithm. Finally, Chapter 12 deals with simulated annealing,
which is a widely used randomized algorithm for various optimization problems.

It should be noted that the set of algorithms studied in Chapters 7-12 constitutes only
a small (and not particularly representative) fraction of all randomized algorithms. For a
broader view of the wide variety of applications of randomization in algorithms, the reader
is advised to consult the above mentioned book by Motwani and Raghavan.

The following diagram shows the structure of (essential) interdependence between Chapters
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Figure 0: How the chapters depend on each other.

Regarding exercises: Most chapters end with a number of problems. These are of greatly
varying difficulty. To guide the student in the choice of problems to work on, and the
amount of time to invest into solving the problems, each problem has been equipped with
a parenthesized number between (1) and (10) to rank the approximate size and difficulty
of the problem. (1) means that the problem amounts simply to checking some definition
in the chapter (or something similar), and should be doable in a couple of minutes. At
the other end of the scale, (10) means that the problem requires a deep understanding
of the material presented in the chapter, and at least several hours of work. Some of the
problems require a bit of programming; this is indicated by an asterisk, as in (7%).
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I am grateful to Sven Erick Alm, Nisse Dohrnér, Dan Mattsson, Jesper Mgller and Jeff
Steif, who all provided corrections and constructive criticism on earlier versions of this
manuscript.



1 BASICS OF PROBABILITY THEORY

Most readers will probably be best off by taking the following piece of advice:
Skip this chapter!

Those readers who have previously taken a basic course in probability or mathematical
statistics will already know everything in this chapter, and should move right on to Chapter
2. On the other hand, those readers who lack such background will have little or no use for
the telegraphic exposition given here, and should instead consult some introductory text
on probability. Rather than being read, the present chapter is intended to be a collection
of (mostly) definitions, that can be consulted if anything that looks unfamiliar happens to
appear in the coming chapters.

ogooa

Let 2 be any set, and let 3 be some appropriate class of subsets of €2, satisfying certain
assumptions that we do not go further into (closedness under certain basic set operations).
Elements of ¥ are called events. For A C €2, we write A¢ for the complement of A in €,

meaning that
A={seQ:s¢gA}.

A probability measure on (2 is a function P : XX — [0, 1], satisfying

(i) P@) =0,
(ii) P(A¢) =1— P(A) for every event A, and

(i) if A and B are disjoint events (meaning that A N B = {)), then P(A U B) =
P(A) +P(B).

Note that (i) and (ii) together imply that P(Q) = 1.

If A and B are events, and P(B) > 0, then we define the conditional probability of A
given B, denoted P(A|B), as

P(AN B)

P(IB) =55



The intuitive interpretation of P(A|B) is as how likely we consider the event A to be,
given that we know that the event B has happened.

Two events A and B are said to be independent if P(AN B) = P(A)P(B). More
generally, the events Aj,..., A are said to be independent if for any any [ < k and any
Q1. €{1,...,k} with 4y <iy < --- <4, we have

For an infinite sequence of events (Ai, Ay, ...), we say that A, Ay, ... are independent if
Ay, ..., Ay are independent for any k.

Note that if P(B) > 0, then independence between A and B is equivalent to having
P(A|B) = P(A), meaning intuitively that the occurrence of B does not affect the likeli-
hood of A.

A random variable should be thought of as some random quantity which depends on
chance. Usually a random variable is real-valued, in which case it is a function X : 2 — R.
We will, however, also consider random variables in a more general sense, allowing them
to be functions X : Q2 — S, where S can be any set.

An event A is said to be defined in terms of the random variable X if we can read
off whether or not A has happened from the value of X. Examples of events defined in
terms of the random variable X are

A={X<47}={weQ: X(w) <47}

and
B = {X is an even integer} .

Two random variables are said to be independent if it is the case that whenever the event
A is defined in terms of X, and the event B is defined in terms of Y, then A and B are
independent. If Xy,... X, are random variables, then they are said to be independent if
Ay, ..., Ax are independent whenever each A; is defined in terms of X;. The extension to
infinite sequences is similar: The random variables X7, X,, ... are said to be independent
if for any sequence Ai, A,... of events such that for each 7, A; is defined in terms of Xj,
we have that A, Ay ... are independent.

A distribution is the same thing as a probability measure. If X is a real-valued ran-
dom variable, then the distribution px of X is the probability measure on R satisfying
ux(A) =P(X € A) for all (appropriate) A C R. The distribution of a real-valued random
variable is characterized in terms of its distribution function Fx : R — [0, 1] defined
by Fx(z) = P(X < z) for all z € R.



A distribution g on a finite set S = {si, ..., sx} is often represented as a vector (p1,. .., ),
where 1; = p(s;). By the definition of a probability measure, we then have that u; € [0, 1]
for each ¢, and that Zle wi = 1.

A sequence of random variables X, X, ... is said to be i.i.d., which is short for indepen-
dent and identically distributed, if the random variables

(i) are independent, and

(ii) have the same distribution function, i.e., P(X; < z) = P(X; < z) for all 4, j and z.

Very often, a sequence (Xi, Xy, ...) is interpreted as the evolution in time of some random
quantity: X, is the quantity at time n. Such a sequence is then called a random process
(or, sometimes, stochastic process). Markov chains, to be introduced in the next chapter,
are a special class of random processes.

We shall only be dealing with two kinds of real-valued random variables: discrete and
continuous random variables. The discrete ones take their values in some finite or count-
able subset of R; in all our applications this subset is (or is contained in) {0,1,2,...}, in
which case we say that they are nonnegative integer-valued discrete random variables.

A continuous random variable X is a random variable for which there exists a so-called
density function fx : R — [0, 00) such that

/_w Fx(@)dz = Fy(z) = P(X < 2)

for all z € R. A very well-known example of a continuous random variable X arises by
letting X have the Gaussian density function fx(x) = 2;0_2 e (@=m*)/20" ith parameters
u and o > 0. However, the only continuous random variables that will be considered in

this text are the uniform [0, 1] ones, which have density function

1 ifz€][0,1]
0 otherwise

fx(z) = {

and distribution function

0 ifz <0

FX(x):/w fx(x)dx =< =z ifz€]0,1]
- 1 ifxz>1.

Intuitively, if X is a uniform [0, 1] random variable, then X is equally likely to take its
value anywhere in the unit interval [0, 1]. More precisely, for every interval I of length a
inside [0, 1], we have P(X € I) = a.



The expectation (or expected value, or mean) E[X] of a real-valued random variable
X is, in some sense, the “average” value we expect from x. If X is a continuous random
variable with density function fx(x), then its expectation is defined as

BlY) = [ sfx(@)ds

—0oQ0

which in the case where X is uniform [0,1] reduces to

! 1
E[X]z/0 xdajzi.

For the case where X is a non-negative integer-valued random variable, the expectation is
defined as o
X]=) kP(X =
k=1
This can be shown to be equivalent to the alternative formula
EX]=) P(X>k). (1)
k=1

It is important to understand that the expectation E[X] of a random variable can be
infinite, even if X itself only takes finite values. A famous example is the following.

Example 1.1: The S:t Petersburg paradox. Consider the following game. A fair coin is
tossed repeatedly until the fisrt time that it comes up tails. Let X be the (random) number
of heads that come up before the first occurrence of tails. Suppose that the bank pays 2%
roubles depending on X. How much would you be willing to pay to enter this game?

According to the classical theory of hazard games, you should agree to pay up to E[Y],
where Y = 2% is the amount that you receive from the bank at the end of the game. So let’s
calculate E[Y]. We have

1 n+1
P(X =n) = P(n heads followed by 1 tails) = (5)

for each n, so that

E[Y] = ikP(Y =k) = iQ”P(Y =
k=1 n=0

[e’s} oo 1 n+1
= Y 2"P(X=n) =) 2" (§>
n=0 n=0
- 2% — .

n=0

Hence, there is obviously something wrong with the classical theory of hazard games in this
case.



Another important characteristic, besides E[X], of a random variable X, is the variance
Var[X], defined by
Var[X] = E[(X — p)?] where u = E[X]. (2)

The variance is, thus, the mean square deviation of X from its expectation. It can be
computed either using the defining formula (2), or by the identity

Var[X] = E[X"] — (E[X])* (3)

known as Steiner’s formula.

There are various linear-like rules for working with expectations and variances. For expec-
tations, we have

E[X;+ -+ X, =E[Xi] +--- + E[X,] (4)
and, if c is a constant,
E[cX] = cE[X]. (5)
For variances, we have
Var[cX] = ¢*Var[X] (6)
and, when X1,..., X, are independent',
Var[X; + ---+ X,| = Var[X;]| + - - - + Var[X,,]. (7)

Let us compute expectations and variances in some simple cases.

Example 1.2: Fix p € [0,1], and let

Y = 1 with probability p,
| 0 with probability 1 —p.

Such an X is called a Bernoulli (p) random variable. The expectation of X becomes
EX]=0-P(X =0)+1-P(X = 1) = p. Furthermore, since X only takes values 0 and 1,
we have X? = X, so that E[X?] = E[X], and
Var[X] = E[X?] - (B[X])?
= p—p’ =pl-p)

using Steiner’s formula (3).

Example 1.3: Let Y be the sum of n independent Bernoulli (p) random variables X, ..., X,,.
(For instance, Y may be the number of heads in n tosses of a coin with heads-probability p.)
Such a Y is said to be a binomial (n,p) random variable. Then, using (4) and (7), we
get

EY]=E[Xi]+ ...+ E[X,]=np

and
Var[Y] = Var[X;] + ...+ Var[X,,] = np(1 —p).

'Without this requirement, (7) fails in general.



Variances are useful, e.g., for bounding the probability that a random variable deviates by
a large amount from its mean. We have, for instance, the following well-known result.

Theorem 1.1 (Chebyshev’s inequality) Let X be a random variable with mean u and
variance o%. For any a > 0, we have that the probability P[|X — u| > a] of a deviation
from the mean of at least a, satisfies

2
o
P(|X—u|2a)§¥,

Proof: Define another random variable Y by setting

Y — a if | X—pl>a
1 0 otherwise.

Then we always have Y < (X — u)?, so that E[Y] < E[(X — p)?]. Furthermore, E[Y] =
a’P(|X — p| > a), so that

P(X —pl>a) = ")
- EIX )
_ Var[f;(] _ a?

|

Chebyshev’s inequality will be used to prove a key result in Chapter 9 (Lemma 9.3). A
more famous application of Chebyshev’s inequality is in the proof of the following very
famous and important result.

Theorem 1.2 (The Law of Large Numbers) Let X;, Xy, ... be i.i.d. random variables
with finite mean p and finite variance o®. Let M, denote the average of the first n X;’s,
e, S, = %(Xl +---4+ X,). Then, for any e > 0, we have

lim P(|M,, —p| >¢)=0.
n—oo

10



Proof: Using (4) and (5) we get

BIM] = (a4 i) = .

Similarly, (6) and (7) apply to show that
Loy 2

Hence, Chebyshev’s inequality gives

o2

P(|M,—pul>¢) <
1My —nl 2 0) < 2

which tends to 0 as n — oo.

11



2 MARKOV CHAINS

Let us begin with a simple example. We consider a “random walker” in a very small town
consisting of four streets, and four street-corners v;, vy, v3 and vy arranged as in Figure 1.
At time 0, the random walker stands in corner v;. At time 1, he flips a fair coin and moves
immediately to vy or v, according to whether the coin comes up heads or tails. At time
2, he flips the coin again to decide which of the two adjacent corners to move to, with
the decision rule that if the coin comes up heads, then he moves one step clockwise in
Figure 1, while if it comes up tails, he moves one step counterclockwise. This procedure is
then iterated at times 3, 4, .. ..

® L J
v )

[ o
V4 3

Figure 1: A random walker in a very small town.

For each n, let X,, denote the index of the street-corner at which the walker stands at time
n. Hence, (Xy, X1,...) is a random process taking values in {1,2,3,4}. Since the walker
starts at time 0 in vy, we have

P(Xo=1)=1. (8)
Next, he will move to vy or v, with probability % each, so that
1
P(X; =2) = (9
and 1
P(X;=4)= 5" (10)

To compute the distribution of X,, for n > 2 requires a little more thought; you will be
asked to do this in Problem 2.1 below. To this end, it is useful to consider conditional
probabilities. Suppose that at time n, the walker stands at, say, vs. Then we get the
conditional probabilities

1
P(Xp1=v1 | Xp=vp) = 9

and 1
P(Xn+1 = V3 |Xn = ’Ug) = 5,

12



because of the coin-flipping mechanism for deciding where to go next. In fact, we get the
same conditional probabilities if we condition further on the full history of the process up
to time n, i.e.,

. . . 1
P(Xn—l—l = | XO = Zo,Xl =11,.. -;Xn—l = Zn—laXn = UQ) = 5

and .
P(Xp1=v3| Xo=i0, X1 =i1,..., Xp1 = ip_1, Xy = 10) = 3

for any choice of ig,...,i, 1. (This is because the coin-flip at time n + 1 is independent

of all previous coin-flips, and hence also independent of Xy, ..., X,,.) This phenomenon is

called the memoryless property, also known as the Markov property: the conditional
distribution of X,,;; given (Xo, ..., X,) depends only on X,,. Or in other words: to make
the best possible prediction of what happens “tomorrow” (time n + 1), we only need
to consider what happens “today” (time n), as the “past” (times 0,...,n — 1) gives no
additional useful information?.

Another interesting feature of this random process is that the conditional distribution of
Xy,+1 given that X, = vy (say) is the same for all n. (This is because the mechanism that
the walker uses to decide where to go next is the same at all times.) This property is
known as time homogeneity, or simply homogeneity.

These observations call for a general definition:

Definition 2.1 Let P be a (k x k)-matriz with elements {P,; : i, =1,...,k}. A random
process (Xo, X1, .. .) with finite state space S = {s1, ..., s} is said to be a (homogeneous)
Markov chain with transition matrix P, if for all n, all i,5 € {1,...,k} and all
i0y - yin—1 € {1,...k} we have

P(Xn+1 = 8§j |XO = SioaXl = Siyy--- 7X’n—1 = Sin_1:Xn = Si)
= P(Xn+1 =S§j | Xn = Sz)
- P

g

The elements of the transition matrix P are called transition probabilities. The transition
probability P ; is the conditional probability of being in state s; “tomorrow” given that we
are in state s; “today”. The term “homogeneous” is often dropped, and taken for granted
when talking about “Markov chains”.

2Please note that this is just a property of this particular mathematical model. It is not intended as a
general advice that we should “never worry about the past”. Of course, we have every reason, in daily life
as well as in politics, to try to learn as much as we can from history in order to make better decisions for
the future!

13



For instance, the random walk example above is a Markov chain, with state space {1,...,4}
and transition matrix

Lo
P= (5) ! g ' (11)
1 1
2 020
Every transition matrix satisfies
P; >0 forall i,je{1,...,k}, (12)
and
k
Y Py=1forall ie{l,... k}. (13)
j=1

Property (12) is just the fact that conditional probabilities are always nonnegative, and
property (13) is that they sum to 1, i.e.,

P(Xn+1:81|Xn:Si)+P(Xn+1:82|Xn28i)+"'+P(Xn+1:8k|Xn:8i):1.

We next consider another important characteristic (besides the transition matrix) of a
Markov chain (Xj, Xi,...), namely the initial distribution, which tells us how the
Markov chain starts. The initial distribution is represented as a row vector u(®) given

by

0 0 0
pO = (W 6,

= (P(X() = 81),P(X0 = 82), .. .,P(X() = Sk)) .

Since p(® represents a probability distribution, we have

Zk: u? =1.
=1

In the random walk example above, we have

19 = (1,0,0,0) (14)
because of (8).
Similarly, we let the row vectors u(), 4, ... denote the distributions of the Markov chain
at times 1,2, ..., so that
u® = (™)

= (P(Xn=51),P(Xp = 59),...,P(X, = 53)).

14



For the random walk example, equations (9) and (10) tell us that

pM = (0,3,0,3).

)29

It turns out that once we know the initial distribution x(®) and the transition matrix P, we
can compute all the distributions ), 4, ... of the Markov chain. The following result
tells us that this is simply a matter of matrix multiplication. We write P" for the n'®
power of the matrix P.

Theorem 2.1 For a Markov chain (Xo, X1, ...) with state space {s1, ..., sg}, initial dis-
tribution p9 and transition matriz P, we have for any n that the distribution p™ at time
n satisfies

ﬂ(”) — ,u(O)P". (15)

Proof: Consider first the case n = 1. We get, for j = 1,...,k, that

k
1
/1,5) = P(X1 = Sj) = ZP(XO = Si,Xl = Sj)
=1
k
= ) P(Xo=s5)P(X; =5;| X =s;)
i=1
k
= > WPy = (1OP),
=1

where (u(¥ P); denotes the j*' element of the row vector u(® P. Hence p) = pOP.

To prove (15) for the general case, we use induction. Fix m, and suppose that (15) holds
forn =m. Forn =m + 1, we get

k
p™ = P(Xpar =55) = Y P(Xp = 55, Xinp1 = 5,)

=1

k
= ) P(Xp=5)P(Xpp1 = 5| Xy = 5)
=1

k
= > w"P; = (umP),
i=1
so that p(™*1) = (M P But p(™ = O P™ by the induction hypothesis, so that
,u('rrH—l) — ,Lt(m)P — N(O)PmP — N(O)PT)’H-I

15



and the proof is complete. |

Let us consider some more examples:

Example 2.1: The Gothenburg weather. It is sometimes claimed that the best way
to predict tomorrow’s weather® is simply to guess that it will be the same tomorrow as it
is today. If we assume that this claim is correct*, then it is natural to model the weather
as a Markov chain. For simplicity, we assume that there are only two kinds of weather:
rain and sunshine. If the above predictor is correct 75% of the time (regardless of whether
today’s weather is rain or sunshine), then the weather forms a Markov chain with state space
S = {51, 82} (with s; =“rain” and s, =“sunshine”) and transition matrix

0.75 0.25
P= [ 0.25 0.75] '

Example 2.2: The Los Angeles weather. Note that in Example 2.1, there is a perfect
symmetry between “rain” and “sunshine”, in the sense that the probability that today’s
weather will persist tomorrow, is the same regardless of today’s weather. This may be
reasonably realistic in Gothenburg, but not in Los Angeles where sunshine is much more
common than rain. A more reasonable transition matrix for the Los Angeles weather might
therefore be (still with s; =“rain” and s =“sunshine”)

p-[02 ] "

A useful way to picture a Markov chain is its so-called transition graph. The transition
graph consists of nodes representing the states of the Markov chain, and arrows between
the nodes, representing transition probabilities. This is explained easiest by just showing
the transition graphs of the examples considered so far.

05
OO
&—/
05
025 05
05 05 05 05 o75<j - @ 075 OSC - @ 09
025 01
05
OFEC)
K—/
05
Figure 2: Transition graphs for the random walker in Figure 1, and for Examples 2.1 and 2.2.

In all examples above, as well as in Definition 2.1, the “rule” for obtaining X,,; from X,
did not change with time. In some situations, it is more realistic, or for other reasons more

3Better than watching the weather forecast on TV.
T doubt it.

16



desirable’, to let this rule change with time. This brings us to the topic of inhomogeneous
Markov chains, and the following definition, which generalizes Definition 2.1.

Definition 2.2 Let PM, P@ . be a sequence (k x k)-matrices, each of which satisfies
(12) and (13). A random process (Xo, X1, ...) with finite state space S = {s1,...,sx} is
said to be an inhomogeneous Markov chain with transition matrices P®), P(?)
if for allm, alli,j € {1,...,k} and all iy, ...,i,—1 € {1,...k} we have

9 ey

P(Xn+1 =3§j |XO = SioaXl = Siyy--- 7X’n—1 = Sin_1:Xn = Si)
= P(Xn+1 =8 ‘ Xn = Sz')
plntl)
(2% .

