
MONITORING PARALLEL PROGRAMS FOR PERFORMANCETUNING IN CLUSTER ENVIRONMENTSJ. CHASSIN DE KERGOMMEAUX AND �E. MAILLET AND J.-M. VINCENT1. Introdution. Performane debugging is an important part of the develop-ment yle of parallel programs sine obtaining high performanes is the main goalof using luster systems. The objetive of performane measurement tools is to helpprogrammers to get the highest possible performanes from their programs on theirtarget arhiteture. Performane debugging usually inludes several phases: moni-toring to gather performane data, data analysis to orret raw data and omputeperformane indies and presentation of the performane indies to the programmer,usually by sophistiated visualization tools. This latter phase is presented in Chap-ter 8. A good survey of monitoring and visualization tools was written by Kraemerand Stasko in [13℄.Performane monitoring an be used in at least two di�erent ontexts. The �rstone ours when a dynami ontrol of the exeution of a parallel program is required.In this ase, data olleted by monitoring tools are analyzed on line beause a rapidfeedbak is neessary. This is the ase of some tools monitoring operating systemsativities, suh as xload, perfmeter, top, et. of Unix systems [31℄, used by systemengineers to manage omputing resoures. In addition, the very long exeution time ofsuh appliations | operating systems may run for days | are not ompatible withdata olletion and post-mortem analysis of the appliation behavior. Monitoringtools used by real-time systems also help implementing a dynami ontrol of thesystems. The situation is similar for monitoring tools whose objetive is to helpsteering parallel programs on-line to improve their performanes [8℄. Only appliationsadapted for being steered an bene�t from the use of suh tools, for example tobalane the load among the proessors. Critial to suh tools is the lateny withwhih program events are transferred from the monitored program to the end-user,low-monitoring lateny oniting with low monitoring perturbations. In addition,interativity onstraints redue the amount of analysis that an be performed onmonitored data. Another use of on-line data analysis is aimed at limiting the amountof reorded data. For example, in order to analyze long running appliations, Paradyn[24℄ performs problem detetion on line, automatially or under the user's diretion,without requiring to store any monitoring data. A proposal for a standard interfaebetween on-line monitoring and analysis tools is proposed by Ludwig et al in [17℄.On the ontrary, to perform a global analysis of the behavior of the observedprograms, during a performane debugging yle, as muh performane data as pos-sible needs to be olleted, with the lowest possible intrusion. Suh onstraints arebest ombined when monitored data an be extrated after the exeution of the ob-served programs and data an be analyzed post-mortem. On-line and post-mortemmonitoring are not ontraditory sine, for example, steering hoies based upon on-line monitoring need to be validated with performane measures, whih an be bestperformed using the seond type of monitoring and performane data analysis. Thishapter being dediated to monitoring for performane debugging, it mainly dealswith this type of monitoring ativities.In order to support performane debugging, a large number of performane indiesmust be delivered by performane measurement tools so that programmers an detetand redue the overheads of their programs [1℄. These indies an be divided in two1

main lasses:Completion times whih ought to be redued as muh as possible. The objetiveof performane debugging is most often to redue the ompletion time of aprogram or makespan. This index an be deomposed into several measuresonerning the time spent by the exeution of various parts of the programssuh as proedures, ommuniation protools, et.Resoure utilization rates indiating what perentage of resoure utilisation isspent exeuting \useful" work. If we onsider proessor utilisation rates,programmers need to know what perentage of time is spent in various over-heads, exeuting synhronization ode, task reation, termination or shedul-ing, ommuniations or idling. Global resoure utilization rates might indi-ate a problem suh as a low proessor utilization by the appliation programand an important idling rate. However to orret suh a problem, it is oftenneessary to use more detailed data. For example, an important idling ratemight indiate the presene of a bottlenek, whose origin might be a lakof parallelism in the program, a poor performane of the task sheduler, anexessive use of synhronizations, et.The exeution of a parallel program an be monitored at several possible abstra-tion levels: hardware, operating system, runtime system and appliation. Intuitively,the appliation level is the most signi�ant one for parallel appliation programmers,sine it is the only plae where they an ontrol or adjust parameters. However, itmay our that poor performanes of an appliation an only be explained by observ-ing the impat of programming hoies on the runtime or operating systems, duringthe exeution of the appliation. Being able to relate appliation level design or pro-gramming deisions to runtime or operating system behaviors is still a researh issueand will not be dealt with in this hapter.The organization of this hapter is the following. After this introdution, thetehniques for monitoring parallel programs are surveyed. The next setion fouseson traing, deemed the most general monitoring tehnique for parallel programs.Software traing is onsidered as the most portable and widespread traing tehniquebut su�ers of two important drawbaks whih hinder the quality of traed data: thelak of global lok in most distributed-memory systems | suh as lusters whereeah node uses its private lok | and the overhead of traing. Solutions to theseissues are presented in the two next setions. The last setion identi�es performaneproblems whih annot be identi�ed by traing alone and skethes a possible detetionapproah, ombining traing and sampling.2. Priniples of parallel programs monitoring. Most monitoring tools areeither lok driven or event driven [27℄ (see Figure 2.1).
Monitoring

