
THE TAPE/PVM MONITOR AND THE PROVE VISUALIZATIONTOOLP�ETER KACSUK AND J. CHASSIN DE KERGOMMEAUX AND �E. MAILLET AND J.-M.VINCENT1. Introdution. Performane visualization is a new branh of program devel-opment not used in the ase of sequential programs. Performane visualization aimsat disovering performane bottle-neks in logially orret parallel programs. Suhbottle-neks an lead bak to previous stages of the parallel program developmentaording to the nature of the bottle-nek. Performane visualization is based onintensive run-time monitoring. In the GRADE parallel program development envi-ronment two tools have been integrated in order to realize performane visualizationsupport. These tools are:� Tape/PVM monitor� PROVE visualization toolThe urrent hapter desribes these tools and their usage in the GRADE programdevelopment environment.2. Struture of performane visualization systems. Performane visual-ization systems typially onsist of four stages as shown in Figure 2.1. The �rst stage,the soure ode instrumentation stage, serves for instrumenting the ode with theneessary alls to the operating system or to the underlying extended ommuniationlibrary. The seond stage serves to ollet trae events during the exeution of theparallel program. These olleted events are typially stored in one or several log �lesthat are analysed after the exeution of the program. This third stage, alled traeanalysis stage is important in order to establish the physial or logial timing orderof the olleted events. Finally, the ordered events are visualised by several displayviews in order to give easily oneivable explanation of the nature of parallel programexeution.
Analysis
Trace

MonitoringSource Code
Instrumentation

Visualisation

Run-time

(Data Acquisition)

Fig. 2.1. Stages of performane visualizationPerformane visualization systems an be lassi�ed aording to how they sup-port the four stages of performane measurement. Soure ode instrumentation isdeisive onerning the onvenient use of the system or simply from the point ofview of usability. Salability is another important aspet of performane visualizationsystems.Salability is strongly related to the seond and third stages of performane vi-sualization. A tool is salable if it enables the analysis of large, long running parallelprograms. It requires speial tehniques to avoid the generation of too large trae1

�les at run-time. Finally, versatility is another key issue that de�nes the variousdisplay views that the performane visualization system an provide as well as theinteroperability with other visualization tools. In the next setions we give a de-tailed desription of all these three aspets and show how they are supported by theTape/PVM monitor and the PROVE visualization tool in the GRADE programmingenvironment.3. Soure ode instrumentation. Soure ode instrumentation has four ma-jor omponents that should be onsidered in lassifying performane visualizationsystems:1. Instrumentation mode2. Filtering3. Support for monitoring modes4. Support for lik-bak failityThe instrumentation mode an be manual or automati. All the state-of-the-artperformane visualization systems provide automati instrumentation. It means thatthe user has not to touh the soure ode, it is the task of the ompiling/linking systemto transform the original soure ode or to all extended instrumented ommuniationlibraries that support run-time monitoring. In the ase of GRADE it is the GRP2Cpre-ompiler and the GRAPNEL Library that are responsible for supporting automatiode instrumentation. The GRAPNEL Library an all either instrumented PVM orMPI library alls for traing ommuniation events. It also provides instrumentedalls for the graphial bloks of GRAPNEL enabling the GRAPNEL graphial bloklevel event generation and visualization.Filtering means that the user an speify for the ompiling/linking system theinteresting program omponents for whih the run-time events should be generatedand olleted. The lak of suh a faility makes the trae �le unneessarily big.Oppositely, �ltering makes the trae �le ustomisable to the partiular interest ofthe programmer. The size of the trae �le is one of the most ruial problem ofperformane visualization systems and hene all failities that an redue its size areworth supporting. In GRADE, �ltering is supported at the level of GRAPNEL as abuilt-in feature of GRED. In a pull-down menu all the GRAPNEL graphial blok typesan be �ltered. In default, PROVE will ollet events on the entry and exit point ofeah GRAPNEL graphial blok. However, if the user is interested for example, onlyin the SEQ, CAI, CAO and CAIALT bloks, he an �lter out all the other graphialbloks (LOOPS, LOOPE, et.) by the Filter Types pull-down menu as shown inFigure 3.1. Moreover there is a possibility to individually turn on or o� �ltering oneah graphial blok of the GRAPNEL program. In this way, the programmer is able toustomise the monitoring system to his partiular interest and to fous on the eventsmost interesting for him.Basially two monitoring modes are supported in performane visualization sys-tems. The �rst one is the olletion of individual events, the seond one is the ol-letion of statistial information. The former one is supported by Tape/PVM. Theurrent version of PROVE annot provide statistial information. However, in thenew version of GRADE, alled P-GRADE (Professional GRADE) both the monitoringsystem and PROVE will support the olletion and visualization of statistial infor-mation. The appliation of statistial information helps in reduing the size of thetrae �le and hene its usage is highly advantageous.Although, the lik-bak faility is one of the most important failities of per-formane visualization systems, there are only very few systems that support this2