Example 2.3: A refined model for the Gothenburg weather. There are of course
many ways in which the crude model in Example 2.1 can be made more realistic. One way
is to take into account seasonal changes: it does not seem reasonable to disregard whether
the calendar says “January” or “July” when predicting tomorrow’s weather. To this end, we
extend the state space to {s1, 2,53}, where s; =“rain” and s, =“sunshine” as before, and
s3 =“snow”. Let

0.75 025 0 05 03 02
Poyummer = | 025 0.75 0 and Pyinter = | 0.156 0.7 0.15 | |
05 05 0 02 03 05

and assume that the weather evolves according t0 Psymmer in May—September, and accord-
ing t0 Pyinter in October—April. This is an inhomogeneous Markov chain model for the
Gothenburg weather. Note that in May—September, the model behaves exactly as the one in
Example 2.1, except for some possible residual snowy weather on May 1.

The following result, which is a generalization of Theorem 2.1, tells us how to compute the
distributions g™, u®, ... at times 1,2,... of an inhomogeneous Markov chain with initial
distribution (¥ and transition matrices P, P®) . .

Theorem 2.2 Suppose that (Xo, X1,...) is an inhomogeneous Markov chain with state
space {s1,..., sk}, initial distribution O and transition matrices PY, P?)_ ... For any
n, we then have that

,u(") — M(O)p(l)p@) ... pn)

Proof: Follows by a similar calculation as in the proof of Theorem 2.1. O

5Such as in the simulated annealing algorithms of Chapter 12.

17



Problems

2.1 (5) Consider the Markov chain corresponding to the random walker in Figure 1, with transition
matrix P and initial distribution u(®) given by (11) and (14).

(a) Compute the square P2 of the transition matrix P. How can we interpret P? ? (See Theorem
2.1, or glance ahead at Problem 2.5.)
(b) Prove by induction that

n 0,
o {8
29

2.2 (2) Suppose that we modify the random walk example in Figure 1 as follows. At each integer time,
the random walker tosses two coins. The first coin is to decide whether to stay or go. If it comes up
heads, he stays where he is, whereas if it comes up tails, he lets the second coin decide whether he
should move one step clockwise, or one step counterclockwise. Write down the transition matrix,
and draw the transition graph, for this new Markov chain.

2.3 (5) Consider Example 2.1 (the Gothenburg weather), and suppose that the Markov chain starts on
a rainy day, so that u(® = (1,0).

(a) Prove by induction that

for every n.

(b) What happens with x(™ in the limit as n tends to infinity?
2.4 (8)

(a) Consider Example 2.2 (the Los Angeles weather), and suppose that the Markov chain starts

with initial distribution (g, 2). Show that ™ = 4 for any n, so that in other words the

distribution remains the same at all times®.

(b) Can you find an initial distribution for the Markov chain in Example 2.1 for which we get
similar behavior as in (a)? Compare this result to the one in Problem 2.3 (b).

2.5 (6) Let (Xo,X1,...) be a Markov chain with state space {s1,...,s;} and transition matrix P.
Show, by arguing as in the proof of Theorem 2.1, that for any m,n > 0 we have

P(Xmin = 85| Xm = 8) = (P")i -

6Such a Markov chain is said to be in equilibrium, and its distribution is said to be stationary. This
is a very important topic, which will be treated carefully in Chapter 5.
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3 COMPUTER SIMULATION OF
MARKOV CHAINS

A key matter in many (most?) practical applications of Markov theory, is the ability to
simulate Markov chains on a computer. This chapter deals with how that can be done.

We begin by stating a lie:

In most high-level programming languages, we have access to some random
number generator producing a sequence Uy, Uy, ... of i.i.d. random variables,
uniformly distributed on the unit interval [0, 1].

This is a lie for at least two reasons:

(A) The numbers Uy, Uy, . .. obtained from random number generators are not uniformly
distributed on [0, 1]. Typically, they have a finite binary (or decimal) expansion, and
are therefore rational. In contrast, it can be shown that a random variable which
(truly) is uniformly distributed on [0, 1] (or in fact any continuous random variable)
is irrational with probability 1.

(B) Uy, Ui, ... are not even random! Rather, they are obtained by some deterministic
procedure. For this reason, random number generators are sometimes (and more
accurately) called pseudo-random number generators’.

The most important of these objections is (B), because (A) tends not to be a very big
problem when the number of binary or decimal digits is reasonably large (say, 32 bits).
Over the decades, a lot of effort has been put into constructing (pseudo-)random number
generators whose output is as indistinguishable as possible from a true i.i.d. sequence of
uniform [0, 1] random variables. Today, there exist generators which appear to do this
very well (passing all of a number of standard statistical tests for such generators), and
for this reason, we shall simply make the (incorrect) assumption that we have access to
an i.i.d. sequence of uniform [0,1] random wvariables Uy, Uy, .... Although we shall not
deal any further with the pseudorandomness issue in the remainder of these notes (except
for providing a couple of relevant references in the final chapter), we should remember to
always keep in mind that it is a potential source of errors in computer simulation.

"There are also various physically generated sequences of random-looking numbers (see, e.g., the web
sites http://lavarand.sgi.com/ and http://www.fourmilab.ch/hotbits/) that may be used instead
of the usual pseudo-random number generators. I recommend, however, a healthy dose of skepticism
towards claims that these sequences are in some sense “truly” random.
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Let us move on to the heart of the matter: How do we simulate a Markov chain (X, X1,...)
with given state space S = {si,..., s}, initial distribution x(*) and transition matrix P?
As the reader probably has guessed by now, the random numbers Uy, Uy, ... form a main
ingredient. The other main ingredients are two functions, which we call the initiation
function and the update function.

The initiation function ¢ : [0,1] — S is a function from the unit interval to the state space
S, which we use to generate the starting value X,. We assume

(i) that 1) is piecewise constant (i.e., that [0, 1] can be split into finitely many subintervals
in such a way that 1 is constant on each interval), and

(ii) that for each s € S, the total length of the intervals on which () = s, equals u(9(s).

Another way to state property (ii) is that

/0 Lty (@) do = u®(s) (7)

for each s € S; here Iy (y)=s) is the so-called indicator function of {¢(z) = s}, meaning

that ( )
|1 ify(z) =s
Ly@=s(2) = { 0 otherwise.

Provided that we have such a function v, we can generate X; from the first random number
Uy by setting Xy = ¢(Up). This gives the correct distribution of Xy, because for any s € S

we get
1

P(X, = 5) = P((T) = ) = / Tiye)s) (2) dz = 1 (5)

using (17). Hence, we call 9 a valid initiation function for the Markov chain (Xy, Xi,...)
if (17) holds for all s € S.

Valid initiation functions are easy to construct: With S = {si,..., s} and initial distri-
bution p(?, we can set

(51 for z € [0, u©(sy))
sy for z € [u@(s1), pO(s1) + 1 (s2))

Y(z) = 1 sZ for z € [ S O (s;), S p® (Sj)> (18)

s forz e [ S uOs;), 1]
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We need to verify that this choice of ¢ satisfies properties (i) and (ii) above. Property (i)
is obvious. As to property (ii), it suffices to check that (17) holds. It does hold, since

71—

1 7
/0 Tigron (@) dz = 3" 1 (5) = 3 4@ (s;) = (51
j=1

=1

for i =1,...,k. This means that ¢ as defined in (18) is a valid initiation function for the
Markov chain (Xp, X7,...).

So now we know how to generate the starting value Xj. If we also figure out how to generate
Xp11 from X, for any n, then we can use this procedure iteratively to get the whole chain
(X0, X1,-..). To get from X,, to X, 41, we use the random number U, ; and an update
function ¢ : S x [0,1] — S, which takes as input a state s € S and a number between 0
and 1, and produces another state s’ € S as output. Similarly as for the initiation function
1, we need ¢ to obey certain properties, namely

(i) that for fixed s;, the function ¢(s;, x) is piecewise constant (when viewed as a function
of z), and
(ii) that for each fixed s;,s; € S, the total length of the intervals on which ¢(s;,z) = s;,

equals P ;.

Again, as for the initiation function, property (ii) can be rewritten as

1
| o @) de = 2 (19
0
for all s;,s; € S. If the update function ¢ satisfies (19), then

P(Xn—|—1 =S5j |Xn = S’i) = P(¢(517 Un+1) =35j ‘ X, = Si) (20)
= P(é(si, Unt1) = 55)

1
= / Lig(si,m)=s;)(2) dz = Py ;.
0

The reason that the conditioning in (20) can be dropped, is that U, is independent
of (Up,-..,U,), and hence also of X,,. The same argument shows that the conditional
probability remains the same if we condition further on the values (Xo, X1,..., X, 1).
Hence, this gives a correct simulation of the Markov chain. A function ¢ satisfying (19) is
therefore said to be a valid update function for the Markov chain (X, X1, ...).
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It remains to construct such a valid update function, but this is no harder than the con-
struction of a valid initiation function: Set, for each s; € S,

(51 forz €0,P;,)
sy forz e [Pz',h Pii+ Pip)

</5(5z'a33) = 9 Sj for x € [Zf 11Pm 1= 1Pi,l> (21)

k—1
| Sk for x € [ =1 Pig, 1] )

To see that this is a valid update function, note that for any s;,s; € S, we have
1
/ I{d’(szaw) 5]} df]: - Zpll - ZPZZ — ,j
0

Thus, we have a complete recipe for simulating a Markov chain: First construct valid
initiation and update functions ¢ and ¢ (for instance as in (18) and (21)), and then set

Xo = 1/J(Uo)
= ¢(Xo, Uh)
= ¢(Xy,Us)
(XQ’ )

and so on.

Let us now see how the above works for a simple example.

Example 3.1: Simulating the Gothenburg weather. Consider the Markov chain in
Example 2.1, whose state space is S = {s1, 52} where s; =“rain” and s, =“sunshine”, and
whose transition matrix is given by

0.75 0.2
P= [ 0.25 0.75] '

Suppose we start the Markov chain on a rainy day (as in Problem 2.3), so that u(®) = (1,0).
To simulate this Markov chain using the above scheme, we apply (18) and (21) to get initiation

function
Y(z) =8 forall z,

and update function given by

[ s forz €][0,0.75)
¢(s1,7) = { 89 for z € [0.75,1]

and
for z € [0,0.25)

)
¢(527$) = { 3; for x S [025a 1] . (22)
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Before closing this chapter, let us finally point out how the above method can be gener-
alized to cope with simulation of inhomogeneous Markov chains. Let (Xp, Xi,...) be an
inhomogeneous Markov chain with state space S = {sy,...,s;}, initial distribution p(®,
and transition matrices P(O), PV .. .. We can then obtain the initiation function 1 and
the starting value X, as in the homogeneous case. The updating is done similarly as in the
homogeneous case, except that since the chain is inhomogeneous, we need several different
updating functions ¢, ¢, .., and for these we need to have

1
_ p(n)
/0 I{¢(")(5i:$):3j}(x) do = Pi,j

for each n and each s;, s; € S. Such functions can be obtained by the obvious generalization
of (21): Set

e

s1 forz €[0,P})
sy forz € [Pi(rf), Pz(l) P("))

Mg o) — d
¢ (50, 2) = 3 S forxe[zj L p®

2,0

J P&"))

S, forxe[ lle(l"), 1]
\

The inhomogeneous Markov chain is then simulated by setting

Xo =¥(U)

= ¢(1)(X0, Uy)
X2 - ¢(2)(X1, U2)
X; = ¢8)(X5,Us)

and so on.
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Problems

3.1 (7%)

(a) Find valid initiation and update functions for the Markov chain in Example 2.2 (the Los

Angeles weather), with starting distribution p(® = (1, 1).
(b) Write a computer program for simulating the Markov chain, using the initiation and update
functions in (a).

(¢) For n > 1, define Y,, to be the proportion of rainy days up to time n, i.e.,

1 n
Y, = Tix.—on.
" n+1§ {Xi=s1}

Simulate the Markov chain for (say) 1000 steps, and plot how Y;, evolves with time. What
seems to happen to Y, when n gets large? (Compare with Problem 2.4 (a).)

3.2 (3) The choice of update function is not necessarily unique. Consider Example 3.1 (simu-
lating the Gothenburg weather). Show that we get another valid update function if we replace (22)
by

[ s2 for z €]0,0.75)
$(s2,) = { sy for z €[0.75,1].
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4 TRREDUCIBLE AND APERIODIC
MARKOV CHAINS

For several of the most interesting results in Markov theory, we need to put certain as-
sumptions on the Markov chains we are considering. It is an important task, in Markov
theory just like in all other branches of mathematics, to find conditions that on one hand
are strong enough to have useful consequences, but on the other hand are weak enough
to hold (and be easy to check) for many interesting examples. In this chapter, we will
discuss two such conditions on Markov chains: irreducibility and aperiodicity. These
conditions are of central importance in Markov theory, and in particular they play a key
role in the study of stationary distributions, which is the topic of Chapter 5. We shall, for
simplicity, discuss these notions in the setting of homogeneous Markov chains, although
they do have natural extensions to the more general setting of inhomogeneous Markov
chains.

We begin with irreducibility, which, loosely speaking, is the property that “all states of
the Markov chain can be reached from all others”. To make this more precise, consider
a Markov chain (X, X3,...) with state space S = {s1,..., S} and transition matrix P.
We say that a state s; communicates with another state s;, writing s; — s;, if the chain
has positive probability® of ever reaching s; when we start from s;. In other words, s;
communicates with s; if there exists an n such that

P(Xm—|—n = 8 ‘Xm = Sz') > 0.

By Problem 2.5, this probability is independent of m (due to the homogeneity of the
Markov chain), and equals (P"); ;.

If s; = s; and s; — s;, then we say that the states s; and s; intercommunicate, and
write s; <+ s;. This takes us directly to the definition of irreducibility.

Definition 4.1 A Markov chain (Xo, X1, ...) with state space S = {s1, ..., sk} and transi-
tion matriz P is said to be irreducible if for all s;,s; € S we have that s; <+ s;. Otherwise
the chain is said to be reducible.

Another way of phrasing the definition would be to say that the chain is irreducible if for
any s;,s; € S we can find an n such that (P");; > 0.

An easy way to verify that a Markov chain is irreducible, is to look at its transition graph,
and check that from each state there is a sequence of arrows leading to any other state. A

8Here and henceforth, by “positive probability”, we always mean strictly positive probability.
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quick glance at Figure 2 thus reveals that the Markov chains in Examples 2.1 and 2.2, as
well as the random walk example in Figure 1, are all irreducible. Let us also have a look
at an example which is not irreducible:

SOEIOPY

SSOFNORE

Figure 3: Transition graph for the Markov chain in Example 4.1.

Example 4.1: A reducible Markov chain. Consider a Markov chain (Xg, X1,...) with
state space S = {1,2,3,4} and transition matrix

05 05 0 O
03 07 0 O
0 0 02 08
0 0 08 02

P =

By taking a look at its transition graph (see Figure 3), we immediately see that if the chain
starts in state 1 or state 2, then it is restricted to states 1 and 2 forever. Similarly, if it starts
in state 3 or state 4, then it can never leave the subset {3,4} of the state space. Hence, the
chain is reducible.

Note that if the chain starts in state 1 or state 2, then it behaves exactly as if it were a
Markov chain with state space {1,2} and transition matrix

[ 0.5 0.5 ]
| 03 07"

If it starts in state 3 or state 4, then it behaves like a Markov chain with state space {3,4}

and transition matrix ) )
0.2 0.8

| 08 02"

This illustrates a characteristic feature of reducible Markov chains, which also explains the
term “reducible”: If a Markov chain is reducible, then the analysis of its long-term behavior
can be reduced to the analysis of the long-term behavior of one or more Markov chains with
smaller state space.

We move on to consider the concept of aperiodicity. For a finite or infinite set {a1, as, ...}
of positive integers, we write gcd{ay, as, ...} for the greatest common divisor of a;, as, . . ..
The period d(s;) of a state s; € S is defined as

d(Sz) = gcd{n Z 1: (Pn)m > O} .
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In words, the period of s; is the greatest common divisor of the set of times that the
chain can return (i.e., has positive probability of returning) to s;, given that we start with
Xy = s;. If d(s;) = 1, then we say that the state s; is aperiodic.

Definition 4.2 A Markov chain is said to be aperiodic if all its states are aperiodic.
Otherunse the chain is said to be periodic.

Consider for instance Example 2.1 (the Gothenburg weather). It is easy to check that
regardless whether the weather today is rain or sunshine, we have for any n that the
probability of having the same weather n days later, is strictly positive. Or, expressed
more compactly: (P");; > 0 for all n and all states s;.° This obviously implies that
the Markov chain in Example 2.1 is aperiodic. Of course, the same reasoning applies to
Example 2.2 (the Los Angeles weather).

On the other hand, let us consider the random walk example in Figure 1, where the random

walker stands in corner v; at time 0. Clearly, he has to take an even number of steps in

order to get back to v;. This means that (P™);; > 0 only for n = 2,4,6,.... Hence,
ged{n >1: (P");; >0} = ged{2,4,6,...} =2,

and the chain is therefore periodic.

One reason for the usefulness of aperiodicity is the following result.

Theorem 4.1 Suppose that we have an aperiodic Markov chain (Xo, X1, ...) with state
space S = {s1,...,s,} and transition matriz P. Then there erists an N < oo such that

(Pn)m >0

forallie{1,...,k} and alln > N.

To prove this result, we shall borrow the following lemma from number theory.

Lemma 4.1 Let A = {ay,as,...} be a set of positive integers which is

(i) non-lattice, meaning that gcd{ay,as,...} =1, and

(ii) closed under addition, meaning that if a € A and o' € A, then a +ad' € A.

By a variant of Problem 2.3 (a), we in fact have that (P™);; = (1 +27").
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Then there exists an integer N < oo such that n € A for alln > N.

Proof: See, e.g., the appendix of Brémaud [B]. a

Proof of Theorem 4.1: For s; € S, let A; = {n >1: (P");; > 0}, so that in other
words A; is the set of possible return times to state s; starting from s;. We assumed that
the Markov chain is aperiodic, and therefore the state s; is aperiodic, so that A; is non-
lattice. Furthermore, A; is closed under addition, for the following reason: If a,a’ € A;,
then P(X, = s; | Xo = s;) > 0 and P(X,10 = s; | Xy = s;) > 0. This implies that
P(Xa+a’ = 8 ‘ Xo = Si) > P(Xa = S5, Xa+a’ = Si‘ Xo = Si)
= P(Xa = S; | X() = Si)P(Xa+al = S; | Xa = Si)
> 0

so that a + da' € A;.

In summary, A; satisfies assumptions (i) and (ii) of Lemma 4.1, which therefore implies
that there exists an integer V; < oo such that (P™);; > 0 for all n > N;.

Theorem 4.1 now follows with N = max{Ny,..., Ny} O

By combining aperiodicity and irreducibility, we get the following important result, which
will be used in the next chapter to prove the so-called Markov chain convergence theorem
(Theorem 5.2).

Corollary 4.1 Let (Xo, X1,...) be an irreducible and aperiodic Markov chain with state
space S = {s1,...,s,} and transition matriz P. Then there exists an M < oo such that
(P™);; >0 foralli,j €{1,...,k} and alln > M.

