
Performance measurements of computer systems:
tools and analysis

Master 2R SL module MD

Jean-Marc Vincent, Bruno Gaujal and Arnaud Legrand

Laboratory LIG
MESCAL Project

Universities of Grenoble
{Jean-Marc.Vincent,Bruno.Gaujal,Arnaud.Legrand}@imag.fr

October 15, 2007

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements 1 / 48

Outline

1 Introduction, Definitions, Classifications
Performance Metric
Monitors & Measurements

2 Monitoring Examples
Measuring Time: Practical Considerations
Sequential Program Execution Monitoring: Profiling
“API-based” Monitoring Examples
Indirect Metrics

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements 2 / 48

Outline

1 Introduction, Definitions, Classifications
Performance Metric
Monitors & Measurements

2 Monitoring Examples
Measuring Time: Practical Considerations
Sequential Program Execution Monitoring: Profiling
“API-based” Monitoring Examples
Indirect Metrics

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements
Introduction, Definitions, Classifications

3 / 48

Outline

1 Introduction, Definitions, Classifications
Performance Metric
Monitors & Measurements

2 Monitoring Examples
Measuring Time: Practical Considerations
Sequential Program Execution Monitoring: Profiling
“API-based” Monitoring Examples
Indirect Metrics

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements
Introduction, Definitions, Classifications

4 / 48

Performance Metric

Metrics are criteria to compare the performances of a system.
In general, the metrics are related to speed, accuracy, reliability and
availability of services.
The basic characteristics of a computer system that we typically
need to measure are:

I a count of how many times an event occurs,

I the duration of some time interval, and

I the size of some parameter.

From these types of measured values, we can derive the actual value
that we wish to use to describe the system: the performance metric.

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements
Introduction, Definitions, Classifications

5 / 48

Performance Metric Characterization

Reliability A system A always outperforms a system B ⇔ the performance
metric indicates that A always outperforms B.

Repeatability The same value of the metric is measured each time the
same experiments is performed.

Consistency Units of the metrics and its precise definition are the same
across different systems and different configurations of the same system.

Linearity The value of the metric should be linearly proportional to the
actual performance of the machine.

Easiness of measurement If a metric is hard to measure, it is unlikely any-
one will actually use it. Moreover it is more likely to be incorrectly
determined.

Independence Metrics should not be defined to favor particular systems.

Many metrics do not fulfill these requirements.

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements
Introduction, Definitions, Classifications

6 / 48

Performance as Time

I Time between the start and the end of an operation
I Also called running time, elapsed time, wall-clock time, response

time, latency, execution time, ...
I Most straightforward measure: “my program takes 12.5s on a

Pentium 3.5GHz”
I Can be normalized to some reference time

I Must be measured on a “dedicated” machine

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements
Introduction, Definitions, Classifications

7 / 48

Performance as Rate

Used often so that performance can be independent on the “size”
of the application (e.g., compressing a 1MB file takes 1 minute.
compressing a 2MB file takes 2 minutes ; the performance is the
same).

MIPS Millions of instructions / sec = instruction count
execution time×106 = clock rate

CPI×106 .
But Instructions Set Architectures are not equivalent

I 1 CISC instruction = many RISC instructions
I Programs use different instruction mixes
I May be ok for same program on same architectures

MFlops Millions of floating point operations /sec
I Very popular, but often misleading
I e.g., A high MFlops rate in a stupid algorithm could have poor application

performance

Application-specific I Millions of frames rendered per second
I Millions of amino-acid compared per second
I Millions of HTTP requests served per seconds

Application-specific metrics are often preferable and others may
be misleading

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements
Introduction, Definitions, Classifications

8 / 48

“Peak” Performance?

