
MONITORING PARALLEL PROGRAMS FOR PERFORMANCETUNING IN CLUSTER ENVIRONMENTSJ. CHASSIN DE KERGOMMEAUX AND �E. MAILLET AND J.-M. VINCENT1. Introdu
tion. Performan
e debugging is an important part of the develop-ment 
y
le of parallel programs sin
e obtaining high performan
es is the main goalof using 
luster systems. The obje
tive of performan
e measurement tools is to helpprogrammers to get the highest possible performan
es from their programs on theirtarget ar
hite
ture. Performan
e debugging usually in
ludes several phases: moni-toring to gather performan
e data, data analysis to 
orre
t raw data and 
omputeperforman
e indi
es and presentation of the performan
e indi
es to the programmer,usually by sophisti
ated visualization tools. This latter phase is presented in Chap-ter 8. A good survey of monitoring and visualization tools was written by Kraemerand Stasko in [13℄.Performan
e monitoring 
an be used in at least two di�erent 
ontexts. The �rstone o

urs when a dynami
 
ontrol of the exe
ution of a parallel program is required.In this 
ase, data 
olle
ted by monitoring tools are analyzed on line be
ause a rapidfeedba
k is ne
essary. This is the 
ase of some tools monitoring operating systemsa
tivities, su
h as xload, perfmeter, top, et
. of Unix systems [31℄, used by systemengineers to manage 
omputing resour
es. In addition, the very long exe
ution time ofsu
h appli
ations | operating systems may run for days | are not 
ompatible withdata 
olle
tion and post-mortem analysis of the appli
ation behavior. Monitoringtools used by real-time systems also help implementing a dynami
 
ontrol of thesystems. The situation is similar for monitoring tools whose obje
tive is to helpsteering parallel programs on-line to improve their performan
es [8℄. Only appli
ationsadapted for being steered 
an bene�t from the use of su
h tools, for example tobalan
e the load among the pro
essors. Criti
al to su
h tools is the laten
y withwhi
h program events are transferred from the monitored program to the end-user,low-monitoring laten
y 
on
i
ting with low monitoring perturbations. In addition,intera
tivity 
onstraints redu
e the amount of analysis that 
an be performed onmonitored data. Another use of on-line data analysis is aimed at limiting the amountof re
orded data. For example, in order to analyze long running appli
ations, Paradyn[24℄ performs problem dete
tion on line, automati
ally or under the user's dire
tion,without requiring to store any monitoring data. A proposal for a standard interfa
ebetween on-line monitoring and analysis tools is proposed by Ludwig et al in [17℄.On the 
ontrary, to perform a global analysis of the behavior of the observedprograms, during a performan
e debugging 
y
le, as mu
h performan
e data as pos-sible needs to be 
olle
ted, with the lowest possible intrusion. Su
h 
onstraints arebest 
ombined when monitored data 
an be extra
ted after the exe
ution of the ob-served programs and data 
an be analyzed post-mortem. On-line and post-mortemmonitoring are not 
ontradi
tory sin
e, for example, steering 
hoi
es based upon on-line monitoring need to be validated with performan
e measures, whi
h 
an be bestperformed using the se
ond type of monitoring and performan
e data analysis. This
hapter being dedi
ated to monitoring for performan
e debugging, it mainly dealswith this type of monitoring a
tivities.In order to support performan
e debugging, a large number of performan
e indi
esmust be delivered by performan
e measurement tools so that programmers 
an dete
tand redu
e the overheads of their programs [1℄. These indi
es 
an be divided in two1



main 
lasses:Completion times whi
h ought to be redu
ed as mu
h as possible. The obje
tiveof performan
e debugging is most often to redu
e the 
ompletion time of aprogram or makespan. This index 
an be de
omposed into several measures
on
erning the time spent by the exe
ution of various parts of the programssu
h as pro
edures, 
ommuni
ation proto
ols, et
.Resour
e utilization rates indi
ating what per
entage of resour
e utilisation isspent exe
uting \useful" work. If we 
onsider pro
essor utilisation rates,programmers need to know what per
entage of time is spent in various over-heads, exe
uting syn
hronization 
ode, task 
reation, termination or s
hedul-ing, 
ommuni
ations or idling. Global resour
e utilization rates might indi-
ate a problem su
h as a low pro
essor utilization by the appli
ation programand an important idling rate. However to 
orre
t su
h a problem, it is oftenne
essary to use more detailed data. For example, an important idling ratemight indi
ate the presen
e of a bottlene
k, whose origin might be a la
kof parallelism in the program, a poor performan
e of the task s
heduler, anex
essive use of syn
hronizations, et
.The exe
ution of a parallel program 
an be monitored at several possible abstra
-tion levels: hardware, operating system, runtime system and appli
ation. Intuitively,the appli
ation level is the most signi�
ant one for parallel appli
ation programmers,sin
e it is the only pla
e where they 
an 
ontrol or adjust parameters. However, itmay o

ur that poor performan
es of an appli
ation 
an only be explained by observ-ing the impa
t of programming 
hoi
es on the runtime or operating systems, duringthe exe
ution of the appli
ation. Being able to relate appli
ation level design or pro-gramming de
isions to runtime or operating system behaviors is still a resear
h issueand will not be dealt with in this 
hapter.The organization of this 
hapter is the following. After this introdu
tion, thete
hniques for monitoring parallel programs are surveyed. The next se
tion fo
useson tra
ing, deemed the most general monitoring te
hnique for parallel programs.Software tra
ing is 
onsidered as the most portable and widespread tra
ing te
hniquebut su�ers of two important drawba
ks whi
h hinder the quality of tra
ed data: thela
k of global 
lo
k in most distributed-memory systems | su
h as 
lusters whereea
h node uses its private 
lo
k | and the overhead of tra
ing. Solutions to theseissues are presented in the two next se
tions. The last se
tion identi�es performan
eproblems whi
h 
annot be identi�ed by tra
ing alone and sket
hes a possible dete
tionapproa
h, 
ombining tra
ing and sampling.2. Prin
iples of parallel programs monitoring. Most monitoring tools areeither 
lo
k driven or event driven [27℄ (see Figure 2.1).
Monitoring

