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1. Introduction. Performance debugging is an important part of the develop-
ment cycle of parallel programs since obtaining high performances is the main goal
of using cluster systems. The objective of performance measurement tools is to help
programmers to get the highest possible performances from their programs on their
target architecture. Performance debugging usually includes several phases: moni-
toring to gather performance data, data analysis to correct raw data and compute
performance indices and presentation of the performance indices to the programmer,
usually by sophisticated visualization tools. This latter phase is presented in Chap-
ter 8. A good survey of monitoring and visualization tools was written by Kraemer
and Stasko in [13].

Performance monitoring can be used in at least two different contexts. The first
one occurs when a dynamic control of the execution of a parallel program is required.
In this case, data collected by monitoring tools are analyzed on line because a rapid
feedback is necessary. This is the case of some tools monitoring operating systems
activities, such as zload, perfmeter, top, etc. of Unix systems [31], used by system
engineers to manage computing resources. In addition, the very long execution time of
such applications — operating systems may run for days — are not compatible with
data collection and post-mortem analysis of the application behavior. Monitoring
tools used by real-time systems also help implementing a dynamic control of the
systems. The situation is similar for monitoring tools whose objective is to help
steering parallel programs on-line to improve their performances [8]. Only applications
adapted for being steered can benefit from the use of such tools, for example to
balance the load among the processors. Critical to such tools is the latency with
which program events are transferred from the monitored program to the end-user,
low-monitoring latency conflicting with low monitoring perturbations. In addition,
interactivity constraints reduce the amount of analysis that can be performed on
monitored data. Another use of on-line data analysis is aimed at limiting the amount
of recorded data. For example, in order to analyze long running applications, Paradyn
[24] performs problem detection on line, automatically or under the user’s direction,
without requiring to store any monitoring data. A proposal for a standard interface
between on-line monitoring and analysis tools is proposed by Ludwig et al in [17].

On the contrary, to perform a global analysis of the behavior of the observed
programs, during a performance debugging cycle, as much performance data as pos-
sible needs to be collected, with the lowest possible intrusion. Such constraints are
best combined when monitored data can be extracted after the execution of the ob-
served programs and data can be analyzed post-mortem. On-line and post-mortem
monitoring are not contradictory since, for example, steering choices based upon on-
line monitoring need to be validated with performance measures, which can be best
performed using the second type of monitoring and performance data analysis. This
chapter being dedicated to monitoring for performance debugging, it mainly deals
with this type of monitoring activities.

In order to support performance debugging, a large number of performance indices
must be delivered by performance measurement tools so that programmers can detect
and reduce the overheads of their programs [1]. These indices can be divided in two
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main classes:

Completion times which ought to be reduced as much as possible. The objective
of performance debugging is most often to reduce the completion time of a
program or makespan. This index can be decomposed into several measures
concerning the time spent by the execution of various parts of the programs
such as procedures, communication protocols, etc.

Resource utilization rates indicating what percentage of resource utilisation is
spent executing “useful” work. If we consider processor utilisation rates,
programmers need to know what percentage of time is spent in various over-
heads, executing synchronization code, task creation, termination or schedul-
ing, communications or idling. Global resource utilization rates might indi-
cate a problem such as a low processor utilization by the application program
and an important idling rate. However to correct such a problem, it is often
necessary to use more detailed data. For example, an important idling rate
might indicate the presence of a bottleneck, whose origin might be a lack
of parallelism in the program, a poor performance of the task scheduler, an
excessive use of synchronizations, etc.

The execution of a parallel program can be monitored at several possible abstrac-
tion levels: hardware, operating system, runtime system and application. Intuitively,
the application level is the most significant one for parallel application programmers,
since it is the only place where they can control or adjust parameters. However, it
may occur that poor performances of an application can only be explained by observ-
ing the impact of programming choices on the runtime or operating systems, during
the execution of the application. Being able to relate application level design or pro-
gramming decisions to runtime or operating system behaviors is still a research issue
and will not be dealt with in this chapter.