Fig. 3.1. Filter Types pull-down menufeature. The general problem with performane visualization systems is that theyprovide various graphial views on the program exeution based on olleted eventsbut they annot explain whih part of the soure ode is responsible for the generationof the visualised events. The lik-bak faility applied in advaned tools is a remedyfor the problem. It means that when liking on a visualised event, the system anhighlight the part of the soure ode that is responsible for the generation of the event.The lik-forward faility is the opposite of the lik-bak faility and it meansthat when liking on a soure ode line, the visualization tool an indiate on itsgraphial views whih events were generated by the seleted soure ode line.The pair-wise use of lik-bak and lik-forward failities ensure the perfet iden-ti�ation of the role of program omponents during the parallel program exeution.The lik-bak faility of GRADE is illustrated in Figure 3.2. The vertial timebar in the spae-time diagram of PROVE in Figure 3.2 is used to realize the lik-bak faility. The time bar selets the interesting or relevant moment of the exeutiontime. Cliking on the ross point of any proess line and the time bar will result inhighlighting (making red) the orresponding proess in the appliation window andthe orresponding graphial blok in the proess window. Vie versa, liking ona graphial blok in the proess window, the time bar will move in the spae-timediagram to the next event that was generated by the seleted graphial blok.The lik-bak faility of PROVE is strongly supported by the Tape/PVM mon-itor. In order to allow users to quikly �nd the statement in their soure ode thatgenerated a partiular event, Tape/PVM's events ontain the line number of thatstatement and the identi�er of the soure ode �le. In fat, the user's soure ode isinstrumented by Tape/PVM's pre-proessor (tapepp, tapeppf) whih knows the nameof the �le it proesses and the urrent line number. Eah time a probe is inserted intothe user's ode (at a all of a PVM library funtion, for instane) the informationabout �le name and line number is given to that probe (in a way similar to Aims [8℄).Thus, a visualization tool, like PROVE, an feature soure ode lik-bak based onTape/PVM traes.4. Data aquisition. Data aquisition is realized by the Tape/PVM run-timemonitoring system. Tape/PVM1 is a tool to generate event traes of PVM appli-ations for post-mortem performane analysis, e.g. disrete event simulation and1The manual and Tape/PVM's distribution are available atftp://ftp.imag.fr/imag/APACHE/TAPE 3

Fig. 3.2. Clik-bak faility in PROVEvisualization. It omprises the tool to generate the traes, as well as a utility totransform the traes into the PICL format. It also ontains a library of C funtionswhih allows to easily read the generated traes.Trae generation and post-mortem analysis of traes are two di�erent researhareas, eah with its own spei� problems. The main problem of trae analysis is thedesign of an appropriate model and a simulator based on that model. The simulatortakes a trae �le (set of events) as input and reonstruts the suessive global statesof the system on whih the traes were generated. Suh a simulator an be oupledwith a visualization tool to give a global view of the system under study. However, the4