Clock driven Event driven

Timing Counting TracingFig. 2.1. Classi�
ation of monitoring tools2



2.1. Clo
k driven monitoring or sampling. Clo
k driven monitoring amountsto have the state of the observed system registered at periodi
al time intervals, bya pro
ess independent of the observed pro
ess. The periodi
ity of re
ording gener-ally depends on the operating system (typi
ally 20 millise
onds under Unix). There
orded information 
an be used on line or o� line to 
ompute global performan
eindi
es.An example of online monitoring tool is mon [34℄, general-purpose resour
e moni-toring system, whi
h 
an be used to monitor network servi
e availability, server prob-lems, environmental 
onditions, et
. Resour
e monitoring 
an be viewed as two sepa-rate tasks: the testing of a 
ondition, and triggering some sort of a
tion upon failure.mon was designed to keep the testing and a
tion-taking tasks separate, as stand-aloneprograms. mon is implemented as a s
heduler whi
h exe
utes the the monitors (whi
htest a 
ondition), and 
alls the appropriate alerts if the monitor fails.The well-known tools prof, gprof [7℄ belong to the latter 
ategory: these toolsregister the instru
tion 
ounter value. The registered data is used to 
ompute post-mortem global performan
e indi
es. For example, the time elapsed in a pro
edureof the program being exe
uted is supposed proportional to the number of hits of thepro
edure in the registered samples.Performan
e measurement tools based on sampling are intensively used for per-forman
e debugging of sequential programs. It is possible to observe the exe
utionof programs at the programmers' abstra
tion level without being disturbed by theintera
tion with the operating system. However, this sort of tool may fail �ndingthe 
auses of some overheads of parallel programs: global performan
e indi
es are oflittle help to show bottlene
ks or to evaluate 
ommuni
ation or idling times (unlessa pro
essor 
an be tra
ed busy waiting). In addition, the fairly low periodi
ity ofsampling may be unsuited to exhibit phenomena of very short durations.2.2. Event driven monitoring. Event driven monitoring is triggered by theo

urren
es of events. We assume that the pro
esses exe
uting an appli
ation performobservable events. In this 
hapter, an event will be de�ned as an a
tion 
hangingthe state of the monitored system, su
h as a pro
edure 
all or the re
eption of amessage. Event driven monitoring aims at asso
iating a date to ea
h of the observedevents. The observed events depend on what the programmer is interested in but, in
ase of parallel programs monitoring, in
lude emissions and re
eptions of messages aswell as \user de�ned" events. There exist di�erent types of event driven monitoringapproa
hes 
alled timing, 
ounting and tra
ing, depending on the amount of re
ordedinformation and the way it is used.2.2.1. Timing. The time spent in various parts of the observed program is mea-sured. For example, the time elapsed in a pro
edure 
an be obtained by subtra
tingthe 
lo
k value at the beginning of the pro
edure to the 
lo
k value measured when itterminates. Su
h measurements require a low laten
y 
lo
k. The amounts of re
ordeddata are limited to one 
ounter per measured value [4, 24℄. Timing intrusion dependson the number of instrumentation points but is potentially high if detailed timing isrequired.2.2.2. Counting. The number of o

urren
es of the observed events is re
ordedinto global performan
e indi
es. Counting is generally 
onsidered as minimally intru-sive and involves the management of limited amounts of data [4, 24℄.2.2.3. Tra
ing. Tra
ing is done by re
ording ea
h of the observed events into aperforman
e tra
e. Ea
h re
ord in
ludes at least the type of the re
orded event and3



the re
ording date. Additional information is also re
orded depending on the type ofthe event. For example, if the re
orded event is a message emission (re
eption), there
ord usually in
ludes the identity of the re
eiver (sender) pro
ess and the length ofthe message.Tra
ing is the most general event driven monitoring te
hnique. It is very wellsuited to measure 
ommuni
ation times { it is suÆ
ient to re
ord the emission andre
eption events { and exhibit bottlene
ks { by re
ording where the pro
esses exe
ut-ing an appli
ation spend the time. It 
an also be used to obtain global or detailedtiming or 
ounting information. For example, it is possible to measure the time spentexe
uting a pro
edure by re
ording the beginning and the end of ea
h exe
ution of thispro
edure. For all these reasons, most performan
e measurements tools for parallelprograms exe
utions are based on tra
ing [29, 9, 35, 2℄.However, tra
ing su�ers of several drawba
ks. First of all, it may be very in-trusive if detailed information is 
olle
ted. Another problem is that the validity ofthe re
orded data 
an be 
orrupted by the intera
tion with the operating system.For example, the time elapsed in a pro
edure is the di�eren
e between the dates ofexe
ution measured at the end and at the beginning of the pro
edure only if thepro
ess exe
uting the pro
edure is not suspended during the exe
ution of the pro
e-dure. Therefore, all tools based on tra
ing appli
ations are well suited to measureperforman
es of single-user systems but may fail obtaining exa
t performan
e data ofloaded multi-users systems.3. Tra
ing parallel programs. As de�ned above, tra
ing is the re
ording ofperforman
e events into a tra
e. As it is the 
ase for all monitoring te
hniques,tra
ing 
an be performed at several levels of abstra
tion. There exist several tra
ingimplementation te
hniques [10℄: hardware, software and hybrid. The quality of thetra
es indi
ates how faithful the re
orded information is. It is mainly a�e
ted by thela
k of global 
lo
ks in distributed systems, whi
h makes it diÆ
ult to order eventso

