
Locating Arrays: A New Experimental Design for
Screening Complex Engineered Systems

Abraham N. Aldaco, Charles J. Colbourn, and Violet R. Syrotiuk
School of Computing, Informatics, and Decision Systems Engineering

Arizona State University, Tempe, AZ, U.S.A. 85287-8809
{aaldacog, colbourn, syrotiuk}@asu.edu

ABSTRACT
The purpose of a screening experiment is to identify significant fac-
tors and interactions on a response for a system. Engineered sys-
tems are complex in part due to their size. To apply traditional
experimental designs for screening in complex engineered systems
requires either restricting the factors considered, which automati-
cally restricts the interactions to those in the set, or restricting in-
terest to main effects, which fails to consider any possible interac-
tions. To address this problem we propose a locating array (LA) as
a screening design. Locating arrays exhibit logarithmic growth in
the number of factors because their focus is on identification rather
than on measurement. This makes practical the consideration of an
order of magnitude more factors in experimentation than traditional
screening designs. We present preliminary results applying an LA
for screening the response of TCP throughput in a simulation model
of a mobile wireless network. The full-factorial design for this sys-
tem is infeasible (over 1043 design points!) yet an LA has only 421
design points. We validate the significance of the identified factors
and interactions independently using the statistical software JMP.
Screening using locating arrays is viable and yields useful models.

Categories and Subject Descriptors
General and reference [Cross-computing tools and techniques]:
Experimentation; Mathematics of computing [Discrete mathemat-

ics]: Combinatorics

General Terms
Experimentation

Keywords
Screening experiments, Locating arrays

1. INTRODUCTION
Computer and networked systems are examples of complex engi-
neered systems (CESs). The complexity of an engineered system is
not just due to its size, but also arises from its structure, operation
(including control and management), evolution over time, and that
people are involved in its design and operation [35].

Experimentation is often used to study the performance of CESs.
At its most basic, a system may be viewed as transforming some
input variables, or factors, into one or more observable output vari-
ables, or responses. Some factors of a system are controllable,
whereas others are not.

Objectives of experimentation include:

Copyright is held by the authors.

Screening: Which factors and interactions are most influential on
a response?

Confirmation: Is the system currently performing in the same way
as it did in the past?

Discovery: What happens when new operating conditions, mate-
rials, factors, etc., are explored?

Robustness: Under what conditions does a response degrade?

Stability: How can variability in a response be reduced?

Our focus is on screening using techniques from statistical design
of experiments (DoE). DoE refers to the process of planning an
experiment so that appropriate data are collected and analyzed by
statistical methods, in order to result in valid and objective conclu-
sions. Hence any experimental problem includes both the design of
the experiment and the statistical analysis of the data.

Suppose that there are k factors, F1, . . . , Fk, and that each factor
Fj has a set Lj = {vj,1, . . . , vj,�j}, of �j possible levels (or val-
ues). A design point is an assignment of a level from Lj to Fj ,
for each factor j = 1, . . . , k. An experimental design is a col-
lection of design points. When a design has N design points, it
can be represented by an N × k array A = (ai,j) in which each
row i corresponds to a design point and each column j to a factor;
the entry ai,j gives the level assigned to factor j in the ith design
point. When run, a design point results in one or more observable
responses.

A t-way interaction (or interaction of strength t) in A is a choice
of t columns i1, . . . , it, and the selection of a level νij ∈ Lij for
1 ≤ j ≤ t, represented as T = {(ij , νij) : 1 ≤ j ≤ t}. Every
design point in A covers

(
k
t

)
interactions of strength t.

When the objective of experimentation is screening, it is often rec-
ommended to keep the number of factors low. It has been con-
sidered impractical to experiment with “many” factors; about ten
factors is a suggested maximum [23, 31]. Generally, two levels for
each factor is considered to work well in screening experiments.

Methods for screening seek to reduce the number of design points
required because the exhaustive full-factorial design [9, 31] is too
large. For k factors each with two levels it has 2k design points.
An analysis of variance (ANOVA) allows the significant factors
and interactions on the response to be identified.