Clock driven Event driven

Timing Counting TracingFig. 2.1. Classi�ation of monitoring tools2

2.1. Clok driven monitoring or sampling. Clok driven monitoring amountsto have the state of the observed system registered at periodial time intervals, bya proess independent of the observed proess. The periodiity of reording gener-ally depends on the operating system (typially 20 milliseonds under Unix). Thereorded information an be used on line or o� line to ompute global performaneindies.An example of online monitoring tool is mon [34℄, general-purpose resoure moni-toring system, whih an be used to monitor network servie availability, server prob-lems, environmental onditions, et. Resoure monitoring an be viewed as two sepa-rate tasks: the testing of a ondition, and triggering some sort of ation upon failure.mon was designed to keep the testing and ation-taking tasks separate, as stand-aloneprograms. mon is implemented as a sheduler whih exeutes the the monitors (whihtest a ondition), and alls the appropriate alerts if the monitor fails.The well-known tools prof, gprof [7℄ belong to the latter ategory: these toolsregister the instrution ounter value. The registered data is used to ompute post-mortem global performane indies. For example, the time elapsed in a proedureof the program being exeuted is supposed proportional to the number of hits of theproedure in the registered samples.Performane measurement tools based on sampling are intensively used for per-formane debugging of sequential programs. It is possible to observe the exeutionof programs at the programmers' abstration level without being disturbed by theinteration with the operating system. However, this sort of tool may fail �ndingthe auses of some overheads of parallel programs: global performane indies are oflittle help to show bottleneks or to evaluate ommuniation or idling times (unlessa proessor an be traed busy waiting). In addition, the fairly low periodiity ofsampling may be unsuited to exhibit phenomena of very short durations.2.2. Event driven monitoring. Event driven monitoring is triggered by theourrenes of events. We assume that the proesses exeuting an appliation performobservable events. In this hapter, an event will be de�ned as an ation hangingthe state of the monitored system, suh as a proedure all or the reeption of amessage. Event driven monitoring aims at assoiating a date to eah of the observedevents. The observed events depend on what the programmer is interested in but, inase of parallel programs monitoring, inlude emissions and reeptions of messages aswell as \user de�ned" events. There exist di�erent types of event driven monitoringapproahes alled timing, ounting and traing, depending on the amount of reordedinformation and the way it is used.2.2.1. Timing. The time spent in various parts of the observed program is mea-sured. For example, the time elapsed in a proedure an be obtained by subtratingthe lok value at the beginning of the proedure to the lok value measured when itterminates. Suh measurements require a low lateny lok. The amounts of reordeddata are limited to one ounter per measured value [4, 24℄. Timing intrusion dependson the number of instrumentation points but is potentially high if detailed timing isrequired.2.2.2. Counting. The number of ourrenes of the observed events is reordedinto global performane indies. Counting is generally onsidered as minimally intru-sive and involves the management of limited amounts of data [4, 24℄.2.2.3. Traing. Traing is done by reording eah of the observed events into aperformane trae. Eah reord inludes at least the type of the reorded event and3

the reording date. Additional information is also reorded depending on the type ofthe event. For example, if the reorded event is a message emission (reeption), thereord usually inludes the identity of the reeiver (sender) proess and the length ofthe message.Traing is the most general event driven monitoring tehnique. It is very wellsuited to measure ommuniation times { it is suÆient to reord the emission andreeption events { and exhibit bottleneks { by reording where the proesses exeut-ing an appliation spend the time. It an also be used to obtain global or detailedtiming or ounting information. For example, it is possible to measure the time spentexeuting a proedure by reording the beginning and the end of eah exeution of thisproedure. For all these reasons, most performane measurements tools for parallelprograms exeutions are based on traing [29, 9, 35, 2℄.However, traing su�ers of several drawbaks. First of all, it may be very in-trusive if detailed information is olleted. Another problem is that the validity ofthe reorded data an be orrupted by the interation with the operating system.For example, the time elapsed in a proedure is the di�erene between the dates ofexeution measured at the end and at the beginning of the proedure only if theproess exeuting the proedure is not suspended during the exeution of the proe-dure. Therefore, all tools based on traing appliations are well suited to measureperformanes of single-user systems but may fail obtaining exat performane data ofloaded multi-users systems.3. Traing parallel programs. As de�ned above, traing is the reording ofperformane events into a trae. As it is the ase for all monitoring tehniques,traing an be performed at several levels of abstration. There exist several traingimplementation tehniques [10℄: hardware, software and hybrid. The quality of thetraes indiates how faithful the reorded information is. It is mainly a�eted by thelak of global loks in distributed systems, whih makes it diÆult to order eventsourring on di�erent nodes, and the intrusion of traing or probe e�et, whih hangesthe behavior of traed exeutions, with respet to untraed ones. The quality of thetraes depends on the traing tehnique. This setion surveys the traing tehniquesas well as the fators a�eting the quality of the traed information.3.1. Implementation tehniques for traing.Hardware traing: hardware traers are inluded in the hardware of the observedparallel system [11℄. Suh traers require spei� hardware developments andare for this reason onsidered ostly. However they are not intrusive at all.Their use an be diÆult for an appliation programmer sine it may not beobvious to relate a hardware event to an algorithmi hoie at the appliationlevel.Hybrid traing: hybrid traers ombine spei� monitoring hardware with traingsoftware [10℄. As software traers, hybrid traers are triggered by appliationlevel instrutions. It is therefore easier to relate a traed event to a soureprogram instrution than with a hardware traer. The traed informationis written on dediated hardware ports, onneted to a dediated monitor-ing hardware, suh that the monitoring intrusion remains extremely low. Inaddition, the monitoring hardware may inlude a global lok for dating reg-istered events. Although suh monitoring tehnique an be onsidered idealfor programmers beause it is easy to use and delivers high quality traes, itis not widespread beause of its lak of portability and its development ost.4