The organization of this chapter is the following. After this introduction, the
techniques for monitoring parallel programs are surveyed. The next section focuses
on tracing, deemed the most general monitoring technique for parallel programs.
Software tracing is considered as the most portable and widespread tracing technique
but suffers of two important drawbacks which hinder the quality of traced data: the
lack of global clock in most distributed-memory systems — such as clusters where
each node uses its private clock — and the overhead of tracing. Solutions to these
issues are presented in the two next sections. The last section identifies performance
problems which cannot be identified by tracing alone and sketches a possible detection
approach, combining tracing and sampling.

2. Principles of parallel programs monitoring. Most monitoring tools are
either clock driven or event driven [27] (see Figure 2.1).
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2.1. Clock driven monitoring or sampling. Clock driven monitoring amounts
to have the state of the observed system registered at periodical time intervals, by
a process independent of the observed process. The periodicity of recording gener-
ally depends on the operating system (typically 20 milliseconds under Unix). The
recorded information can be used on line or off line to compute global performance
indices.

An example of online monitoring tool is mon [34], general-purpose resource moni-
toring system, which can be used to monitor network service availability, server prob-
lems, environmental conditions, etc. Resource monitoring can be viewed as two sepa-
rate tasks: the testing of a condition, and triggering some sort of action upon failure.
mon was designed to keep the testing and action-taking tasks separate, as stand-alone
programs. mon is implemented as a scheduler which executes the the monitors (which
test a condition), and calls the appropriate alerts if the monitor fails.

The well-known tools prof, gprof [7] belong to the latter category: these tools
register the instruction counter value. The registered data is used to compute post-
mortem global performance indices. For example, the time elapsed in a procedure
of the program being executed is supposed proportional to the number of hits of the
procedure in the registered samples.

Performance measurement tools based on sampling are intensively used for per-
formance debugging of sequential programs. It is possible to observe the execution
of programs at the programmers’ abstraction level without being disturbed by the
interaction with the operating system. However, this sort of tool may fail finding
the causes of some overheads of parallel programs: global performance indices are of
little help to show bottlenecks or to evaluate communication or idling times (unless
a processor can be traced busy waiting). In addition, the fairly low periodicity of
sampling may be unsuited to exhibit phenomena of very short durations.

2.2. Event driven monitoring. Event driven monitoring is triggered by the
occurrences of events. We assume that the processes executing an application perform
observable events. In this chapter, an event will be defined as an action changing
the state of the monitored system, such as a procedure call or the reception of a
message. Event driven monitoring aims at associating a date to each of the observed
events. The observed events depend on what the programmer is interested in but, in
case of parallel programs monitoring, include emissions and receptions of messages as
well as “user defined” events. There exist different types of event driven monitoring
approaches called timing, counting and tracing, depending on the amount of recorded
information and the way it is used.

2.2.1. Timing. The time spent in various parts of the observed program is mea-
sured. For example, the time elapsed in a procedure can be obtained by subtracting
the clock value at the beginning of the procedure to the clock value measured when it
terminates. Such measurements require a low latency clock. The amounts of recorded
data are limited to one counter per measured value [4, 24]. Timing intrusion depends
on the number of instrumentation points but is potentially high if detailed timing is
required.

2.2.2. Counting. The number of occurrences of the observed events is recorded
into global performance indices. Counting is generally considered as minimally intru-
sive and involves the management of limited amounts of data [4, 24].

2.2.3. Tracing. Tracing is done by recording each of the observed events into a
performance trace. Each record includes at least the type of the recorded event and
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the recording date. Additional information is also recorded depending on the type of
the event. For example, if the recorded event is a message emission (reception), the
record usually includes the identity of the receiver (sender) process and the length of
the message.

Tracing is the most general event driven monitoring technique. It is very well
suited to measure communication times — it is sufficient to record the emission and
reception events — and exhibit bottlenecks — by recording where the processes execut-
ing an application spend the time. It can also be used to obtain global or detailed
timing or counting information. For example, it is possible to measure the time spent
executing a procedure by recording the beginning and the end of each execution of this
procedure. For all these reasons, most performance measurements tools for parallel
programs executions are based on tracing [29, 9, 35, 2].

However, tracing suffers of several drawbacks. First of all, it may be very in-
trusive if detailed information is collected. Another problem is that the validity of
the recorded data can be corrupted by the interaction with the operating system.
For example, the time elapsed in a procedure is the difference between the dates of
execution measured at the end and at the beginning of the procedure only if the
process executing the procedure is not suspended during the execution of the proce-
dure. Therefore, all tools based on tracing applications are well suited to measure
performances of single-user systems but may fail obtaining exact performance data of
loaded multi-users systems.

