Iterative Algorithms (on the Impact of Network Models) Master 2 Research Tutorial: High-Performance Architectures

Arnaud Legrand et Jean-François Méhaut

ID laboratory, arnaud.legrand@imag.fr

November 29, 2006

3 Heterogeneous network (complete)

- 4 Heterogeneous network (general case)
- 5 Non dedicated platforms

1 The problem

- Pully homogeneous network
- 3 Heterogeneous network (complete)
- 4 Heterogeneous network (general case)
- 5 Non dedicated platforms

6 Conclusion

< (F) >

New sources of problems

- Heterogeneity of processors (computational power, memory, etc.)
- Heterogeneity of communications links.
- Irregularity of interconnection network.
- Non dedicated platforms.

A set of data (typically, a matrix)

- A set of data (typically, a matrix)
- Structure of the algorithms:

< (T) >

- A set of data (typically, a matrix)
- Structure of the algorithms:

I Each processor performs a computation on its chunk of data

- A set of data (typically, a matrix)
- Structure of the algorithms:
 - I Each processor performs a computation on its chunk of data
 - Each processor exchange the "border" of its chunk of data with its neighbor processors

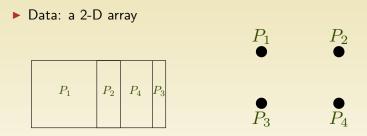
- A set of data (typically, a matrix)
- Structure of the algorithms:
 - **()** Each processor performs a computation on its chunk of data
 - Each processor exchange the "border" of its chunk of data with its neighbor processors
 - We go back at Step 1

- A set of data (typically, a matrix)
- Structure of the algorithms:
 - **()** Each processor performs a computation on its chunk of data
 - 2 Each processor exchange the "border" of its chunk of data with its neighbor processors
 - We go back at Step 1

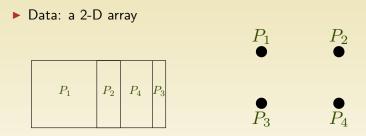
Question: how can we efficiently execute such an algorithm on such a platform?

< 🗇 >

- Which processors should be used ?
- What amount of data should we give them ?
- How do we cut the set of data ?

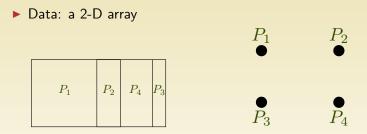


Unidimensional cutting into vertical slices

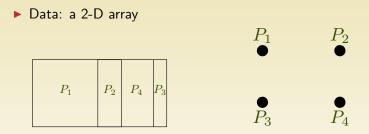


- Unidimensional cutting into vertical slices
- Consequences:

< (F) >



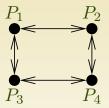
- Unidimensional cutting into vertical slices
- Consequences:
 - O Borders and neighbors are easily defined



- Unidimensional cutting into vertical slices
- Consequences:
 - Borders and neighbors are easily defined
 - **2** Constant volume of data exchanged between neighbors: D_c

Data: a 2-D array

P ₁	P_2	P_4	P_3
----------------	-------	-------	-------



- Unidimensional cutting into vertical slices
- Consequences:
 - Borders and neighbors are easily defined
 - 2 Constant volume of data exchanged between neighbors: D_c
 - Processors are virtually organized into a ring

• Processors: $P_1, ..., P_p$

• Processors: $P_1, ..., P_p$

• Processor P_i executes a unit task in a time w_i

- Processors: P_1 , ..., P_p
- Processor P_i executes a unit task in a time w_i
- Overall amount of work D_w;
 Share of P_i: α_i.D_w processed in a time α_i.D_w.w_i (α_i ≥ 0, ∑_j α_j = 1)

< A >

- Processors: P_1 , ..., P_p
- Processor P_i executes a unit task in a time w_i
- Overall amount of work D_w;
 Share of P_i: α_i.D_w processed in a time α_i.D_w.w_i (α_i ≥ 0, ∑_j α_j = 1)
- ▶ Cost of a unit-size communication from P_i to P_j: c_{i,j}

- Processors: P_1 , ..., P_p
- Processor P_i executes a unit task in a time w_i
- Overall amount of work D_w;
 Share of P_i: α_i.D_w processed in a time α_i.D_w.w_i (α_i ≥ 0, Σ_j α_j = 1)
- ▶ Cost of a unit-size communication from P_i to P_j: c_{i,j}
- Cost of a sending from P_i to its successor in the ring: $D_c.c_{i,succ(i)}$

A processor can:

- send at most one message at any time;
- receive at most one message at any time;
- send and receive a message simultaneously.