Software traing: software traing is the most portable and heapest traing teh-nique. It an be done without programmer's intervention, when the traeris inluded in a ommuniation library whih an be used in \traing" mode[6℄. Traing an also be done by alling a traing library from the traedprogram, alls being inserted by the programmer [29℄ or by a pre-proessor[18℄. Software traing is the most widespread traing tehnique beause it isheap and fairly easy to implement. However it makes it diÆult to obtainhigh quality traes beause of the lak of global loks in most distributedmemory systems and beause of the intrusion aused by the reording andtransportation of the trae by the parallel system simultaneously to the exe-ution of the monitored program.
Application

Software
monitor

Hybrid

Hardware

Electronic

probe

External hardware
monitorFig. 3.1. Hardware, software and hybrid monitoring tehniques3.2. Software traing instrumentation tehniques. Instrumentation is theinsertion of ode to detet and reord the appliation events. It an be done at severalpossible stages during the onstrution of a parallel program (see Figure 3.2):

Pablo
AIMS, PGPVM
 Tape/PVM

Application source
code Compiler

Object code

Link editor

Executable code

Communication

library

PVM, XPVM
Annai

Annai

AnnaiFig. 3.2. Instrumentation tehniques1. Diret soure ode instrumentation[28, 35, 19℄: the instrutions generating theevents are inserted in users' programs before ompilation. Insertion is usuallyperformed by a preproessor but it an be also done by the user, manually or5

through an interative program. Although it an be implemented easily, thismethod has the drawbak of requiring to reompile monitored programs.2. Compile-time instrumentation gives monitoring tools aess to the informa-tion omputed by the ompiler suh as loop dependenies[2℄. However itrequires to have aess to the soure ode of the ompiler and to modify it.3. Instrumentation of the ommuniation library or of the runtime system hasthe advantage of requiring no modi�ation nor reompiling of the monitoredappliation[12, 2℄. However, appliation spei� events annot be deteted.4. Diret instrumentation of the ompiled objet ode is independent of the pro-gramming language and does not require any reompiling of the appliations[24, 2℄. Both the appliation and the ommuniation library an be traed.In addition, users an dynamially adjust the grain and the loalization ofthe instrumentation. The main drawbak of this instrumentation tehniqueis that it is not easily portable on various operating systems or hardwareplatforms.3.3. Trae format. A trae is omposed of event reords. Eah reord ontainsat least the following information: type of the event, (physial) date of the event andproess identi�ation of the proess having performed the event. Some reords ontainadditional parameters of the traed event suh as reeiver (sender) identi�ation andmessage length in ase of message emission (reeption) or data �elds allowing usersto pass information to data analysis and visualization tools. In addition to prede�nedevent reords, usually assoiated to synhronization or ommuniation primitives,there might be some user-de�ned event allowing programmers to reord whateverinformation they are interested in.There is no agreement among the sienti� ommunity upon the possibility northe neessity of de�ning a standard trae format. The approah onsisting in usingself-de�ned trae formats suh as SDDF for PABLO [29℄ seems very powerful: thestruture of the event reords is de�ned in the headers of the trae �les. Besides,the PICL trae format is widely used beause traes an be passed to the widespreadParaGraph visualization tool [9℄. It seems that onverting traes from a format intoanother one does not raise any serious tehnial problem: several trae onverters werealready developed to onvert traes olleted in various formats into PICL format [18℄.3.4. Quality of traed information. Ideally, the storage apaity of the sys-tem would be in�nite, the reorded events would be dated with an in�nite preisionglobal lok and there would not be any traing intrusion. However this is not thease in general and espeially in the ase of software traing. The amount of infor-mation to be reorded may exeed the storage apaity of the system, resulting in aredution of the traed information. The lak of global lok in distributed parallelsystems may result into inoherenies between events dated with di�erent loal loks.The intrusion of traing may hange the behavior of the observed program exeution.3.4.1. Bu�ering and data extration. The amount of traed data dependson the number of traed events: it an be limited when traing is restrited to om-muniation events; it may generate a huge amount of traing data if more detailedmeasures are needed or the traing tool is misused. In any ase, a potentially largeamount of trae data has to be stored and extrated from the parallel system. Varioustrade-o�s an be onsidered between memory overhead, resulting from the alloationof large trae bu�ers, and time overhead, resulting from the use of ompression algo-rithms [20℄ or from the time spent transferring trae data to disk.6