simulation is only as aurate as its input - the trae �le. Suh a trae �le has to berepresentative of what really happened in the parallel system under study. Thus, themain problem in designing a traing tool is to guarantee the representative quality ofthe generated traes. The design of Tape/PVM partiularly foused on the followingtwo points:1. Preise, ausally oherent event dating,2. Minimal perturbation of analyzed appliations.Some existing traing tools for PVM fous on trae visualization and \real-time"interation rather than on the representative quality of the generated traes. XPVM[3℄ for example, is a graphial onsole and monitor for PVM. It uses the event ol-letion mehanism integrated in PVM V3.3.0 or later. Events are routed to XPVMby the PVM kernel during run-time of the instrumented appliation. Thus, XPVMan update its views in \real time". XPVM an also be used for post-mortem traeanalysis using the events of previous exeutions saved into a �le. However, whateverthe mode in whih XPVM is used, real-time or post-mortem, its traes represent po-tentially perturbed appliations due to on-line event message routing. These messagesinrease the load of the network whih an infer a hange in behaviour of the observedappliation (in fat, many parallel appliations are non-deterministi). In addition,the traing mehanism of the PVM kernel relies on a globally synhronized systemlok. Not many systems have a global time referene whih is suÆiently aurateto avoid dating anomalies.In Tape/PVM a non-intrusive, statistial method is used to estimate a preiseglobal time referene [5℄ (see Chapter 6 for more information on global time im-plementation in Tape/PVM). Rather than doing post-mortem tahyon removal, an apriori tahyon prevention is ahieved through the use of a global time referene. Datedevents are ausally oherent. However, the estimated global time is only available atthe end of the instrumented appliation whih prohibits on-line dating. This is nota drawbak beause Tape/PVM is intended for post-mortem trae analysis only. Inaddition to this, at generation, an event is not routed to a entral olletor task, likein XPVM, in order to avoid additional network load. Instead, the events are storedin loal event bu�ers, whih are ushed to loal event �les. The olletion of eventsinto a single �le is only done at the end of the user's appliation to avoid interferingwith it.The problem of perturbation of parallel appliations due to the presene of atraing tool is a diÆult one. The approah of Tape/PVM is similar to the oneadopted in the Aims environment [8℄. Although intrusion an be redued by arefulimplementation of the traing tool, it an not be eliminated. The main auses ofintrusion are the ushing of loal event bu�ers, the aumulation of the delays ofeah individual event generation, as well as the additional messages exhanged by thetraing tool. To limit the intrusion due to Tape/PVM the following tehniques areused: � On-line ompating of events. This allows a gain of about 50% with respet toa non-ompated text representation of events. The number of bu�er ushesis signi�antly redued and so is the perturbation of the appliation.� The number of messages exhanged by Tape/PVM is redued to a minimum.Only events like PVM addhost and PVM kill whih hange the on�gurationof the parallel virtual mahine need suh additional messages.� The additional tasks used by Tape/PVM (for global ontrol, for lok synhro-nisation) are not ative while the instrumented user appliation is running.5

5. Trae analysis. The third stage of performane visualization is devoted totrae analysis. The physial loks of the proessors in a distributed system are usuallynon synhronized or even in the ase of synhronisation they an be drifted to eahother. Hene the data olleted at run time and time-stamped by the tiks of thephysial loks annot be onsidered as strongly and preisely ordered. The �rst taskof the data analysis is to reate an at least logial ordering among the olleted events.The most frequently used ordering riteria is based on the happened-before relationintrodued by [4℄. In the GRADE system the Tape/PVM monitor is applied whihguarantees the physial ordering of events in the trae �le aording to a non-intrusive,statistial lok synhronisation algorithm [5℄.The trae analysis phase should also support some displaying features that aremost relevant for the user. Suh failities are zooming and �ltering. Zooming meansthat the user an fous on any part of the whole exeution and the visualization viewshows the seleted part in a muh more detailed way. The zooming faility of PROVEis shown in Figure 5.1 and Figure 5.2 for the same program that is shown in Figure 3.2.Total view of the omplete program is given in Figure 5.1 but in suh a ondensed�gure the details of ommuniation and other events annot be observed. A zoomedversion of Figure 5.1 is shown in Figure 5.2 where only three proesses were seletedin the time interval of 3144-3156. Notie that suh a zoomed �gure an give detailson the ports applied in the ommuniation events as well as on the hange of state ofproesses during and among ommuniations. The di�erent olours in the horizontalproess bars represent di�erent proess states like idle, waiting for ommuniationand busy.