3. Tracing parallel programs. As defined above, tracing is the recording of
performance events into a trace. As it is the case for all monitoring techniques,
tracing can be performed at several levels of abstraction. There exist several tracing
implementation techniques [10]: hardware, software and hybrid. The quality of the
traces indicates how faithful the recorded information is. It is mainly affected by the
lack of global clocks in distributed systems, which makes it difficult to order events
occurring on different nodes, and the intrusion of tracing or probe effect, which changes
the behavior of traced executions, with respect to untraced ones. The quality of the
traces depends on the tracing technique. This section surveys the tracing techniques
as well as the factors affecting the quality of the traced information.

3.1. Implementation techniques for tracing.

Hardware tracing: hardware tracers are included in the hardware of the observed
parallel system [11]. Such tracers require specific hardware developments and
are for this reason considered costly. However they are not intrusive at all.
Their use can be difficult for an application programmer since it may not be
obvious to relate a hardware event to an algorithmic choice at the application
level.

Hybrid tracing: hybrid tracers combine specific monitoring hardware with tracing
software [10]. As software tracers, hybrid tracers are triggered by application
level instructions. It is therefore easier to relate a traced event to a source
program instruction than with a hardware tracer. The traced information
is written on dedicated hardware ports, connected to a dedicated monitor-
ing hardware, such that the monitoring intrusion remains extremely low. In
addition, the monitoring hardware may include a global clock for dating reg-
istered events. Although such monitoring technique can be considered ideal
for programmers because it is easy to use and delivers high quality traces, it
is not widespread because of its lack of portability and its development cost.
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Software tracing: software tracing is the most portable and cheapest tracing tech-
nique. It can be done without programmer’s intervention, when the tracer
is included in a communication library which can be used in “tracing” mode
[6]. Tracing can also be done by calling a tracing library from the traced
program, calls being inserted by the programmer [29] or by a pre-processor
[18]. Software tracing is the most widespread tracing technique because it is
cheap and fairly easy to implement. However it makes it difficult to obtain
high quality traces because of the lack of global clocks in most distributed
memory systems and because of the intrusion caused by the recording and
transportation of the trace by the parallel system simultaneously to the exe-
cution of the monitored program.
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Fic. 3.1. Hardware, software and hybrid monitoring techniques

3.2. Software tracing instrumentation techniques. Instrumentation is the
insertion of code to detect and record the application events. It can be done at several
possible stages during the construction of a parallel program (see Figure 3.2):
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FiG. 3.2. Instrumentation techniques

1. Direct source code instrumentation[28, 35, 19]: the instructions generating the
events are inserted in users’ programs before compilation. Insertion is usually
performed by a preprocessor but it can be also done by the user, manually or
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through an interactive program. Although it can be implemented easily, this
method has the drawback of requiring to recompile monitored programs.

2. Compile-time instrumentation gives monitoring tools access to the informa-
tion computed by the compiler such as loop dependencies[2]. However it
requires to have access to the source code of the compiler and to modify it.

3. Instrumentation of the communication library or of the runtime system has
the advantage of requiring no modification nor recompiling of the monitored
application[12, 2]. However, application specific events cannot be detected.

4. Direct instrumentation of the compiled object code is independent of the pro-
gramming language and does not require any recompiling of the applications
[24, 2]. Both the application and the communication library can be traced.
In addition, users can dynamically adjust the grain and the localization of
the instrumentation. The main drawback of this instrumentation technique
is that it is not easily portable on various operating systems or hardware
platforms.

3.3. Trace format. A trace is composed of event records. Each record contains
at least the following information: type of the event, (physical) date of the event and
process identification of the process having performed the event. Some records contain
additional parameters of the traced event such as receiver (sender) identification and
message length in case of message emission (reception) or data fields allowing users
to pass information to data analysis and visualization tools. In addition to predefined
event records, usually associated to synchronization or communication primitives,
there might be some user-defined event allowing programmers to record whatever
information they are interested in.