Resource vendors always talk about peak performance rate

I Computed based on specifications of the machine
I For instance:

I I build a machine with 2 floating point units
I Each unit can do an operation in 2 cycles
I My CPU is at 1GHz
I Therefore I have a 1*2/2 =1GFlops Machine

I Problem:
I In real code you will never be able to use the two floating point

units constantly
I Data needs to come from memory and cause the floating point

units to be idle

Typically, real code achieves only an (often small) fraction of the
peak performance

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements
Introduction, Definitions, Classifications

9 / 48

Benchmarks

I Since many performance metrics turn out to be misleading,
people have designed benchmarks

I Example: SPEC Benchmark
I Integer benchmark
I Floating point benchmark

I These benchmarks are typically a collection of several codes
that come from “real-world software”

I The question “what is a good benchmark” is difficult
I A benchmark is representative of a given workload.
I If the benchmarks do not correspond to what you’ll do with the

computer, then the benchmark results are not relevant to you

I Other typical benchmarks
I Livermore loops, NAS kernels, LINPACK, . . .
I SPEC SFS, SPECWeb, . . .

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements
Introduction, Definitions, Classifications

10 / 48

How About GHz?

I This is often the way in which people say that a computer is
better than another

I More instruction per seconds for higher clock rate

I Faces the same problems as MIPS
Processor Clock Rate SPEC FP2000 Benchmark

IBM Power3 450 MHz 434

Intel PIII 1.4 GHz 456

Intel P4 2.4GHz 833

Itanium-2 1.0GHz 1356

I But usable within a specific architecture

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements
Introduction, Definitions, Classifications

11 / 48

Outline

1 Introduction, Definitions, Classifications
Performance Metric
Monitors & Measurements

2 Monitoring Examples
Measuring Time: Practical Considerations
Sequential Program Execution Monitoring: Profiling
“API-based” Monitoring Examples
Indirect Metrics

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements
Introduction, Definitions, Classifications

12 / 48

Monitor

A Monitor is a tool to observe the activities on a system. In general,
a monitor:

1 makes measurements on the system (Observation)
2 collects performance statistics (Collection),
3 analyzes the data (Analysis),
4 displays results (Presentation).

Why do we want a monitor ?
I A programmer wants to find frequently used segments of a program

to optimize them.
I A system administrator wants to measure resource utilization to find

performance bottlenecks.
I A system administrator wants to tune the system and measure the im-

pact of system parameters modifications on the system performance.
I An analyst wants to characterize the workload. Results may be used

for capacity planning and for creating test workloads.
I An analyst wants to find model parameters, to validate models or to

develop inputs for models.

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements
Introduction, Definitions, Classifications

13 / 48

Monitor Terminology

Event A change in the system state (context switch, seek on a disk,
packet arrival, . . .).

Trace Log of events usually including the time of the events, their
type and other important parameters.

Overhead Measurement generally induce slight perturbations and
consume system resources (CPU, storage,. . .).

Domain The set of activities observable by the monitor (CPU time,
number of bytes sent on a network card,. . .).

Input Rate The maximum frequency of events that a monitor can
correctly observe. One generally distinguish between burst rate
and sustained rate.

Resolution Coarseness of the information observed.

Input Width The number of bits of information recorded on an
event.

Portability Amount of system modifications required to implement
the monitor.

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements
Introduction, Definitions, Classifications

14 / 48

Events and metrics

The different types of metrics that an analyst may wish to measure
can be classified into the following categories:

Event-count metrics Simply count the number of times a specific
event occurs (e.g., number of page faults, number of disk I/O
made by a program).

Secondary-event metrics These types of metrics record the values of
some secondary parameters whenever a given event occurs (e.g.,
the average message size).

Profiles A profile is an aggregate metric used to characterize the
overall behavior of an application program or of an entire system.

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements
Introduction, Definitions, Classifications

15 / 48

Observation mechanisms

Observation is commonly performed with three mechanisms:

Implicit spying it is sometimes possible to spy the system without
really interfering with it (listening on a local Ethernet bus or in
wireless environments). Thus, there is almost no impact on the
performance of the system being monitored. Implicit-spying is
generally used with filters because many observed data are not
interesting.

Explicit Instrumenting By incorporating trace points, probe points,
hooks or counters, additional information to implicit-spying can
be obtained. Some systems offer an API to incorporate such
hooks or exports the values of internal counters.

Probing Making “feeler” requests on the system to sense its current
performance.

Some activities can be observed by only one of the three mecha-
nisms.

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements
Introduction, Definitions, Classifications

16 / 48

Activation Mechanisms

Event-driven Record the information whenever a given event occurs. Gen-
erally done with counters. The overhead is thus proportional to the
frequency of events.