A fractional factorial design 2k−p
R is a 1

2p
fraction of a full facto-

rial design with k two-level factors. The design is described by p

31

generators, expressions of factors that are confounded; the genera-
tors determine the alias structure. A design is of resolution R if no
m-factor effect is aliased with another effect containing fewer than
R−m factors.

A D-optimal design is a popular experimental design among those
using optimality criteria. A model to fit, and a bound N on the
number of design points, must be specified a priori; this restricts
the factors to be analyzed to those in the model. The size of a D-
optimal design is bounded by the size of a full-factorial design.

Some designs aggregate the factors into groups, e.g., sequential bi-
furcation [24], to improve design efficiency. Grouping requires care
to ensure that factor effects do not cancel. This presents a “chicken
and egg” problem: we need to know how to group in order to group.
Often, a domain expert is expected to make such grouping deci-
sions. While such experts may have considerable knowledge, it
is doubtful whether an expert knows the importance of a specific
factor or interaction in a CES.

An interaction graph depicts how a change in the level of one factor
affects the other factor with respect to a response. Figure 1 shows
an interaction graph for the factors of routing and medium access
control (MAC) protocol on average delay in a network. The choice
of MAC protocol (EDCF or IEEE 802.11) has little impact on the
average delay in the AODV routing protocol, while for the DSR
routing protocol the impact is very large; see [53]. If MAC proto-
cols were aggregated, this significant interaction would be lost.

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

AODV DSR

Lo
g1

0(
A

ve
ra

ge
 d

el
ay

)

Routing protocol

EDCF
IEEE 802.11

Figure 1: Interaction of routing and MAC protocols on delay [53].

A fractional factorial design is saturated when it investigates k =
N − 1 factors in N design points [31]. In a supersaturated design,
the number of factors k > N − 1; such designs contain more fac-
tors than design points. These designs are only able to estimate a
main effects model [27, 31]. Thus they cannot consider possible
interactions at all.

Even with substantial and detailed domain knowledge, it is im-
perative not to eliminate or aggregate factors a priori. Our goal,
therefore, is an automatic and objective approach to screening. To
address this problem we have formulated the definition of a locat-
ing array (LA) [8]. Locating arrays exhibit logarithmic growth in
the number of factors because their focus is on identification rather
than on measurement. This makes practical the consideration of an
order of magnitude more factors in experimentation, removing the
need for the elimination of factors. As a result, LAs have the po-

tential to transform experimentation in huge factor spaces such as
those found in CESs.

The rest of this paper is organized as follows. §2 defines a locating
array, and gives an example of how a design is used for location.
§3 presents preliminary results applying an LA for screening the re-
sponse of TCP throughput in a simulation model of a mobile wire-
less network. The full-factorial design for this system is infeasible
— it has over 1043 design points! Yet there is an LA with only 421
design points. We develop an algorithm using the LA to identify
the significant factors and interactions from the data collected, pro-
viding a small example. In §4 we validate the significance of the
identified factors and interactions independently using the statisti-
cal software JMP. Finally, in §5 we summarize, discuss potential
threats to our approach, directions for this research, and conclude.

2. LOCATING ARRAYS
Reducing the number of design points required relies on a sparsity
of effects assumption, that interactions of interest involve at most
a small, known number t of interacting factors. As one means of
reduction, we define locating arrays (LAs) [8]. For a set of factors
each taking on a number of levels, an LA permits the identification
of a small number of significant interactions among small sets of
(factor, level) combinations.

LAs differ from standard designed experiments, which are used to
measure interactions and to develop a model for the response as a
function of these [31]. “Search designs” [17, 48, 49] also attempt
to locate interactions of higher strength, but their focus remains on
measurement and hence on balanced designs. Rao [20] shows that
the number of design points in a balanced design must be at least
as large as the number of interactions considered. Thus if t-way
interactions among k factors each having v levels are to be exam-
ined, balanced designs only reduce the vk exhaustive design points
to O(kt). The selection of few factors from hundreds of candi-
dates by this reduction is not viable. By lessening the requirement
from measurement to identification, LAs are not subject to the Rao
bound.