Proof: By the assumed aperiodicity and Theorem 4.1, there exists an integer N < oo
such that (P");; > 0 forall: € {1,...,k} and all n > N. Fix two states s;,s; € S. By the
assumed irreducibility, we can find some n;; such that (P"»);; > 0. Let M;; = N + n, ;.
For any m > M, ;, we have
P(Xm = Sj |X0 = Si) 2 P(Xm—m,j = S, Xm = Sj |X() = Si)
= P(Xm,m,j = S; ‘ XQ = SZ)P(Xm = Sj ‘ X’mfni,j = Si) (23)
> 0

(the first factor in (23) is positive because m —n; ; > N, and the second is positive by the
choice of n; ;). Hence, we have shown that (P™); ; > 0 for all m > M; ;. The corollary now

follows with
M = max{Ml,l, Ml,g Caey Ml,ka M2,1, P Mk,k} .
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Problems

4.1 (3) Show that if a Markov chain is irreducible and has a state s; such that P;; > 0, then it is also
aperiodic.

4.2 (4) Random chess moves.

(a) Consider a chessboard with a lonely white king making random moves, meaning that at
each move, he picks one of the possible squares to move to, uniformly at random. Is the
corresponding Markov chain irreducible and/or aperiodic?

(b) Same question, but with the king replaced by a bishop.

(¢) Same question, but instead with a knight.

4.3 (6) Oriented random walk on a torus. Let a and b be positive integers, and consider the
Markov chain with state space

{(z,y) : z €{0,...,a—1},y € {0,...,b—1}},

and the following transition mechanism: If the chain is in state (z,y) at time n, then at time n + 1
it moves to ((z + 1) moda,y) or (z,(y + 1) modb) with probability § each.

(a) Show that this Markov chain is irreducible.
(b) Show that it is aperiodic if and only if gcd(a, b) = 1.
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5 STATIONARY DISTRIBUTIONS

In this chapter, we consider one of the central issues in Markov theory: asymptotics for
the long-term behavior of Markov chains. What can we say about a Markov chain that
has been running for a long time? Can we find interesting limit theorems?

If (Xo, X1,...) is any nontrivial Markov chain, then the value of X, will keep fluctuating
infinitely many times as n — oo, and therefore we cannot hope to get results about X,
converging to a limit. However, we may hope that the distribution of X,, settles down to
a limit. This is indeed the case if the Markov chain is irreducible and aperiodic, which
is what the main result of this chapter, the so called Markov chain convergence theorem
(Theorem 5.2), says.

Let us for a moment go back to the Markov chain in Example 2.2 (the Los Angeles weather),
with state space {si, sp} and transition matrix given by (16). We saw in Problem 2.4 (a)
that if we let the initial distribution pu(®) be given by u(® = (1,3), then this distribution
is preserved for all times, i.e., u™ = p© for all n. By some experimentation, we can
easily convince ourselves that no other choice of initial distribution ;(?) for this chain has
the same property (try it!). Apparently, the distribution (%, 2) plays a special role for this
Markov chain, and we call it a stationary distribution!’. The general definition is as

follows.

Definition 5.1 Let (Xy, X1,...) be a Markov chain with state space {s1,..., sy} and tran-
sition matriz P. A row vector m = (my,...,m) is said to be a stationary distribution
for the Markov chain, if it satisfies

(i) m >0 fori=1,...,k, and Zlem =1, and

(ii) wP = m, meaning that Zle mP;=m; forj=1,... k.
Property (i) simply means that 7 should describe a probability distribution on {sy,..., s}
Property (ii) implies that if the initial distribution u(®) equals 7, then the distribution p("
of the chain at time 1 satisfies

pV =pOP =7P =1,

and by iterating we see that (™ = 7 for every n.

10 Another term which is used by many authors for the same thing, is invariant distribution. Yet
another term is equilibrium distribution
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Since the definition of a stationary distribution really only depends on the transition matrix
P, we also sometimes say that a distribution 7 satisfying the assumptions (i) and (ii) in
Definition 5.1, is stationary for the matrix P (rather than for the Markov chain).

The rest of this chapter will deal with three issues: the existence of stationary distribu-
tions, the uniqueness of stationary distributions, and the convergence to stationarity
starting from any initial distribution. We shall work under the conditions introduced in the
previous chapter (irreducibility and aperiodicity), although for some of the results these
conditions can be relaxed somewhat!'. We begin with the existence issue.

Theorem 5.1 (Existence of stationary distributions) For any irreducible and aperi-
odic Markov chain, there exists at least one stationary distribution.

To prove this existence theorem, we first need to prove a lemma concerning hitting times
for Markov chains. If a Markov chain (X, X3, ...) with state space {si,..., st} and tran-
sition matrix P starts in state s;, then we can define the hitting time

T;; =min{n > 1: X, = s,}

with the convention that 7; ; = oo if the Markov chain never visits s;. We also define the
mean hitting time
7i; = E[Tig].

This means that 7; ; is the expected time taken until we come to state s;, starting from
state s;. For the case ¢ = j, we call 7;; the mean return time for state s;. We emphasize
that when delaing with the hitting time 7; ;, there is always the implicit assumption that
XO = S;.

Lemma 5.1 For any irreducible aperiodic Markov chain with state space S = {s1,..., Sk}
and transition matriz P, we have for any two states s;, s; € S that if the chain starts in
state s;, then

P(T;; <o0)=1. (24)

Moreover, the mean hitting time 7; ; is finite'?, i.e.,

E[T, ;] < . (25)

1By careful modification of our proofs, it is possible to show that Theorem 5.1 holds for arbitrary
Markov chains, and that Theorem 5.3 holds without the aperiodicity assumption. That irreducibility and
aperiodicity are needed for Theorem 5.2, and irreducibility is needed for Theorem 5.3, will be established
by means of counterexamples in Problems 5.2 and 5.3.

12Tf you think that this should follow immediately from (24), then take a look at Example 1.1 to see
that things are not always quite that simple.
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Proof: By Corollary 4.1, we can find an M < oo such that (PM);; > 0 for all 4,j €
{1,...,k}. Fix such an M, set a = min{(P™);;: i,j € {1,...,k}}, and note that o > 0.
Fix two states s; and s; as in the lemma, and suppose that the chain starts in s;. Clearly,

Furthermore, given everything that has happened up to time M, we have conditional
probability at least « of hitting state s; at time 2M, so that

P(’Ti,j > 2M) = P(,Ti’j > M)P(T’Z’J > 2M|T’1’J > M)
P(ﬂ,j > M)P(X2M ?é S |7—;',j > M)
(1—a).

IAINA

Iterating this argument, we get for any [ that

P(Ti; > IM) = P(Ti; > M)P(Ti; >2M |T;; > M) - -P(Ti; > IM | Ty > (1 - 1)M)
< (1_a)l,

which tends to 0 as [ — co. Hence P(T;; = 00) = 0, so (24) is established.

To prove (25), we use the formula (1) for expectation, and get

E[T;;] = Z (T.;>n) = Y P(Ti; >n) (26)
n=1 n=0
00 l—|—1)M 1
Yy pmew
=0 n=IM
oo (+1)M-1 00
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Proof of Theorem 5.1: Write, as usual, (Xp, Xi,...) for the Markov chain, S =

{s1,..., sk} for the state space, and P for the transition matrix. Suppose that the chain
starts in state s;, and define, for i =1,...,k,
o
pi = ZP(Xn =s;, 11,1 > n)
n=0

so that in other words, p; is the expected number of visits to state ¢ up to time 77, — 1.
Since the mean return time E[T} ;] = 7 is finite, and p; < 71,1, we get that p; is finite as
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well. Our candidate for a stationary distribution is

P1 P2
7r:(7r1,...,7rk)= <—,—,..
T11 T11

Pk)
e
T11

We need to verify that this choice of 7 satisfies conditions (i) and (ii) of Definition 5.1.

We first show that the relation Zle m; P, j = m; in condition (ii) holds for j # 1 (the case

j =1 will be treated separately). We get (hold on!)

00
_po_ 1 _
T = a = EZP(Xn_Sj’TI’l >n)

)

1 00
= —ZP(Xn = Sj,T1,1 > ’I’L)
T1,1

= —ZP —8j,T1,1>’I’L—1)

71,1

_ EZZP 1 =55, Xn =55, Tip >n—1)

n=1 =1

= T—ZZP =Ty >n—1DP(X,=s;| X, =s5;) (29)
1,1

n=1 =1

= —ZZP”P 1=5,T11>n—1)

T
11n 1 =1

= _ZP”ZP =511 >n—1)

1,1

= —ZBJZP —Si,T1,1>m)

71,1

— Zz lpZ Z,n.z x

(30)

where in lines (27), (28) and (29) we used the assumption that j # 1.

Next, we verify condition (ii) also for the case j =

immediate from the definition of p;. We get

pP1 = 1 = P(Tl’l < OO) = ZP(TI,I :’I’L)

= ZZP(Xn—l = Si,Tl,l =

n=1 =1
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Note first that p; = 1; this is



o k
= Z ZP(anl = Si,Tl,l >n— 1)P(Xn = S |Xn,1 = Si)

n=1 =1

oo k
= YN PuP(Xy =5, Tiy >0 1)

n=1 =1

k 00
= ZPial ZP(Xn—l =s;, 711 >n—1)
=1 n=1
k 00
= ZPi,l Z P(Xm = SiaTI,l > m)
Z:I m=0
= Z pili1 .
=1

Hence
pz 2,1
7_ T — 7rz 3,1 -
e i=1

By combining this with (30), we have established that condition (ii) holds for our choice
of .

It remains to show that condition (i) holds as well. That 7; > 0 for i =1,..., k is obvious.
To see that Zle m; = 1 holds as well, note that

T1,1 = E[Tl,l] = ZP(TI,I > TL) (31)
oo k
= ZZP(Xn = SiaTl,l > 7'1,)
n=0 =1
k oo
= ZZP(Xn = 8,’,T1,1 > n)
=1 n=0

k
= Zpi
i=1

(where equation (31) uses (26)) so that

k
Zﬂ'i —sz—l
=1

T1,1

and condition (i) is verified. O

We shall go on to consider the asymptotic behavior of the distribution ™ of a Markov
chain with arbitrary initial distribution ;(%). To state the main result (Theorem 5.2), we
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need to define what it means for a sequence of probability distributions v, ) ... to
converge to another probability distribution v, and to this end it is useful to have a metric
on probability distributions. There are various such metrics; one which is useful here is
the so called total variation distance.

Definition 5.2 If v(!) = (1/9), e, V](cl)) and v?) = (V@, e z/,?)) are probability distribu-

tions on S = {s1,..., s}, then we define the total variation distance between v") and
v® as
I )
v, v =5 > =l (32)
If v @ and v are probability distributions on S, then we say that v converges

. < e » TV )
to v in total variation as n — oo, writing v™ — v, if

lim dpy (v™,v) = 0.

n—oQ

The constant  in (32) is designed to make the total variation distance drv take values
between 0 and 1. If dpy (¥, v@) = 0, then v = v@. In the other extreme case
dry(v®,v?) = 1, we have that v and v? are “disjoint” in the sense that S can be
partitioned into two disjoint subsets S’ and S” such that (! puts all of its probability
mass in ', and ¥® puts all of its in S”. The total variation distance also has the natural
interpretation

oy (1), 1) = max [/0(4) ~ 2(4) (33)

an identity that you will be asked to prove in Problem 5.1 below. In words, the total

variation distance between () and v is the maximal difference between the probabilities
that the two distributions assign to any one event.

We are now ready to state the main result about convergence to stationarity.

Theorem 5.2 (The Markov chain convergence theorem) Let (X, X1,...) be an ir-
reducible aperiodic Markov chain with state space S = {s1,..., s}, transition matriz P,
and arbitrary initial distribution p». Then, for any distribution 7 which is stationary for
the transition matriz P, we have

p™ I (34)

What the theorem says is that if we run a Markov chain for a sufficiently long time n, then,
regardless of what the initial distribution was, the distribution at time n will be close to
the stationary distribution 7. This is often referred to as the Markov chain approaching
equilibrium as n — cc.
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For the proof, we will use a so-called coupling argument; coupling is one of the most useful
and elegant techniques in contemporary probability. Before doing the proof, however, the
reader is urged to glance ahead at Theorem 5.3 and its proof, to see how easily Theorem
5.2 implies that there cannot be more than one stationary distribution.

Proof of Theorem 5.2: When studying the behavior of u(™, we may assume that
(Xo, X1,...) has been obtained by the simulation method outlined in Chapter 3, i.e.,

Xo = 1,0 (V)
Xl = ¢(X07 Ul)

Xy = ¢(X1,Us)

where 1,0 is a valid initiation function for 19 ¢ is a valid update function for P, and
(Uy, Uy, ...) is an i.i.d. sequence of uniform [0, 1] random variables.

Next, we introduce a second Markov chain'® (X{, X7, ...) by letting 1, be a valid initiation
function for the distribution =, letting (Uj, U7, . ..) be another i.i.d. sequence (independent
of (Up, Uy, ...)) of uniform [0, 1] random variables, and setting

Xo = ¢x(Uo)
X1 = ¢(Xp, Un)
X3 = ¢(X1,Us)

Since 7 is a stationary distribution, we have that X, has distribution 7 for any n. Also,
the chains (Xo, X1,...) and X{, X],...) are independent of each other, by the assumption
that the sequences (Up, Uy, ...) and (Uj, U], . ..) are independent of each other.

A key step in the proof is now to show that, with probability 1, the two chains will “meet”,
meaning that there exists an n such that X,, = X, . To show this, define the “first meeting
time”

T =min{n: X, = X,}

with the convention that 7" = oo if the chains never meet. Since the Markov chain
(Xo, X1,...) is irreducible and aperiodic, we can find, using Corollary 4.1, an M < oo
such that

(PM);; >0 foralli,je{1,...,k}.

Set
a=min{(P");;: i€ {1,...,k}},

13This is what characterizes the coupling method: to construct two or more processes on the same
probability space, in order to draw conclusions about their respective distributions.
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and note that a > 0. We get that

P(T < M)
> P(Xy = Xy)
> P(Xpy =s1,X) =51)

P(XM = Sl)P(X;V[ = 81)

iP(Xo =s8;, Xy = 51)) (i P(Xy = si, X)y = 31))

=1

> aZP(XO = sz)> (aZP(X('] = s,)) = o’

so that

P(T>M)<1-a’.

Similarly, given everything that has happened up to time M, we have conditional proba-
bility at least a? of having Xoy = X3, = s1, so that

P(T>2M) < P(T>MP(T>2M|T > M)

< 1-a)P(T>2M|T > M)

< (1-0”)P(Xou # Xop | T > M)

= (1= )1 = P(Xou = X}y | T > M)
< (1-a%)?.

By iterating this argument, we get for any / that
P(T > IM) < (1—a?)!
which tends to 0 as | — co. Hence,
7}1_)1{.10 P(T'>n)=0 (35)

so that in other words, we have shown that the two chains will meet with probability 1.

The next step of the proof is to construct a third Markov chain (X, X7,...), by setting

X(I)I = X() (36)
and, for each n,
o O Un) XX,
fa = Lo U i XEL X
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In other words, the chain (X{, X7,...) evolves exactly like the chain (X, X7, ...) until the
time 7" when it first meets the chain (X§, X1, ...). It then switches to evolving exactly like
the chain (X, X7,...). It is important to realize that (X, X7, ...) really is a Markov chain
with transition matrix P; this may require a pause for thought, but the basic reason why
it is true is that at each update, the update function is exposed to a “fresh” new uniform
[0, 1] variable, i.e., one which is independent of all previous random variables.

Because of (36), we have that X/ has distribution u(*). Hence, for any n, X" has distribu-
tion u™. Now, for any i € {1,..., k} we get,

p—m = P(X!=s)-P(X,=s)

P(X:z, = Si’X;z # Si)
P(X, # X;)
P(T > n)

IANINA

which tends to 0 as n — oo, due to (35). Using the same argument (with the roles of X/
and X, interchanged), we see that

m— ™ < P(T > n)
as well, again tending to 0 as n — co. Hence,
lim | ,uz(-n) — | =
n—oo

This implies that

lim dpry (™, 7) = lim (% Zle |,u,(~") - 7Tz|> (37)
n—o0 n—oo
=0

since each term in the right hand side of (37) tends to 0. Hence, (34) is established. O

Theorem 5.3 (Uniqueness of the stationary distribution) Any irreducible and ape-
riodic Markov chain has exactly one stationary distribution.

Proof: Let (Xo, Xi,...) be an irreducible and aperiodic Markov chain with transition
matrix P. By Theorem 5.1, there exists at least one stationary distribution for P, so we
only need to show that there is at most one stationary distribution. Let 7 and n’ be two
(a priori possibly different) stationary distributions for P; our task is to show that 7 = 7.

Suppose that the Markov chain starts with initial distribution (¥) = 7. Then pu(™ = 7’
for all n, by the assumption that 7’ is stationary. On the other hand, Theorem 5.2 tells us
that p™ AN m, meaning that

lim dTv(/,L(n), 7T) =0.
n—00
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Since p™ = 7', this is the same as

lim dpy (7', m) =0.
n—oo

But drv (7', 7) does not depend on n, and hence equals 0. This implies that 7 = 7', so the
proof is complete. O

To summarize Theorems 5.2 and 5.3: If a Markov chain is irreducible and aperiodic, then

it has a unique stationary distribution 7, and the distribution p(™ of the chain at time n
approaches 7 as n — oo, regardless of the initial distribution (%),
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Problems

5.1

5.2

5.3

5.4

5.5

(7) Prove the formula (33) for total variation distance. Hint: consider the event
A={seS:vW(s) >vP@(s)}.

(4) Theorems 5.2 and 5.3 fail for reducible Markov chains. Consider the reducible Markov
chain in Example 4.1.

(a) Show that both = = (0.375,0.625,0,0) and 7' = (0,0, 0.5,0.5) are stationary distributions for
this Markov chain.

(b) Use (a) to show that the conclusions of Theorem 5.2 and 5.3 fail for this Markov chain.
(6) Theorem 5.2 fails for periodic Markov chains. Consider the Markov chain (Xg, X,...)
describing a knight making random moves on a chessboard, as in Problem 4.2 (c). Show that (™

does not converge in total variation, if the chain is started in a fixed state (such as the square al of
the chessboard).

(7) If there are two different stationary distributions, then there are infinitely many.

Suppose that (Xg, X1, ..) is a reducible Markov chain with two different stationary distributions =
!

and 7'. Show that, for any p € (0,1), we get yet another stationary distribution as pm + (1 — p)«'.

(6) Show that the stationary distribution obtained in the proof of Theorem 5.1, can be written as

1 1 1
T=—,—...,— ] .
1,1 72,2 Tk,k
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6 REVERSIBLE MARKOV CHAINS

In this chapter we introduce a special class of Markov chains known as the reversible ones.
They are called so because they, in a certain sense, look the same regardless of whether
time runs backwards or forwards; this is made precise in Problem 6.2 below. Such chains
arise naturally in the algorithmic applications of Chapters 7-12, as well as in several other
applied contexts. We jump right on to the definition:

Definition 6.1 Let (X, Xi,...) be a Markov chain with state space S = {s1,..., s} and
transition matriz P. A probability distribution w on S is said to be reversible for the
chain (or for the transition matriz P) if for alli,j € {1,...,k} we have

Wipi,j = 7Tij,i . (38)

The Markov chain is said to be reversible if there exists a reversible distribution for it.

If the chain is started with the reversible distribution 7, then the left-hand side of (38) can
be thought of as the amount of probability mass flowing at time 1 from state s; to state
s;j. Similarly, the right hand side is the probability mass flowing from s; to s;. This seems
like (and is!) a strong form of equilibrium, and the following result suggests itself.