Tracing Similar to event-driven strategies, except that parts of the system
state are also recorded. This is thus even more time-consuming and
also also requires much more storage.

Sampling Recording of information occurs periodically. The overhead and
the resolution of the sampling can thus be adjusted. This strategies
produces a statistical summary of the overall behavior of the system.
Events that occurs infrequently may be completely missed. Results may
also be different from one run to the other.

Indirect An indirect measurement must be used been the metric that is
to be determined is not directly accessible (e.g., for portability reasons
or for practical reasons). In this case, one must find another metric
that can be measured directly, from which one can deduce or derive
the desired performance metric.
Generally, a model of the system is underlying the deduced metric and
the quality of this model is fundamental.

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements
Introduction, Definitions, Classifications

17 / 48

Collection

The collection mechanism highly depends on whether we are working
on a on-line monitor (system state is displayed during monitoring)
or on a batch monitor (system state is stored for later analysis).
Most data need to be recorded in buffers, hence buffer management
issues:

I buffer size is a function of input rate, input width and emptying
rate,

I larger number of buffers allows to cope with variations in filling
and emptying rates,

I buffer overflow management and tracking,

I data compression, on-line analysis,

Abnormal events should also be monitored and even handled at
higher priority (low probability ; low overhead, possibility to take
preventive action before the system becomes unavailable).

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements
Introduction, Definitions, Classifications

18 / 48

Distributed Monitoring Issues

I The problem of communication between m collectors and n
observers often arises.

I We generally resort to hierarchy of collectors/observers for a
better scalability. This intensifies all previous buffer manage-
ment issues.

I When collecting data from several observers, clock synchro-
nization often becomes an important issue. The tolerance or
maximum allowed clock skew is often related to the round-trip
delay. The larger the system, the more problematic clock skews.

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements
Introduction, Definitions, Classifications

19 / 48

Presentation

This layer is closely tied to the applications for which the moni-
tor is used (performance monitoring, configuration monitoring, fault
monitoring,. . .).

I Presentation frequency (for on-line monitors).

I Hierarchical representation/aggregation (space/time/states/values).

I Alarm mode (thresholds, abnormal events).

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements
Introduction, Definitions, Classifications

20 / 48

Measurement Induces Perturbations

I The system resources consumed by the measurement tool itself
as it collects data will strongly affect how much perturbation
the tool will cause in the system.

I Tracing produces the highest level of perturbation (both CPU
and disk are used), in particular on time measurements, spa-
tial and temporal memory access (cache flush, different pag-
ing,. . .), or on system response time (and thus on workload
characterization).

I The largest the overhead, the more likely the system behavior
will be modified.

Measuring a system alters it

Remain alert to how these perturbations may bias your measure-
ments and, ultimately, the conclusions you are able to draw from
your experiments.

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements
Introduction, Definitions, Classifications

21 / 48

Outline

1 Introduction, Definitions, Classifications
Performance Metric
Monitors & Measurements

2 Monitoring Examples
Measuring Time: Practical Considerations
Sequential Program Execution Monitoring: Profiling
“API-based” Monitoring Examples
Indirect Metrics

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements Monitoring Examples 22 / 48

Exercise

Try to find the main characteristics, advantages and drawbacks of
the following monitors.

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements Monitoring Examples 23 / 48

Outline

1 Introduction, Definitions, Classifications
Performance Metric
Monitors & Measurements

2 Monitoring Examples
Measuring Time: Practical Considerations
Sequential Program Execution Monitoring: Profiling
“API-based” Monitoring Examples
Indirect Metrics

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements Monitoring Examples 24 / 48

Measuring time by hand?