urring on di�erent nodes, and the intrusion of tra
ing or probe e�e
t, whi
h 
hangesthe behavior of tra
ed exe
utions, with respe
t to untra
ed ones. The quality of thetra
es depends on the tra
ing te
hnique. This se
tion surveys the tra
ing te
hniquesas well as the fa
tors a�e
ting the quality of the tra
ed information.3.1. Implementation te
hniques for tra
ing.Hardware tra
ing: hardware tra
ers are in
luded in the hardware of the observedparallel system [11℄. Su
h tra
ers require spe
i�
 hardware developments andare for this reason 
onsidered 
ostly. However they are not intrusive at all.Their use 
an be diÆ
ult for an appli
ation programmer sin
e it may not beobvious to relate a hardware event to an algorithmi
 
hoi
e at the appli
ationlevel.Hybrid tra
ing: hybrid tra
ers 
ombine spe
i�
 monitoring hardware with tra
ingsoftware [10℄. As software tra
ers, hybrid tra
ers are triggered by appli
ationlevel instru
tions. It is therefore easier to relate a tra
ed event to a sour
eprogram instru
tion than with a hardware tra
er. The tra
ed informationis written on dedi
ated hardware ports, 
onne
ted to a dedi
ated monitor-ing hardware, su
h that the monitoring intrusion remains extremely low. Inaddition, the monitoring hardware may in
lude a global 
lo
k for dating reg-istered events. Although su
h monitoring te
hnique 
an be 
onsidered idealfor programmers be
ause it is easy to use and delivers high quality tra
es, itis not widespread be
ause of its la
k of portability and its development 
ost.4



Software tra
ing: software tra
ing is the most portable and 
heapest tra
ing te
h-nique. It 
an be done without programmer's intervention, when the tra
eris in
luded in a 
ommuni
ation library whi
h 
an be used in \tra
ing" mode[6℄. Tra
ing 
an also be done by 
alling a tra
ing library from the tra
edprogram, 
alls being inserted by the programmer [29℄ or by a pre-pro
essor[18℄. Software tra
ing is the most widespread tra
ing te
hnique be
ause it is
heap and fairly easy to implement. However it makes it diÆ
ult to obtainhigh quality tra
es be
ause of the la
k of global 
lo
ks in most distributedmemory systems and be
ause of the intrusion 
aused by the re
ording andtransportation of the tra
e by the parallel system simultaneously to the exe-
ution of the monitored program.
Application

Software
monitor

Hybrid

Hardware

Electronic

probe

External hardware
monitorFig. 3.1. Hardware, software and hybrid monitoring te
hniques3.2. Software tra
ing instrumentation te
hniques. Instrumentation is theinsertion of 
ode to dete
t and re
ord the appli
ation events. It 
an be done at severalpossible stages during the 
onstru
tion of a parallel program (see Figure 3.2):

Pablo
AIMS, PGPVM
   Tape/PVM

Application source
code Compiler

Object code

Link editor

Executable code

Communication 

library

PVM, XPVM
Annai

Annai

AnnaiFig. 3.2. Instrumentation te
hniques1. Dire
t sour
e 
ode instrumentation[28, 35, 19℄: the instru
tions generating theevents are inserted in users' programs before 
ompilation. Insertion is usuallyperformed by a prepro
essor but it 
an be also done by the user, manually or5



through an intera
tive program. Although it 
an be implemented easily, thismethod has the drawba
k of requiring to re
ompile monitored programs.2. Compile-time instrumentation gives monitoring tools a

ess to the informa-tion 
omputed by the 
ompiler su
h as loop dependen
ies[2℄. However itrequires to have a

ess to the sour
e 
ode of the 
ompiler and to modify it.3. Instrumentation of the 
ommuni
ation library or of the runtime system hasthe advantage of requiring no modi�
ation nor re
ompiling of the monitoredappli
ation[12, 2℄. However, appli
ation spe
i�
 events 
annot be dete
ted.4. Dire
t instrumentation of the 
ompiled obje
t 
ode is independent of the pro-gramming language and does not require any re
ompiling of the appli
ations[24, 2℄. Both the appli
ation and the 
ommuni
ation library 
an be tra
ed.In addition, users 
an dynami
ally adjust the grain and the lo
alization ofthe instrumentation. The main drawba
k of this instrumentation te
hniqueis that it is not easily portable on various operating systems or hardwareplatforms.3.3. Tra
e format. A tra
e is 
omposed of event re
ords. Ea
h re
ord 
ontainsat least the following information: type of the event, (physi
al) date of the event andpro
ess identi�
ation of the pro
ess having performed the event. Some re
ords 
ontainadditional parameters of the tra
ed event su
h as re
eiver (sender) identi�
ation andmessage length in 
ase of message emission (re
eption) or data �elds allowing usersto pass information to data analysis and visualization tools. In addition to prede�nedevent re
ords, usually asso
iated to syn
hronization or 
ommuni
ation primitives,there might be some user-de�ned event allowing programmers to re
ord whateverinformation they are interested in.There is no agreement among the s
ienti�
 