Theorem 6.1 Let (Xo, X1,...) be a Markov chain with state space S = {s1,..., s} and
transition matriz P. If m is a reversible distribution for the chain, then it is also a station-
ary distribution for the chain.

Proof: Property (i) of Definition 5.1 is immediate, so it only remains to show that for any
j€{1,...,k}, we have
k
7Tj = Z 7TiPi,j .
i=1

We get
k k k
mp=m Y Pa= Y mPy =) mby,
i=1 i=1 i=1
where the last equality uses (38). O

We go on to consider some examples.
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Figure 4: A graph.

Example 6.1: Random walks on graphs. This example is a generalization of the random
walk example in Figure 1. A graph G = (V, E) consists of a vertex set V = {v,..., v},
together with an edge set E = {ey, ..., e }. Each edge connects two of the vertices; an edge
connecting the vertices v; and v; is denoted (v;,v;). No two edges are allowed to connect the
same pair of vertices. Two vertices are said to be neighbours if they share an edge.

For instance, the graph in Figure 4 has vertex set V = {v1,...,vs} and edge set

E = {<U17v3>a <’l)1,’U4), <U25U3>7 <U2,'l)5>, <’l)2,’U6), <U35U4>7

<U37U7>7 <U3>U8>7 <’U4,’1)3), <U57U6>7 <U67U7>7 </U771)8)}

A random walk on a graph G = (V, E) is a Markov chain with state space V = {vy,..., vt}
and the following transition mechanism: If the random walker stands at a vertex v; at time
n, then it moves at time n + 1 to one of the neighbours of v; chosen at random, with equal
probability for each of the neighbours. Thus, if we denote the number of neighbours of a
vertex v; by d;, then the elements of the transition matrix are given by

L if v; and v; are neighbours
p.=1 j
27-7

0 otherwise.

It turns out that random walks on graphs are reversible Markov chains, with reversible
distribution 7 given by

_(d do dy,
w-(d,d,...,d (39)
where d = Zle d;. To see that (38) holds for this choice of 7, we calculate
7P = ﬁd—i =i= %d% =m;P;; if v; and v; are neighbours
7 0=m;Pj; otherwise.

For the case of the graph in Figure 4, (39) becomes

_(2 353 2 3 3 3
T=\247247247 247247 247 24’ 24

so that in equilibrium, vs is the most likely vertex for the random walker to be at, whereas
v1 and vy are the least likely ones.
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Figure 5: Transition graph of a Markov chain of the kind discussed in Example 6.2.

Example 6.2. Let (Xo,X;,...) be a Markov chain with state space S = {s1,...,s;} and
transition matrix P, and suppose that the transition matrix has the properties that

(i) P;; > 0 whenever |i — j| =1, and
(i) P;; =0 whenever |i — j| > 2.

Such a Markov chain is often called a birth-and-death process, and its transition graph has
the form outlined in Figure 5 (with some or all of the P; ;-“loops” possibly being absent). We
claim that any Markov chain of this kind is reversible. To construct a reversible distribution
7 for the chain, we begin by setting #7 equal to some arbitrary strictly positive number a.
The condition (38) with ¢ = 1 and j = 2 forces us to take

U/P]_’z
P2,1

my =

Applying (38) again, now with 4 = 2 and j = 3, we get

7T§P2,3 _ GP1,2P2,3
P3,2 P2,1P3,2

T =

We can continue in this way, and get

i—1
* _ aH;:l 'Pl,H-l
i — i1 o5

‘ ;:1 -Pl+1,l

for each i. Then 7* = (wf,..., 7)) satisfies the requirements of a reversible distribution,
except possibly that the entries do not sum to one, as is required for any probability dis-
tribution. But this is easily taken care of by dividing all entries by their sum. It is readily
checked that

( ) ( i 5 T )
T =(T"1,72y...,T) = % 5 % R Ry A
2 T i T 2 T

is a reversible distribution.

Having come this far, one might perhaps get the impression that most Markov chains are
reversible. This is not really true, however, and to make up for this false impression, let
us also consider an example of a Markov chain which is not reversible.
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Figure 6: Transition graph of the Markov chain in Example 6.3.

Example 6.3: A nonreversible Markov chain. Let us consider a modified version of
the random walk in Figure 1. Suppose that the coin tosses used by the random walker in
Figure 1 are biased, in such a way that at each integer time, he moves one step clockwise with

probability %, and one step counterclockwise with probability just i. This yields a Markov

chain with the transition graph in Figure 6. It is clear that 7 = (4, 1,3, ) is a stationary

distribution for this chain (right?). Furthermore, since the chain is irreducible, we have by
Theorem 5.3 and the first footnote on p. 31 that this is the only stationary distribution.
Because of Theorem 6.1 we therefore need 7 to be reversible in order for the Markov chain
to be reversible. But if we, e.g., try (38) with i =1 and j = 2, we get

13 3 1 11
A S TR T B Bk

so that m1 Py 5 # 2P 1, and reversibility fails. Intuitively, the reason why this chain is not
reversible is that the walker has a tendency to move clockwise. If we filmed the walker and
watched the movie backwards, it would look as if he preferred to move counterclockwise, so
that in other words the chain behaves differently in “backwards time” compared to “forwards

time”.

Let us close this chapter by mentioning the existence of a simple and beautiful equivalence
between reversible Markov chains on one hand, and resistor networks on the other. This
makes electrical arguments (such as the series and parallel laws) useful for analyzing Markov
chains, and conversely, probabilistic argument available in the study of electrical networks.
Unfortunately, a discussion of this topic would take us too far, considering the modest
format of these notes. Suggestions for further reading can be found in Chapter 13.
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Problems

6.1

6.2

(6) The king on the chess board. Recall from Problem 4.2 (a) the king making random moves on
a chess board. If you solved that problem correctly, then you know that the corresponding Markov
chain is irreducible and aperiodic. By Theorem 5.3, the chain therefore has a unique stationary
distribution 7. Compute 7. Hint: the chain is reversible, and can be handled as in Example 6.1.

(7) Time reversal. Let (Xo,X,...) be a reversible Markov chain with state space S, transition
matrix P, and reversible distribution 7. Show that if the chain is started with initial distribution
p® = 7, then for any n and any s;,, s;,,-..,5;, € S, we have

P(XO = SiO;Xl = 5i1;---;Xn = Sin) = P(Xo = sz'n;Xl = Sin_l,...,Xn :Sio).

In other words, the chain is equally likely to make a tour through the states s;,,...s;, in forwards
as in backwards order.
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7 MARKOV CHAIN MONTE CARLO

In this chapter and the next, we consider the following problem: Given a probability
distribution 7 on S = {s1,..., s}, how do we simulate a random object with distribution
7?7 To motivate the problem, we begin with an example.

Example 7.1: The hard-core model. Let G = (V, E) be a graph (recall Example 6.1 for
the definition of a graph) with vertex set V = {v1,...,v;} and edge set E = {e1,...,¢}. In
the so called hard-core model on G, we randomly assign value 0 or 1 to each of the vertices, in
such a way that no two adjacent vertices (i.e., no two vertices that share an edge) both take
value 1. Assignments of 0’s and 1’s to the vertices are called configurations, and can be
thought of as elements of the set {0,1}V. Configurations in which no two 1’s occupy adjacent
vertices are called feasible. The precise way in which we pick a random configuration is to
take each of the feasible configurations with equal probability. We write ug for the resulting
probability measure on {0,1}V. Hence, for ¢ € {0,1}V, we have

75 if € is feasible
0 otherwise,

e (§) = (40)
where Zg is the total number of feasible configurations for G. See Figure 7 for a random
configuration chosen according to ug in the case where G is a square grid of size 8 x 8.

This model (with the graph G being a three-dimensional grid) was introduced in statistical
physics to capture some of the behavior of a gas whose particles have non-negligible radii and
cannot overlap; here 1’s represent particles and 0’s represent empty locations. (The model
has also been used in telecommunications for modelling situations where an occupied node
disables all its neighbouring nodes.)

A very natural question is now: What is the expected number of 1’s in a random configuration
chosen according to pug? If we write n(£) for the number on 1’s in the configuration &, and
X for a random configuration chosen according to ug, then this expected value is given by

E[n(X)] = Z n(&)ua () = ZL Z ”(5)1{5 is feasible} » (41)

ge{0,1}V G eefo1v

where Zg is the total number of feasible configurations for the graph G. To evaluate this
sum may be infeasible unless the graph is very small, since the number of configurations
(and hence the number of terms in the sum) grows exponentially in the size of the graph (for
instance, we get 264 ~ 1.8 - 10'° different configurations for the moderately-sized graph in
Figure 7; in physical applications one is usually interested in much bigger graphs). It may
help somewhat that most of the terms take value 0, but the number of nonzero terms grows
exponentially as well. Note also that the calculation of Zg is computationally nontrivial.

When the exact expression in (41) is beyond what our computational resources can deal
with, a good idea may be to revert to simulations. If we know how to simulate a random
configuration X with distribution pg, then we can do this many times, and estimate E[n(X)]
by the average number of 1’s in our simulations. By the Law of Large Numbers (Theorem
1.2), this estimate converges to the true value of E[n(X)], as the number of simulations tends
to infinity, and we can make confidence intervals etc, using standard statistical procedures.
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Figure 7: A feasible configuration (chosen at random according to the probability measure ue), where
G is a square grid of size 8 x 8. Black (resp. white) circles represent 1’s (resp. 0’s). Note that no two 1’s
occupy adjacent vertices.

With this example in mind, let us discuss how we can simulate a random variable X
distributed according to a given probability distribution 7 on a state space S. In principle
it is very simple: just enumerate the elements of S as si,..., sg, and then let

X =9(U)
where U is a uniform [0, 1] random variable, and the function ¢ : [0,1] — S is given by

(s, forz €0, m(s1))
sy for z € [w(s1), m(s1) + 7(s2))

(e) = < s forxe:[z;;llw(sj), i m(s)) (42)

s forzx e [Zf;ll 7(s;), 1]

as in (18). By arguing as in Chapter 3, we see that this gives X the desired distribution .
In practice, however, this approach is infeasible unless the state space S is small. For the
hard-core model on a square grid the size of a chessboard or bigger, the evaluation of the
function 1 in (42) becomes too time consuming for this method to be of any practical use.

\

It is precisely in this kind of situation that the Markov chain Monte Carlo (MCMC)
method is useful. The method originates in physics, where the earliest uses go back to
the 1950’s. It later enjoyed huge booms in other areas, especially in image analysis in the
1980’s, and in so-called Bayesian statistics in the 1990’s.

The idea is the following: Suppose we can construct an irreducible and aperiodic Markov
chain (Xy, X1, ...), whose (unique) stationary distribution is 7. If we run the chain with
arbitrary initial distribution (for instance, starting in a fixed state), then the Markov chain
convergence theorem (Theorem 5.2) guarantees that the distribution of the chain at time
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n converges to m, as n — 0o. Hence, if we run the chain for a sufficiently long time n, then
the distribution of X,, will be very close to w. Of course this is just an approximation, but
the point is that the approximation can be made arbitrarily good by picking the running
time n large.

A natural objection at this stage is: How can it possibly be any easier to construct a
Markov chain with the desired property, compared to constructing a random variable with
distribution 7 directly? To answer this, we move straight on to an example.

Example 7.2: An MCMC algorithm for the hard-core model. Let us consider the
hard-core model in Example 7.1 on a graph G = (V, E) (which for concreteness may be taken
to be the one in Figure 7) with V = {v1,...,v;}. In order to get an MCMC algorithm for
this model, we want to construct a Markov chain with state space S being the set of feasible
configurations for G, i.e.,

S ={¢€{0,1}V : ¢ is feasible} .

In addition, we want the Markov chain to be irreducible and aperiodic, and have stationary
distribution pg given by (40).

A Markov chain (Xg, X3, ...) with the desired properties can be obtained using the following
transition mechanism. At each integer time n + 1, we do as follows:

1. Pick a vertex v € V at random (uniformly).
2. Toss a fair coin.

3. If the coin comes up heads, and all neighbours of v take value 0 in X,,, then let
Xn+1(v) = 1; otherwise let X,,41(v) = 0.

4. For all vertices w other than v, leave the value at w unchanged, i.e., let X, 1(w) =
Xn(w).

It is not difficult to verify that this Markov chain is irreducible and aperiodic; see Problem
7.1. Hence, it just remains to show that ug is a stationary distribution for the chain. By
Theorem 6.1, it is enough to show that ug is reversible. Letting P ¢ denote the transition
probability from state £ to state £’ (with transition mechanism as above), we thus need to
check that

pe (&) Peer = pa (&) Per e (43)

for any two feasible configurations & and £'. Let us write d = d(&,&') for the number of
vertices in which £ and £’ differ, and treat the three cases d = 0, d = 1 and d > 2 separately.
Firstly, the case d = 0 means that £ = £, in which case the relation (43) is completely trivial.
Secondly, the case d > 2 is almost as trivial, because the chain never changes the values at
more than one vertex at a time, making both sides of (43) equal to 0. Finally, consider the
case d = 1 where £ and ¢’ differ at exactly one vertex v. Then all neighbours of v must take
value 0 in £ as well as £, since otherwise one of the configurations would not be feasible. We
therefore get

pe (&) Peer = ——o7 = wa (&) Pe e

and (43) is verified (recall that k is the number of vertices). Hence the chain has ug as a
reversible (and therefore stationary) distribution.
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We can now simulate this Markov chain using the methods of Chapter 3. A convenient choice
of update function ¢ is to split the unit interval [0, 1] into 2k subintervals of equal length %,
representing the choices

(v1, heads), (v, tails), (v, heads),..., (vg, tails)

in the above description of the transition mechanism. If we now run the chain for a long time
n, starting with an arbitrary feasible initial configuration such as the “all 0’s” configuration,
and output X,,, then we get a random configuration whose distribution is approximately ug.

The above is a typical MCMC algorithm in several respects. Firstly, note that although
it is only required that the chain has the desired distribution as a stationary distribution,
we found a chain with the stronger property that the distribution is reversible. This is
the case for the vast majority of known MCMC algorithms. The reason for this is that
in most nontrivial situations, the easiest way to construct a chain with a given stationary
distribution 7, is to make sure that the reversibility condition (38) holds.

Secondly, the algorithm in Example 7.2 is an example of a commonly used special class of
MCMC algorithms known as Gibbs samplers. These are useful to simulate probability
distributions 7 on state spaces of the form SV, where S and V are finite sets. In other
words, we have a finite set V' of vertices, a finite set S of attainable values at each vertex,
and 7 is the distribution of some random assignment of values in S to the vertices in V' (in
the hard-core model example, we have S = {0,1}). The Gibbs sampler is a Markov chain
which at each integer time n + 1 does the following.

1. Pick a vertex v € V at random (uniformly).

2. Pick X,,;1(v) according to the conditional 7w-distribution of the value at v given that
all other vertices take values according to X,.

3. Let X,11(w) = X, (w) for all vertices w € V' except v.

It is not hard to show that this Markov chain is aperiodic, and that it has 7 as a reversible
(hence stationary) distribution. If in addition the chain is irreducible (which may or may
not be the case depending on which elements of SY have nonzero m-probability), then
this Markov chain is a correct MCMC algorithm for simulating random variables with
distribution 7. We give another example:
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Example 7.3: An MCMUC algorithm for random ¢-colourings. Let G = (V, E) be
a graph, and let ¢ > 2 be an integer. A g-colouring of the graph G is an assignment of
values from {1,...,q} (thought of as ¢ different “colours”) with the property that no two
adjacent vertices have the same value (colour). By a random g-colouring for G, we mean a
g-colouring chosen uniformly from the set of possible g-colourings for G, and write pg 4 for
the corresponding probability distribution'4 on SV.

For a vertex v € V and an assignment £ of colours to the vertices other than v, the conditional
pa,q-distribution of the colour at v is uniform over the set of all colours that are not attained
in ¢ at some neighbour of v (right?). A Gibbs sampler for random g-colourings is therefore
an SY-valued Markov chain where at each time n + 1, transitions take place as follows.

1. Pick a vertex v € V at random (uniformly).

2. Pick X,+1(v) according to uniform distribution over the set of colours that are not
attained at any neighbour of v.

3. Leave the colour unchanged at all other vertices, i.e., let Xp411(w) = X, (w) for all
vertices w € V except v.

This chain is aperiodic and has pg,q as a stationary distribution; see Problem 7.3. Whether
or not the chain is irreducible depends on G and ¢, and it is a nontrivial problem in general
to determine this'®. In case we can show that it is irreducible, this Gibbs sampler becomes
a useful MCMC algorithm.

Let us also mention that a commonly used variant of the Gibbs sampler is the following.
Instead of picking the vertices to update at random, we can cycle systematically through
the vertex set. For instance, if V = {vy,..., v}, we may decide to update vertex

(v, at times 1,k+1,2k+1,...
vy at times 2,k + 2,2k +2,...

v; at times i,k + 1,2k +1,...

| v at times k, 2k, 3k, ...

This gives an inhomogeneous Markov chain (because there are k different update rules
used at different times) which is aperiodic and has the desired distribution as a reversible
distribution. Furthermore, it is irreducible if and only if the original “random vertex”
Gibbs sampler is irreducible. To prove these claims is reasonably straightforward, but

14We are here making the implicit assumption that there exists at least one g-colouring for G. This
is not always the case. For instance, if ¢ = 2 and G consists of three vertices connected in a triangle,
then no g¢-colouring can be found. In general it is a difficult combinatorial problem to determine whether
g-colourings exist for a given choice of G and ¢q. The famous four-colour theorem states that if G is a
planar graph, then ¢ = 4 is enough.

15Compare with the previous footnote. One thing which is not terribly hard, is to show that for any
given graph G, the chain is irreducible for all sufficiently large q.
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requires a notationally somewhat inconvenient extension of the theory in Chapters 4-6 to
the case of inhomogeneous Markov chains. We therefore omit the details.

Another important general procedure for designing a reversible Markov chain for MCMC
algorithms, is the construction of a so-called Metropolis chain'6. Let us describe a way
(not the most general possible) to construct a Metropolis chain for simulation of a given
probability distribution 7 = (my,...,7) on a set S = {s1,...,s;}. The first step is to
construct some graph GG with vertex set S. The edge set of this graph may be arbitrary,
except that

(i) the graph must be connected in order to assure irreducibility of the resulting chain,
and

(ii) each vertex should not be the endpoint of too many edges, since otherwise the chain
becomes computationally too heavy to simulate in practice.

As usual, we say that two states s; and s; are neighbours if the graph contains an edge
(si,s;) linking them. We also write d; for the number of neighbours of state s;. The
Metropolis chain corresponding to a given choice of G has transition matrix

g min{ ;ZZ;, 1} if s; and s; are neighbours
0 if s; # s; are not neighbours
P, - P : (45)
1—Zd—im1n{%,1} ifi=j,
1
sy~

where the sum is over all states s; that are neighbours of s;. This transition matrix
corresponds to the following transition mechanism: Suppose that X, = s;. First pick
a state s; according to uniform distribution on the set of neighbours of s; (so that each
neighbour is chosen with probability d—ll) Then we set

s; with probability min{’r?;i’j, 1}
Xn_|_1 = . oy 73-1 . mjd;
s; with probability 1 — min{ - d;, 1}.
To show that this Markov chain has 7 as its stationary distribution, it is enough to verify
that the reversibility condition
TP = m;Pji (46)
holds for all i and j. We proceed as in Example 7.2, by first noting that (46) is trivial for
i = j. For the case where i # j and s; and s; are not neighbours, (46) holds because both

16 A more general (and widely used) class of Markov chains for MCMC simulation are the so-called
Metropolis—Hastings chains; see the book [GRS] mentioned in Chapter 13.
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sides are 0. Finally, we split the case where s; and s; are neighbours into two subcases
according to whether or not :{'—3?' >1.If Z’:—j’: > 1, then
1aj i@y

— 1
{ i Py = Tig,

P..— g, L4 m
T Pji = dj mid;  d;

so that (46) holds. Similarly, if ;;jj; < 1, then

P g L _mg
{ TPy = Tig; md; . d;

= . L
TP = Tid;

and again (46) holds. So 7 is a reversible (hence stationary) distribution for the Metropolis
chain, which therefore can be used for MCMC simulation of 7.
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Problems

7.1

7.2

7.3

74

(5) Show that the Markov chain used for MCMC simulation of the hard-core model in Example
7.2 is

(a) irreducible!”, and

(b) aperiodic!8.
(8%) Write a computer program, using the algorithm in Example 7.2, for simulating the hard-core
model on a general k x k square grid. Then do some simulation experiments.