3.4.2. Dynami redution of the amount of traed data. There exist sev-eral approahes to redue dynamially the amount of reorded data, based on moreor less elaborate on-line analysis of the data:1. The �rst lass of tehniques implements a dynami hange of the level ofdetail of the reordings. In PABLO [29℄, the trae reording frequeny isadjusted dynamially and event traing may be replaed by ounting whenthe ourrene frequeny of traed events beomes too high. Suh dynamiadjustment of the amount of olleted information is also performed by Para-dyn [24℄: depending on the truth value of some prediates indiating potentialperformane problems. In suh a ase, the observed program is dynamiallyinstrumented to ollet more performane data related to the problem.2. Another tehnique performs dynami statistial data lustering in order tolimit the reording of event traes to representative proessors from eahluster [25℄.3. Another approah is based on two basi ideas: the use of \averages" to re-plae reording data for eah instane and \formulae" to represent in�nitelylong sequenes of values [36℄ | formulae representing some sort of temporalpatterns, instead of the spatial patterns used in the previous method. Trae�les an then be of \�xed" length, that is independent of the number of it-erations and of the problem size. Event traes an be reonstruted by postproessing the performane data.3.4.3. Quality of time measurement. In distributed parallel systems, eahproessor has its own physial lok. Using the physial properties of the quartzosillators ommonly used for omputer loks, it is possible to model the loal timelti(t) measured on proessor i as a linear dependene [21℄:lti(t) = �i + �it+ Æi; i 2 [1; p℄;(3.1)where t represents the \absolute" or \universal" time, the onstant �i is the o�setat time t = 0, the onstant �i (lose to 1) is the drift of the physial lok, and therandom variable Æi models granularity and other random perturbations. Æi an beassumed to be independent of the time t. This model is orret only if the physialparameters (e.g. temperature) of the environment (mahine room) remain onstantand t is suÆiently small to neglet rystal aging. If these onstraints are not satis�ed,the oeÆients �i and �i may no longer be onstant.The lak of global lok in a distributed memory parallel system may result ininoherenies between reorded events if they are dated using the loal loks of theproessors. For example the date of reeption of a message an be lower than itsemission date. Suh inoherenies make diÆult or impossible the analysis of perfor-mane traes by performane measurement tools. On hardware or hybrid traers, thisproblem is solved by using dediated hardware [10℄. On software traers, this probleman be addressed by a software implementation of a lok orretion algorithm (seeSetion 4).3.4.4. Traing intrusion. As any monitoring tehnique, traing perturbatesthe exeution of the observed parallel programs. It is hard to estimate the intrusionof traing sine it depends on the traed program and on the number of traed events.In ase of hardware or hybrid traing, it is assumed that the traing intrusion remainslimited to a few perent of the exeution time. Suh an intrusion an be assumed tohave a negligible e�et on the behavior of the observed program exeution [10℄.7

The intrusion of traing annot be negleted in the ase of software traing. Sev-eral proposals were done to model and ompensate the traing intrusion of softwaretraers [22, 35, 19, 20℄.When modeling traing intrusion, two types of perturbations are generally de�ned[22℄:Diret perturbations: resulting from the exeution of additional event generationinstrutions { time spent reading the lok and building an event desriptorin memory { and trae storing on �les by the instrumented proesses.Indiret perturbations: loalized outside of the traing ode but resulting fromthe exeution of the traing ode. Indeed monitoring an a�et the wayproesses are sheduled and memory is referened (frequeny of page faultsand ahe misses). It an also hinder some ompiler optimizations or penalizeperformanes of I/O subsystems, inluding �le system and network aess.Perturbation ompensation models do not take indiret perturbations into a-ount sine these perturbations annot be estimated at the appliation level of ab-stration. However a lot of work is devoted to limit the fators inuening indiretperturbations suh as the volume of the traed data.3.5. Some existing software traing tools.3.5.1. AIMS. AIMS[35℄ inludes a set of tools for measuring the performanesof parallel programs. The appliation soure ode is instrumented by a preproessorperforming a syntati analysis of the program and building a all graph of proe-dures and loops: using a graphial presentation of this all-graph, the user an seletinstrumentation points. Instrumented ode needs to be reompiled and linked to alibrary inluding data formating and storage proedures. AIMS inludes a system forsynhronizing loks and orreting traing intrusion based on the work of Sarukkai-Malony [30℄. The amount of reorded information an also be dynamially reduedby using averages and formulae [36℄.3.5.2. Annai. Annai[3℄ provides an instrumented ommuniation library | toobserve ommuniations { as well as a ompile-time instrumentation | to observethe omponents of the soure ode suh as proedures, loops, et. During the exeu-tion, users an speify \instrumentation ation points", similar to breakpoints duringorretness debugging, where it will be possible to hange the instrumentation param-eters dynamially. Annai an be used in traing or timing mode. It is also possible toestimate the intrusion of traing for the various omponents of the soure program.3.5.3. Pablo. In Pablo[28℄, the soure ode is instrumented diretly by the userwith the help of a graphial interfae. In ase the trae reording frequeny is toohigh, it is automatially redued or even traing is automatially replaed by ounting.The self de�ned trae format of Pablo, SDDF, was adopted for several other tools.3.5.4. PGPVM. Monitoring data is olleted by an instrumented version of thePVM ommuniation library whih generates traes at the Paragraph format. Postmortem lok synhronization and intrusion removal an be performed if neessary.3.5.5. Tape/PVM. Tape/PVM[18, 19, 20℄ is a monitoring tool for PVM pro-grams. The soure ode is diretly instrumented using a preproessor. A global lokis implemented by software, using the SBA tehnique (see Setion 4). The traingintrusion an be ompensated post-mortem (see Setion 5).8