ommunity upon the possibility northe ne
essity of de�ning a standard tra
e format. The approa
h 
onsisting in usingself-de�ned tra
e formats su
h as SDDF for PABLO [29℄ seems very powerful: thestru
ture of the event re
ords is de�ned in the headers of the tra
e �les. Besides,the PICL tra
e format is widely used be
ause tra
es 
an be passed to the widespreadParaGraph visualization tool [9℄. It seems that 
onverting tra
es from a format intoanother one does not raise any serious te
hni
al problem: several tra
e 
onverters werealready developed to 
onvert tra
es 
olle
ted in various formats into PICL format [18℄.3.4. Quality of tra
ed information. Ideally, the storage 
apa
ity of the sys-tem would be in�nite, the re
orded events would be dated with an in�nite pre
isionglobal 
lo
k and there would not be any tra
ing intrusion. However this is not the
ase in general and espe
ially in the 
ase of software tra
ing. The amount of infor-mation to be re
orded may ex
eed the storage 
apa
ity of the system, resulting in aredu
tion of the tra
ed information. The la
k of global 
lo
k in distributed parallelsystems may result into in
oheren
ies between events dated with di�erent lo
al 
lo
ks.The intrusion of tra
ing may 
hange the behavior of the observed program exe
ution.3.4.1. Bu�ering and data extra
tion. The amount of tra
ed data dependson the number of tra
ed events: it 
an be limited when tra
ing is restri
ted to 
om-muni
ation events; it may generate a huge amount of tra
ing data if more detailedmeasures are needed or the tra
ing tool is misused. In any 
ase, a potentially largeamount of tra
e data has to be stored and extra
ted from the parallel system. Varioustrade-o�s 
an be 
onsidered between memory overhead, resulting from the allo
ationof large tra
e bu�ers, and time overhead, resulting from the use of 
ompression algo-rithms [20℄ or from the time spent transferring tra
e data to disk.6



3.4.2. Dynami
 redu
tion of the amount of tra
ed data. There exist sev-eral approa
hes to redu
e dynami
ally the amount of re
orded data, based on moreor less elaborate on-line analysis of the data:1. The �rst 
lass of te
hniques implements a dynami
 
hange of the level ofdetail of the re
ordings. In PABLO [29℄, the tra
e re
ording frequen
y isadjusted dynami
ally and event tra
ing may be repla
ed by 
ounting whenthe o

urren
e frequen
y of tra
ed events be
omes too high. Su
h dynami
adjustment of the amount of 
olle
ted information is also performed by Para-dyn [24℄: depending on the truth value of some predi
ates indi
ating potentialperforman
e problems. In su
h a 
ase, the observed program is dynami
allyinstrumented to 
olle
t more performan
e data related to the problem.2. Another te
hnique performs dynami
 statisti
al data 
lustering in order tolimit the re
ording of event tra
es to representative pro
essors from ea
h
luster [25℄.3. Another approa
h is based on two basi
 ideas: the use of \averages" to re-pla
e re
ording data for ea
h instan
e and \formulae" to represent in�nitelylong sequen
es of values [36℄ | formulae representing some sort of temporalpatterns, instead of the spatial patterns used in the previous method. Tra
e�les 
an then be of \�xed" length, that is independent of the number of it-erations and of the problem size. Event tra
es 
an be re
onstru
ted by postpro
essing the performan
e data.3.4.3. Quality of time measurement. In distributed parallel systems, ea
hpro
essor has its own physi
al 
lo
k. Using the physi
al properties of the quartzos
illators 
ommonly used for 
omputer 
lo
ks, it is possible to model the lo
al timelti(t) measured on pro
essor i as a linear dependen
e [21℄:lti(t) = �i + �it+ Æi; i 2 [1; p℄;(3.1)where t represents the \absolute" or \universal" time, the 
onstant �i is the o�setat time t = 0, the 
onstant �i (
lose to 1) is the drift of the physi
al 
lo
k, and therandom variable Æi models granularity and other random perturbations. Æi 
an beassumed to be independent of the time t. This model is 
orre
t only if the physi
alparameters (e.g. temperature) of the environment (ma
hine room) remain 
onstantand t is suÆ
iently small to negle
t 
rystal aging. If these 
onstraints are not satis�ed,the 
oeÆ
ients �i and �i may no longer be 
onstant.The la
k of global 
lo
k in a distributed memory parallel system may result inin
oheren
ies between re
orded events if they are dated using the lo
al 
lo
ks of thepro
essors. For example the date of re
eption of a message 
an be lower than itsemission date. Su
h in
oheren
ies make diÆ
ult or impossible the analysis of perfor-man
e tra
es by performan
e measurement tools. On hardware or hybrid tra
ers, thisproblem is solved by using dedi
ated hardware [10℄. On software tra
ers, this problem
an be addressed by a software implementation of a 
lo
k 
orre
tion algorithm (seeSe
tion 4).3.4.4. Tra
ing intrusion. As any monitoring te
hnique, tra
ing perturbatesthe exe
ution of the observed parallel programs. It is hard to estimate the intrusionof tra
ing sin
e it depends on the tra
ed program and on the number of tra
ed events.In 
ase of hardware or hybrid tra
ing, it is assumed that the tra
ing intrusion remainslimited to a few per
ent of the exe
ution time. Su
h an intrusion 
an be assumed tohave a negligible e�e
t on the behavior of the observed program exe
ution [10℄.7