 $\bullet \quad \textbf{Select } q \text{ processors among } p$

- $\textbf{0} \quad \text{Select } q \text{ processors among } p$
- Order them into a ring

- $\textcircled{0} \hspace{0.1 cm} \text{Select} \hspace{0.1 cm} q \hspace{0.1 cm} \text{processors} \hspace{0.1 cm} \text{among} \hspace{0.1 cm} p$
- Order them into a ring
- Oistribute the data among them

 $\textcircled{0} \hspace{0.1 cm} \text{Select} \hspace{0.1 cm} q \hspace{0.1 cm} \text{processors} \hspace{0.1 cm} \text{among} \hspace{0.1 cm} p$

- Order them into a ring
- Oistribute the data among them

So as to minimize:

$$\max_{1 \le i \le p} \mathbb{I}\{i\}[\alpha_i.D_w.w_i + D_c.(c_{i,\mathsf{pred}(i)} + c_{i,\mathsf{succ}(i)})]$$

Where $\mathbb{I}\{i\}[x] = x$ if P_i participates in the computation, and 0 otherwise

< A >

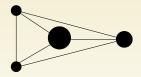
The problem

- 2 Fully homogeneous network
- 3 Heterogeneous network (complete)
- 4 Heterogeneous network (general case)
- 5 Non dedicated platforms

6 Conclusion

- Intere exists a communication link between any two processors
- All links have the same capacity

 $(\exists c, \forall i, j \ c_{i,j} = c)$



Either the most powerful processor performs all the work, or all the processors participate

< 🗗 ►

- Either the most powerful processor performs all the work, or all the processors participate
- If all processors participate, all end their share of work simultaneously

- Either the most powerful processor performs all the work, or all the processors participate
- If all processors participate, all end their share of work simultaneously α_i.D_w rational values ???

< ₫ >

- Either the most powerful processor performs all the work, or all the processors participate
- ► If all processors participate, all end their share of work simultaneously $\alpha_i.D_w$ rational values ???

$$(\exists \tau, \quad \alpha_i.D_w.w_i = \tau, \text{ so } 1 = \sum_i \frac{\tau}{D_w.w_i})$$

- Either the most powerful processor performs all the work, or all the processors participate
- If all processors participate, all end their share of work simultaneously α_i.D_w rational values ???
 (∃τ, α_i.D_w.w_i = τ, so 1 = ∑_i τ/D_w.w_i)

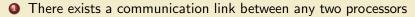
Time of the optimal solution:

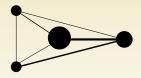
$$T_{\mathsf{step}} = \min\left\{D_w.w_{\min}, D_w.\frac{1}{\sum_i \frac{1}{w_i}} + 2.D_c.c\right\}$$

1 The problem

- 2 Fully homogeneous network
- 3 Heterogeneous network (complete)
 - 4 Heterogeneous network (general case)
- 5 Non dedicated platforms

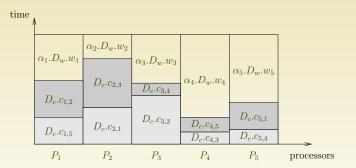
6 Conclusion





< (F) >

All the processors participate: study (1)



All processors end simultaneously

< @ >

All the processors participate: study (2)

All processors end simultaneously

$$T_{\mathsf{step}} = \alpha_i . D_w . w_i + D_c . (c_{i,\mathsf{succ}(i)} + c_{i,\mathsf{pred}(i)})$$

< A >

All the processors participate: study (2)