I One possibility would be to do this by just “looking” at a clock,
launching the program, “looking” at the clock again when the
program terminates

I This of course has some drawbacks
I Poor resolution
I Requires the user’s attention

I Therefore operating systems provide ways to time programs
automatically

I UNIX provide the time command

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements Monitoring Examples 25 / 48

The UNIX time Command

I You can put time in front of any UNIX command you invoke

I When the invoked command completes, time prints out timing
(and other) information

surf:~$ /usr/bin/X11/time ls -la -R ~/ > /dev/null
4.17user 4.34system 2:55.83elapsed 4%CPU
(0avgtext+0avgdata 0maxresident)k
0inputs+0outputs (0major+1344minor)pagefaults 0swaps

I 4.17 seconds of user time
I 4.34 seconds of system time
I 2 minutes and 55.85 seconds of wall-clock time
I 4% of CPU was used
I 0+0k memory used (text + data)
I 0 input, 0 output output (file system I/O)
I 1344 minor pagefaults and 0 swaps

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements Monitoring Examples 26 / 48

User, System, Wall-Clock?

I User Time: time that the code spends executing user code (i.e.,
non system calls)

I System Time: time that the code spends executing system calls

I Wall-Clock Time: time from start to end
I Wall-Clock ≥ User + System. Why?

I because the process can be suspended by the O/S due to con-
tention for the CPU by other processes

I because the process can be blocked waiting for I/O

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements Monitoring Examples 27 / 48

User, System, Wall-Clock?

I User Time: time that the code spends executing user code (i.e.,
non system calls)

I System Time: time that the code spends executing system calls

I Wall-Clock Time: time from start to end
I Wall-Clock ≥ User + System. Why?

I because the process can be suspended by the O/S due to con-
tention for the CPU by other processes

I because the process can be blocked waiting for I/O

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements Monitoring Examples 27 / 48

User, System, Wall-Clock?

I User Time: time that the code spends executing user code (i.e.,
non system calls)

I System Time: time that the code spends executing system calls

I Wall-Clock Time: time from start to end

I Wall-Clock ≥ User + System. Why?

I because the process can be suspended by the O/S due to con-
tention for the CPU by other processes

I because the process can be blocked waiting for I/O

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements Monitoring Examples 27 / 48

User, System, Wall-Clock?

I User Time: time that the code spends executing user code (i.e.,
non system calls)

I System Time: time that the code spends executing system calls

I Wall-Clock Time: time from start to end
I Wall-Clock ≥ User + System. Why?

I because the process can be suspended by the O/S due to con-
tention for the CPU by other processes

I because the process can be blocked waiting for I/O

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements Monitoring Examples 27 / 48

User, System, Wall-Clock?

I User Time: time that the code spends executing user code (i.e.,
non system calls)

I System Time: time that the code spends executing system calls

I Wall-Clock Time: time from start to end
I Wall-Clock ≥ User + System. Why?

I because the process can be suspended by the O/S due to con-
tention for the CPU by other processes

I because the process can be blocked waiting for I/O

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements Monitoring Examples 27 / 48

User, System, Wall-Clock?

I User Time: time that the code spends executing user code (i.e.,
non system calls)

I System Time: time that the code spends executing system calls

I Wall-Clock Time: time from start to end
I Wall-Clock ≥ User + System. Why?

I because the process can be suspended by the O/S due to con-
tention for the CPU by other processes

I because the process can be blocked waiting for I/O

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements Monitoring Examples 27 / 48

Using time

I It’s interesting to know what the user time and the system time
are

I for instance, if the system time is really high, it may be that the
code does to many calls to malloc(), for instance

I But one would really need more information to fix the code (not
always clear which system calls may be responsible for the high
system time)

I Wall-clock - system - user ' I/O + suspended
I If the system is dedicated, suspended ' 0
I Therefore one can estimate the cost of I/O
I If I/O is really high, one may want to look at reducing I/O or

doing I/O better

I Therefore, time can give us insight into bottlenecks and gives
us wall-clock time

I Measurements should be done on dedicated systems

I time relies on times(2), getrusage(2) and clock(3).