The intrusion of tra
ing 
annot be negle
ted in the 
ase of software tra
ing. Sev-eral proposals were done to model and 
ompensate the tra
ing intrusion of softwaretra
ers [22, 35, 19, 20℄.When modeling tra
ing intrusion, two types of perturbations are generally de�ned[22℄:Dire
t perturbations: resulting from the exe
ution of additional event generationinstru
tions { time spent reading the 
lo
k and building an event des
riptorin memory { and tra
e storing on �les by the instrumented pro
esses.Indire
t perturbations: lo
alized outside of the tra
ing 
ode but resulting fromthe exe
ution of the tra
ing 
ode. Indeed monitoring 
an a�e
t the waypro
esses are s
heduled and memory is referen
ed (frequen
y of page faultsand 
a
he misses). It 
an also hinder some 
ompiler optimizations or penalizeperforman
es of I/O subsystems, in
luding �le system and network a

ess.Perturbation 
ompensation models do not take indire
t perturbations into a
-
ount sin
e these perturbations 
annot be estimated at the appli
ation level of ab-stra
tion. However a lot of work is devoted to limit the fa
tors in
uen
ing indire
tperturbations su
h as the volume of the tra
ed data.3.5. Some existing software tra
ing tools.3.5.1. AIMS. AIMS[35℄ in
ludes a set of tools for measuring the performan
esof parallel programs. The appli
ation sour
e 
ode is instrumented by a prepro
essorperforming a synta
ti
 analysis of the program and building a 
all graph of pro
e-dures and loops: using a graphi
al presentation of this 
all-graph, the user 
an sele
tinstrumentation points. Instrumented 
ode needs to be re
ompiled and linked to alibrary in
luding data formating and storage pro
edures. AIMS in
ludes a system forsyn
hronizing 
lo
ks and 
orre
ting tra
ing intrusion based on the work of Sarukkai-Malony [30℄. The amount of re
orded information 
an also be dynami
ally redu
edby using averages and formulae [36℄.3.5.2. Annai. Annai[3℄ provides an instrumented 
ommuni
ation library | toobserve 
ommuni
ations { as well as a 
ompile-time instrumentation | to observethe 
omponents of the sour
e 
ode su
h as pro
edures, loops, et
. During the exe
u-tion, users 
an spe
ify \instrumentation a
tion points", similar to breakpoints during
orre
tness debugging, where it will be possible to 
hange the instrumentation param-eters dynami
ally. Annai 
an be used in tra
ing or timing mode. It is also possible toestimate the intrusion of tra
ing for the various 
omponents of the sour
e program.3.5.3. Pablo. In Pablo[28℄, the sour
e 
ode is instrumented dire
tly by the userwith the help of a graphi
al interfa
e. In 
ase the tra
e re
ording frequen
y is toohigh, it is automati
ally redu
ed or even tra
ing is automati
ally repla
ed by 
ounting.The self de�ned tra
e format of Pablo, SDDF, was adopted for several other tools.3.5.4. PGPVM. Monitoring data is 
olle
ted by an instrumented version of thePVM 
ommuni
ation library whi
h generates tra
es at the Paragraph format. Postmortem 
lo
k syn
hronization and intrusion removal 
an be performed if ne
essary.3.5.5. Tape/PVM. Tape/PVM[18, 19, 20℄ is a monitoring tool for PVM pro-grams. The sour
e 
ode is dire
tly instrumented using a prepro
essor. A global 
lo
kis implemented by software, using the SBA te
hnique (see Se
tion 4). The tra
ingintrusion 
an be 
ompensated post-mortem (see Se
tion 5).8



3.5.6. XPVM [12℄. XPVM is a graphi
al interfa
e for PVM whi
h in
ludesan instrumented PVM 
ommuni
ation library generating tra
e data whi
h 
an beused for on-line or post-mortem visualization. Tra
e data transmission alters thebandwidth available for the 
ommuni
ations of the observed appli
ations.Table 3.1Some existing tra
ing toolsTool Instrumentation Dynami
 Global Intrusion�ltering 
lo
k 
ompensationAIMS sour
e yes syn
hro yesAnnai sour
e, 
ompiler yes estimatebinaryPablo sour
e yes no noPGPVM instrumented no post mortem yeslibrary syn
hronizationTape/PVM sour
e no post mortem post mortemglobal 
lo
kXPVM instrumented no no nolibrary4. Global time implementation on distributed memory parallel sys-tems. As mentioned above, many distributed memory systems su
h as 
lusters donot have a hardware global 
lo
k. Using lo
al 
lo
ks to date events results in errorswhere the sequen
ing order, derived from the dates of the events, 
ould 
ontradi
tthe 
ausal relationship between these events [14℄, whi
h 
ould be established using alogi
al 
lo
k [23℄. To avoid these errors, it is possible to implement a global time ina distributed memory system by sele
ting the 
lo
k of one of the pro
essors of thesystem as a referen
e 
lo
k [21℄. Equation 3.1 
an be derived into:lti(t) = �i;ref + �i;ref ltref (t) + Æi;ref :(4.1)The 
orre
ted global time on pro
essor i, LCi(t) will therefore be estimated as:LCi(t) = ltref (t) � lti(t)� �i;ref�i;ref ;(4.2)the value ltref (t) in equation 4.2 being the referen
e 
lo
k value at time t, su
h as it
an be 
omputed from lti(t), provided that �i;ref and �i;ref are known. The 
oeÆ-
ients �i;ref and �i;ref need to be estimated for ea
h of the pro
essors of the system.The method 
onsists in building a statisti
al sampling of the dates that some events{ o