(7) Show, by arguing as in Example 7.2 and Problem 7.1 (b), that the Gibbs sampler for random
g-colorings in Example 7.3

(a) has pg,q as a stationary distribution, and
(b) is aperiodic.

(6) A generalized hard-core model. A natural generalization of the hard-core model is to allow
for different “packing intensities” of 1’s in the graph. This is done by introducing a parameter
A > 0, and changing the probability measure ¢ defined in (40) into a modified probability measure
pa,x in which each configuration & € {0,1}" gets probability

2O if ¢ is feasible

paa(§) = { Zox

0 otherwise,

(47)

where n(§) is the number of Us in &, and Zgx = Y ceqo,13v )\"(5)1{5 is feasible} 18 a normalizing
constant. As follows from a direct calculation, this means that for any vertex v € V, the conditional
probability that v takes value 1 given the values at all other vertices, equals

A+1

2 if all neighbours of v take value 0
0 otherwise.

The model’s “desire” to put a 1 at v therefore increases gradually as A increases from 0 to co. The
case X\ = 1 reduces to the standard hard-core model in Example 7.1.

Construct an MCMC algorithm for this generalized hard-core model.

"Hint: We need to show that for any two feasible configurations ¢ and ¢', the chain can go from ¢ to
& in a finite number of steps. The easiest way to show this is to demonstrate that it can go from & to the
“all 0’s” configuration in a finite number of steps, and then from the “all 0’s” configuration to £ in a finite
number of steps.

18Hint: To show that the period of a state £ is 1, it is enough to show that the Markov chain can go
from £ to £ in one step (see also Problem 4.1).
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8 FAST CONVERGENCE OF
MCMC ALGORITHMS

Although the MCMC approach to simulation, described in the previous chapter, is highly
useful, let us note two drawbacks of the method:

(A) The main theoretical basis for the MCMC method is Theorem 5.2, which guarantees
that the distribution u(™ at time n of an irreducible and aperiodic Markov chain
started in a fixed state, converges to the stationary distribution 7 as n — oo. But
this doesn’t imply that u(™ ever becomes equal to 7, only that it comes very close.
As a matter of fact, in the vast majority of examples, we have p™ # 7 for all n
(see, e.g., Problem 2.3). Hence, no matter how large n is taken to be in the MCMC
algorithm, there will still be some discrepancy between the distribution of the output
and the desired distribution 7.

(B) In order to make the error due to (A) small, we need to figure out how large n needs to
be taken in order to make sure that the discrepancy between p(™ and 7 (measured in
the total variation distance drv (™, 7)) is smaller than some given ¢ > 0. In many
situations, it has turned out to be very difficult to obtain upper bounds on how large
n needs to be taken, that are small enough to be of any practical use!®.

Problem (A) above is in itself not a particularly serious obstacle. In most situations, we can
tolerate a small error in the distribution of the output, as long as we have an idea about
how small it is. It is only in combination with (B) that it becomes really bothersome.
Due to difficulties in determining the rate of convergence to stationarity in Markov chains,
much of today’s MCMC practice has the following character: A Markov chain (Xy, X1, ...)
whose distribution p{™ converges to the desired distribution 7, as the running time n tends
to oo, is constructed. The chain is then run for a fairly long time n (say, 10* or 10°), and
X, is output, hoping that the chain has come close to equilibrium by then. But this is
often just a matter of faith, or perhaps some vague handwaving arguments.

This situation is clearly unsatisfactory, and much effort has in recent years been put into
attempts at rectifying it. In this chapter and in Chapter 10, we shall take a look at two
different approaches. The one we consider in this chapter is to try to overcome the more
serious problem (B) by establishing useful bounds for convergence rates of Markov chains.

19Tn general, it is possible to extract an explicit upper bound (depending on ¢ and on the chain) by
a careful analysis of the proof of Theorem 5.2. However, this often leads to bounds of astronomical
magnitude, such as “dry (u(™,7) < 0.01 whenever n > 101 ”_ This is of course totally useless, because
the simulation of 10'%° steps of a Markov chain is unlikely to terminate during our lifetimes. In such
situations, one can often suspect that the convergence is much faster (so that perhaps n = 10° would
suffice), but to actually prove this often turns out to be prohibitively difficult.
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In general, this remains a difficult open problem, but in a number of specific situations,
very good results have been obtained.

To illustrate the type of convergence rate results that can be obtained, and some of the proof
techniques, we will consider one example where the MCMC chain has been successfully
analyzed, namely the random g-colorings in Example 7.3.

Fix a graph G = (V, E) and an integer ¢, and recall that pg , is the probability distribution
on {1,...,q}" which is uniform over all £ € {1,...,q}" that are valid g-colorings, i.e., over
all assignments of colors 1, ..., q to the vertices of G with the property that no two vertices
sharing an edge have the same color. We consider the Gibbs sampler described in Example
7.3, with the following modification of the way of picking vertices to update. Instead
of picking a vertex at random uniformly from V' = {v,..., v}, we scan systematically
through the vertex set by updating vertex v; at time 1, vy at time 2, ... | vy at time £k,
vy again at time k + 1, and so on as in (44). We call this the systematic sweep Gibbs
sampler for random g-colorings on G.

The question about convergence rates for this MCMC algorithm (or others) is natural to
phrase as follows: Given ¢ > 0 (such as for instance ¢ = 0.01), how many iterations n of
the algorithm do we need in order to make the total variation distance dry (4™, pgq) less
than £? Here u(™ is the distribution of the chain after n iterations.

Theorem 8.1 Let G = (V, E) be a graph. Let k be the number of vertices in G, and
suppose that any vertexr v € V has at most q¢ neighbors. Suppose furthermore that ¢ > 2d>.
Then, for any fixed € > 0, the number of iterations needed for the systematic sweep Gibbs
sampler described above (starting from any fized q-coloring &) to come within total variation
distance € of the target distribution pgq, is at most

\ <1og(k) + log(e™") — log(d) n 1) _ (48)
log (57

Before going to the proof of this result, some comments are in order:

1. The most important aspect of the bound in (48) is that it is bounded by
Ck(log(k) +log(e™"))

for some constant C' < oo that does not depend on k or on €. This means that the
number of iterations needed to come within total variation distance € from the target
distribution pg 4, does not grow terribly quickly as £ — oo or as € — 0. It is easy
to see that any algorithm for generating random g-colorings must have a running
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time that grows at least linearly in k£ (because it takes about time k even to print
the result). The extra factor log(k) that we get here is not a particularly serious
slowdown.

2. Our bound ¢ > 2d? for when we get fast convergence, is a fairly crude estimate. In
fact, Jerrum [J] showed, by means of a refined version of the proof below, that a
convergence rate of the same order of magnitude as in Theorem 8.1 takes place as
soon as ¢ > 2d, and it is quite likely that this bound can be improved even further.

3. If G is part of the square lattice (such as, for example, the graph in Figure 7), then
d = 4, so that Theorem 8.1 gives fast convergence of the MCMC algorithm for ¢ > 33.
Jerrum’s better bound gives fast convergence for ¢ > 9.

4. Tt may seem odd that we obtain fast convergence for large ¢ only, as one might
intuitively think that it would be more difficult to simulate the larger ¢ gets, due
to the fact that the number of ¢-colorings on G is increasing in ¢. This is, however,
misleading, and the correct intuition to have is instead the following. The larger ¢
gets, the less dependent does the coloring of a vertex v become on its neighbors. If ¢
is very large, we might pick the color at v uniformly at random, and have very little
risk that this color is already taken by one of its neighbors. Hence, the difference
between pg,, and uniform distribution over all elements of {1,...,q}" becomes very
small in the limit as ¢ — oo, and the latter distribution is of course easy to simulate:
just assign i.i.d. colors (uniformly from {1,...,¢}) to the vertices.

Enough chat for now—it is time to do the five-page proof of the convergence rate result!

Proof of Theorem 8.1: As in the proof of Theorem 5.2, we will use a coupling argu-
ment: We shall run two {1,...,¢}"-valued Markov chains (X, X1,...) and (X}, X7],-..)
simultaneously. They will have the same transition matrices (namely, the ones given by
the systematic sweep Gibbs sampler for random g¢-colorings of G, as described above). The
difference will be that the first chain is started in the fixed state X, = &, whereas the
second is started in a random state X chosen according to the stationary distribution
pc,g- Then X] has distribution pg 4 for all n, by the definition of stationarity. Also write
p™ for the distribution of the first chain (Xo, X1,...) at time n; this is the chain that we
are primarily interested in. We want to bound the total variation distance drv (1™, pg )
between 1™ and the stationary distribution, and we shall see that dpy (1™, pa,q) is close
to 0 if P(X,, = X)) is close to 1.

Recall from Example 7.3 that whenever a vertex v is chosen to be updated, we should
pick a new color for v according to uniform distribution on the set of colors that are not
attained by any neighbor of v. One way to implement this concretely is to pick a random
permutation



of the set {1,...,q}, chosen uniformly from the ¢! different possible permutations (this is
fairly easy; see Problem 8.1) and then let v get the first color of the permutation that is
not attained by any neighbor of v.

Of course we need to pick a new (and independent) permutation at each update of a chain.
However, nothing prevents us from using the same permutations for the chain (X{, X7, ...)
as for (X, X1,...), and this is indeed what we shall do. Let Ry, Ry, ... be an i.i.d. sequence
of random permutations, each of them uniformly distributed on the set of permutations of
{1,...,q}. At each time n, the updates of the two chains use the permutation

R,=(R.,...,RY),
and the vertex v to be updated is assigned the new value
Xn_|_1(’U) == R:L

where '
i = min{j : X, (w) # R’ for all neighbors w of v}

in the first chain. In the second chain, we similarly set

-1

XI+1(U) =R,

n

where

i' = min{j" : X (w) # RY for all neighbors w of v} .

This defines our coupling of (Xy, X1,...) and (X{, X1,...). What we hope for is to have
Xr = X at some (random, but not too large) time 7', in which case we will also have
X, = X], for all n > T (because the coupling is defined in such a way that once the two
chains coincide, they stay together forever). In order to estimate the probability that the
configurations X,, and X/ agree, let us first consider the probability that they agree at a
particular verter, i.e., that X, (v) = X/ (v) for a given vertex v.

Consider the update of the two chains at a vertex v at time n, where we take n < k, so
that in other words we are in the first sweep of the Gibbs sampler through the vertex set.
We call the update successful if it results in having X,,;1(v) = X}, (v); otherwise we say
that the update is failed. The probability of a succesful update depends on the number of
colors that are attained in the neighborhood of v in both configurations X,, and X!, and
on the number of colors that are attained in each of them. Define

B, = the number of colors r € {1,..., g} that are attained in the
neighborhood of v in both X,, and X,

B; = the number of colors r € {1,..., g} that are attained in the
neighborhood of v in ezactly one of X,, and X,
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and

B, = the number of colors r € {1,...,q} that are attained in the
neighborhood of v in neither of X,, and X,

and note that By + B; + By = q. Note also that if the first color R in the permutation R,
is among the B, colors attained in the neighborhood of v in both configurations, then the
Gibbs samplers just discard R and look at R? instead, and so on. Therefore, the update
is succesful if and only if the first color in R, that is attained in the neighborhood of v
in neither of X,, and X, appears earlier in the permutation than the first color that is
attained in the neighborhood of v in ezactly one of X,, and X . This event (of having a
succesful update) therefore has probability

By
By + B,

conditional on By, B; and B,. In other words, we have?®

B
P(fal]ed update) = ﬁ . (49)
0 1

We go on to estimate the right hand side in (49). Clearly, 0 < B, < 2d. Furthermore,
By < 2d—2B,, (50)

because counting the neighbors in both configurations, there are in all at most 2d of them,
and each color contributing to By uses up two of them. We get

B, B
BO+Bl_q_B2
2d—2BQ<2d—B2
q—By T q— B
2d(1—22) 94
— N 2d) 7

P(failed update) =

2d < (51)
g1-2) 7 ¢
where the first inequality is just (50), while the final inequality is due to the assumption
2 . . . . . . . B B
g > 2d?, which implies ¢ > 2d, which in turn implies (1 — 72) > (1-32).
Hence, we have, after k steps of the Markov chains (i.e., after the first sweep of the Gibbs
samplers through the vertex set), that, for each vertex v,

P (X, (0) # X(0)) < %d . (52)

200ur notation here is a bit sloppy, since it is really a conditional probability we are dealing with, because
we are conditioning on By, B; and Bs.
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Now consider updates during the second sweep of the Gibbs sampler, i.e., between times
k and 2k. For an update at time n during the second sweep to fail, the configurations X,
and X, need to differ in at least one neighbor of v. Each neighbor w has X, (w) # X,,(w)
with probability at most % (due to (52)), and summing over the at most d neighbors, we
get that

) 2d?
P(discrepancy) < o (53)

where “discrepancy” is short for the event that there exists a neighbor w of v with X, (w) #
X/ (w). Given the event in (53), we have, by repeating the arguments in (49) and (51), that
the conditional probability P(failed update | discrepancy) of a failed update, is bounded by
24 Hence
q 7

P(failed update) = P(discrepancy)P(failed update | discrepancy)

(o)
? qg\q)

Hence, after 2k steps of the Markov chains, each vertex v € V has different colors in the
two chains with probability at most

PMM@#ﬂmms§(%3.

By arguing in the same way for the third sweep as for the second sweep, we get that

242\ 2
(%)

and continuing in the obvious way, we get for m = 4,5, ... that

PMM@#%NMS%

. 2d2—d2m1
Pamw¢xmw»s;(q) . (54)

After this analysis of the probability that X,,; and X, , differ at a given vertez, we next
want to estimate the probability P(X,,, # X/ ) that the first chain fails to have ezactly
the same configuration as the second chain, at time mk. Since the event X, # X/,
implies that X,,,x(v) # X . (v) for at least one vertex v € V, we have

P(Xor # Xi) < D P(Xpu(v) # Xy (v))

veEV
2d [2d2\™*

< 12 (—) (55)
q q

)
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where the inequality in (55) is due to (54) and the assumption that the graph has k vertices.

Now let A C {1,...,q}" be any subset of {1,...,¢}V. By (33) and Problem 5.1, we have
that

drv (1™, pag) = Acgan}VWm’“)(A)—pc,q(A)\
- P (X € A) — P(X!, € A)| . 57
[P € 4) = (Xl € 4) (57

For any such A, we have

PX,,€A)-PX €4 = PXue€AX €A +PX,€AX  &A)

- (P(X) €A X € A)+P(X], €A Xy, € A))
PX,r € AX & A)—P(X, €A X & A)
PXn€ A X & A)

P Xk # Xpp)

()

where the last inequality uses (56). Similarly, we get

IN A

IN

P(X € 4) ~ P(Xp € 4) < - (%) | (59)

Combining (58) and (59), we obtain

P € 4) = P(Xp € A) < & (7) . (60)

By taking maximum over all A C {1,...,¢}", and inserting into (57), we get that

k (2d*\™
dTV(,U(mk);PG,q) < E (7) ) (61)

which tends to 0 as m — oo. Having established this bound, our next and final issue is:

How large does m need to be taken in order to make the right hand side of (61)
less than €7

By setting
k (2d*\™
— R =€
d ( q )
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and solving for m, we find that

= log(k) + log(s™") — log(d)
log (5)
so that running the Gibbs sampler long enough to get at least this many scans through the

vertex set, gives dpy (u(™), pa,q) < €. To go from the number of scans m to the number of
steps n of the Markov chain, we have to multiply by &, giving that

k(log(k) +log(e™") — log(d))
log (57z)

should be enough. However, by taking n as in (62), we do not necessarily get an integer
value for m = %, so to be on the safe side we should take n to be at least the smallest
number which is greater than the right hand side of (62) and which makes 7 an integer.
This means increasing n by at most k& compared to (62), so that our final answer is that
taking

(62)

n —=

1 1 -1
i (1o8lh) +Tosle 1) —logta)
log (572)
suffices, and Theorem 8.1 is (at last!) established. O

61



Problems

8.1

8.2

8.3
8.4

(4) Describe a simple and efficient way to generate a random (uniform distribution!) permutation
of the set {1,...,q}.

(6) Bounding total variation distance using coupling. Let m; and my be probability distri-
butions on some finite set S. Suppose that we can construct two random variables Y; and Y5 such
that

(i) Y1 has distribution 7y,

(ii) Y> has distribution s, and

(iii) P(Vi #Y3) <e,

for some given € € [0,1]. Show that the total variation distance drv(m,m2) is at most . Hint:
argue as in equations (58), (59) and (60) in the proof of Theorem 8.1.

(8) Explain where and why the assumption that ¢ > 2d? is needed in the proof of Theorem 8.1.

(10) Fast convergence for the random site Gibbs sampler. Consider (instead of the system-
atic scan Gibbs sampler) the random site Gibbs sampler for random g-colorings, as in Example 7.3.
Suppose that the graph G = (V, E) has k vertices, and each vertex has at most d neighbors. Also
suppose that ¢ > 2d2.

(a) Show that for any given v € V, the probability that v is chosen to be updated at some step
during the first k iterations of the Markov chain, is at least 1 — e~ . (Here e ~ 2.7183 is, of
course, the base for the natural logarithm.)

(b) Suppose that we run two copies of this Gibbs sampler, one starting in a fixed configuration,
and one in equilibrium, similarly as in the proof of Theorem 8.1. Show that the coupling can
be carried out in such a way that for any v € V and any m, the probability that the two
chains have different colors at the vertex v at time mk, is at most

(e_l +(1- e—l)%d> (e‘l +(1- e‘U%) :

(¢) Use the result in (b) to prove an analogue of Theorem 8.1 for the random site Gibbs sampler.
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9 APPROXIMATE COUNTING

Combinatorics is the branch of mathematics which deals with finite objects or sets, and
the ways in which these can be combined. Basic objects that often arise in combinatorics
are, e.g., graphs and permutations. Much of combinatorics deals with the following sort of
problem:

Given some set S, what is the number of elements of 57

Let us give a few examples of such counting problems; the reader will probably be able
to think of several interesting variations of these.

Example 9.1: What is the number of permutations r = (r,...,79) of the set {1,...,q} with
the property that no two numbers that differ by exactly 1, are adjacent in the permutation?

Example 9.2: Imagine a chessboard, and a set of 32 domino tiles, such that one tile is
exactly large enough to cover two adjacent squares of the chessboard. In how many different
ways can the 32 tiles be arranged in order to cover the entire chessboard?

Example 9.3: Given a graph G = (V, E), in how many ways can we pick a subset W of the
vertex set V, with the property that no two vertices in W are adjacent in G? In other words,
how many different feasible configurations exist for the hard-core model (see Example 7.1)
on G?