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements Monitoring Examples 28 / 48

Dedicated Systems

I Measuring the performance of a code must be done on a “quies-
cent”, “unloaded” machine (the machine only runs the standard
O/S processes)

I The machine must be dedicated
I No other user can start a process
I The user measuring the performance only runs the minimum

amount of processes (basically, a shell)

I Nevertheless, one should always present measurement results
as averages over several experiments (because the (small) load
imposed by the O/S is not deterministic)

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements Monitoring Examples 29 / 48

Drawbacks of UNIX time

I The time command has poor resolution
I “Only” milliseconds
I Sometimes we want a higher precision, especially if our perfor-

mance improvements are in the 1-2% range

I time times the whole code
I Sometimes we’re only interested in timing some part of the code,

for instance the one that we are trying to optimize
I Sometimes we want to compare the execution time of different

sections of the code

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements Monitoring Examples 30 / 48

Timing with gettimeofday

I gettimeofday from the standard C library

I Measures the number of microseconds since midnight, Jan 1st
1970, expressed in seconds and microseconds

struct timeval start;
...
gettimeofday(&tv,NULL);
printf("%ld,%ld\n",start.tv sec, start.tv usec);

I Can be used to time sections of code
I Call gettimeofday at beginning of section
I Call gettimeofday at end of section
I Compute the time elapsed in microseconds:

(end.tv sec*1000000.0 + end.tv usec -
start.tv sec*1000000.0 - start.tv usec) / 1000000.0)

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements Monitoring Examples 31 / 48

Other Ways to Time Code

I ntp gettime() (Internet RFC 1589)
I Sort of like gettimeofday, but reports estimated error on time

measurement
I Not available for all systems
I Part of the GNU C Library

I Java: System.currentTimeMillis()
I Known to have resolution problems, with resolution higher than

1 millisecond!
I Solution: use a native interface to a better timer

I Java: System.nanoTime()
I Added in J2SE 5.0
I Probably not accurate at the nanosecond level

I Tons of “high precision timing in Java” on the Web

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements Monitoring Examples 32 / 48

Outline

1 Introduction, Definitions, Classifications
Performance Metric
Monitors & Measurements

2 Monitoring Examples
Measuring Time: Practical Considerations
Sequential Program Execution Monitoring: Profiling
“API-based” Monitoring Examples
Indirect Metrics

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements Monitoring Examples 33 / 48

Profiling

I A profiler is a tool that monitors the execution of a program
and that reports the amount of time spent in different functions

I Useful to identify the expensive functions
I Profiling cycle

I Compile the code with the profiler
I Run the code
I Identify the most expensive function
I Optimize that function (i.e. call it less often if possible or make

it faster)
I Repeat until you can’t think of any ways to further optimize the

most expensive function

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements Monitoring Examples 34 / 48

Using gprof

I Compile your code using gcc with the -pg option

I Run your code until completion

I Then run gprof with your program’s name as single command-
line argument

I Example: gcc -pg prog.c -o prog; ./prog gprof prog
> profile file

I The output file contains all profiling information (amount and
fraction of time spent in which function)

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements Monitoring Examples 35 / 48

Using gprof

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements Monitoring Examples 36 / 48

Callgrind

I Callgrind is a tool that uses runtime code instrumentation frame-
work of Valgrind for call-graph generation

I Valgrind is a kind of emulator or virtual machine.
I It uses JIT (just-in-time) compilation techniques to translate

x86 instructions to simpler form called ucode on which various
tools can be executed.

I The ucode processed by the tools is then translated back to the
x86 instructions and executed on the host CPU.

I This way even shared libraries and dynamically loaded plugins
can be analyzed but this kind of approach results with huge slow
down (about 50 times for callgrind tool) of analyzed application
and big memory consumption.

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements Monitoring Examples 37 / 48

Callgrind/Kcachegrind

Data produced by callgrind can be loaded into KCacheGrind tool for
browsing the performance results.

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements Monitoring Examples 38 / 48

Outline

1 Introduction, Definitions, Classifications
Performance Metric
Monitors & Measurements

2 Monitoring Examples
Measuring Time: Practical Considerations
Sequential Program Execution Monitoring: Profiling
“API-based” Monitoring Examples
Indirect Metrics

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements Monitoring Examples 39 / 48

top

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements Monitoring Examples 40 / 48

How does top get all these information?

It uses /proc!

kanza: $ ldd ‘which top‘
linux-gate.so.1 libproc-3.2.7.so.5
libncurses.so libc.so.6
libdl.so.2 /lib/ld-linux.so.2

/proc is a way for the kernel to provide information
about the status of entries in its process table.
On systems where /proc is available, there is no need
to instrument the kernel or the application to get these
information. Measures are always but it doesn’t mean
that top does not induce perturbations. . . .
Other tools (e.g., gkrellm) rely on the same API.