urring on the referen
e pro
essor and whose dates are measured using the refer-en
e 
lo
k { would have on pro
essor i. The events used for these estimates are there
eptions of \ping-pong" messages, ex
hanged between the referen
e pro
essor andpro
essor i (event Rkref on Figure 4.1). The statisti
al method assumes that the 
om-muni
ation delays of messages sent by the referen
e pro
essor to the other pro
essorsof the system are the same as the 
ommuni
ation delays of the reply messages.The expe
tation of the 
ommuni
ation delay of the \ping" message is supposedequal to the expe
tation of the 
ommuni
ation delay of the \pong" message. Rkref is
hosen as referen
e event and its o

urren
e date, on the 
lo
k of pro
essor i, estimated9



pong 
message

ping

message

PiPref
Rki Ski

Skref RkrefFig. 4.1. Data 
olle
tion pro
essby (see Figure 4.1):
lti(Rkref ) = lti(Rki ) + lti(Ski )2 + ltref (Rkref )� ltref (Skref )2 ;(4.3)whi
h is identi�ed to �i;ref + �i;ref ltref (Rkref ) + rki;ref ; rki;ref being the residu. Thismethod requires a re
ording of the four dates lti(Rki ), lti(Ski ), ltref (Rkref ), and ltref (Skref ).This way a sample of 
ouples (ltref (Rkref );
lti(Rkref )) is obtained and the 
oeÆ-
ients �i;ref and �i;ref are 
omputed using linear regression te
hniques.The SB (Sample Before) te
hnique 
onsists in 
omputing the o�sets and drifts ofthe 
lo
ks of all the pro
essors of the system, relatively to the referen
e 
lo
k, beforethe exe
ution of the tra
ed appli
ation. It is then possible to give a global date to themonitored events, as soon as they are re
orded. However, when an appli
ation takes along time to exe
ute, whi
h is quite frequent for time-demanding parallel appli
ations,the errors arising from approximating the drifts 
annot be negle
ted (when they rea
hthe order of the 
ommuni
ation delays).In this 
ase, it is ne
essary to use the SBA (Sample Before and After) estima-tion method of �i;ref and �i;ref , whi
h in
ludes two series of ping-pong messagesex
hanges, between the referen
e and all the other pro
essors, before and after theexe
ution of the monitored parallel appli
ation. The use of two syn
hronization phaseslimits the global time extrapolation error. >From the values estimated for �i;ref and�i;ref , it is possible to 
orre
t post mortem the lo
al dates of ea
h of the eventsre
orded during the exe
ution of the monitored parallel program. The global timeestimation error depends on the length of the syn
hronization phases. By adaptingthe length of the syn
hronizations to the duration of the monitored appli
ation, it ispossible to get rid of all 
ausal in
oheren
ies (see [18℄ for more details).5. Modeling and 
ompensation of software tra
ing intrusion. Three ob-je
ts are involved in the modeling and 
ompensation pro
ess:1. the tra
e �le T , re
e
ting a perturbated appli
ation behavior;2. the \ideal" exe
ution tra
e T0, whi
h would be obtained by an ideal, non-intrusive instrumentation;3. the approximated exe
ution tra
e Ta, obtained by applying an intrusion 
om-pensation model to T .In 
ase of software tra
ing, in the absen
e of a non-intrusive hardware monitor,the only performan
e index whi
h 
an be known about T0 is its exe
ution time.The importan
e of the intrusion of software tra
ing in T with respe
t to T0 
an beevaluated by 
omparing the respe
tive exe
ution times. Although this intrusion mayremain limited to a few per
ent of the exe
ution time for some program exe
utions10



tra
ing only 
ommuni
ations, it may be
ome predominant as soon as detailed tra
ingis required, to tra
e the most frequently 
alled pro
edures for example.The obje
tive of modeling and 
ompensation methods is to transform a tra
e T ,re
e
ting a perturbated appli
ation behavior, into a tra
e Ta, approximating as mu
has possible the \ideal" exe
ution tra
e T0, whi
h would be obtained by an ideal, non-intrusive instrumentation. Only dire
t perturbations are taken into a

ount in thetra
e 
orre
tion methods. The prin
iple of these methods is to 
orre
t post mortemthe dates of the tra
ed events to approximate the dates that these events would haveif the dire
t perturbations 
aused by software tra
ing were negligible.Su
h a 
orre
tion methods must take into a

ount the 
ausal dependen
ies be-tween events o

urring in di�erent pro
esses, resulting from syn
hronizations or 
om-muni
ations between these pro
esses. In [22℄, Malony gives a 
orre
tion method forseveral syn
hronization primitives su
h as barrier, semaphore, et
. In the remain-ing of this se
tion, we present how this method was adapted by �E. Maillet to theasyn
hronous 
ommuni
ations of PVM in the Tape/PVM tra
er [20℄.5.1. Notations. The dire
t perturbation � is the 
ost in time to generate asingle event and is assumed to be 
onstant and lo
alized at the instrumentation point(see Figure 5.1). � is assumed 
onstant for ease of presentation only. In pra
ti
e, �is likely to depend on the size of the event (i.e. its number of attributes). Generatingan event for an a
tion of interest A 
onsists in reading the 
lo
k to get the date t(e) ofthe start of the a
tion, and in storing the event attributes after the end of the a
tion.We assume that all the overhead � 
onsists of storing the event with its attributesand that it is lo
ated after t(e). If A is an a
tion whi
h has a measurable duration(e.g. blo
king re
eive primitive), the exe
ution time of A 
an be either part of theattributes of the event, or two events 
an be generated, one at start of A the other atend of A. This depends on the implementation of the tra
ing tool.
A