There is no agreement among the scientific community upon the possibility nor
the necessity of defining a standard trace format. The approach consisting in using
self-defined trace formats such as SDDF for PABLO [29] seems very powerful: the
structure of the event records is defined in the headers of the trace files. Besides,
the PICL trace format is widely used because traces can be passed to the widespread
ParaGraph visualization tool [9]. It seems that converting traces from a format into
another one does not raise any serious technical problem: several trace converters were
already developed to convert traces collected in various formats into PICL format [18].

3.4. Quality of traced information. Ideally, the storage capacity of the sys-
tem would be infinite, the recorded events would be dated with an infinite precision
global clock and there would not be any tracing intrusion. However this is not the
case in general and especially in the case of software tracing. The amount of infor-
mation to be recorded may exceed the storage capacity of the system, resulting in a
reduction of the traced information. The lack of global clock in distributed parallel
systems may result into incoherencies between events dated with different local clocks.
The intrusion of tracing may change the behavior of the observed program execution.

3.4.1. Buffering and data extraction. The amount of traced data depends
on the number of traced events: it can be limited when tracing is restricted to com-
munication events; it may generate a huge amount of tracing data if more detailed
measures are needed or the tracing tool is misused. In any case, a potentially large
amount of trace data has to be stored and extracted from the parallel system. Various
trade-offs can be considered between memory overhead, resulting from the allocation
of large trace buffers, and time overhead, resulting from the use of compression algo-
rithms [20] or from the time spent transferring trace data to disk.
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3.4.2. Dynamic reduction of the amount of traced data. There exist sev-
eral approaches to reduce dynamically the amount of recorded data, based on more
or less elaborate on-line analysis of the data:

1. The first class of techniques implements a dynamic change of the level of
detail of the recordings. In PABLO [29], the trace recording frequency is
adjusted dynamically and event tracing may be replaced by counting when
the occurrence frequency of traced events becomes too high. Such dynamic
adjustment of the amount of collected information is also performed by Para-
dyn [24]: depending on the truth value of some predicates indicating potential
performance problems. In such a case, the observed program is dynamically
instrumented to collect more performance data related to the problem.

2. Another technique performs dynamic statistical data clustering in order to
limit the recording of event traces to representative processors from each
cluster [25].

3. Another approach is based on two basic ideas: the use of “averages” to re-
place recording data for each instance and “formulae” to represent infinitely
long sequences of values [36] — formulae representing some sort of temporal
patterns, instead of the spatial patterns used in the previous method. Trace
files can then be of “fixed” length, that is independent of the number of it-
erations and of the problem size. Event traces can be reconstructed by post
processing the performance data.

3.4.3. Quality of time measurement. In distributed parallel systems, each
processor has its own physical clock. Using the physical properties of the quartz
oscillators commonly used for computer clocks, it is possible to model the local time
[t;(t) measured on processor i as a linear dependence [21]:

where t represents the “absolute” or “universal” time, the constant «; is the offset
at time ¢t = 0, the constant f3; (close to 1) is the drift of the physical clock, and the
random variable §; models granularity and other random perturbations. J; can be
assumed to be independent of the time ¢. This model is correct only if the physical
parameters (e.g. temperature) of the environment (machine room) remain constant
and ¢t is sufficiently small to neglect crystal aging. If these constraints are not satisfied,
the coefficients «; and (5; may no longer be constant.

The lack of global clock in a distributed memory parallel system may result in
incoherencies between recorded events if they are dated using the local clocks of the
processors. For example the date of reception of a message can be lower than its
emission date. Such incoherencies make difficult or impossible the analysis of perfor-
mance traces by performance measurement tools. On hardware or hybrid tracers, this
problem is solved by using dedicated hardware [10]. On software tracers, this problem
can be addressed by a software implementation of a clock correction algorithm (see
Section 4).

3.4.4. Tracing intrusion. As any monitoring technique, tracing perturbates
the execution of the observed parallel programs. It is hard to estimate the intrusion
of tracing since it depends on the traced program and on the number of traced events.
In case of hardware or hybrid tracing, it is assumed that the tracing intrusion remains
limited to a few percent of the execution time. Such an intrusion can be assumed to
have a negligible effect on the behavior of the observed program execution [10].
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The intrusion of tracing cannot be neglected in the case of software tracing. Sev-
eral proposals were done to model and compensate the tracing intrusion of software
tracers [22, 35, 19, 20].