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements Monitoring Examples 41 / 48

Getting finer information

TCPdump is based on libpcap and enables to dump the traffic on a
network card.

/proc is rather common but accessing such information requires
specific access permissions. Such library does not work on high
performance cards such as MyriNet, InfiniBand,

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements Monitoring Examples 42 / 48

SNMP-based tools

I The Simple Network Management Protocol (SNMP) is an ap-
plication layer protocol that facilitates the exchange of man-
agement information between network devices. It is part of
the Transmission Control Protocol/Internet Protocol (TCP/IP)
protocol suite. SNMP enables network administrators to man-
age network performance, find and solve network problems, and
plan for network growth.

I Many tools build upon SNMP to gather information on routers

I SNMP can even be used to build maps of the network. How-
ever, SNMP requires specific access permissions and is often
closed for network security reasons.

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements Monitoring Examples 43 / 48

Hard things

I An API to access monitoring information is often available but
not always. . .

I Even when these monitors are “built-in”, they are generally low-
level and building a usable high-level monitoring tool requires
a lots of work on:

I Sampling
I Collection
I Analysis and Presentation

I When such an API is not available you can:
I either design a low-level monitor if possible,
I to try to evaluate the metric you are interested in an other way.

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements Monitoring Examples 44 / 48

Outline

1 Introduction, Definitions, Classifications
Performance Metric
Monitors & Measurements

2 Monitoring Examples
Measuring Time: Practical Considerations
Sequential Program Execution Monitoring: Profiling
“API-based” Monitoring Examples
Indirect Metrics

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements Monitoring Examples 45 / 48

Atlas

I ATLAS (Automatically Tuned Linear Algebra Software) is an
approach for the automatic generation and optimization of nu-
merical software (BLAS and a subset of the linear algebra rou-
tines in the LAPACK library).

I To produce such kernels, ATLAS needs to know the number of
cache levels, their respective sizes, whether the processor has
the ability to perform additions and multiplications at the same
time, whether it can make use of vector registers or specific
instruction sets (e.g., 3dnow, SSE1, or SSE2 extensions). . .

I There is no portable API providing such information, therefore
ATLAS runs some probes to guess these values.

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements Monitoring Examples 46 / 48

NWS

I The Network Weather Service is the de facto standard of the
emerging Grid community to monitor the system availability. It
provides high-level metrics to help applications and schedulers.
It also provides trends thanks to a set of statistical forecasters.

I Available CPU share for a new process ((system+user)/(total)):
due to the process priorities and other scheduling tricks, this
value is hard to guess from the /proc values without actually
probing. As probes are intrusive, NWS uses /proc values and
uses a correcting factor based on regular probes.

I Available bandwidth between two hosts: how much bandwidth
would get an application using a single standard socket ? Active
probes are performed.

I What about the capacity of network links between two hosts?
Pathchar infers the characteristics of links along an Internet
path by sending series of probes with varying values of TTL
and of size and using statistical analysis.

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements Monitoring Examples 47 / 48

A last example

Peer-to-peer systems:

I Having good evaluations of the current number of peers is a
crucial problem and an active research domain.

I “Probabilistic games” give good results.

Main Issue

All the previous approach rely on a model of the system and on pa-
rameters estimation based on the expected model prediction. When
the model is incorrect, the estimation is likely to be incorrect as well.

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements Monitoring Examples 48 / 48

R. K. Jain.
The Art of Computer Systems Performance Analysis: Tech-
niques for Experimental Design, Measurement, Simulation, and
Modeling.
John Wiley & Sons Canada, Ltd., 1 edition, 1991.

David J. Lilja.
Measuring Computer Performance: A Practitioner’s Guide -
David J. Lilja - Hardcover.
Cambridge University Press, 2000.

J.-M. Vincent, B. Gaujal and A. Legrand Performance measurements Monitoring Examples 48 / 48

	Introduction, Definitions, Classifications
	Performance Metric
	Monitors & Measurements

	Monitoring Examples
	Measuring Time: Practical Considerations
	Sequential Program Execution Monitoring: Profiling
	``API-based'' Monitoring Examples
	Indirect Metrics