3.5.6. XPVM [12℄. XPVM is a graphial interfae for PVM whih inludesan instrumented PVM ommuniation library generating trae data whih an beused for on-line or post-mortem visualization. Trae data transmission alters thebandwidth available for the ommuniations of the observed appliations.Table 3.1Some existing traing toolsTool Instrumentation Dynami Global Intrusion�ltering lok ompensationAIMS soure yes synhro yesAnnai soure, ompiler yes estimatebinaryPablo soure yes no noPGPVM instrumented no post mortem yeslibrary synhronizationTape/PVM soure no post mortem post mortemglobal lokXPVM instrumented no no nolibrary4. Global time implementation on distributed memory parallel sys-tems. As mentioned above, many distributed memory systems suh as lusters donot have a hardware global lok. Using loal loks to date events results in errorswhere the sequening order, derived from the dates of the events, ould ontraditthe ausal relationship between these events [14℄, whih ould be established using alogial lok [23℄. To avoid these errors, it is possible to implement a global time ina distributed memory system by seleting the lok of one of the proessors of thesystem as a referene lok [21℄. Equation 3.1 an be derived into:lti(t) = �i;ref + �i;ref ltref (t) + Æi;ref :(4.1)The orreted global time on proessor i, LCi(t) will therefore be estimated as:LCi(t) = ltref (t) � lti(t)� �i;ref�i;ref ;(4.2)the value ltref (t) in equation 4.2 being the referene lok value at time t, suh as itan be omputed from lti(t), provided that �i;ref and �i;ref are known. The oeÆ-ients �i;ref and �i;ref need to be estimated for eah of the proessors of the system.The method onsists in building a statistial sampling of the dates that some events{ ourring on the referene proessor and whose dates are measured using the refer-ene lok { would have on proessor i. The events used for these estimates are thereeptions of \ping-pong" messages, exhanged between the referene proessor andproessor i (event Rkref on Figure 4.1). The statistial method assumes that the om-muniation delays of messages sent by the referene proessor to the other proessorsof the system are the same as the ommuniation delays of the reply messages.The expetation of the ommuniation delay of the \ping" message is supposedequal to the expetation of the ommuniation delay of the \pong" message. Rkref ishosen as referene event and its ourrene date, on the lok of proessor i, estimated9

pong
message

ping

message

PiPref
Rki Ski

Skref RkrefFig. 4.1. Data olletion proessby (see Figure 4.1):lti(Rkref) = lti(Rki) + lti(Ski)2 + ltref (Rkref)� ltref (Skref)2 ;(4.3)whih is identi�ed to �i;ref + �i;ref ltref (Rkref) + rki;ref ; rki;ref being the residu. Thismethod requires a reording of the four dates lti(Rki), lti(Ski), ltref (Rkref), and ltref (Skref).This way a sample of ouples (ltref (Rkref);lti(Rkref)) is obtained and the oeÆ-ients �i;ref and �i;ref are omputed using linear regression tehniques.The SB (Sample Before) tehnique onsists in omputing the o�sets and drifts ofthe loks of all the proessors of the system, relatively to the referene lok, beforethe exeution of the traed appliation. It is then possible to give a global date to themonitored events, as soon as they are reorded. However, when an appliation takes along time to exeute, whih is quite frequent for time-demanding parallel appliations,the errors arising from approximating the drifts annot be negleted (when they reahthe order of the ommuniation delays).In this ase, it is neessary to use the SBA (Sample Before and After) estima-tion method of �i;ref and �i;ref , whih inludes two series of ping-pong messagesexhanges, between the referene and all the other proessors, before and after theexeution of the monitored parallel appliation. The use of two synhronization phaseslimits the global time extrapolation error. >From the values estimated for �i;ref and�i;ref , it is possible to orret post mortem the loal dates of eah of the eventsreorded during the exeution of the monitored parallel program. The global timeestimation error depends on the length of the synhronization phases. By adaptingthe length of the synhronizations to the duration of the monitored appliation, it ispossible to get rid of all ausal inoherenies (see [18℄ for more details).5. Modeling and ompensation of software traing intrusion. Three ob-jets are involved in the modeling and ompensation proess:1. the trae �le T , reeting a perturbated appliation behavior;2. the \ideal" exeution trae T0, whih would be obtained by an ideal, non-intrusive instrumentation;3. the approximated exeution trae Ta, obtained by applying an intrusion om-pensation model to T .In ase of software traing, in the absene of a non-intrusive hardware monitor,the only performane index whih an be known about T0 is its exeution time.The importane of the intrusion of software traing in T with respet to T0 an beevaluated by omparing the respetive exeution times. Although this intrusion mayremain limited to a few perent of the exeution time for some program exeutions10

traing only ommuniations, it may beome predominant as soon as detailed traingis required, to trae the most frequently alled proedures for example.The objetive of modeling and ompensation methods is to transform a trae T ,reeting a perturbated appliation behavior, into a trae Ta, approximating as muhas possible the \ideal" exeution trae T0, whih would be obtained by an ideal, non-intrusive instrumentation. Only diret perturbations are taken into aount in thetrae orretion methods. The priniple of these methods is to orret post mortemthe dates of the traed events to approximate the dates that these events would haveif the diret perturbations aused by software traing were negligible.Suh a orretion methods must take into aount the ausal dependenies be-tween events ourring in di�erent proesses, resulting from synhronizations or om-muniations between these proesses. In [22℄, Malony gives a orretion method forseveral synhronization primitives suh as barrier, semaphore, et. In the remain-ing of this setion, we present how this method was adapted by �E. Maillet to theasynhronous ommuniations of PVM in the Tape/PVM traer [20℄.5.1. Notations. The diret perturbation � is the ost in time to generate asingle event and is assumed to be onstant and loalized at the instrumentation point(see Figure 5.1). � is assumed onstant for ease of presentation only. In pratie, �is likely to depend on the size of the event (i.e. its number of attributes). Generatingan event for an ation of interest A onsists in reading the lok to get the date t(e) ofthe start of the ation, and in storing the event attributes after the end of the ation.We assume that all the overhead � onsists of storing the event with its attributesand that it is loated after t(e). If A is an ation whih has a measurable duration(e.g. bloking reeive primitive), the exeution time of A an be either part of theattributes of the event, or two events an be generated, one at start of A the other atend of A. This depends on the implementation of the traing tool.
A