All processors end simultaneously

$$T_{\text{step}} = \alpha_i . D_w . w_i + D_c . (c_{i, \text{succ}(i)} + c_{i, \text{pred}(i)})$$

$$\sum_{i=1}^p \alpha_i = 1 \implies \sum_{i=1}^p \frac{T_{\text{step}} - D_c . (c_{i, \text{succ}(i)} + c_{i, \text{pred}(i)})}{D_w . w_i} = 1. \text{ Thus}$$

$$\frac{T_{\text{step}}}{D_w . w_{\text{cumul}}} = 1 + \frac{D_c}{D_w} \sum_{i=1}^p \frac{c_{i, \text{succ}(i)} + c_{i, \text{pred}(i)}}{w_i}$$
where $w_{\text{cumul}} = \frac{1}{\sum_i \frac{1}{w_i}}$

$$\frac{T_{\text{step}}}{D_w.w_{\text{cumul}}} = 1 + \frac{D_c}{D_w} \sum_{i=1}^p \frac{c_{i,\text{succ}(i)} + c_{i,\text{pred}(i)}}{w_i}$$

$$\frac{T_{\text{step}}}{D_w \cdot w_{\text{cumul}}} = 1 + \frac{D_c}{D_w} \sum_{i=1}^p \frac{c_{i,\text{succ}(i)} + c_{i,\text{pred}(i)}}{w_i}$$

$$T_{\mathsf{step}}$$
 is minimal when $\sum_{i=1}^p \frac{c_{i,\mathsf{succ}(i)} + c_{i,\mathsf{pred}(i)}}{w_i}$ is minimal

< (F) >

$$\frac{T_{\text{step}}}{D_w.w_{\text{cumul}}} = 1 + \frac{D_c}{D_w} \sum_{i=1}^p \frac{c_{i,\text{succ}(i)} + c_{i,\text{pred}(i)}}{w_i}$$

$$T_{\text{step}}$$
 is minimal when $\sum_{i=1}^{p} \frac{c_{i,\text{succ}(i)} + c_{i,\text{pred}(i)}}{w_{i}}$ is minimal

Look for an hamiltonian cycle of minimal weight in a graph where the edge from P_i to P_j has a weight of $d_{i,j} = \frac{c_{i,j}}{w_i} + \frac{c_{j,i}}{w_i}$

$$\frac{T_{\text{step}}}{D_w.w_{\text{cumul}}} = 1 + \frac{D_c}{D_w} \sum_{i=1}^p \frac{c_{i,\text{succ}(i)} + c_{i,\text{pred}(i)}}{w_i}$$

$$T_{\text{step}}$$
 is minimal when $\sum_{i=1}^{p} \frac{c_{i,\text{succ}(i)} + c_{i,\text{pred}(i)}}{w_{i}}$ is minimal

Look for an hamiltonian cycle of minimal weight in a graph where the edge from P_i to P_j has a weight of $d_{i,j} = \frac{c_{i,j}}{w_i} + \frac{c_{j,i}}{w_i}$

NP-complete problem

 $\begin{array}{l} \text{MINIMIZE } \sum_{i=1}^{p} \sum_{j=1}^{p} d_{i,j} . x_{i,j}, \\ \text{SATISFYING THE (IN)EQUATIONS} \\ \left\{ \begin{array}{ll} (1) \ \sum_{j=1}^{p} x_{i,j} = 1 & 1 \leq i \leq p \\ (2) \ \sum_{i=1}^{p} x_{i,j} = 1 & 1 \leq j \leq p \\ (3) \ x_{i,j} \in \{0,1\} & 1 \leq i,j \leq p \\ (4) \ u_{i} - u_{j} + p. x_{i,j} \leq p - 1 & 2 \leq i,j \leq p, i \neq j \\ (5) \ u_{i} \text{ integer}, u_{i} \geq 0 & 2 \leq i \leq p \end{array} \right. \end{array}$