Example 9.4: Given an integer ¢ and a graph G = (V, E), how many different g-colorings
(Example 7.3) are there for G?

In this chapter, we are interested in algorithms for solving counting problems. For the
purpose of illustrating some general techniques, we shall focus on the one in Example 9.4:
the number of g-colorings of a graph. In particular, we shall see how (perhaps surprisingly!)
the MCMC technique turns out to be useful in the context of counting problems.

The following algorithm springs immediately to mind.

Example 9.5: A naive algorithm for counting g-colorings. If there were no restriction
on the colorings, i.e., if all configurations in {1,...,q}" were allowed, then the counting
problem would be trivial: there are ¢* of them, where k is the number of vertices in the
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graph. Moreover, it is trivial to make a list of all such configurations, for instance in some
lexicographic order. Given a configuration ¢ € {1,...,q}", the problem of determining
whether ¢ is a proper g-coloring of G is yet another triviality?!. Hence, the following algorithm
will work:

Go through all configurationsin {1,...,q}" in lexicographic order, check for each
of them whether it is a g-coloring of GG, and count the number of times the answer
was “yes”.

This algorithm will certainly give the right answer. However, when k is large, it will take
a very long time to run the algorithm, since it has to work itself through the list of all ¢*
configurations. For instance, when ¢ = 5 and k = 50, there are 5%° x5 103* configurations to
go through, which is practiclly impossible. Therefore, this algorithm will only be useful for
rather small graphs.

The feature which makes the algorithm in Example 9.5 unattractive is that the running
time grows exponentially in the size n of the graph. The challenge in this type of situation
is therefore to find faster algorithms. In particular, one is interested in polynomial time
algorithms, i.e., algorithms with the property that there exists a polynomial p(k) in the
size k of the problem??, such that the running time is bounded by p(k) for any k and
any instance of the problem of size k. This is the same (see Problem 9.1) as asking for
algorithms with a running time bounded by C'k® for some constants C' and «a.

A polynomial time algorithm which solves a counting problem is called a polynomial
time counting scheme for the problem. Sometimes, however, such an algorithm is not
available, and we have to settle for something less, namely to approzimate (rather than
calculate exactly) the number of elements of the set. Suppose that we have an algorithm
which, in addition to the instance of the counting problem, also takes a number € > 0, as
input. Suppose furthermore that the algorithm has the properties that

(i) it always outputs an answer between (1 —¢)N and (1 + ¢)N, where N is the true
answer to the counting problem, and

(i) for any & > 0, there exists a polynomial p.(k) in the size k of the problem??, such
that for any instance of size k, the algorithm terminates in at most p.(k) steps.

21'We just need to check, for each edge e € E, that the endvertices of e have different colors.

22Here we measure the size of the problem in the number of vertices in the graph. This is usually the
most natural choice for problems involving graphs, although sometimes there is reason take the number of
edges instead. In Example 9.1, it is natural to take g as the size of the problem, whereas in generalizations
of Example 9.2 to “chessboards” of arbitrary size, the size of the problem may be measured in the number
of squares of the chessboard (or in the number of domino tiles). Common to all these measures of size
is that the number of elements in the set to be counted, grows (at least) exponentially in the size of the
problem, making algorithms like the one in Example 9.5 infeasible.

ZWe allow p. (k) to depend on € in arbitrary fashion. Sometimes (although we shall not go into this
subtlety) there is reason to be restrictive about how fast p. (k) may grow as € — 0.
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We call such an algorithm a polynomial time approximation scheme. Given a pre-
specified allowed relative error g, the algorithm runs in polynomial time in the size of
the problem, and produces an answer which is within a multiplicative error £ of the true
answer.

Sometimes, however, even this is to ask for too much, and we have to be content with
an algorithm which produces an almost correct answer most of the time, but which may
produce a (vastly) incorrect answer with some positive probability. More precisely, suppose
that we have an algorithm which takes ¢ > 0 and the instance of the counting problem as
input, and has the properties that

(i) with probability at least %, it outputs an answer between (1 — )N and (1 + ¢)N,

where NN is the true answer to the counting problem, and

(ii) for any ¢ > 0, there exists a polynomial p.(k) in the size k of the problem, such that
for any instance of size k, the algorithm terminates in at most p.(k) steps.

Such an algorithm is called a randomized polynomial time approximation scheme,
and it is to the construction of such a scheme (for the g-coloring counting problem) that
this chapter is devoted.

One may (and should!) ask at this stage what is so special about the number % The
answer is that it is, in fact, not special at all, and that it could be replaced by any number
strictly between % and 1. For instance, for any § > 0, if we have a randomized polynomial
time approximation scheme (with the above definition), then it is not difficult to build
further upon it to obtain a randomized polynomial time approximation scheme with the
additional property that it outputs an answer within a multiplicative error € of the true
answer, with probability at least 1 — §. We can thus get an answer within relative error at
most ¢ of the true answer, with probability as close to 1 as we may wish. This property

will be proved Problem 9.3 below.

Here is our main result concerning randomized polynomial time approximation schemes
for random ¢-colorings.

Theorem 9.1 Fiz integers ¢ and d > 2 such that ¢ > 2d%, and consider the problem of
counting q-colorings for graphs in which each vertexr has at most d neighbors. There exists
a randomized polynomial time approrimation scheme for this problem.

Before going on with the proof of this result, some remarks are worth making:
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1. Of course, an existence result (i.e., a statement of the form “there exists an algorithm
such that...”) of this kind is rather useless without an explicit description of the
algorithm. Such a description, will, however, appear below as part of the proof.

2. The requirement that g > 2d? comes from Theorem 8.1, which will be used in the
proof of Theorem 9.1. If we instead use Jerrum’s better result mentioned in Remark
2 on p. 56, then we obtain the same result as in Theorem 9.1 whenever g > 2d.

3. The restiction to d > 2 is not a particularly severe one, since graphs with d = 1
consist just of

(i) isolated vertices (having no neighbors), and

(ii) pairs of vertices linked to each other by an edge but with no edge leading
anywhere else,

and the number of g-colorings of such graphs can be calculated directly (see Problem
9.2).

First part of the proof of Theorem 9.1—a general description of the algorithm:
Suppose that the graph G = (V, F) has k vertices and k edges; by the assumption of the
theorem we have that & < dk. Enumerate the edge set F as {ei,...,e;}, and define the
subgraphs Gy, Gy, ..., G} as follows. Let Gy = (V, ) be the graph with vertex set V and
no edges, whereas for j =1,..., k, let

Gj = (V, {61,...,6j}).

In other words, G is the graph obtained from G by deleting the edges €j;1,...,e;.

Next, let, for j =0, ..., k, the number of g-colorings for the graph G; be denoted by Z;.
Since G = G, we have that the number we wish to compute (or approximate), is Z;. This
number can be rewritten as

Z % 24 Zy I

— ‘X — X — X Zj. (63)

Zi = X -
Nz Zi, 7z Z

If we can estimate each factor in the telescoped product in (63) to within sufficient accuracy,
then we can multiply these estimates to get a reasonably accurate estimate of Z;.

Note first that the last factor Zj is trivial to calculate: since GGy has no edges, any ass-
ingnment of colors from {1,..., ¢} to the vertices is a valid ¢g-coloring, and since Gy has k
vertices, we have

Z() = qk .
Consider next one of the other factors Z?j - in (63). Write z; and y; for the endvertices of
J

the edge e; which is in G; but not in Gj__l. By definition, Z; is the number of g-colorings
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of the graph G;. But the g-colorings of G; are exactly those configurations € € {1,...,q}V
that are g-colorings of Gj_; and that in addition satisfy &(z;) # &(y;). Hence the ratio
is exactly the proportion of ¢g-colorings £ of G; that satisfy £(z;) # £(y;). This means

z _
that 7
Z'Jl = IOG]‘—nCI(X(xj) 7é X(yj)) ’ (64)
-
ie., % equals the probability that a random coloring X of G, chosen according to

uniform distribution pg,_, 4, satisfies X (z;) # X (y;).

The key point now is that the probability pg, (X (z;) # X(y;)) in (64) can be estimated
using the simulation algorithm for pg, , , considered in Theorem 8.1. Namely, if we sim-
ulate a random g-coloring X € {1,...,q}" for G;_; several times (using sufficiently many
steps in the Gibbs sampler of Chapter 8), then the proportion of the simulations that
result in a configuration with different colors at z; and y;, is very likely to be close** to the
desired expression in (64). We use this procedure to estimate each factor in the telescoped
product in (63), and then multiply these to get a good estimate of the Z;. |

The second part of the proof of Theorem 9.1 consists of figuring out how many simulations
we need to do for estimating each factor Zj - and how many steps of the Gibbs sampler
that we need to run in each simulation. For that we first need three little lemmas:

Lemma 9.1 Fize € (0,1], let k be a positive integers, and let ay,...,a, and by, ..., by be

positive numbers satisfying
€ a;
-g) <5 < ()
( 2k b; * 2k

for j=1,...,k. Define the products a = [[" a; and b= 15 bj. We then have

j=1 j=1
1-e<z<1+e. (65)
Proof: To prove the first inequality in (65), note that (1 —5)* > 1— 2, that (1 - £)* >
(1—£)(1—2)>1—3 and so on, so that
€\* ke
1— —) 1- 2%
(%) < %
Hence,

S-T05 > 10-5) - (0-5)

24This closeness is due to the Law of Large Numbers (Theorem 1.2).
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For the second inequality, we note that e?/2 < 1+ z for all z € [0, 1] (plot the functions to
see this!), so that

o~|@
|
—
/
—
+
] o
N——"
VAN
—
©)
>
ko)
VN
Rl
N———

a k
;=11
j=1

i
J j=1 j=1

Lemma 9.2 Fizd > 2 and q > 2d*>. Let G = (V, E) be a graph in which no vertez has more
than d neighbors, and pick a random gq-coloring X for G according to uniform distribution
pcq- Then, for any two distinct vertices x,y € V., the probability that X (z) # X(y)
satisfies

pa.q(X(z) # X(y)) > (66)

N —

Proof: Note first that when z and y are neighbors in G, then (66) is trivial, since its left
hand side equals 1. We go on to consider the case where x and y are not neighbors.

Consider the following experiment, which is just a way of finding out the random coloring
X € {1,...,q}V: first look at the coloring X (V \ {z}) of all vertices except z, and only
then look at the color at z. Because pg, is uniform over all colorings, we have that the
conditional distribution of the color X (x) given X (V \ {z}) is uniform over all colors that
are not attained by any neighbor of z. Clearly, x has at least ¢ — d colors to choose from,
so the conditional probability of getting precisely the color that the vertex y got, is at
most q%d, regardless of what particular coloring X (V \ {z}) we got at the other vertices.
It follows that pg (X (z) = X(y)) < qi—d, so that

Paq(X(7) #X(y) = 1—paq(X(z)=X(y))

> -1 >

= g—d - 2d2—d
1 1

> 1-> = -,

= 2~ 2

Lemma 9.3 Fiz p € [0,1] and a positive integer n. Toss a coin with heads-probability p
independently n times, and let H be the number of heads. Then, for any a > 0, we have

n
P(|H - >a) < —.
(H =l > a) <
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Proof: Note that H is a binomial (n,p) random variable; see Example 1.3. Therefore it
has mean E[H] = np and variance Var[H| = np(1 — p). Hence, Chebyshev’s inequality
(Theorem 1.1) gives

1 —
a
<
— 4a?
using the fact that p(1 —p) < § for all p € [0,1]. O

Second part of the proof of Theorem 9.1: We need some notation. For j =1,...,k,
Z

write Y; for the algorithm’s (random) estimator of Zji - Also define the products ¥V =
H‘I;ZI Y? and
k
V' =2Y =¢Y =¢"[[V;. (67)
j=1

Because of (63), we take Y* as the estimator of the desired quantity Z, 1.e., as the output

of the algorithm. First, however, we need to generate, for j = 1,...,k, the estimator Y; of
ZZ—JI How much error can we allow in each of these estimators Yi,...,Y;? Well, suppose
7

that we make sure that

€ Z; € Z;
1- — I <Y < 1+—~) J 68
( 2k> i — = ( 2k/) Z;—1 (68)

for each j. This is the same as

€ Y; €
- —<—7 <14+,
ok ~ Zj|Zj—1 2k
and Lemma 9.1 therefore guarantees that

Y
1—-¢e< z <1l-—¢
I1;-1(2;/Z;-1)

Y

which is the same as

1—e< <1l-—c¢.

Zi | Zy
The definition (67) of our estimator Y* gives

1—-e<—X<1
8_Zic_ + e

which we can rewrite as
1-e)Z; <Y*"<(1+¢)Z;. (69)
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This is exactly what we need. It therefore only remains to obtain Y;’s that satisfy (68).
We can rewrite (68) as

_fdicy 424 (70)
2k Zi ~ T Zja T 2k Zja
Due to (64) and Lemma 9.2, we have that Zfil > 1. Hence, (70) and (68) follow if we can
make sure that . 7 .
—-— <Y, -2 < (71)

Ak~ Zia T 4k
Recall that Y} is obtained by simulating random g¢-colorings for G;_; several times, by
means of the Gibbs sampler in Chapter 8, and taking Y; to be the proportion of the
simulations that result in a g-coloring £ satisfying &(z;) # £(y;). There are two sources of
error in this procedure, namely

(i) the Gibbs sampler (which we start in some fixed but arbitrary g-coloring &) is only
run for a finite number n of steps, so that the distribution u(™ of the coloring that
it produces, may differ somewhat from the target distribution pg; 4, and

(ii) only finitely many simulations are done, so the proportion Y; resulting in g-colorings
¢ with &(x;) # £(y;), may differ somewhat from the expected value u(™(X(z;) #

X(y;))-

According to (71), Y; is allowed to differ from Zfil (i-e., from pg, , (X (7;) # X (y;)), by

(64)) by at most -=. One way to accomplish this is to make sure that

™ (X (25) # X (y5)) — pa,_1,0(X (25) # X (y;))] < (72)

Lo

and that

|V; = u(X () # X (35))] (73)

< —.
8k
allowed by (64) is split up equally between the two error

£

In other words, the leeway T

sources in (i) and (ii).

Let us first consider how many steps of the Gibbs sampler we need to run in order to make
the error from (i) small enough so that (72) holds. By the formula (33) for total variation
distance drv, it is enough to run the Gibbs sampler for a sufficiently long time n to make

drv(u™, pa. ) < —.

TV(,U' pG]71,q) = 8k
and Theorem 8.1 is exactly suited for determining such an n. Indeed, it suffices, by Theorem
8.1, to take

log(k) + log (%) — log(d)

+1
log (55)

n = k
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log(k) + log (%) log(d
<k ( os (6]~ eld) 1)
_ i 2log(k) + log(e™") + log(8) 41 (74)
log ﬁ)

where the inequality is because k < dk.

Next, we consider the number of simulations of g-colorings of G;_; needed to make the
error from (ii) small enough so that (73) holds, with sufficiently high probability. By part
(i) of the definition of a randomized polynomial time approximation scheme, the algorithm
is allowed to fail (i.e., to produce an answer Y* that does not satisfy (69)) with probability
at most % Since there are k estimators Y, to compute, we can allow each one to fail (i.e.,
to disobey (73)) with probability i The probability that the algorithm fails is then at

most ki = 3, as desired.

Suppose now that we make m simulations?®® when generating Y;, and write H; for the
number of them that result in colorings & with &(z;) # £(y;). Then
Hj

Yy=—.

By multiplying both sides of (73) with m, we get that (73) is equivalent to

Em
H; —mp| < —,
| p| o

where p is defined by p = p™(X(z;) # X(y;)). But the distribution of H; is precisely
the distribution of the number of heads when we toss m coins with heads-probability p.
Lemma 9.3 therefore gives

m

EmM 2
1(z)
16k2

T 2m (75)

Em
[| .+ — mp| 8;J <

and we need to make this probability less than i Setting the expression in (75) equal to
# and solving for m, gives
A8k3

e2

m = 5

25Each time, we use the Gibbs sampler starting in the same fixed g-coloring, and run it for n steps, with
n satisfying (74).
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and this is the number of simulations we need to make for each Y;. Using k£ < dk again,

we get

48d3k3
£2

m <

Let us summarize: The algorithm has & factors Y; to compute. Each one is obtained

. 3.3 . . . . .
using no more than % simulations, and, by (74), each simulation requires no more than

k <2log(k)ﬁzfé(il))+log(8) + 1) steps of the Gibbs sampler. The total number of steps needed
2d2

is therefore at most

48d3k3 21og(k 1 -1 1
e 28 k( og(k) + log(e >+og(8>+1)

g2 log (#)

which is of the order Ck®log(k) as k — oo for some constant C' that does not depend on
k. This is less than Ck®, so the total number of iterations in the Gibbs sampler grows no
faster than polynomially. Since, clearly, the running times of all other parts of the algorithm
are asymptotically negligible compared to these Gibbs sampler iterations, Theorem 9.1 is
established. O
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Problems

9.1

9.2

9.3

(3) Suppose that we have an algorithm whose running time is bounded by a polynomial p(k), where
k is the “size” (see Footnote 22 on p. 64) of the input. Show that there exist constants C' and «

such that the running time is bounded by Ck®*.

(3) Suppose that G is a graph consisting of k isolated vertices (i.e., vertices that are not the endpoint
of any edge) plus [ pairs of vertices where in each pair the two vertices are linked by an edge, but
have no other neighbors. Show that the number of g-colorings of G is ¢**!(q — 1)L.

(8) The definition of a randomized polynomial time approximation scheme allows the algorithm
to produce, with probability %, an outprut which is incorrect, in the sense that it is not between
(1—¢)N and (1+¢€)N, where N is the true answer to the counting problem. The error probability
% can be cut to any given § > 0 by the following method: Run the algorithm many (say m, where
m is odd) times, and take the median of the outputs (i.e., the ™1 :th largest output). Show that
this works for m large enough, and give an explicit bound (depending on §) for determining how
large “large enough” is.
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10 THE PROPP-WILSON ALGORITHM

Recall, from the beginning of Chapter 8, the problems (A) and (B) with the MCMC
method. In that chapter, we saw one approach to solving these problems, namely to prove
that an MCMC chain converges sufficiently quickly to its equilibrium distribution.

In the early 1990’s, some ideas about a radically different approach began to emerge. The
breakthrough came in a 1996 paper by Jim Propp and David Wilson [PW], both working at
MIT at that time, who presented a refinement of the MCMC method, yielding an algorithm
which simultaneously solves problems (A) and (B) above, by

(A*) producing an output whose distribution is ezactly the equilibrium distribution 7,
and

(B*) determining automatically when to stop, thus removing the need to compute any
Markov chain convergence rates beforehand.

This algorithm has become known as the Propp—Wilson algorithm, and is the main
topic of this chapter. The main distinguishing feature of the Propp-Wilson algorithm
compared to ordinary MCMC algorithms is that it involves running not only one Markov
chain, but several copies of it?®, with different initial values. Another feature which is
important (we shall soon see why) is that the chains are not run from time 0 and onwards,
but rather from some time in the (possibly distant) past, and up to time 0.

Due to property (A*) above, the Propp—Wilson algorithm is sometimes said to be an exact,
or perfect simulation algorithm.