A

Non instrumented
process

Instrumented

time

read t(e) store e:<t(e), attributes(A)>

�Fig. 5.1. Model of elementary intrusion ost5.2. Case of independent sequential proesses. This is the ase of a pro-ess registering loal events, between two onseutive ommuniation events (see Fig-ure 5.2). The approximated date ta(eik) of the kth registered event of proess i anbe estimated as: ta(eik) = tbia + (t(eik)� tbi)� ai;with:tbia: approximated base date of proess i. This date is used for eah date orretion.It is initialized at the date of the �rst reorded event t(ei0). Later on it isreomputed after eah ommuniation (see below).11

ai: aumulated perturbation of proess i between the base event and the urrentevent. For an independent sequential proess (see Figure 5.2), the value ofai when reording the kth event is (k � 1)�.
time

Proess i ei0tbia ta(eik)eikt(eik) measured time� �� �t(ei0) approximatedFig. 5.2. Perturbation ompensation on a sequential proess5.3. Non-bloking send and bloking reeive ommuniation primi-tives. In presene of ommuniations, it is no longer true that the perturbation at agiven event e is the aumulation of all diret instrumentation delays from beginningof the proess. The base date needs to be reset after eah ommuniation.5.3.1. Resetting of the base date. In Figure 5.3, proess Pi performs a blok-ing reeive primitive of a message sent by Pj . Figure 5.3.a represents non traed ex-eution. In Figure 5.3.b, the perturbations of the sender Pj delays message emission,thus inreasing the bloking delay of the reeiver Pi. In Figure 5.3., perturbations ofthe reeiver Pi delay its posting of the request, thus reduing, or even eliminating thebloking delay. A new base date needs to be reomputed after eah ommuniationor synhronization. The base date omputation algorithm, in ase of non-blokingsend and bloking reeive primitives, suh as the pvm send and pvm reeive of thePVM ommuniation library [32℄, is presented in the following.
a) non-instrumented execution

b) perturbation of the sender only c) perturbation of the receiver only

PiPj ei0 eik
PiPj ei0 Pi ei0Pjeik eik
Fig. 5.3. Synhronization through a bloking reeption primitive: importane of the time base5.3.2. Base date omputation. The appliation level reeption event an bedeomposed into three di�erent \sub-events":SR: start of bloking reeive by the reeiving proess.ER: end of bloking reeive after message delivery, resuming of the omputation.B: instant at whih the message beomes available in the reeiver's system bu�ers,i.e. the soonest possible instant at whih the reeiver an extrat the message.12

Information on the B, SR, and ER events is supposed to be stored altogetherwith the attributes of ER (they atually form one single event), whih explains whya single overhead � is taken into aount in the perturbation ompensation algorithm(see Figure 5.4 and Figure 5.5).Two di�erent ases are possible, depending on whether the message arrives onthe reeiving node before or after the reeption request SR of the reeiving proess:1. Before the reeive requestsender ireeiver j S SR ERB� �Fig. 5.4. Message arrived before the posting of the reeive requestta(ER) = ta(SR) +DC;DC being the delay of proessing the inoming data (opying into a newative reeive bu�er in ase of PVM).2. After the reeive requestsender ireeiver j S ERSR B ��
Fig. 5.5. Message arrived after the posting of the reeive requestta(ER) = ta(B) +DC:Assuming that neither the message transmission time (t(B) � t(S)) nor the messageproessing delay DC are a�eted by traing, we get:ta(B) = t(B)� t(S) + ta(S):In both ases, the base date tbja of the reeiving proess is reset to the approxi-mated date of the ER event, after the ommuniation:tbja ta(ER) aj �:The main problem with this algorithm is that the value of t(B) annot be mea-sured sine it is an event at the ommuniation system level and traing is performedat the appliation program level of abstration. �E. Maillet desribes in [20℄ an al-gorithm allowing the orretion of the date of event ER, depending on the relativepositions in time of B and SR. In some ases, ta(ER) an be omputed withoutneeding to estimate ta(B). In the few remaining ases, an estimate of the date ta(B)an be omputed from a measure of the date of ta(S), by applying an approximateost model of the ommuniations on the monitored parallel system.13

5.4. Limits of perturbation ompensation methods for programs be-having non deterministially. Perturbation ompensation methods do not hangethe ausal dependeny relation between events and therefore do not take into aountpotential behavioral hanges of the traed appliation oming from traing. Suhmethods are not appliable to traes of appliations using non-deterministi ommu-niation primitives. In PVM for instane, a task may request a message of any typefrom any other task using a pvm rev(-1,-1) funtion all. The \exeution path"of a traed exeution of suh a program might di�er from the \exeution path" of anon-traed program exeution. In the example of Figure 5.6, the exeution of proessP1 was heavily perturbated by traing. If the emission date of the message sent byproess P1 to proess P2 were naively orreted, its transmission time being unaf-feted by traing, the order of reeption of messages emitted by proesses P1 andP3, by proess P2, would be reversed with respet to the atual reeption order ofthe traed exeution. However, perturbation ompensation methods annot hangethe order of reeption of messages in the orreted trae sine the e�ets of suh ahange on the remaining of the traed exeution ould not be dedued from the traes.The only possibility to orret traes of non deterministi programs is therefore toapply a onservative approximation whih keeps the order of message reeptions ofthe orreted trae unhanged with respet to the non orreted trae.
Traced execution Naive trace intrusion compensation