 $x_{i,j} = 1$ if, and only if, the edge from P_i to P_j is used

< (P) >

Best ring made of q processors

MINIMIZE T SATISFYING THE (IN)EQUATIONS

 $\begin{cases} (1) \ x_{i,j} \in \{0,1\} & 1 \le i,j \le p \\ (2) \ \sum_{i=1}^{p} x_{i,j} \le 1 & 1 \le j \le p \\ (3) \ \sum_{i=1}^{p} \sum_{j=1}^{p} x_{i,j} = q \\ (4) \ \sum_{i=1}^{p} x_{i,j} = \sum_{i=1}^{p} x_{j,i} & 1 \le j \le p \\ \end{cases} \\ \begin{cases} (5) \ \sum_{i=1}^{p} \alpha_i = 1 \\ (6) \ \alpha_i \le \sum_{j=1}^{p} x_{i,j} & 1 \le i \le p \\ (7) \ \alpha_i.w_i + \frac{D_c}{D_w} \sum_{j=1}^{p} (x_{i,j}c_{i,j} + x_{j,i}c_{j,i}) \le T & 1 \le i \le p \\ \end{cases} \\ \begin{cases} (8) \ \sum_{i=1}^{p} y_i = 1 \\ (9) \ -p.y_i - p.y_j + u_i - u_j + q.x_{i,j} \le q - 1 & 1 \le i, j \le p, i \ne j \\ (10) \ y_i \in \{0,1\} & 1 \le i \le p \\ \end{cases} \end{cases}$

Problems with rational variables: can be solved in polynomial time (in the size of the problem).

- Problems with rational variables: can be solved in polynomial time (in the size of the problem).
- Problems with integer variables: solved in exponential time in the worst case.

- Problems with rational variables: can be solved in polynomial time (in the size of the problem).
- Problems with integer variables: solved in exponential time in the worst case.
- No relaxation in rationals seems possible here...

All processors participate. One can use a heuristic to solve the traveling salesman problem (as Lin-Kernighan's one)

General case.

General case.

Exhaustive search: feasible until a dozen of processors...

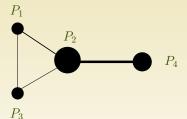
General case.

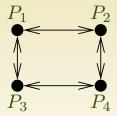
- **Q** Exhaustive search: feasible until a dozen of processors...
- Greedy heuristic: initially we take the best pair of processors; for a given ring we try to insert any unused processor in between any pair of neighbor processors in the ring...

The problem

- 2 Fully homogeneous network
- 3 Heterogeneous network (complete)
- 4 Heterogeneous network (general case)
- 5 Non dedicated platforms

6 Conclusion



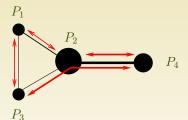


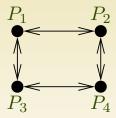
Heterogeneous platform

Virtual ring

A. Legrand (CNRS-ID) INRIA-MESCAL

case)

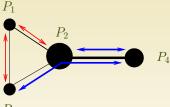


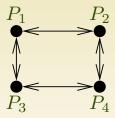


Heterogeneous platform

Virtual ring

case) 24 / 41



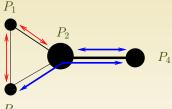


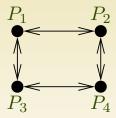
 P_3

Heterogeneous platform

Virtual ring

A. Legrand (CNRS-ID) INRIA-MESCAL





 P_3

Heterogeneous platform

Virtual ring

We must take communication link sharing into account.

• A set of communications links: $e_1, ..., e_n$

- ▶ A set of communications links: *e*₁, ..., *e*_n
- Bandwidth of link e_m : b_{e_m}

- ▶ A set of communications links: *e*₁, ..., *e*_n
- Bandwidth of link e_m : b_{e_m}
- There is a path S_i from P_i to $P_{\mathsf{succ}(i)}$ in the network

- ▶ A set of communications links: *e*₁, ..., *e*_n
- Bandwidth of link e_m : b_{e_m}
- There is a path S_i from P_i to $P_{succ(i)}$ in the network
 - S_i uses a fraction $s_{i,m}$ of the bandwidth b_{e_m} of link e_m

- ▶ A set of communications links: e₁, ..., e_n
- Bandwidth of link e_m : b_{e_m}
- There is a path S_i from P_i to $P_{succ(i)}$ in the network
 - S_i uses a fraction $s_{i,m}$ of the bandwidth b_{e_m} of link e_m
 - ▶ P_i needs a time D_c. 1/min_{em∈Si} to send to its successor a message of size D_c

