
Desktop Grids

ICS 691

Desktop Grids
 Although clusters are relatively cheap and mainstream,

an even cheaper and easier alternative would be great
 How about reusing desktop resources that

 are already purchased
 are distributed so don’t require infrastructure

 space, power, A/C

 We can put them all together in Desktop Grids
 Question: where do we find these resources?
 Answers:

 In people’s home: “Internet Desktop Grids”
 Question: what is the incentive?

 In corporations: “Enterprise Desktop Grids”
 May use desktop machines AND clusters

Internet vs. Enterprise
 Most well-known projects are for Internet-wide computing

 Humanitarian/Fun/Geeky applications
 Some start-up companies tried to sell a compute service using machines

at people’s home
 Many failed
 Reason: people don’t want to have their idle cycles used just for anything
 Even if one pays their cable bill!

 These companies had to adapt to the Enterprise environment
 Convince a CEO that buying the software will make it possible to get better

return on investment for the thousands of desktop machines purchased
 Main company today: United Devices

 Spin-off of SETI@home
 Academic projects:

 Condor
 BOINC
 XtremWeb

Desktop Grids: The Largest
Distributed Computing Systems

67 TFlops/sec, 500,000 workers, $700,000

17.5 17.5 TFlopsTFlops/sec, 80,000 workers/sec, 80,000 workers

186 186 TFlopsTFlops/sec, 195,000 workers/sec, 195,000 workers

High-throughput Computing
 Desktop Grids are typically used for “high-throughput”,

compute-intensive applications
 High-Throughput?

 Many individual, independent tasks
 The performance metric is the task completion rate over “long”

periods of time (e.g., month)
 As opposed to makespan

 Implication: The “waiting for the last task” problem
goes away
 Simple scheduling heuristics such as FCFS can be effective

when there are many tasks

FCFS Scheduling

200 hosts

Desktop Grid Background

 Simple model

Request a task

Download task

Upload result

Desktop Grid Client
 Implementation

 Embedded in a screen saver
 As a stand-alone daemon

 The resource owner can typically
 Disable the client
 Set resource consumption limits for the client

 Run only when I am not using more than 10% of the CPU
 Run only when I am not running any program
 Run only between midnight and 6AM
 etc.

 Note the client/server terminology
 the client performs computation for the server!

Desktop Grid Resources

 Resources shared: unreserved, volatile
 Variable CPU load
 Variable host availability
CP

U
A

va
ila

bi
lit

y

Time

MAX

task suspended task killed

task completed

new task started

host loaded

SETI@Home & BOINC
 The most famous Internet Desktop Grid

application is SETI@Home
 Processes data from the Arecibo Radar Telescope

array
 Attempts to detect “Alien” patterns in the data
 Gathered more than half-million clients
 In fact too many resources for its needs
 Many clients just perform redundant work!

 Has provided the blueprint for how to do
Internet desktop grids
 Was the basis for the “United Device” company
 Was the basis for the BOINC Project

BOINC
 BOINC: Berkeley Open Infrastructure for Network

Computing
 Supports many applications

 At the server
 At the client

 Participants have “low” connectivity
 Applications have large computations
 Applications have small data

 Participants’ machines fail or just never come back
 Client may be hacked and be malicious

 Denial of service
 Forged results (“I found ET!”)

BOINC: Centralized

Data

Applications

BOINC
Bookkeeping

task server

data server

client

client

client

client

Server

BOINC Security

 Result falsification
 Task replication to achieve consensus

 DoS attacks
 limited upload sizes
 signed results
 failures: exponential back off

 No sandboxing at the client level
 Applications had better be correct and non-

malicious

Sandboxing
 Several options to guarantees that a client machine is

safe
 Disallow system calls

 Provide own API for “sytem call” type things
 Burden to the application writer

 Build and use a Virtual Machine
 XtremWeb does this
 A lot of work but allows best control

 Use the JVM as a virtual machine
 But one is restricted to Java applications

 System call sandboxing
 Intercept system calls
 Check them or simulate them
 High overhead

Falsified Results
 Here again, there are several possible techniques
 Spot Checking

 once in a while, send out a work unit whose result is known
 blacklist clients that send back a wrong answer

 And any past results from that client are discarded
 Minimal redundant computation
 But is blacklisting even possible in an Internet environment?