Conservative approximation

P2P3P1 P1P2P3P1P2P3 Fig. 5.6. Order of message reeption hanged by traingA possible solution to the problem of non-determinism is to use a deterministireplay [15℄ mehanism, when intrusively traing an appliation for performane data.Limited ontrol information is reorded during an initial reord exeution, the intru-sion aused by this reording being usually very low [5℄. This information is usedby subsequent replay exeution to guarantee determinism with respet to the initialreord exeution. If performane traes are olleted during a replay exeution, aperturbation ompensation method, similar to the one desribed above, an be usedto orret on line [16℄ or o�-line [33℄ the intrusion of performane traing. In thelatter ase, the method aims at onstruting an approximated exeution trae Ta, aslose as possible from the trae that would be obtained by a non-intrusive traing ofthe initial reord exeution.6. Interation with the operating system. Although traing is well suitedto apturing phenomena ourring at the appliation level suh as ommuniationdelays, it may fail apturing ineÆienies of loaded multi-users systems. The reason14

is that traing does not make possible to distinguish between the ready and ativeexeution states of proesses: one a proess has been started, only expliit proesssuspensions at the appliation level, for example waiting for a message reeption, anbe deteted by traing at the appliation level. However, if the observed proess isrunning on top of a multi-users operating system, it may our that it gets suspendedwithout any relation with an appliation-level event. This is the ase if a higherpriority proess beomes ativable or if the observed proess has exhausted its timeslie. In suh ases the measured duration of the ativity of some tasks is likely toexeed the atual duration of these tasks.Suh phenomenon an be aptured if traing at the appliation level an be ou-pled with measurement data gathered at the operating system level. One possible ap-proah is to relate the ounting information maintained by the operating system dur-ing the exeution to the information dedued from traing at the appliation level[26℄.Then it beomes possible to evaluate the perentages of ativity and idleness duringthe periods where traing an only indiate that a thread was ativable.A similar problem may our when other monitoring tehniques are used andsimilar solutions may be designed. For example, in Paradyn, some performane datakept by the operating system an be mixed with the ounters and timers generatedfrom the monitoring of the observed programs. For example, the umulative numberof page faults is read before and after a proedure all to approximate the number ofpage faults taken by that proedure [24℄.7. Conlusion. This hapter presents the issues of olleting monitoring datafor performane debugging of parallel programs. Most monitoring tools for parallelprograms are event driven, the most general event-driven monitoring tehnique beingtraing. Among the possible traing tehniques, software traing is deemed the mostportable and widespread, although it requires to solve two diÆult problems in orderto obtain high quality traes: providing a preise global lok in distributed-memorysystems and being able to limit or ompensate the intrusion of traing. The lat-ter problem is speially diÆult in ase of programs behaving non deterministially.For suh programs, a monitoring approah using exeution replay tehniques seemspromising. Traing alone is not suÆient to detet performane problems arising fromthe interation of a parallel appliation with an underlying software layer suh as theoperating system. A possible approah to detet suh problems is to ombine traingat the appliation level with time-driven monitoring at the operating system level ofabstration. The investigation of monitoring tools based on this approah seems apromising researh trak.

15

REFERENCES[1℄ J. Bull, A hierarhial lassi�ation of overheads in parallel programs, in Proeedings of FirstIFIP TC10 International Workshop on Software Engineering for Parallel and DistributedSystems, Chapman Hall, 1996, pp. 208{219.[2℄ C. Cl�emen�on, A. Endo, J. Fritsher, A. M�uller, and V. Wylie, Annai salable run-time support for interative debugging and performane analysis of large-sale programs,in Pro. Euro-Par'96 Parallel Proessing, L. Boug�e, P. Fraigniaud, A. Mignotte, andY. Robert, eds., no. 1123 in LNCS, 1996.[3℄ K. M. Deker and B. J. N. Wylie, Software tools for salable multi-level appliation engi-neering, International Journal of Superomputer Appliations and High-Performane Com-puting, 11 (1997), pp. 236{250.[4℄ L. DeRose, Y. Zhang, and D. Reed, Svpablo: A multi-language performane analysis system,in 10th International Conferene on Computer Performane Evaluation - Modelling Teh-niques and Tools - Performane Tools'98, Palma de Mallora, Spain, Sept. 1998, pp. 352{355.[5℄ A. Fagot and J. Chassin de Kergommeaux, Systemati assessment of the overhead of tra-ing parallel programs, in Proeedings of the 4th Euromiro Workshop on Parallel and Dis-tributed proessing, PDP'96, E. Zapata, ed., Braga, Jan. 1996, IEEE/Computer SoietyPress, pp. 179{186.[6℄ G. A. Geist, M. Heath, B. Peyton, and P. Worley, Pil, a portable instrumented om-muniation library, TN 37831-8083, Oak Ridge National Laboratory, Oak Ridge, USA,1991.[7℄ S. Graham, P. Kessler, and M. MKusik, gprof: A all graph exeution pro�ler, in Proeed-ings of the SIGPLAN'82 Symposium on Compiler Constrution, ACM, 1982, pp. 120{126.[8℄ W. Gu, G. Einsenhauer, K. Shwan, and J. Vetter, Falon: On-line monitoring for steeringparallel programs, Conurreny: pratie and experiene, 10 (1998), pp. 699{736.[9℄ M. T. Heath and J. A. Etheridge, Visualizing the Performanes of Parallel Programs, IEEETrans. Softw. Eng., 8 (1991), pp. 29{39.[10℄ R. Hofmann, R. Klar, B. Mohr, A. Quik, and M. Siegle, Distributed performane mon-itoring: Methods, tools, and appliations, IEEE Transations on Parallel and DistributedSystems, 5 (1994), pp. 585{598.[11℄ J. Hollingsworth, J. Lumpp, and B. Miller, Tehniques for performane measurementsof parallel programs, in Parallel Computers Theory and Pratie, T. C. et al, ed., IEEEComputer Soiety Press, 1995.[12℄ J. Kohl and G. A. Geist, The pvm 3.4 traing faility and xpvm 1.1, in Pro. of the 29th.Hawai International Conferene on System Sienes, 1996.[13℄ E. Kraemer and J. T. Stasko, The visualization of parallel systems: An overview, Journalof Parallel and Distributed Computing, 18 (1993), pp. 105{117.[14℄ L. Lamport, Time, Cloks and Ordering of Events in a Distributed System, Communiationsof the ACM, 21 (1978), pp. 558{565.[15℄ T. LeBlan and J. Mellor-Crummey, Debugging Parallel Programs with Instant Replay,IEEE Transations on Computers, C-36 (1987), pp. 471{481.[16℄ E. Leu and A. Shiper, Exeution replay : a mehanism for integrating a visualization toolwith a symboli debugger, in CONPAR 92 - VAPP V. Seond Joint International Confereneon Vetor and Parallel Proessing, L. Boug�e, M. Cosnard, Y. Robert, and D. Trystram,eds., vol. 634 of Letures Notes in Computer Siene, Springer-Verlag, 1992.[17℄ T. Ludwig, M. Oberhuber, and R. Wismueller, An open monitoring system for paralleland distributed programs, in Pro. Euro-Par'96 Parallel Proessing, L. Boug�e and et al.,eds., vol. 1123 of Leture Notes in Computer Siene, Springer, 1996.[18℄ �E. Maillet, Tape/PVM: An eÆient performane monitor for PVM appliations, userguide, LMC-IMAG, B.P. 53, F-38041 Grenoble Cedex 9, Frane, 1994. Available atftp://ftp.imag.fr/imag/APACHE/TAPE.[19℄ �E. Maillet, Issues in performane traing with Tape/PVM, in Proeedings of EuroPVM'95,HERMES (ISBN 2-86601-497-9), 1995, pp. 143{148.[20℄ �E. Maillet, Tra�age de logiiel d'appliations parall�eles : oneption et ajustement de qualit�e,PhD thesis, Institut National Polytehnique de Grenoble, Sept. 1996. In Frenh. Availableat ftp://ftp.imag.fr/pub/APACHE/THESES/.[21℄ �E. Maillet and C. Tron, On EÆiently Implementing Global Time for Performane Evalua-tion on Multiproessor Systems, Journal of Parallel and Distributed Computing, 28 (1995),pp. 84{93.[22℄ A. D. Malony, A. Reed, and H. Wijshoff, Performane Measurement Intrusion and Per-16