A

Non instrumented 
process

Instrumented

time

read t(e) store e:<t(e), attributes(A)>

�Fig. 5.1. Model of elementary intrusion 
ost5.2. Case of independent sequential pro
esses. This is the 
ase of a pro-
ess registering lo
al events, between two 
onse
utive 
ommuni
ation events (see Fig-ure 5.2). The approximated date ta(eik) of the kth registered event of pro
ess i 
anbe estimated as: ta(eik) = tbia + (t(eik)� tbi)� a

i;with:tbia: approximated base date of pro
ess i. This date is used for ea
h date 
orre
tion.It is initialized at the date of the �rst re
orded event t(ei0). Later on it isre
omputed after ea
h 
ommuni
ation (see below).11



a

i: a

umulated perturbation of pro
ess i between the base event and the 
urrentevent. For an independent sequential pro
ess (see Figure 5.2), the value ofa

i when re
ording the kth event is (k � 1)�.
time

Pro
ess i ei0tbia ta(eik)eikt(eik) measured time� �� �t(ei0) approximatedFig. 5.2. Perturbation 
ompensation on a sequential pro
ess5.3. Non-blo
king send and blo
king re
eive 
ommuni
ation primi-tives. In presen
e of 
ommuni
ations, it is no longer true that the perturbation at agiven event e is the a

umulation of all dire
t instrumentation delays from beginningof the pro
ess. The base date needs to be reset after ea
h 
ommuni
ation.5.3.1. Resetting of the base date. In Figure 5.3, pro
ess Pi performs a blo
k-ing re
eive primitive of a message sent by Pj . Figure 5.3.a represents non tra
ed ex-e
ution. In Figure 5.3.b, the perturbations of the sender Pj delays message emission,thus in
reasing the blo
king delay of the re
eiver Pi. In Figure 5.3.
, perturbations ofthe re
eiver Pi delay its posting of the request, thus redu
ing, or even eliminating theblo
king delay. A new base date needs to be re
omputed after ea
h 
ommuni
ationor syn
hronization. The base date 
omputation algorithm, in 
ase of non-blo
kingsend and blo
king re
eive primitives, su
h as the pvm send and pvm re
eive of thePVM 
ommuni
ation library [32℄, is presented in the following.
a) non-instrumented execution

b) perturbation of the sender only c) perturbation of the receiver only

PiPj ei0 eik
PiPj ei0 Pi ei0Pjeik eik
Fig. 5.3. Syn
hronization through a blo
king re
eption primitive: importan
e of the time base5.3.2. Base date 
omputation. The appli
ation level re
eption event 
an bede
omposed into three di�erent \sub-events":SR: start of blo
king re
eive by the re
eiving pro
ess.ER: end of blo
king re
eive after message delivery, resuming of the 
omputation.B: instant at whi
h the message be
omes available in the re
eiver's system bu�ers,i.e. the soonest possible instant at whi
h the re
eiver 
an extra
t the message.12



Information on the B, SR, and ER events is supposed to be stored altogetherwith the attributes of ER (they a
tually form one single event), whi
h explains whya single overhead � is taken into a

ount in the perturbation 
ompensation algorithm(see Figure 5.4 and Figure 5.5).Two di�erent 
ases are possible, depending on whether the message arrives onthe re
eiving node before or after the re
eption request SR of the re
eiving pro
ess:1. Before the re
eive requestsender ire
eiver j S SR ERB� �Fig. 5.4. Message arrived before the posting of the re
eive requestta(ER) = ta(SR) +DC;DC being the delay of pro
essing the in
oming data (
opying into a newa
tive re
eive bu�er in 
ase of PVM).2. After the re
eive requestsender ire
eiver j S ERSR B ��
Fig. 5.5. Message arrived after the posting of the re
eive requestta(ER) = ta(B) +DC:Assuming that neither the message transmission time (t(B) � t(S)) nor the messagepro
essing delay DC are a�e
ted by tra
ing, we get:ta(B) = t(B)� t(S) + ta(S):In both 
ases, the base date tbja of the re
eiving pro
ess is reset to the approxi-mated date of the ER event, after the 
ommuni
ation:tbja  ta(ER) a

j  �:The main problem with this algorithm is that the value of t(B) 
annot be mea-sured sin
e it is an event at the 
ommuni
ation system level and tra
ing is performedat the appli
ation program level of abstra
tion. �E. Maillet des
ribes in [20℄ an al-gorithm allowing the 
orre
tion of the date of event ER, depending on the relativepositions in time of B and SR. In some 
ases, ta(ER) 
an be 
omputed withoutneeding to estimate ta(B). In the few remaining 
ases, an estimate of the date ta(B)
an be 
omputed from a measure of the date of ta(S), by applying an approximate
ost model of the 
ommuni
ations on the monitored parallel system.13