We go on with a more specific description of the algorithm. Suppose that we want to
sample from a given probability distribution 7 on a finite set S = {s1,...,s,}. As in
ordinary MCMC, we construct a reversible, irreducible and aperiodic Markov chain with
state space S and stationary distribution 7. Let P be the transition matrix of the chain, and
let ¢ : S x[0,1] — S be some valid update function, as defined in Chapter 3. Furthermore,
let N1, Ns, ... be an increasing sequence of positive integers; a common and sensible choice
is to take (N7, Na,...) = (1,2,4,8,...). (The negative numbers —N;, —Nj, ... will be used
as “starting times” for the Markov chains.) Finally, suppose that Uy,U_;,U_g,... is a
sequence of i.i.d. random numbers, uniformly distributed on [0,1]. The algorithm now
runs as follows.

26That is, we are working with a coupling of Markov chains; see the footnote on p. 36. For reasons that
will become apparent, Propp and Wilson called their algorithm coupling from the past.
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1. Set m = 1.

2. For each s € {sy,...,s;}, simulate the Markov chain starting at time —NN,, in
state s, and running up to time 0 using update function ¢ and random numbers
U-n,+1,U_N,+2,-.-,U_1,Up (these are the same for each of the k chains).

3. If all £ chains in Step 2 end up in the same state s’ at time 0, then output s’ and
stop. Otherwise continue with Step 4.

4. Increase m by 1, and continue with Step 2.

It is important that at the m'™ time that we come to Step 2, and need to use the ran-
dom numbers U_y, 11, U_n,, +2,...,U_1, Uy, that we actually re-use those random numbers
U-n,, ,+1,U-n,, ,+2,--.,U_1,Uy that we have used before. This is necessary for the al-
gorithm to work correctly (i.e., to produce an unbiased sample from 7; see Example 10.2
below), but also somewhat cumbersome, since it means that we must store a (perhaps very
long) sequence of random numbers, for possible further use?’.

In Figure 8, we consider a simple example with (N7, Ny, ...) = (1,2,4,8,...) and state
space S = {s1, S2, s3}. Since N; = 1, we start by running the chain from time —1 to time
0. Suppose (as in the top part of Figure 8) that it turns out that

(!5(81, Uo) =51
(!5(82, Uo) = 52
¢(83, Uo) = S51-

Hence the state at time 0 can take two different values (s; or s3) depending on the state
at time —1, and we therefore try again with starting time —Ny = —2. We then get

B(p(s1,U-1),Up) = d(s2, Uy) = s2
B(p(s2,U_1),Up) = é(s3,Up) = 51
B(p(83,U_1),Up) = d(s2, Up) = s2

which again produces two different values at time 0. We are therefore again forced to start

the chains from an earlier starting time —N3 = —4. This yields
D(d(d((s1,U—3),U-2),U_1),Up) = --- = s
D(A(P(d(52,U-3),U2),U-1),Up) = --- = 59
¢(¢(¢(¢(835 U*3), UfQ)a Ufl): UO) == S52.

This time, we get to state so at time 0, regardless of the starting value at time —4. The
algorithm therefore stops with output equal to s;. Note that if we were to continue and

27 An ingenious way to circumvent this problem of having to store a long sequence of random numbers,
will be discussed in Chapter 11.
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run the chains starting at times —8, —16 and so on, then we would keep getting the same
output (state s,) forever. Hence, the output can be thought of as the value at time 0 of a
chain that has been running since time —oco (whatever that means!), and which therefore
has reached equilibrium. This is the intuition for why the Propp—Wilson algorithm works;
this intuition will be turned into mathematical rigor in the proof of Theorem 10.1 below.

Figure 8: A run of the Propp-Wilson algorithm with N; = 1, Ny = 2, N3 = 4, and state space S =
{51, 82, 83}. Transitions that are carried out in the running of the algorithm are indicated with solid lines;
others are dashed.
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Note that the Propp—Wilson algorithm contains a potentially unbounded loop, and that we
therefore don’t have any general guarantee that the algorithm will ever terminate. In fact,
it may fail to terminate if the update function ¢ is chosen badly; see Problem 10.1. On the
other hand, it is often possible to show that the algorithm terminates with probability 1.2
In that case, it outputs an unbiased sample from the desired distribution 7, as stated in
the following theorem.

Theorem 10.1 Let P be the transition matriz of an irreducible and aperiodic Markov
chain with state space S = {s1,..., sk} and stationary distribution T = (w1, ..., 7). Let ¢
be a valid update function for P, and consider the Propp—Wilson algorithm as above with
(N1, No,...) = (1,2,4,8,...). Suppose that the algorithm terminates with probability 1,
and write Y for its output. Then, for any i € {1,...,k}, we have

Proof: Fix an arbitrary state s; € S. In order to prove (76), it is enough to show that for
any € > 0, we have
|P(Y:Sz’)—7'l'z'| <eg. (77)

So fix an arbitrary € > 0. By the assumption that the algorithm terminates with probability
1, we can make sure that

P(the algorithm does not need to try starting times earlier than — Ny) (78)
2 1—e¢ )

by picking M sufficiently large. Fix such an M, and imagine running a Markov chain from
time —Nj; up to time 0, with the same update function ¢ and the same random numbers
U_Ny+15-- -, Uy as in the algorithm, but with the initial state at time — Ny chosen according
to the statzonary distribution m. Write Y for the state at time 0 of this imaginary chain.
Since 7 is stationary, we have that Y has distribution 7. Furthermore, Y = Y if the event
in (78) happens, so that

PY#Y)<e
We therefore get

28To show this, it helps to know that there is a so-called 0-1 law for the termination of the Propp-Wilson
algorithm, meaning that the probability that it terminates must be either 0 or 1. Hence, it is enough to
show that P(algorithm terminates) > 0 in order to show that P(algorithm terminates) = 1.
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< P(Y - Si;Y 7é 81,)
< P(Y#Y)<e (79)
and similarly
m—PY =5) = PV=s5)-PY =s)
< P(Y=s,Y #s5)
< PY#Y)<e. (80)
By combining (79) and (80), we obtain (77), as desired. O

At this stage, a very natural objection regarding the usefulness of the Propp—Wilson al-
gorithm is the following: Suppose that the state space S is very large?, as, e.g, in the
hard-core model example in Chapter 7. How on earth can we then run the chains from all
possible starting values? This will simply take too long time on a computer to be doable
in practice.

The answer is that various ingenious techniques have been developed for representing the
chains in such a way that not all of the chains have to be simulated explicitly in order to
keep track of their values. For instance, in some situations where the state space admits a
natural ordering, and where the transition matrix P (and the update function ¢) satisfies
certain conditions relative to this ordering, it is enough to run just two Markov chains, one
starting in the “maximal” state, and the other in the “minimal” state. Chains starting in
intermediate states remain “sandwiched” between the maximal and the minimal chains, so
that when the latter two chains have coalesced, then all others are forced to coincide with
them?’. In these short lecture notes, we refrain from giving the details of such techniques,
but hope to have triggered the reader’s curiosity enough to make him or her look into the
references mentioned in Chapter 13.

Instead, we go on to discuss a couple of very tempting (but unfortunately incorrect) at-
tempts at simplifying the Propp—Wilson algorithm. The fact that these close variants do
not work, might possibly be an explanation for why the Propp—Wilson algorithm wasn’t
discovered much earlier.

29Otherwise there is no need for a Propp-Wilson algorithm, because if the state space S is small, then
the very simple simulation method in (42) can be used.

30Tt is by this technique that Propp and Wilson, in their 1996 paper, were able to simulate the so-
called Ising model (which is a much-studied model for ferromagnetic phenomena in statistical physics,
and which bears some resemblance with the hard-core model in Example 7.1) on a square grid of size
2100 x 2100. This impressive achievement is part of the explanation for the almost instant fame that they
and their algorithm received.
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Example 10.1: “Coupling to the future”. One of the most common reactions among
bright students upon having understood the Propp—Wilson algorithm is the following.

OK, that’s nice. But why bother with all these starting times further and further
into the past? Why not simply start chains in all possible states at time 0, and
then run them forwards in time until the first time N at which they coalesce,
and then output their common value?

This is indeed extremely tempting, but as it turns out, it gives biased samples in general.
To see this, consider the following simple example. Let (X, X1, ...) be a Markov chain with
state space S = {s1,s2} and transition matrix

0.5 0.5
r=1%

See the transition graph in Figure 9. Clearly, the chain is reversible with stationary distri-
bution

7= (m,m) = (;%) . (81)

Suppose that we run two copies of this chain starting at time 0, one in state s; and the
other in state s2. They will coalesce (take the same value) for the first time at some random
time N. Consider the situation at time N — 1. By the definition of N, they cannot be in
the same state at time N — 1. Hence one of the chains is in state s, at time N — 1. But
the transition matrix tells us that this chain will with probability 1 be in state s; at the
next instant, which is time N. Hence the chains are with probability 1 in state s; at the
first time of coalescence, so that this modified Propp—Wilson algorithm outputs state s; with
probability 1. This is not in agreement with the stationary distribution in (81), and hence
the algorithm is incorrect.

0.5

Q 05
) (s

Figure 9: Transition graph for the Markov chain used as counterexample to the modified algorithms in
Examples 10.1 and 10.2.

Example 10.2: Here’s another common suggestion for simplification of the Propp—Wilson
algorithm:

The need to reuse the random variables U_n,, +1,U-N,, s, - - - » Uo when restarting
the chains at time — N, 11 is really annoying. Why don’t we simply generate some
new random numbers and use them instead?

As an example to show that this modification, like the one in Example 10.1, gives biased
samples, we use again the Markov chain in Figure 9. Let us suppose that we take the Propp—
Wilson algorithm for this chain, with (N1, Na,...) = (1,2,4,8,...) and update function ¢
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given by (21), but modify it according to the suggested use of fresh new random numbers
at each round. Let Y denote the output of this modified algorithm, and define the random
variable M as the largest m for which the algorithm decides to simulate chains starting at
time —N,,. A direct calculation gives

oo
P(Y=s1) = Y P(M=m)Y =s)
m=1
> P(M=1,Y=5)+P(M=2Y =s5)
PM=1)PY =5 |M=1)+P(M=2P(Y =5, | M =2)
1 3 2
= ~—.142.2 2
3783 (82)
_ 3.2
T 473

(of course, some details are omitted in line (82) of the calculation; see Problem 10.2). Hence,
the distribution of the output Y does not agree with the distribution 7 given by (81). The
proposed modified algorithm is therefore incorrect.
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Problems

Figure 10: Transition graph for the Markov chain considered in Problem 10.1.

10.1 (8) The choice of update function matters. Recall from Problem 3.2 that for a given Markov
chain, there may be more than one possible choice of valid update function. For ordinary MCMC
simulation, this choice is more or less inconsequential, but for the Propp—Wilson algorithm, it is
often extremely important. Consider for instance the Markov chain3' with state space S = {s1, s2},

transition matrix
p— 0.5 0.5
105 05|

and transition graph as in Figure 10. Suppose that we run a Propp—Wilson algorithm for this
Markov chain, with (N7, No,...) = (1,2,4,8,...).

(a) One possible choice of valid update function is to set

v _ ) s forz€[0,0.5)
9(si,2) = { sy for z €[0.5,1]

for i = 1,2. Show that with this choice of ¢, the algorithm terminates (with probability 1)
immediately after having run the chains from time —N; = —1 to time 0.

(b) Another possible choice of valid update function is to set

_ [ s1 forz€][0,0.5)
$(s1,2) = { sy for z €[0.5,1]

and ; : )
| s3 forz €][0,0.5
9(s2,2) = { s for z €[0.5,1].
Show that with this choice of ¢, the algorithm never terminates.

10.2 (6) Verify that the calculation in equation (82) of Example 10.2 is correct.

31This particular Markov chain is even more trivial than most of the other examples that we have
considered, because it produces an i.i.d. sequence of 0’s and 1’s. But that is beside the point of this

problem.
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11 PROPP-WILSON WITH
READ-ONCE RANDOMNESS

A drawback of the Propp—Wilson algorithm introduced in the previous chapter, is the need
to reuse old random numbers: Recall that Markov chains are started at times —N;, — N5, . ..
(where N; < N, < ---) and so on until j is large enough so that starting from time —N;
gives coalescence at time 0. A crucial ingredient in the algorithm is that when the Markov
chains start at time —N;, the same random numbers as before should be used from time
—N;_; and onwards, as in previous runs. The typical implementation of the algorithm
is therefore to store all new random numbers, and to read them again when needed in
later runs. This may of course be costly in terms of computer memory, and the worst-case
scenario is that one suddenly is forced to abort a simulation when the computer has run
out of memory.

Various approaches to coping with this problem have been tried. For instance, some prac-
ticioners of the algorithm have circumvented the need for storage of random numbers by
certain manipulations of (the seeds of) the random number generator. Such manipulations
may, however, lead to all kinds of unexpected and unpleasant problems, and we therefore
advise the reader to avoid them.

There have also been various attempts to modify the Propp-Wilson algorithm in such a
way that each random number only needs to be used once. For instance, one could modify
the algorithm by using new random variables each time that old ones are supposed to be
used. Unfortunately, as we saw in Example 10.2, this approach leads to the output not
having the desired distribution, and is therefore useless. Another common suggestion is to
run the Markov chains not from the past until time 0, but from time 0 into the future until
coalescence takes place. This, however, also leads in general to an output with the wrong
distribution, as seen in Example 10.1.

The first satisfactory modification of the Propp—Wilson algorithm avoiding storage and
reuse of random numbers, was recently obtained by David Wilson himself, in [W1]. His
new scheme, which we have decided to call Wilson’s modification of the Propp-Wilson
algorithm, is a kind of coupling into the future procedure, but unlike in Example 10.1, we
don’t stop as soon as coalescence has been reached, but continue for a certain (random)
extra amount of time. This extra amount of time is obtained in a somewhat involved
manner. The remainder of this chapter will be devoted to an attempt at a precise descrip-
tion of Wilson’s modification, together with an explanation of why it produces a correct
(unbiased) sample from the stationary distribution of the Markov chain.
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Although Wilson’s modification runs into the future, it is easier to understand it if we first
consider some variations of the from the past procedure in Chapter 10, and this is what we
will do.

To begin with, note that although in Chapter 10 we focused mainly on starting times of
the Markov chains given by (Ny, No,...) =(1,2,4,8,...), any strictly increasing sequence
of positive integers will work just as well (this is clear from the proof of Theorem 10.1).

Next, let Ny < Ny < ... be a random strictly increasing sequence of positive integers,
and take it to be independent of the random variables Uy, U_1,U_g, ... used in the Propp—
Wilson algorithm32. Then the Propp—Wilson algorithm with starting times —N;, —Ns, . ..
still produces unbiased samples from the target distribution. This is most easily seen by
conditioning on the outcome of the random variables Ny, Ny, ..., and then using the proof
of Theorem 10.1 to see that, given (N7, No,...), the conditional distribution of the output
still has the right distribution, and since this holds for any outcome of (N, Ny, ...), the
algorithm will produce an output with the correct distribution.

Furthermore, we note that there is no harm (except for the added running time) in contin-
uing with running the chains from a few more earlier starting times —V; after coalescence
at time 0 has been observed. This is because the chains will keep producing the same value
at time 0.

Our next step will be to specify more precisely how to choose the random sequence
(Nl, NQ, .. ) Let

Nl = Nf
N, = Ni+N;
N3 = N;+N;+N;

where (N7, Nj,...) is an i.i.d. sequence of positive integer-valued random variables. We
take the distribution of the N;’s to be the same as the distribution of the time /N needed
to get coalescence in the coupling into the future algorithm of Example 10.1. The easiest
way to generate the N;-variables is to run chains as in Example 10.1 (independently for
each i), and to take N} to be the time taken to coalescence.

32Tt is in fact even possible to dispose of this independence requirement, but we do not need this.
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Now comes a key observation: We claim that

the probability that the Propp—Wilson algorithm starting from the first starting
time —N; = — N7 results in coalescence by time 0 (so that no earlier starting
times are needed), is at least 1.

To see this, let M; denote the number of steps needed to get coalescence in the Propp—
Wilson algorithm starting at time —N; (and running past time 0 if necessary). Then M;
and N7 clearly have the same distribution, and since they are also independent we get (by

symmetry) that
P(M; < Ny) = P(M; > Ny) (83)

Note also that

P(M, < N})+P(My > N}) = 1—-P(M,>N})+1-P(M, < N)
2 — (P(M; > Ny)+P(M; < Ny))
= 2-P(M, # Ny)

2-1=1. (84)

v

Combining (83) and (84), we get that P(M; < Nj) > 2, proving the above claim.

1
2
By similar reasoning, if we fail to get coalescence of the Propp—Wilson algorithm starting
from time —N;, then we have conditional probability at least % for the event that the
Propp—Wilson chains starting at time —N, = —(Nj + NJ) coalesce no later than time
—N;. More generally, we have that given that we come as far as running the Propp-
Wilson chains from time —N; = —(N{+...+ N¥), we have conditional probability at least
% of getting coalescence before time —N;_;. We call the j:th restart of the Propp—Wilson
algorithm successful if it results in a coalescence no later than time —/NN;_;. Then each
restart has (conditional on the previously carried out restarts) probability at least % of
being succesful.

Let M; denote the amount of time needed to get coalescence starting from time —N; in
the Propp—Wilson algorithm. Note that the only thing that makes the probability of a
successful restart not equal to % is the possibility of getting a tie, M; = N;; this is clear
from the calculation leading to (84).

Now, to simplify things, we prefer to work with a probability which is exactly %, rather

than some unknown probability above % To this end, we toss a fair coin (or, rather,

simulate a fair coin toss) whenever a tie, M; = N7 occurs, and declare the j:th result to
be x-successful if either
Mj < NJ*
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or
M; = N} and the corresponding coin toss comes up heads

(so that in other words the coin toss acts as a tie-breaker). Then, clearly, each restart has
probability exactly % of being *-successful.

Our preliminary (and correct, but admittedly somewhat strange) variant of the Propp—
Wilson algorithm is now to generate the starting times —/N;, —N,,... as above, and to
keep on until a restart is *-successful.

The next step will be to translate this variant into an algorithm with read-once randomness.
For this, we need to understand the distribution of the number of *-failing (defined as the
opposite of x-successful) restarts needed before getting a x-successful restart in the above
algorithm. To do this, we pick up one of the standard items from the probabilist’s (or
gambler’s) toolbox:

Example 11.1: The geometric distribution. Fix p € (0,1). An integer-valued random
variable Y is said to be geometrically distributed with parameter p, if

P(Y =n)=p(1-p)"

for n = 0,1,2,.... Note that if we have a coin with head-probability p which we toss
repeatedly (and independently) until it comes up heads, then the number of tails we see is
geometrically distributed with parameter p.

The number of x-failing restarts is clearly seen to be a geometrically distributed random
variable with parameter %; let us denote it by Y. The final (and *-successful) restart thus
takes place at time — Ny, (because there are Y #-failing restarts, and one x-successful).

The key to Wilson’s modification with read-once randomness is that we will find a way to
first run the chains from time —Ny; to time — Ny, then from time — Ny to time —Ny
and so on up to time 0 (without any prior attempts with starting times that fail to give
coalescence at time 0).

To see how this is done, imagine running two independent copies of the coupling into the
future algorithm in Example 10.1. We run both copies for the number of steps needed to
give both copies coalescence; hence one of them may continue for some more steps after
its own coalescence. Let us declare the copy which coalesces first to be the winner, and
the other to be the loser, with the usual fair coin-toss as the tie-breaker in case they
coalesce simultaneously. We call the procedure of running two copies of the into the future
algorithm in this way a twin run.

A crucial observation now is that the evolution of the Markov chain from time — Ny
to time —Ny has exactly the same distribution as the evloution of the winner of a twin
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run as above (this probably requires a few moments®® of thought by the reader!). So the
evolution of the Markov chains in the Propp—Wilson algorithm from time —Ny; to time
— Ny (at which coalescence has taken place), can be simulated using a twin run.