turbation Analysis, IEEE Transations on parallel and distriuted systems, 3 (1992).[23℄ F. Mattern, Virtual time and global states in distributed systems, in Pro. Int. workshop onParallel and Distributed Algorithms, M. Cosnard, P. Quinton, M. Raynal, and Y. Robert,eds., North Holland, 1989.[24℄ B. Miller et al., The paradyn parallel performane measurement tool, IEEE Computer,(1995).[25℄ O. Nikolayev, P. Roth, and D. Reed, Real-time statistial lustering for event trae re-dution, The International Journal of Superomputer Appliations and High PerformaneComputing, 11 (1997), pp. 144{159.[26℄ F.-G. Ottogali and J.-M. Vinent, Mise en oh�erene et analyse de traes multi-niveaux,Calulateurs Parall�eles, 11 (1999), pp. 211{227. In Frenh.[27℄ D. Reed, Experimental analysis of parallel systems: Tehniques and open problems, in Pro.7th Int. Conferene on Computer Performane Evaluation, G. Haring and G. Kotsis, eds.,Vienna, Austria, May 1994, Springer Verlag.[28℄ D. Reed, K. Shields, W. Sullin, L. F. Tavera, and C. Elford, Virtual reality and parallelsystems performane analysis, IEEE Computer, (1995).[29℄ D. A. Reed et al., Salable Performane Analysis: The Pablo Performane Analysis Envi-ronment, in Proeedings of the Salable Parallel Libraries Conferene, A. Skjellum, ed.,IEEE Computer Soiety, 1993, pp. 104{113.[30℄ M. Sarukkai and A. Malony, Perturbation analysis of high level instrumentation for spmdprograms, ACM SIGPLAN Noties, (1993), pp. 44{53.[31℄ W. Stevens, Unix network programming, Englewood Cli�s, NJ: Prentie-Hall, 1990.[32℄ V. Sunderam, PVM: A Framework for Parallel Distributed Computing, Conurreny: Pratieand Experiene, 2 (1990), pp. 315{339.[33℄ F. Teodoresu and J. Chassin de Kergommeaux, On orreting the intrusion of traingnon deterministi programs by software, in Euro-Par'97 Parallel Proessing, LNCS 1300,Springer-Verlag, Aug. 1997, pp. 94{101.[34℄ J. Troki, Mon: Servie monitoring daemon. http://www.kernel.org/software/mon/.[35℄ J. C. Yan, Performane tuning with aims | an automated instrumentation and monitoringsystem for multiomputers, in Pro. of the Twenty-Seventh Annual Hawai Conferene onSystem Sienes, IEEE Computer Soiety Press, 1994, pp. 625{633.[36℄ J. C. Yan and M. A. Shmidt, Construting spae-time views from �xed size trae �les {getting the best of both worlds, in Parallel Computing: Fundamentals, Appliations andNew Diretions, E. D'Hollander, G. R. Joubert, F. J. Peters, and U. Trottenberg, eds.,vol. 12 of Advanes in Parallel Computing, Amsterdam, Feb. 1998, Elsevier, North-Holland,pp. 633{640.

17