 Majority voting
 There are theoretical studies on the trade-offs between

redundancy and probability of detecting erroneous results
 Credibility based schemes

 Keep track of how good a client has been in the past
 Not waste redundant/useless computation on good clients all

the time

Enterprise Desktop Grids
 Although Internet-wide desktop grids are interesting

and popular, they have many drawbacks
 That lead to interesting/fun questions
 But that may not be what a company wants to deal with

 In an Enterprise, many issues go away
 Less heterogeneity?
 Fewer security issues?
 Better networks?
 Machines never turned off?
 Better machines?
 More intensive applications

 More data
 More computation

Typical “Enterprise” Desktop Grid
Applications*

264 Mbps10 MB5 min.BLAST

13.3 Mbps1 MB10 min.Small data, med run

6.67 Mbps1 MB20 min.Docking

132 Mbps20 MB20 min.Large data, large run

Server bandwidthTask data sizeTask run timeApplication

*Grid Resource Management, Chapter 26: Resource Management in the Entropia System

Condor
 Condor: a Hunter of Idle Workstations
 Old project still used today (started in 1985)

 Many “Condor Pools” in many institutions
 Targets sets of machines in universities

 Clusters
 Student labs
 Workstations

 Provides a job submission mechanisms like a batch scheduler
 No concept of a server that stores specific applications
 resource owners can still specify usage constraints

 Users can specify job dependencies
 Users can specify job resource requirements
 The matchmaker matches jobs with resources
 Condor is like its own Grid infrastructure

 In fact, it provides a gateway to Globus

Checkpointing

 What happens when a task gets killed?
 One option is that the task is lost and must be

restarted from scratch
 An viable option if tasks are short compared to

“availability intervals”
 Another option is to do what’s called

“checkpointing”
 Checkpointing: save the task’s state prediodically,

so that if killed, the task can be restarted from the
last checkpoint

 Condor can do this

Checkpointing

Do useful computation

Save application’s state

Time

Checkpointing
Time

X
Failure

Checkpointing
Time

X
Failure

wasted computation

time to “repair”

time to load
the checkpoint

Checkpointing
Time

X
Failure

 Given the time to checkpoint, the time to load
from a saved checkpoint, the expected time to
repair, and the expected time to failure, one can
figure out the best (statistically) checkpointing
frequency

Two kinds of checkpointing
 Application-level checkpointing

 the application just periodically opens a file and saves
important state in it

 e.g., save the matrix at the previous iteration as well as the
current iteration number

 the application can be started in “recover from checkpoint
mode”

 e.g., load the matrix and the current iteration number from a file

 System-level checkpointing
 just dump the whole memory of the process to a binary file

 heap, stack, data segment, etc.
 use the O/S to restart from the dumped state

Checkpointing trade-offs
 Application-level Checkpointing

 Saves only the data that must be saved
 Is portable across architectures

 In case one needs to migrate the application
 Can require quite a bit of work to port an application to a desktop grid
 Some desktop grid systems provide a checkpointing API

 System-level Checkpointing
 Requires no application code modification

 which could be cumbersome
 Checkpointing can happen at any point in the code
 Requires linking to a special “checkpoint” library

 May preclude the use of some system calls
 Condor provides such a library
 Can only work in heterogeneous environments

 Not good/useful for something like SETI@home

Checkpointing and Desktop Grids
 Application-level checkpointing

 Typically for grids that run only a few registered applications (BOINC)
 Would allow migration even in a heterogeneous grid, but isn’t typically done

 local checkpointing only
 no checkpointing server

 System-level checkpointing
 Done by enterprise grids where resources are more or less homogeneous

(Condor)
 Allows migration as long as there is a checkpoint server
 Only feasible for applications that can live without some system calls

 No checkpointing at all
 The desktop grid infrastructure is not aware of any application checkpointing

 Some may occur unbeknownst to the infrastructure
 Simplifies the desktop grid infrastructure
 More common than one would think
 When a task fails, just restart it

DG or cluster?

 Question:
 I have a 200-node desktop grid

 Perhaps in my corporation
 Let us assume no checkpointing

 I have an embarrassingly parallel application
and I care about high throughput

 Would I be better off with a 16-node cluster?
 To answer this question one must find

out what a desktop grid may look like
 Based on desktop grid measurements

Desktop Grid Measurements

 What we need to measure is: how many CPU
cycles per hour are available on a typical
desktop grid

 We want to observe desktop grids and obtain
trace data
 Trace data can be used to drive simulation

experiments
 Useful for developing predictive, generative, or

explanatory models, such as comparing a desktop
grid with a cluster

Previous work in the area
 Host availability [Wolski03, Long95,

Bhagwan03]
 host up / how down
 Hard to relate uptimes to actually CPU availability

 Monitored CPU availability/load [Livny91,
Wolski99, Dinda98, Arpaci95, Bolosky00]
 Network Weather Service (NWS)
 Difficult due to OS idiosyncrasies

 Besides
 these methods ignore keyboard/mouse activity
 these methods ignore the resource owner affecting

the client

Desktop Grid Measurements
 Observe host and CPU availability exactly as any

real desktop grid application would
 Submit infinite series of tasks to a desktop grid

 Task continuously compute a mix of floating
point/integer operations and write number of
completed operation every 10 secs to file

 Tasks do not interfere with desktop user

task #1 task #2 task #3 task #3X

C
PU

 a
va

ila
bi

lit
y

time

Host Clock Rates
 First testbed:

 230 desktops at the San Diego Supercomputer Center
(SDSC) running the Entropia desktop grid software, and 80
desktops at University of Paris-Sud running XtremWeb
software

 Obtained traces for 2 months

Cleaning up the data

 We found gaps in the trace data

 Due to server overhead: 35s

task #1 task #2 task #3 task #3X

C
PU

 a
va

ila
bi

lit
y

time

GAP

CPU availability?