5.4. Limits of perturbation 
ompensation methods for programs be-having non deterministi
ally. Perturbation 
ompensation methods do not 
hangethe 
ausal dependen
y relation between events and therefore do not take into a

ountpotential behavioral 
hanges of the tra
ed appli
ation 
oming from tra
ing. Su
hmethods are not appli
able to tra
es of appli
ations using non-deterministi
 
ommu-ni
ation primitives. In PVM for instan
e, a task may request a message of any typefrom any other task using a pvm re
v(-1,-1) fun
tion 
all. The \exe
ution path"of a tra
ed exe
ution of su
h a program might di�er from the \exe
ution path" of anon-tra
ed program exe
ution. In the example of Figure 5.6, the exe
ution of pro
essP1 was heavily perturbated by tra
ing. If the emission date of the message sent bypro
ess P1 to pro
ess P2 were naively 
orre
ted, its transmission time being unaf-fe
ted by tra
ing, the order of re
eption of messages emitted by pro
esses P1 andP3, by pro
ess P2, would be reversed with respe
t to the a
tual re
eption order ofthe tra
ed exe
ution. However, perturbation 
ompensation methods 
annot 
hangethe order of re
eption of messages in the 
orre
ted tra
e sin
e the e�e
ts of su
h a
hange on the remaining of the tra
ed exe
ution 
ould not be dedu
ed from the tra
es.The only possibility to 
orre
t tra
es of non deterministi
 programs is therefore toapply a 
onservative approximation whi
h keeps the order of message re
eptions ofthe 
orre
ted tra
e un
hanged with respe
t to the non 
orre
ted tra
e.
Traced execution Naive trace intrusion compensation

Conservative approximation

P2P3P1 P1P2P3P1P2P3 Fig. 5.6. Order of message re
eption 
hanged by tra
ingA possible solution to the problem of non-determinism is to use a deterministi
replay [15℄ me
hanism, when intrusively tra
ing an appli
ation for performan
e data.Limited 
ontrol information is re
orded during an initial re
ord exe
ution, the intru-sion 
aused by this re
ording being usually very low [5℄. This information is usedby subsequent replay exe
ution to guarantee determinism with respe
t to the initialre
ord exe
ution. If performan
e tra
es are 
olle
ted during a replay exe
ution, aperturbation 
ompensation method, similar to the one des
ribed above, 
an be usedto 
orre
t on line [16℄ or o�-line [33℄ the intrusion of performan
e tra
ing. In thelatter 
ase, the method aims at 
onstru
ting an approximated exe
ution tra
e Ta, as
lose as possible from the tra
e that would be obtained by a non-intrusive tra
ing ofthe initial re
ord exe
ution.6. Intera
tion with the operating system. Although tra
ing is well suitedto 
apturing phenomena o

urring at the appli
ation level su
h as 
ommuni
ationdelays, it may fail 
apturing ineÆ
ien
ies of loaded multi-users systems. The reason14



is that tra
ing does not make possible to distinguish between the ready and a
tiveexe
ution states of pro
esses: on
e a pro
ess has been started, only expli
it pro
esssuspensions at the appli
ation level, for example waiting for a message re
eption, 
anbe dete
ted by tra
ing at the appli
ation level. However, if the observed pro
ess isrunning on top of a multi-users operating system, it may o

ur that it gets suspendedwithout any relation with an appli
ation-level event. This is the 
ase if a higherpriority pro
ess be
omes a
tivable or if the observed pro
ess has exhausted its timesli
e. In su
h 
ases the measured duration of the a
tivity of some tasks is likely toex
eed the a
tual duration of these tasks.Su
h phenomenon 
an be 
aptured if tra
ing at the appli
ation level 
an be 
ou-pled with measurement data gathered at the operating system level. One possible ap-proa
h is to relate the 
ounting information maintained by the operating system dur-ing the exe
ution to the information dedu
ed from tra
ing at the appli
ation level[26℄.Then it be
omes possible to evaluate the per
entages of a
tivity and idleness duringthe periods where tra
ing 
an only indi
ate that a thread was a
tivable.A similar problem may o

ur when other monitoring te
hniques are used andsimilar solutions may be designed. For example, in Paradyn, some performan
e datakept by the operating system 
an be mixed with the 
ounters and timers generatedfrom the monitoring of the observed programs. For example, the 
umulative numberof page faults is read before and after a pro
edure 
all to approximate the number ofpage faults taken by that pro
edure [24℄.7. Con
lusion. This 
hapter presents the issues of 
olle
ting monitoring datafor performan
e debugging of parallel programs. Most monitoring tools for parallelprograms are event driven, the most general event-driven monitoring te
hnique beingtra
ing. Among the possible tra
ing te
hniques, software tra
ing is deemed the mostportable and widespread, although it requires to solve two diÆ
ult problems in orderto obtain high quality tra
es: providing a pre
ise global 
lo
k in distributed-memorysystems and being able to limit or 
ompensate the intrusion of tra
ing. The lat-ter problem is spe
ially diÆ
ult in 
ase of programs behaving non deterministi
ally.For su
h programs, a monitoring approa
h using exe
ution replay te
hniques seemspromising. Tra
ing alone is not suÆ
ient to dete
t performan
e problems arising fromthe intera
tion of a parallel appli
ation with an underlying software layer su
h as theoperating system. A possible approa
h to dete
t su
h problems is to 
ombine tra
ingat the appli
ation level with time-driven monitoring at the operating system level ofabstra
tion. The investigation of monitoring tools based on this approa
h seems apromising resear
h tra
k.
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