Fig. 5.1. The omplete spae-time diagram of the ight simulation programThe role of post-mortem �ltering is di�erent from the role of the �ltering duringode instrumentation. Post-mortem �ltering helps in seleting relevant informationfrom the olleted data similarly to the zooming feature. However, �ltering is moreseletive than zooming and hene it an help in seleting the required proesses,proessors, ommuniation events, et. and to visualise only these seleted eventsand units. In order to help the user in seleting post-mortem �lters and to rearrangethe order of proesses and proessors in the spae-time diagram PROVE provides the6

Fig. 5.2. The zoomed spae-time diagram of the ight simulation programdialog window shown in Figure 5.3.

Fig. 5.3. Event �lter dialog window in PROVE6. Visualization. Most performane visualization tools (Paragraph [2℄ Pablo[7℄ VAMPIR [6℄) provide a signi�ant number of various display views to visualise thevarious aspets of program exeution. The urrent version of PROVE gives detailedspae-time diagram whih desribes the ommuniation aspets of parallel proessesas well as the hange of their state in time. It also shows on whih proessor theproesses were exeuted and when they were reated on the proessor. The spae-time diagram of PROVE is shown in Figure 5.1 and Figure 5.2.PROVE provides three additional windows for statistial purposes. One of themshows the proessor utilization by representing proess states in a ommon window.When all the proesses that were exeuted on a partiular proessor are shown by theProess State Window, the utilisation of the seleted proessor is well demonstrated.The other two statistial windows are related to ommuniation. The Proess Com-7

muniation window shows the amount of proess ommuniation as funtion of time.The Host Communiation window displays the amount of ommuniation among se-leted hosts in the ommuniation network or among seleted proessors in a parallelomputer. The time range of the three windows are jointly synhronized togetherwith the spae-time diagram. The statistial windows are shown in Figure 6.1.

Fig. 6.1. Statistial windows of PROVE
.c .f

_t.c _t.f

_t.o _t.o

tapepp tapeppf

cc

libtape.a libftape.a

libpvm3.a

fc

Fig. 7.1. Tape/PVM system arhiteture7. Tape/PVM instrumentation arhiteture. So far we have desribed Ta-pe/PVM and PROVE from the user's point of view. In the urrent setion we givesome insight into the Tape/PVM instrumentation of GRAPNEL programs whih ispratially hidden from the user. The only feature whih is important for the useris the way how to set the Tape/PVM instrumentation option when he/she starts theGRADE system.In Chapter 11, it is explained how to generate C soure ode from GRAPNELprograms and how to extend them with the neessary PVM or MPI funtion alls8

through GRAPNEL Library funtions. In the urrent setion we show how to reatethe neessary instrumentation for the Tape/PVM trae generation system. The mainidea of the instrumentation is that every PVM all is replaed in a pre-proessingphase with its instrumented version taken from the Tape/PVM library. Instrumentinga parallel appliation for Tape/PVM omprises three phases whih will be disussedin the following subsetions.7.1. Pre-proessing phase. Tape/PVM proposes a trae format along with aseries of tools operating on this format. Users are also allowed to de�ne their owntrae format. In this setion we assume pre-proessing is done in order to generatetraes in the Tape/PVM format.The Tape/PVM software distribution ontains speial pre-proessing tools whihan automatially insert instrumentation points (probes) in C and Fortran appliationsoure �les2. The pre-proessing phase onsists essentially of inserting a all to theTape/PVM initialization funtion (tapestart or tapefstart) and in interepting alls tothe PVM library. For eah PVM library funtion there is an assoiated intereptingfuntion whih reords the trae information before passing ontrol to the atual PVMfuntion.The Tape/PVM pre-proessor is alled tapepp or tapeppf depending on whetheryou want to instrument C or Fortran ode. Usetapepp[f ℄ [options℄ soure:(f j)to reate an instrumented soure ode. The resulting instrumented soure �le isalled soure:t:(f j)3. The tapepp tools assoiate a unique soure �le identi�er toeah soure �le they proessed and keep these identi�ers in a database. The generatedTape/PVM events ontain pointers to the line number and �le identi�er whih ontainthe statement that generated the event. Thus, analysis tools based on Tape/PVMtraes an feature soure ode lik-bak.7.2. Compiling phase. The instrumented soure �les (t:(f j)) are ompiledlike the non instrumented �les with few exeptions:� The t. �les need a speial inlude �le.� Due to instrumentation insertion, the t.f �le may ontain lines longer thanthe 72 haraters allowed by standard Fortran (a speial option has to beused in order to permit longer lines - unfortunately, there is no standard wayin Fortran to do so).7.3. Linking phase. Like the PVM library, the Tape/PVM library omprisestwo modules: a main library libtape.a and the assoiated Fortran interfae librarylibftape.a. The dependenies between the di�erent modules are shown in Figure 7.1.The name of the instrumented exeutable has to be the same as the name of theorresponding non-instrumented exeutable suÆxed by t. When interepting PVMspawn alls, Tape/PVM automatially suÆxes the task's name by t. If this namingonvention is not respeted, all the spawns in the instrumented appliation will fail.8. Tape/PVM as a stand-alone tool. The Tape/PVM monitor an be usedindependently from GRADE as a stand-alone tool for monitoring PVM programs andits output an be onneted to stand-alone visualization tools like Paragraph. The2User ode pre-proessing is required beause Tape/PVM does not use PVM's run-time eventolletion mehanism.3(f j) means that the extension is either .f or ..9