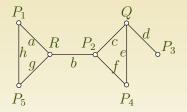
- ▶ A set of communications links: e₁, ..., e_n
- Bandwidth of link e_m : b_{e_m}
- There is a path S_i from P_i to $P_{succ(i)}$ in the network
 - S_i uses a fraction $s_{i,m}$ of the bandwidth b_{e_m} of link e_m
 - ▶ P_i needs a time D_c. 1/min_{em∈Si} to send to its successor a message of size D_c

▶ Constraints on the bandwidth of
$$e_m$$
: $\sum_{1 \le i \le n} s_{i,m} \le b_{e_m}$

- ▶ A set of communications links: e₁, ..., e_n
- Bandwidth of link e_m : b_{e_m}
- There is a path S_i from P_i to $P_{succ(i)}$ in the network
 - S_i uses a fraction $s_{i,m}$ of the bandwidth b_{e_m} of link e_m
 - ▶ P_i needs a time D_c. 1/min_{em∈Si} s_{i,m} to send to its successor a message of size D_c
 - ▶ Constraints on the bandwidth of e_m : $\sum_{1 \le i \le p} s_{i,m} \le b_{e_m}$
- Symmetrically, there is a path P_i from P_i to P_{pred(i)} in the network, which uses a fraction p_{i,m} of the bandwidth b_{em} of link e_m

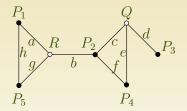
< 47 →

Toy example: choosing the ring

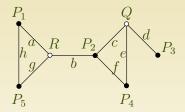


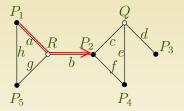
7 processors and 8 bidirectional communications links

Toy example: choosing the ring



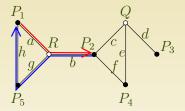
- 7 processors and 8 bidirectional communications links
- ▶ We choose a ring of 5 processors: $P_1 \rightarrow P_2 \rightarrow P_3 \rightarrow P_4 \rightarrow P_5$ (we use neither Q, nor R)



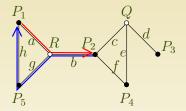


From P_1 to P_2 , we use the links a and b: $S_1 = \{a, b\}$.

case) 27 / 41



From P_1 to P_2 , we use the links a and b: $S_1 = \{a, b\}$. From P_2 to P_1 , we use the links b, g and h: $\mathcal{P}_2 = \{b, g, h\}$.



From P_1 to P_2 , we use the links a and b: $S_1 = \{a, b\}$. From P_2 to P_1 , we use the links b, g and h: $\mathcal{P}_2 = \{b, g, h\}$.

From P_1 : to P_2 , $S_1 = \{a, b\}$ and to P_5 , $\mathcal{P}_1 = \{h\}$ From P_2 : to P_3 , $S_2 = \{c, d\}$ and to P_1 , $\mathcal{P}_2 = \{b, g, h\}$ From P_3 : to P_4 , $S_3 = \{d, e\}$ and to P_2 , $\mathcal{P}_3 = \{d, e, f\}$ From P_4 : to P_5 , $S_4 = \{f, b, g\}$ and to P_3 , $\mathcal{P}_4 = \{e, d\}$ From P_5 : to P_1 , $S_5 = \{h\}$ and to P_4 , $\mathcal{P}_5 = \{g, b, f\}$

< 47 ▶

From P_1 to P_2 we use links a and b: $c_{1,2} = \frac{1}{\min(s_{1,a},s_{1,b})}$. From P_1 to P_5 we use the link h: $c_{1,5} = \frac{1}{p_{1,h}}$. From P_1 to P_2 we use links a and b: $c_{1,2} = \frac{1}{\min(s_{1,a},s_{1,b})}$. From P_1 to P_5 we use the link h: $c_{1,5} = \frac{1}{p_{1,h}}$.