 SETI@home uses an all/nothing model
 If the machine is idle: then use it
 otherwise: don’t use it

 Entropia uses a sophisticated virtual
machine
 monitors machine activity
 makes sure that the desktop grid application

as insignificant interference with the user’s
job

 sophisticated but...

Resource/Task Management

 What happens if a resource gets “reclaimed”?
 suspend the task and wait?

 but this may last a long time

 kill immediately?
 but then restart from scratch (unless migration is

possible?)
 and perhaps the interruption is only short-lived

 Entropia (and other similar systems) for X
minutes, and then give up and kill the task
 No checkpointing

An Interesting Results

over all hosts

Conclusion from the graph

 Most machines are either totally busy or
more than 80% available

 Therefore one may wonder why it’s so
important to have a fancy virtual
machine...

 Of course there are different trends
between weekends and weekdays

Availability Intervals

 From the trace data we can compute
“availability intervals”
 Intervals of time during which a task can

complete successfully
 The task may be suspended multiple times

during that interval
 We can compute:

 interval duration in seconds
 interval duration in terms of number of

operations performed

Availability intervals (sec)

Availability intervals (ops)

Total Compute Power

Conclusion from the graph

 Even slow resources are still useful
 perhaps there are not as busy because

people don’t want to use them?

 Other interesting things
 how about correlation of availability
 important for scheduling applications

Cluster Equivalence
 Cluster of X-nodes with the median compute speed
 Equivalence vs. Task size

So where are we now?
 Message from the previous results (if we assume it generalizes):

 If I have an embarrassingly parallel applications
 If the only thing I care about is throughput
 If I have a 200 node desktop grid
 If I can tune the task size
 I can have the illusion of a 150-node cluster with clock rates at the

median of the hosts in the desktop grid
 Better on weekends

 So this is great, but on a cluster one can do MANY mode things
than on a desktop grids
 i.e., run non-embarrassingly parallel, high-throughput applications

 Question: Could we run less ideal applications effectively?
 Maybe I only have a few tasks
 Maybe these tasks communicate

Fewer tasks than hosts

Fewer tasks than hosts

 When the number of tasks is small, and when
one cares about makespan, the performance
of a desktop grid is disappointing
 Long waiting time for the last task

 The problem is that the issue of resource
selection arises
 Not all hosts are useful
 All of a sudden the desktop grid must be more

complicated
 Get information about what the hosts are about
 Use that information to select “good” ones

Resource Selection Techniques

 Resource Prioritization
 When I have a choice of multiple hosts, I pick the one with

 the highest clock rate
 the one that delivered the most CPU cycles in the past X hours
 the one that has been the available the longest
 ...

 Resource Exclusion
 I decide never to use hosts with clock rates below X
 I decide never to use hosts that haven’t delivered more than X

CPU cycles to the desktop grid in the last Y hours
 ...

 Task Duplication
 I send each task to X hosts

 wasteful if done too much
 but effective to deal with the “wait for the last task” problem

Some Results
 Researchers have investigated these possibilities (using

simulation)
 Some results

 Prioritization by clock rate works great
 past history may not be too useful!

 Resource exclusion by clock rate work ok but not consistently over
desktop grids

 depends too much on the distribution of clock rates
 Resource exclusion by use of an “artificial deadline” works better but

is may be thrown off by one or two very poor predictions
 Task redundancy is key to deal with poor predictions: twofold

replication seems fine
 By combining all of the above, empirically one can get below a factor

2 of the optimal (assuming a prescient scheduler)
 And a factor ~3 better than a naive FCFS approach

 Requires improvements to desktop grid infrastructure software

Running MPI on a Desktop Grid?

 To take things further, and to truly replace a cluster by
a desktop grid, one needs to run MPI on volatile nodes
 Clearly not good for all applications
 But if the goal is to aggregate memory, perhaps performance

is not so critical

 Clearly checkpointing must be used
 Main question: what happens to messages when a

node goes down
 either because of faults
 or because it is reclaimed

 Note that this is a big issue on large clusters anyway
 The probability of node failure is high

The MPICH-V Project

 One idea: Use addition processes to
store all communication information
 Message sources/destinations
 Message sequences
 Message payload

 Problem:
 These processes must

be up
 These processes must

use resources

The MPICH-V Project

 Some protocols can work without these
additional processes

 Idea: relay on “replaying” processes so
that messages are “resent”
 quite complicated

Conclusion

 Desktop grids are interesting platforms
 Few companies have made a living out

of them
 Many companies have made a living out of

clusters
 Researchers are pushing them to do

more than they’ve done in the past
 The future is uncertain

 Only thin clients and no real exploitable
power in the desktop?