When modeling tracing intrusion, two types of perturbations are generally defined
[22]:

Direct perturbations: resulting from the execution of additional event generation
instructions — time spent reading the clock and building an event descriptor
in memory — and trace storing on files by the instrumented processes.

Indirect perturbations: localized outside of the tracing code but resulting from
the execution of the tracing code. Indeed monitoring can affect the way
processes are scheduled and memory is referenced (frequency of page faults
and cache misses). It can also hinder some compiler optimizations or penalize
performances of I/O subsystems, including file system and network access.

Perturbation compensation models do not take indirect perturbations into ac-
count since these perturbations cannot be estimated at the application level of ab-
straction. However a lot of work is devoted to limit the factors influencing indirect
perturbations such as the volume of the traced data.

3.5. Some existing software tracing tools.

3.5.1. AIMS. AIMS|35] includes a set of tools for measuring the performances
of parallel programs. The application source code is instrumented by a preprocessor
performing a syntactic analysis of the program and building a call graph of proce-
dures and loops: using a graphical presentation of this call-graph, the user can select
instrumentation points. Instrumented code needs to be recompiled and linked to a
library including data formating and storage procedures. AIMS includes a system for
synchronizing clocks and correcting tracing intrusion based on the work of Sarukkai-
Malony [30]. The amount of recorded information can also be dynamically reduced
by using averages and formulae [36].

3.5.2. Annai. Annai[3] provides an instrumented communication library — to
observe communications — as well as a compile-time instrumentation — to observe
the components of the source code such as procedures, loops, etc. During the execu-
tion, users can specify “instrumentation action points”, similar to breakpoints during
correctness debugging, where it will be possible to change the instrumentation param-
eters dynamically. Annai can be used in tracing or timing mode. It is also possible to
estimate the intrusion of tracing for the various components of the source program.

3.5.3. Pablo. In Pablo[28], the source code is instrumented directly by the user
with the help of a graphical interface. In case the trace recording frequency is too
high, it is automatically reduced or even tracing is automatically replaced by counting.
The self defined trace format of Pablo, SDDF, was adopted for several other tools.

3.5.4. PGPVM. Monitoring data is collected by an instrumented version of the
PVM communication library which generates traces at the Paragraph format. Post
mortem clock synchronization and intrusion removal can be performed if necessary.

3.5.5. Tape/PVM. Tape/PVM][18, 19, 20] is a monitoring tool for PVM pro-
grams. The source code is directly instrumented using a preprocessor. A global clock
is implemented by software, using the SBA technique (see Section 4). The tracing
intrusion can be compensated post-mortem (see Section 5).
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3.5.6. XPVM [12]. XPVM is a graphical interface for PVM which includes
an instrumented PVM communication library generating trace data which can be
used for on-line or post-mortem visualization. Trace data transmission alters the
bandwidth available for the communications of the observed applications.

TABLE 3.1
Some existing tracing tools

Tool Instrumentation | Dynamic Global Intrusion
filtering clock compensation
AIMS source yes synchro yes
Annai source, compiler yes estimate
binary
Pablo source yes no no
PGPVM instrumented no post mortem yes
library synchronization
Tape/PVM source no post mortem post mortem
global clock
XPVM instrumented no no no
library

4. Global time implementation on distributed memory parallel sys-
tems. As mentioned above, many distributed memory systems such as clusters do
not have a hardware global clock. Using local clocks to date events results in errors
where the sequencing order, derived from the dates of the events, could contradict
the causal relationship between these events [14], which could be established using a
logical clock [23]. To avoid these errors, it is possible to implement a global time in
a distributed memory system by selecting the clock of one of the processors of the
system as a reference clock [21]. Equation 3.1 can be derived into:

(4.1) It;(t) = aires + Birefltres(t) + Oires.
The corrected global time on processor ¢, LC;(t) will therefore be estimated as:

Iti(t) — ires

(4.2) LC;(t) = ltyef(t) ~
/Bi,ref

’

the value lt,.f(t) in equation 4.2 being the reference clock value at time ¢, such as it
can be computed from [¢;(t), provided that a; .y and f5;r.¢ are known. The coeffi-
cients a;, ey and B; ey need to be estimated for each of the processors of the system.
The method consists in building a statistical sampling of the dates that some events
— occurring on the reference processor and whose dates are measured using the refer-
ence clock — would have on processor i. The events used for these estimates are the
receptions of “ping-pong” messages, exchanged between the reference processor and
processor ¢ (event Rfef on Figure 4.1). The statistical method assumes that the com-
munication delays of messages sent by the reference processor to the other processors
of the system are the same as the communication delays of the reply messages.