trae format output by Tape/PVM is lose to the PICL format [1℄. A tool (t2p , t2np)an be used to transform the traes to the PICL format so that they an be visualisedwith Paragraph [2℄. A speial feature of t2p is that it models the overhead due tobu�er ushes by the \overhead" state. Thus, with Paragraph, the overhead due tobu�er ushes is learly outlined on the \Task Gantt Chart" so that users an studythe intrusion by omparing di�erent exeutions using di�erent bu�er sizes (whih anbe parameterised in Tape/PVM). t2p also takes into aount the overhead due topaking (unpaking) data in (from) messages. Visualization of group operations inTape/PVM is fully supported.9. Conlusions. The Tape/PVM monitor proved to be easily integrated intothe GRADE programming environment. Besides, it an be used as a stand-alonemonitoring tool for PVM programs. The main features of Tape/PVM are as follows:� Trae of events at user appliation level (PVM library alls) through funtionall intereption.� Pre-proessor to instrument user soure ode (C or Fortran) automatially(instrumented soure ode has to be reompiled).� User de�ned events (like printf).� An event ontains the line and �le number of the instrution whih generatedthe event (soure ode feed-bak).� Seletive traing using soure ode module groups and event types.� Preise, ausally oherent global time referene.� On-line event ompating (gain up to 50% with respet to text storage) tolimit event bu�er ushes.� Inludes a C library whih allows to read Tape/PVM traes easily.� Can generate PICL traes for use with Paragraph.The PROVE visualization tool is strongly integrated with the Tape/PVM monitorand also with other tools of the GRADE program development environment. Suh astrong integration enables the unique lik-bak and lik-forward failities of PROVE.REFERENCES[1℄ G. A. Geist, M. T. Heath, P. B. W., and P. H. Worley, PICL, a portable instrumentedommuniation library, TN 37831-8083, Oak Ridge National Laboratory, Oak Ridge, USA,1991.[2℄ M. T. Heath and J. A. Etheridge, Visualizing the Performanes of Parallel Programs, IEEETrans. Softw. Eng., 8 (1991), pp. 29{39.[3℄ J. Kohl and G. A. Geist, The PVM 3.4 traing faility and XPVM 1.1, in Pro. of the 29th.Hawai International Conferene on System Sienes, 1996.[4℄ L. Lamport, Time, loks, and the ordering of events in a distributed system, CACM, 21 (1978),pp. 558{565.[5℄ �E. Maillet and C. Tron, On EÆiently Implementing Global Time for Performane Evalua-tion on Multiproessor Systems, Journal of Parallel and Distributed Computing, 28 (1995),pp. 84{93.[6℄ W. E. Nagel, A. Arnold, M. Weber, H. Hoppe, and K. Solhenbah, VAMPIR: Visual-ization and analysis of MPI resoures, Superomputer 63, 12 (1996), pp. 69{80.[7℄ D. A. Reed, Performane analysis of parallel systems: Approahes and open problems, in Pro-eedings of JSPP'98, 1998, pp. 239{256.[8℄ J. C. Yan, Performane tuning with AIMS | an automated instrumentation and monitoringsystem for multiomputers, in Pro. of the Twenty-Seventh Annual Hawai Conferene onSystem Sienes, IEEE Computer Soiety Press, 1994, pp. 625{633.10