Next, we simulate a geometric () random variable Y to determine the number of *-failing
restarts in the Propp—Wilson algorithm.

If we are lucky enough so that Y happens to be 0, then —Ny = 0 (and we have coalescence
at that time) then we are done: we have our sample from the stationary distribution of
the Markov chain.

If, on the other hand, Y > 1, then we need to simulate the evolution of the Markov chain
from time —Ny to time 0. The value of X (—Ny) has already been established using the
first twin run. To simulate the evolution from time —Ny to time —Ny_;, we may do
another twin run, and let the chain evolve as in the loser of this twin run, where the loser
runs from time 0 until the time at which the winner gets coalescence. This gives precisely
the right distribution of the evolution (X(—Ny), X(—Ny +1),...,X(—Ny_;)) from time
—Ny to time —Ny_;; to see this requires a few more moments3* of thought. We then go
on to simulate the chain from time —Ny ; to time —Ny 5 in the same way using another
twin run, and so on up to time 0.

The value of the chain at time 0 then has exactly the same distribution as the output
of the Propp-Wilson algorithm described above. Hence it is a correct (unbiased) sample
from the stationary distribution, and we did not have to store or re-read any of the random
numbers. This, dear reader, is Wilson’s modification!

33This is standard mathematical jargon for something that may sometimes take rather longer. In any
case, Problem 11.1 is designed to help you understand this point.
34Gee Footnote 33.
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Problems

11.1

11.2

11.3

(5) Let Q denote the set of all possible evolutions when running the coupling into the future
algorithm in Example 10.1 (for some fixed Markov chain and update function). Consider running
two independent copies A and B of that coupling into the future algorithm, and write X4 and
Xp for the evolutions of the two copies (so that X4 and Xp are independent Q-valued random
variables). Declare the copy which coalesces first to be the winner, and the other copy to be the
loser, with a fair coin toss as tie-breaker. Write X, inner and Xjyse for the evolutions of the winner
and the loser, respectively.

(a) Show that
P(Xga=w,Xp=w)=PX4=uw',Xp=w)
for any w,w' € Q.
(b) Show that for any w € €, the events {Xuyinner = w} and {A is the winner} are independent.
(¢) Show that the distribution of X ;nner is the same as the conditional distribution of X 4 given
the event {A is the winner}.
(3) Show that a random variable X whose distribution is geometric with parameter p € (0,1), has
expectation E[X] = £ —1.

(9) Use the result in Problem 11.2 to compare the expected running times in the original Propp—
Wilson algorithm (with (N1, Na,...) =(1,2,4,8,...)), and in Wilson’s modification. In particular,
show that the expected running times are of the same order of magnitude, in the sense that there
exists a universal constant C' such that the expected running time of one of the algorithms is no
more than C' times the other’s.
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12 SIMULATED ANNEALING

The general problem considered in this chapter is the following. We have a set S =
{s1,..., sk} and a function f : S — R. The objective is to find an s; € S which minimizes
(or, sometimes, maximizes) f(s;).

When the size k of S is small, then this problem is of course totally trivial — just compute
f(s;) fori =1,..., k and keep track sequentially of the smallest value so far, and for which
s; 1t was attained. What we should have in mind is the case where £ is huge, so that this
simple method becomes computationally too heavy to be useful in practice. Here are two
examples.

Example 12.1: Optimal packing. Let G be a graph with vertex set V' and edge set E.
Suppose that we want to pack objects at the vertices of this graph, in such a way that

(i) at most one object can be placed at each vertex, and

(ii) no two objects can occupy adjacent vertices,

and that we want to squeeze in as many objects as possible under these constraints. If we
represent objects by 1’s and empty vertices by 0’s, then, in the terminology of Example
7.1 (the hard-core model), the problem is to find (one of) the feasible*® configuration(s)
¢ € {0,1}V which maximizes the number of 1’s.36 As discussed in Example 7.1, the number
of feasible configurations grows very quickly (exponentially) in the size of the graph, so that
the above method of simply computing f(£) (where in this case f(£) is the number of 1’s in
&) for all ¢ is practically impossible even for moderately large graphs.

Example 12.2: The traveling salesman problem. Suppose that we are given m cities,
and a symmetric m X m matrix D with positive entries representing the distances between
the cities. Imagine a salesman living in one of the cities, needing to visit the other m — 1
cities and then to return home. In which order should he visit the cities in order to minimize

the total distance travelled? This is equivalent to finding a permutation & = (&1,...,&n) of
the set (1,...,m) which minimizes
m—1
€)= Z Dei gy + De - (85)
i=1

Again, the simple method of computing f(£) for all £ is useless unless the size of the problem
(measured in the number of cities m) is very small, because the number of permutations £ is

m!, which grows (even faster than) exponentially in m.

35Recall that a configuration ¢ € {0,1}V is said to be feasible if no two adjacent vertices are assigned
value 1.

36For the 8 x 8 square grid in Figure 7, the optimal packing problem is trivial. Imagine the vertices as
the squares of a chessboard, and place 1’s at each of the 32 dark squares. This is easily seen to be optimal.
But for other graph structures it may not be so easy to find an optimal packing.
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A large number of methods for solving these kinds of optimization problems have been
tried. Here we shall focus on one such method: simulated annealing.

The idea of simulated annealing is the following. Suppose that we run a Markov chain
with state space S whose unique stationary distribution places most of its probability on
states s € S with a small value of f(s). If we run the chain for a sufficiently long time,
then we are likely to end up in such a state s. Suppose now that we switch to running
another Markov chain whose unique stationary distribution concentrates even more of its
probability on states s that minimize f(s), so that after a while we are even more likely
to be in an f-minimizing state s. Then switch to a Markov chain with an even stronger
preference for states that minimize f, and so on. It seems reasonable to hope that if this
scheme is constructed with some care, then the probability of being in an f-minimizing
state s at time n tends to 1 as n — oo.

If the first Markov chain has transition matrix P’ and is run for time N, the second Markov
chain has transition matrix P” and is run for time Ny, and so on, then the whole algorithm
can be viewed as an inhomogeneous Markov chain (recall Definition 2.2) with transition
matrices
P forn=1,...,N;
pm =) P" forn=N;+1,...,N; + Ny,

There is a general way to choose a probability distribution on S which puts most of its
probability mass on states with a small value of s, namely to take a so-called Boltzmann
distribution, defined below. A Markov chain with the Boltzmann distribution as its
unique stationary distribution can then be constructed using the MCMC ideas in Chapter 7.

Definition 12.1 The Boltzmann distribution 7;r on the finite set S with energy
function f : S — R and temperature parameter 7' > 0, is the probability distribution
on S which to each element s € S assigns probability

(s) = 7w (=12 (36)

’

Here

Zn =Y e (5 (s7)

sES

is a normalizing constant ensuring that Y .o msr(s) = 1.
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(When the goal is to maximize rather than to minimize f, we instead take the modified

Boltzmann distribution, in which the exponent in (86) and (87) is @ instead of %)

The following result tells us that the Boltzmann distribution with a small value of the
temperature parameter 7" has the desired property of placing most of its probability on
elements s that minimize f(s).

Theorem 12.1 Let S be a finite set and let f : S — R be arbitrary. For T > 0, let
a(T) denote the probability that a random element Y chosen according to the Boltzmann
distribution mpr on S satisfies

f(Y) = min f(s).

SES

Then

li T)=1.
5 )

Sketch proof: We consider only the case where S has a unique f-minimizer; the case of
several f-minimizers is left to Problem 12.1. Write (as usual) k£ for the number of elements
of S. Let s be the unique f-minimizer, let a« = f(s) and let b = mingcg\ (5} f(s'). Note
that a < b, so that

) a—>b
%13}) exp (T) =0. (88)

We get

1 —a exp (7)
Trr(s) = E exp <?> = S5 €xD _fT(s'))
exp (7)
exp (F*) + Les(s) OXP (_fi(“S’))
exp (7)
exp (32) + (k — 1) exp (F2)
1

1+(k—1)exp(“7_b)’

v

which tends to 1 as T'— 0, because of (88). Hence
lim7pr(s) =1,

T—0

as desired. O
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The design of a simulated annealing algorithm for finding an element s € S which minimizes
f(s), can now be carried out as follows. First construct an MCMC chain for simulating
the Boltzmann distribution 77 on S, with a general choice of T". Very often, this is done
by constructing a Metropolis chain as indicated in the final part of Chapter 7. Then we fix
a decreasing sequence of temperatures 77 > T, > T3 > ... with T; tending to 0 as ¢ — o0
(hence the term annealing), and a sequence of positive integers Ny, Ny, . ... Starting from
an arbitrary initial state in S, we run the chain at temperature 7 for /Ny units of time,
then at temperature 715 for N units of time, and so on.

The choice of (11,75, ...) and (N, N, ...) is called the annealing (or cooling) schedule, and
is of crucial importance: How fast should the temperature tend to 0 as time n — oco? There
exist theorems stating that if the temperature approaches 0 sufficiently slowly (which, e.g.,
can be accomplished by letting the sequence (N7, No,...) grow sufficiently fast), then the
probability of seeing an f-minimizer at time n does tend to 1 as n — c03”. The meaning
of “sufficiently slowly” of course depends on the particular application. Unfortunately,
the annealing schedules for which these theorems guarantee such convergence are in most
cases so slow that we have to wait for an astronomical amount of time before having a
temperature that is low enough that we can be anywhere near certain of having found an
f-minimizer. Therefore, most annealing schedules in practical applications are faster than
those for which the desired convergence is rigorously known. The danger of this is that
if the cooling takes place too rapidly, then the Markov chain risks getting stuck in a local
minimum, rather than in a global one; see Example 12.4 below. The choice of annealing
schedule in practice is therefore a highly delicate balance: On one hand, we want it to
be fast enough to get convergence in reasonable time, and on the other hand, we want it
to be slow enough to avoid converging to an element which is not an f-minimizer. This
often requires quite a bit of experimentation, giving the method more the character of
“engineering” than of “mathematics”.

Example 12.3: Simulated annealing for the traveling salesman problem. Consider
the traveling salesman problem in Example 12.2. We wish to find the permutation £ =
(&1,...,&,) of (1,...,m) which minimizes the total distance f(£) defined in (85). In order to
get a simulated annealing algorithm for this problem, let us construct a Metropolis chain (see
Chapter 7) for the Boltzmann distribution 7,7 at temperature 7' on the set of permutations of
(1,...,m). To this end, we first need to define which permutations to view as “neighbours”,
i.e., between which permutations to allow transitions in the Metropolis chain. A sensible
choice is to declare two permutations £ and £’ to be neighbours if there exist i,5 € {1,...,m}
with ¢ < j such that &' arises by “reversing” the segment (¢;,...,&;), meaning that

§I = (51776411) = (517527'"7€i—17§]’7€j—17"'7£i+17€i7€j+17€j+27"'7€m)' (89)

370ne such theorem was proved by Geman & Geman [GG]: If the temperature 7™ at time n converges
to 0 slowly enough so that

(n)  F(maXses f(5) — minyes £(s))

T
logn

for all sufficiently large n, then the probability of seeing an f-minimizer at time n converges to 1 as n — oo.
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This corresponds to removing two edges from the tour through all the cities, and inserting
two other edges with the same four endpoints in such a way that a different tour is obtained;
see Figure 11. The transition matrix for the Metropolis chain corresponding to this choice of
neighbourhood structure and the Boltzmann distribution at temperature 7', is obtained by
inserting (86) into (45). We get

m(ng—l) min {exp (M) ,1} if £ and &' are neighbours
if £ # &' are not neighbours
1- Z 7m(£71) min {exp (7“5)_;(5 )) ,1} ifeE=¢,

et
3413

Pee = (90)

where the sum is over all permutations £ that are neighbours of £. This corresponds to
the following transition mechanism. First pick 4,5 € {1,...,m} uniformly from the set of
all choices such that ¢ < j. Then switch from the present permutation ¢ to the permutation

&' defined in (89) with probability min {exp (M) ,1}, and stay in permutation & for

another time unit with the remaining probability 1 — min {exp (%) , 1}. This chain

has the Boltzmann distribution 7y 1 as a reversible distribution, by the general Metropolis
chain theory discussed in Chapter 7. The chain can also be shown to be irreducible (which
is necessary in general for it to qualify as a useful MCMC chain).

It then only remains to decide upon a suitable cooling schedule, i.e., a suitable choice of
(T1,Ts,...) and (N1, Ns,...) in the simulated annealing algorithm. Unfortunately, we have
no better suggestion than to do this by trial-and-error experimentation.

Figure 11: A transition in the Metropolis chain in Example 12.3 for the traveling salesman problem,
corresponding to going from the permutation £ = (1,2, 3,4,5,6,7,8,9,10,11,12,13, 14) to the permutation
¢ =(1,2,3,4,11,10,9,8,7,6,5,12, 13, 14).
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We note one very happy circumstance of the above example: When inserting the Boltz-
mann distribution (86) into (45) to obtain (90), the normalizing constant Z;r cancelled
everywhere, because all the expressions involving the Boltzmann distribution were in fact
ratios between Boltzmann probabilities. That is very good news, because otherwise we
would have had to calculate Z;r, which is computationally infeasible. The same thing
would happen for any Boltzmann distribution, and we therefore conclude that Metropolis
chains are in general very convenient tools for simulation of Boltzmann distributions.

S 2

S S

Figure 12: The graph structure chosen for the Metropolis algorithm in Example 12.4.

Let us finally give a simple example to warn against too rapid cooling schedules.

Example 12.4: The hazard of using a fast annealing schedule. Let S = {s1,...,54},
let f:S — R be given by

Hoy =2
S9) = 2
f(s5) =0 (O
f(s4) =2

and suppose that we want to find the minimum of f(s;) using simulated annealing®. To
find a Metropolis chain for the Boltzmann distribution on S at temperature T', we need to
impose a graph structure on S. Let’s say that we decide to opt for the square formation in
Figure 12. By applying (86) and (45), the transition matrix

1—e /T le-V/T 0 le—V/T
: o 1 o
5 Le2/T 1 o=2T Le=2/T
3 0 3 0

is obtained. Suppose now that we run the inhomogeneous Markov chain (Xg, X3,...) on S,
corresponding to some given annealing schedule, starting with Xo = s;. Write 7 for the
temperature at time n in this annealing schedule. Let A be the event that the chain remains
in state s; forever (so that in particular the chain never finds the f-minimizing state s3). We

get
PA) = P(Xi=s51,X2=1s1,...)
] hm P(X12817X2:317___,Xn231)
n—00

380f course, it is somewhat silly to use simulated annealing on a small problem like this one, where we
can deduce that the minimum is f(s3) = 0 by immediate inspection of (91). This example is chosen just
to give the simplest possible illustration of a phenomenon that sometimes happens in simulated annealing
algorithms for larger and more interesting problems.
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= lim P(Xl = 8 |X0 = S]_)P(X2 = 81 |X1 = 51) . P(Xn =51 |Xn71 — Sl)

n—oo

N R (e

=

which is equal to 0 if and only if Y .o, e U/TY = co. Hence, if T™ is sent to 0 rapidly

enough so that Y, e WY < 00, then P(A) > 0, so that the chain may get stuck in state
s1 forever. This happens, e.g., if we take T(® = % The simulated annealing algorithm then
fails to find the true (global) f-minimizer f3. Two factors combine to create this failure,

namely

(i) the annealing schedule being too fast, and

(ii) state s; being a local f-minimizer (meaning that f takes a smaller value at s; than
at any of the neighbours of s; in the graph structure used for the Metropolis chain)
without being a global one.
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Problems

12.1 (8) Modify the proof of Theorem 12.1 in order to take care of the case where there are several
elements s € S satisfying f(s) = mingcg f(s').

12.2 (8*) Suppose that we want to solve the optimal packing problem in Example 12.1 (i.e., we want
to maximize f(£) over all feasible configurations ¢ € {0,1}", where f(£) is the number of 1’s in
£), and decide to try simulated annealing. To find suitable Markov chains, we start by considering

Boltzmann distributions for the function f(£). Since we are dealing with a maximization (rather
than minimization) problem, we consider the modified Boltzmann distribution with the minus sign

in the exponents of (86) and (87) removed.
(a) Show that this modified Boltzmann distribution at temperature T is the same as the probability
measure pg,» defined in Problem 7.4, with A = exp (%).

(b) Implement and run a simulated annealing algorithm for some suitable instances of this problem.
(Note that due to (a), the MCMC algorithm constructed in Problem 7.4 can be used for this

purpose.)
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13 FURTHER READING

Markov theory is a huge subject (much bigger than indicated by these notes), and conse-
quently there are many books written on it. Three books that have influenced the present
text are the ones by Brémaud [B], Grimmett & Stirzaker [GS], and (the somewhat more
advanced book by) Durrett [Du]. Another nice introduction to the topic is the book by
Norris [N]. The only up-to-date Swedish texts on Markov chains that I am aware of are the
ones by Rydén & Lindgren [RL] and Enger & Grandell [EG]. The reader can find plenty
of additional material (more general theory, as well as other directions for applications) in
any of these references.

Still on the Markov theory side (Chapters 2—6) of this text, there are two particular topics
that I would warmly recommend for further study to anyone with a taste for mathematical
elegance and the power and simplicity of probabilistic arguments: The first one is the
coupling method, which was used to prove Theorem 5.2, and which also underlies the
algorithms in Chapter 10; see the highly readable book by Lindvall [L]. The second topic is
the relation between reversible Markov chains and electrical networks, which is mas-
terly treated in the book by Doyle & Snell [DS]. Héggstrom [H] gives a short introduction
in Swedish.

Another goldmine for the ambitious student, is the collection of papers edited by Snell
[Sn]. Many exciting topics in probability, several of which concern Markov chains and/or
randomized algorithms, are presented on a level accessible to advanced undergraduates.

Moving on to the algorithmic side (Chapters 7-12), it is worth stressing again that the
collection of algorithms considered here in no way is representative of the entire field of
randomized algorithms. A reasonable overview can be obtained by reading, in addition to
theses notes, the book by Motwani & Raghavan [MR].

The main standard reference for MCMC (Chapter 7) these days, seems to be the the book
edited by Gilks, Richardson & Spiegelhalter [GRS]. Another book which is worth reading is
the well-written research monograph by Sinclair [Si]. For the particular case of simulating
the hard-core model described in Example 7.1, see, e.g., the paper by Luby & Vigoda [LV].
The treatment of g-colorings in Chapters 8 and 9 is based on the paper by Jerrum [J].

Moving on to Propp—Wilson algorithms (Chapters 10 and 11), this is such a recent topic
that it has not yet been treated in book form. The original 1996 paper by Propp & Wilson
[PW] has already become a classic, and should be read by anyone wanting to dig deeper into
this topic. Other papers that may serve as introductions to the Propp—Wilson algorithm,
are those by Haggstrom & Nelander [HN] and Dimakos [Di]. An annotated bibliography
on the subject, continuously maintained by Wilson, can be found at the web site [W2].
The read-once variant of the Propp—Wilson algorithm that we discussed in Chapter 11,
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was introduced by Wilson [W1].

Concerning simulated annealing (Chapter 12), see the contribution by B. Gidas to the
aforementioned collection [Sn].

Finally, let me emphasize once more that the difficult problem of making sure that we
have access to a good (pseudo-)random number generator (as discussed very briefly in the
beginning of Chapter 3) deserves serious attention. The classical reference for this problem
is Knuth [K]. See also Goldreich [G] for an introduction to a promising new approach based
on the theory of computational complexity.
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