The expectation of the communication delay of the “ping” message is supposed
equal to the expectation of the communication delay of the “pong” message. R’je 518
chosen as reference event and its occurrence date, on the clock of processor i, estimated
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by (see Figure 4.1):

ltl(Rf) + ltl(szk) + ltTef(Rfef) - ltTEf(Sfef)

4. Tt (RF ) =
( 3) It (Rref) 2 2 ’

which is identified to o ey + ﬁ,',,,efltmf(R:fef) + rﬁref, rfyref being the residu. This
method requires a recording of the four dates It;(RY), It;(SF), lt,,ef(R’T“ef), and lt,cs (Sfef).

This way a sample of couples (ltef (Rfef),l/i\i(Rfef)) is obtained and the coeffi-
cients a; e and f; s are computed using linear regression techniques.

The SB (Sample Before) technique consists in computing the offsets and drifts of
the clocks of all the processors of the system, relatively to the reference clock, before
the execution of the traced application. It is then possible to give a global date to the
monitored events, as soon as they are recorded. However, when an application takes a
long time to execute, which is quite frequent for time-demanding parallel applications,
the errors arising from approximating the drifts cannot be neglected (when they reach
the order of the communication delays).

In this case, it is necessary to use the SBA (Sample Before and After) estima-
tion method of o; e and B; ey, which includes two series of ping-pong messages
exchanges, between the reference and all the other processors, before and after the
execution of the monitored parallel application. The use of two synchronization phases
limits the global time extrapolation error. ;From the values estimated for o; .y and
Biref, it is possible to correct post mortem the local dates of each of the events
recorded during the execution of the monitored parallel program. The global time
estimation error depends on the length of the synchronization phases. By adapting
the length of the synchronizations to the duration of the monitored application, it is
possible to get rid of all causal incoherencies (see [18] for more details).

5. Modeling and compensation of software tracing intrusion. Three ob-
jects are involved in the modeling and compensation process:
1. the trace file T, reflecting a perturbated application behavior;
2. the “ideal” execution trace Ty, which would be obtained by an ideal, non-
intrusive instrumentation;
3. the approximated execution trace T,, obtained by applying an intrusion com-
pensation model to 7.

In case of software tracing, in the absence of a non-intrusive hardware monitor,
the only performance index which can be known about 7p is its execution time.
The importance of the intrusion of software tracing in 7" with respect to 7 can be
evaluated by comparing the respective execution times. Although this intrusion may
remain limited to a few percent of the execution time for some program executions
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tracing only communications, it may become predominant as soon as detailed tracing
is required, to trace the most frequently called procedures for example.

The objective of modeling and compensation methods is to transform a trace T,
reflecting a perturbated application behavior, into a trace T}, approximating as much
as possible the “ideal” execution trace Ty, which would be obtained by an ideal, non-
intrusive instrumentation. Only direct perturbations are taken into account in the
trace correction methods. The principle of these methods is to correct post mortem
the dates of the traced events to approximate the dates that these events would have
if the direct perturbations caused by software tracing were negligible.

Such a correction methods must take into account the causal dependencies be-
tween events occurring in different processes, resulting from synchronizations or com-
munications between these processes. In [22], Malony gives a correction method for
several synchronization primitives such as barrier, semaphore, etc. In the remain-
ing of this section, we present how this method was adapted by E. Maillet to the
asynchronous communications of PVM in the Tape/PVM tracer [20].

5.1. Notations. The direct perturbation « is the cost in time to generate a
single event and is assumed to be constant and localized at the instrumentation point
(see Figure 5.1). « is assumed constant for ease of presentation only. In practice, a
is likely to depend on the size of the event (i.e. its number of attributes). Generating
an event for an action of interest A consists in reading the clock to get the date t(e) of
the start of the action, and in storing the event attributes after the end of the action.
We assume that all the overhead a consists of storing the event with its attributes
and that it is located after t(e). If A is an action which has a measurable duration
(e.g. blocking receive primitive), the execution time of A can be either part of the
attributes of the event, or two events can be generated, one at start of A the other at
end of A. This depends on the implementation of the tracing tool.