Set of all sharing constraints:

Lien a: $s_{1,a} \le b_a$ Lien a: $s_{1,b} + s_{4,b} + p_{2,b} + p_{5,b} \le b_b$ Lien c: $s_{2,c} \le b_c$ Lien d: $s_{2,d} + s_{3,d} + p_{3,d} + p_{4,d} \le b_d$ Lien e: $s_{3,e} + p_{3,e} + p_{4,e} \le b_e$ Lien f: $s_{4,f} + p_{3,f} + p_{5,f} \le b_f$ Lien g: $s_{4,g} + p_{2,g} + p_{5,g} \le b_g$ Lien h: $s_{5,h} + p_{1,h} + p_{2,h} \le b_h$

MINIMIZE $\max_{1 \le i \le 5} (\alpha_i . D_w . w_i + D_c . (c_{i,i-1} + c_{i,i+1}))$ under the constraints

$$\begin{cases} \sum_{i=1}^{5} \alpha_i = 1 \\ s_{1,a} \leq b_a \\ s_{2,d} + s_{3,d} + p_{3,d} + p_{4,d} \leq b_d \\ s_{4,g} + p_{2,g} + p_{5,g} \leq b_g \\ s_{1,a}.c_{1,2} \geq 1 \\ s_{2,c}.c_{2,3} \geq 1 \\ p_{2,g}.c_{2,1} \geq 1 \\ s_{3,e}.c_{3,4} \geq 1 \\ p_{3,f}.c_{3,2} \geq 1 \\ s_{4,g}.c_{4,5} \geq 1 \\ s_{5,h}.c_{5,1} \geq 1 \\ p_{5,g}.c_{5,4} \geq 1 \end{cases}$$

$$s_{1,b} + s_{4,b} + p_{2,b} + p_{5,b} \leq b_b \\ s_{1,a}.c_{1,2} \geq 1 \\ s_{2,c}.c_{2,3} \geq 1 \\ p_{2,b}.c_{2,1} \geq 1 \\ p_{2,b}.c_{2,1} \geq 1 \\ p_{3,f}.c_{3,2} \geq 1 \\ s_{4,g}.c_{4,5} \geq 1 \\ s_{4,g}.c_{4,5} \geq 1 \\ p_{4,e}.c_{4,3} \geq 1 \\ p_{5,g}.c_{5,4} \geq 1 \end{cases}$$

$$s_{5,h}.c_{5,1} \geq 1$$

$$s_{1,b} + s_{4,b} + p_{2,b} + p_{5,b} \leq b_b \\ s_{1,a} + p_{3,d} + p_{3,d} + p_{4,e} + p_{4,e} \leq b_e \\ s_{4,f} + p_{3,f} + p_{3,f} + p_{5,f} \leq b_f \\ s_{4,g}.c_{4,5} \geq 1 \\ s_{4,g}.c_{4,5} \geq 1 \\ s_{5,h}.c_{5,1} \geq 1 \\ s_{5,h}.c_{5,4} \geq 1 \\ \end{cases}$$

The processors are selected;

- The processors are selected;
- Interprocessors are ordered into a ring;

- The processors are selected;
- Interprocessors are ordered into a ring;
- **③** The communication paths between the processors are known.

- The processors are selected;
- Interprocessors are ordered into a ring;
- **③** The communication paths between the processors are known.

In other words: a quadratic system if the ring is known.

- The processors are selected;
- Interprocessors are ordered into a ring;
- **③** The communication paths between the processors are known.

In other words: a quadratic system if the ring is known.

If the ring is known:

- Complete graph: closed-form expression;
- General graph: quadratic system.

We adapt our greedy heuristic:

- Initially: best pair of processors
- **2** For each processor P_k (not already included in the ring)
 - For each pair (P_i, P_j) of neighbors in the ring
 - We build the graph of the unused bandwidths (Without considering the paths between P_i and P_j)
 - **2** We compute the shortest paths (in terms of bandwidth) between P_k and P_i and P_j
 - We evaluate the solution
- We keep the best solution found at step 2 and we start again
- + refinements (*max-min fairness*, quadratic solving)

No guarantee, neither theoretical, nor practical

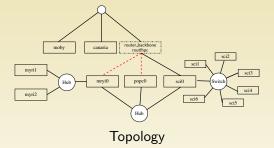
- ▶ No guarantee, neither theoretical, nor practical
- Simple solution:

- ▶ No guarantee, neither theoretical, nor practical
- Simple solution:
 - we build the complete graph whose edges are labeled with the bandwidths of the best communication paths