4@ > Non instrumented

process

time

4| A |a |—> Instrumented
v v

read t(e) store ex<t(e), attributes(A)>

F1G. 5.1. Model of elementary intrusion cost

5.2. Case of independent sequential processes. This is the case of a pro-
cess registering local events, between two consecutive communication events (see Fig-
ure 5.2). The approximated date t,(e%) of the k" registered event of process i can
be estimated as:

ta(el) = tbl + (t(ek) — tb*) — acc’,

with:

tbi: approximated base date of process i. This date is used for each date correction.
It is initialized at the date of the first recorded event t(ef}). Later on it is
recomputed after each communication (see below).

11



acc’s accumulated perturbation of process i between the base event and the current
event. For an independent sequential process (see Figure 5.2), the value of

acct when recording the k" event is (k — 1)a.

t(e}) t(ej,)
l l measured time
. « «a «a «
Process i = C I —
€o el approximated
T T time
tbfz ta(ef;)

FiG. 5.2. Perturbation compensation on a sequential process

5.3. Non-blocking send and blocking receive communication primi-
tives. In presence of communications, it is no longer true that the perturbation at a
given event e is the accumulation of all direct instrumentation delays from beginning
of the process. The base date needs to be reset after each communication.

5.3.1. Resetting of the base date. In Figure 5.3, process P; performs a block-
ing receive primitive of a message sent by P;. Figure 5.3.a represents non traced ex-
ecution. In Figure 5.3.b, the perturbations of the sender P; delays message emission,
thus increasing the blocking delay of the receiver P;. In Figure 5.3.c, perturbations of
the receiver P; delay its posting of the request, thus reducing, or even eliminating the
blocking delay. A new base date needs to be recomputed after each communication
or synchronization. The base date computation algorithm, in case of non-blocking
send and blocking receive primitives, such as the pvm_send and pvm_receive of the
PVM communication library [32], is presented in the following.

P,
J
a) non-instrumented execution
€ €y, €5 et
P; —o— - ------ o= P; —¢@ = - - b
P; — — P;
b) perturbation of the sender only ¢) perturbation of the receiver only

F1a. 5.3. Synchronization through a blocking reception primitive: importance of the time base

5.3.2. Base date computation. The application level reception event can be
decomposed into three different “sub-events”:
SR: start of blocking receive by the receiving process.
ER: end of blocking receive after message delivery, resuming of the computation.
B: instant at which the message becomes available in the receiver’s system buffers,
i.e. the soonest possible instant at which the receiver can extract the message.

12



Information on the B, SR, and ER events is supposed to be stored altogether
with the attributes of ER (they actually form one single event), which explains why
a single overhead « is taken into account in the perturbation compensation algorithm
(see Figure 5.4 and Figure 5.5).

Two different cases are possible, depending on whether the message arrives on
the receiving node before or after the reception request SR of the receiving process:

1. Before the receive request

sender i &

receiver ) ®------ [ —

F1G. 5.4. Message arrived before the posting of the receive request

to(ER) = t,(SR) + DC,

DC being the delay of processing the incoming data (copying into a new
active receive buffer in case of PVM).
2. After the receive request

sender i S 2
. . SR o
receiver j @ - _N_ _________ o -
B ER

F1G. 5.5. Message arrived after the posting of the receive request

to(ER) = to(B) + DC.

Assuming that neither the message transmission time (¢(B) — t(S)) nor the message
processing delay DC are affected by tracing, we get:

to(B) = t(B) — t(S) + ta(S).

In both cases, the base date tb) of the receiving process is reset to the approxi-
mated date of the ER event, after the communication:

th! «— t,(ER) accd + a.

The main problem with this algorithm is that the value of ¢(B) cannot be mea-
sured since it is an event at the communication system level and tracing is performed
at the application program level of abstraction. E. Maillet describes in [20] an al-
gorithm allowing the correction of the date of event ER, depending on the relative
positions in time of B and SR. In some cases, t,(FR) can be computed without
needing to estimate t,(B). In the few remaining cases, an estimate of the date ¢,(B)
can be computed from a measure of the date of ¢,(S), by applying an approximate
cost model of the communications on the monitored parallel system.
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5.4. Limits of perturbation compensation methods for programs be-
having non deterministically. Perturbation compensation methods do not change
the causal dependency relation between events and therefore do not take into account
potential behavioral changes of the traced application coming from tracing. Such
methods are not applicable to traces of applications using non-deterministic commu-
nication primitives. In PVM for instance, a task may request a message of any type
from any other task using a pvim_recv(-1,-1) function call. The “execution path”
of a traced execution of such a program might differ from the “execution path” of a
non-traced program execution. In the example of Figure 5.6, the execution of process
P; was heavily perturbated by tracing. If the emission date of the message sent by
process P; to process P» were naively corrected, its transmission time being unaf-
fected by tracing, the order of reception of messages emitted by processes P; and
Ps, by process P>, would be reversed with respect to the actual reception order of
the traced execution. However, perturbation compensation methods cannot change
the order of reception of messages in the corrected trace since the effects of such a
change on the remaining of the traced execution could not be deduced from the traces.
The only possibility to correct traces of non deterministic programs is therefore to
apply a conservative approximation which keeps the order of message receptions of
the corrected trace unchanged with respect to the non corrected trace.

. Traced execution Naive trace intrusion compensation
1 1

NN

. L

Conservative approximation

.\
.

F1a. 5.6. Order of message reception changed by tracing

Py

A possible solution to the problem of non-determinism is to use a deterministic
replay [15] mechanism, when intrusively tracing an application for performance data.
Limited control information is recorded during an initial record execution, the intru-
sion caused by this recording being usually very low [5]. This information is used
by subsequent replay execution to guarantee determinism with respect to the initial
record execution. If performance traces are collected during a replay execution, a
perturbation compensation method, similar to the one described above, can be used
to correct on line [16] or off-line [33] the intrusion of performance tracing. In the
latter case, the method aims at constructing an approximated execution trace T, as
close as possible from the trace that would be obtained by a non-intrusive tracing of
the initial record execution.

6. Interaction with the operating system. Although tracing is well suited
to capturing phenomena occurring at the application level such as communication
delays, it may fail capturing inefficiencies of loaded multi-users systems. The reason
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is that tracing does not make possible to distinguish between the ready and active
execution states of processes: once a process has been started, only explicit process
suspensions at the application level, for example waiting for a message reception, can
be detected by tracing at the application level. However, if the observed process is
running on top of a multi-users operating system, it may occur that it gets suspended
without any relation with an application-level event. This is the case if a higher
priority process becomes activable or if the observed process has exhausted its time
slice. In such cases the measured duration of the activity of some tasks is likely to
exceed the actual duration of these tasks.

Such phenomenon can be captured if tracing at the application level can be cou-
pled with measurement data gathered at the operating system level. One possible ap-
proach is to relate the counting information maintained by the operating system dur-
ing the execution to the information deduced from tracing at the application level[26].
Then it becomes possible to evaluate the percentages of activity and idleness during
the periods where tracing can only indicate that a thread was activable.

A similar problem may occur when other monitoring techniques are used and
similar solutions may be designed. For example, in Paradyn, some performance data
kept by the operating system can be mixed with the counters and timers generated
from the monitoring of the observed programs. For example, the cumulative number
of page faults is read before and after a procedure call to approximate the number of
page faults taken by that procedure [24].

7. Conclusion. This chapter presents the issues of collecting monitoring data
for performance debugging of parallel programs. Most monitoring tools for parallel
programs are event driven, the most general event-driven monitoring technique being
tracing. Among the possible tracing techniques, software tracing is deemed the most
portable and widespread, although it requires to solve two difficult problems in order
to obtain high quality traces: providing a precise global clock in distributed-memory
systems and being able to limit or compensate the intrusion of tracing. The lat-
ter problem is specially difficult in case of programs behaving non deterministically.
For such programs, a monitoring approach using execution replay techniques seems
promising. Tracing alone is not sufficient to detect performance problems arising from
the interaction of a parallel application with an underlying software layer such as the
operating system. A possible approach to detect such problems is to combine tracing
at the application level with time-driven monitoring at the operating system level of
abstraction. The investigation of monitoring tools based on this approach seems a
promising research track.
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