- No guarantee, neither theoretical, nor practical
- Simple solution:
 - we build the complete graph whose edges are labeled with the bandwidths of the best communication paths
 - We apply the heuristic for complete graphs

- No guarantee, neither theoretical, nor practical
- Simple solution:
 - we build the complete graph whose edges are labeled with the bandwidths of the best communication paths
 - 2 we apply the heuristic for complete graphs
 - e allocate the bandwidths

An example of an actual platform (Lyon)

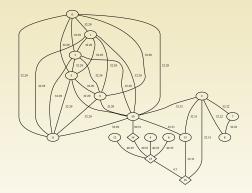


0.0206 0.0206 0.0206 0.0206 0.0291 0.0206 0.0087 0.0206 0.0206	P_0	P_1	P_2	P_3	P_4	P_5	P_6	P_7	P_8
	0.0206	0.0206	0.0206	0.0206	0.0291	0.0206	0.0087	0.0206	0.0206

P_9	P_{10}	P_{11}	P_{12}	P_{13}	P_{14}	P_{15}	P_{16}
0.0206	0.0206	0.0206	0.0291	0.0451	0	0	0

Processors processing times (in seconds par megaflop)

Describing Lyon's platform



Abstracting Lyon's platform.

First heuristic building the ring without taking link sharing into account

Second heuristic taking into account link sharing (and with quadratic programing)

Ratio D_c/D_w	H1	H2	Gain	Ratio D_c/D_w	H1	H2	Gain
0.64	0.008738 (1)	0.008738 (1)	0%	0.64	0.005825 (1)	0.005825 (1)	0 %
0.064	0.018837 (13)	0.006639 (14)	64.75%	0.064	0.027919 (8)	0.004865 (6)	82.57%
0.0064	0.003819 (13)	0.001975 (14)	48.28%	0.0064	0.007218 (13)	0.001608 (8)	77.72%

Table: T_{step}/D_w for each heuristic on Lyon's and Strasbourg's platforms (the numbers in parentheses show the size of the rings built).

The problem

- 2 Fully homogeneous network
- 3 Heterogeneous network (complete)
- 4 Heterogeneous network (general case)
- 5 Non dedicated platforms

6 Conclusion

The available processing power of each processor changes over time

The available bandwidth of each communication link changes over time

 \Rightarrow Need to reconsider the allocation previously done

 \Rightarrow Introduce dynamicity in a static approach

< ⊡ >

A possible approach

If the actual performance is "too much" different from the characteristics used to build the solution

- If the actual performance is "very" different
 - We compute a new ring
 - We redistribute data from the old ring to the new one
- If the actual performance is "a little" different
 - We compute a new load-balancing in the existing ring
 - We redistribute the data in the ring

A possible approach

If the actual performance is "too much" different from the characteristics used to build the solution

Actual criterion defining "too much" ?

- If the actual performance is "very" different
 - We compute a new ring
 - We redistribute data from the old ring to the new one Actual criterion defining "very" ? Cost of the redistribution ?
- If the actual performance is "a little" different
 - We compute a new load-balancing in the existing ring
 - We redistribute the data in the ring How to efficiently do the redistribution ?

< A >

Principle: the ring is modified only if this is profitable.

- ► *T*_{step}: length of an iteration *before* load-balancing;
- ► T'_{step}: length of an iteration *after* load-balancing;
- ► *T*_{redistribution} : cost of the redistribution;
- *n*_{iter}: number of remaining iterations

Condition: $T_{\text{redistribution}} + n_{\text{iter}} \times T'_{\text{step}} \le n_{\text{iter}} \times T_{\text{step}}$

Modeling such a problem is hard and I won't go furthermore into the details.

The problem

- 2 Fully homogeneous network
- 3 Heterogeneous network (complete)
- 4 Heterogeneous network (general case)
- 5 Non dedicated platforms

< (F) >

"Regular" parallelism was already complicated, now we have:

- Processors with different characteristics
- Communications links with different characteristics
- Irregular interconnection networks
- Resources whose characteristics evolve over time

We need to use a realistic model of networks... but a more realistic model may lead to a more complicated problem.

< 17 >