Fortunately LAs behave more like covering arrays, experimental
designs in which every t-way interaction among factors appears in
at least one design point. Unlike designed experiments, the number
of design points in a covering array for k factors grows as a loga-
rithmic function of k (see [43], for example). In [8], a construction
of LAs using covering arrays of higher strength is given, and hence
LAs also exhibit this logarithmic growth, making them asymptot-
ically much more efficient than balanced designs. This motivates
the consideration of covering arrays, which have been the subject
of extensive study [4, 5, 19, 36]. They are used in testing software
[10,13,25,26], hardware [46,50], composite materials [3], biologi-
cal networks [44, 47], and others. Their use to facilitate location of
interactions is examined in [29, 56], and measurement in [21, 22].
Covering arrays form the basis for combinatorial methods to learn
an unknown classification function using few evaluations — these
arise in computational learning and classification, and hinge on lo-
cating the relevant attributes (factors) [11]. Algorithms for gen-
erating covering arrays range from greedy (e.g., [2, 16]) through
heuristic search (e.g., [38, 52]). However, combinatorial construc-
tions (see [5]) provide the only available deterministic means of
producing covering arrays with more than a few hundred factors.

A design point, when run, yields one or more responses. For ease
of exposition, we classify the responses in two groups, those that

32

exceed a specified threshold and those that do not. So we suppose
that the outcome of a run of a design point is a single binary re-
sponse (“pass” or “fail”). A fault is caused by one or more t-way
interactions, and is evidenced by a run failing.

Given an experimental design and the set of interactions that cause
faults, the outcomes can be easily calculated: A run fails exactly
when it contains one or more of the faulty interactions, and does
not fail otherwise. In order to observe a fault, the interaction must
be covered by at least one design point. With no restriction on the
interactions that can cause faults, every interaction must be cov-
ered. Then the best one can do is to form all

∏k
j=1 �j possible

design points, the exhaustive design. Using sparsity of effects, an
upper bound t is placed on the strength of interactions that may be
faulty. Then we require that every t-way interaction be covered; in
other words, the design is a covering array of strength t.

Let A = (ai,j) be an experimental design, an N×k array where in
each row i, levels in the jth column are chosen from a set Lj of size
�j . For array A and t-way interaction T = {(ij , νij) : 1 ≤ j ≤ t},
define ρ(A, T) = {r : ar,ij = νij , 1 ≤ j ≤ t} as the set of
rows of A in which T is covered. For a set T of interactions,
ρ(A,T) = ∪T∈T ρ(A, T). Locating faults requires that T be
recovered from ρ(A,T), whenever T is a possible set of faults.

Let It be the set of all t-way interactions for an array, and let It

be the set of all interactions of strength at most t. Consider an
interaction T ∈ It of strength less than t. Any interaction T ′

of strength t that contains T necessarily has ρ(A, T ′) ⊆ ρ(A, T).
In this case, when T is faulty we are unable to determine whether
or not T ′ is also faulty. Call a subset T ′ of interactions in It

independent if there do not exist T, T ′ ∈ T ′ with T ⊆ T ′. In
general, some interactions in It (or perhaps It) are believed to
be faulty, but their number and identity are unknown. The faulty
interactions cannot be identified precisely from the outcomes, even
if the full factorial design is employed, without some restriction
on their number. (Consider the situation in which every design
point run fails.) We therefore suppose that a maximum number d
of faulty interactions is specified.

DEFINITION 2.1 ([8]). An array A is (d, t)-locating if when-
ever T1,T2 ⊆ It and T1 ∪ T2 is independent, |T1| ≤ d, and
|T2| ≤ d, it holds that ρ(A,T1) = ρ(A,T2)⇔ T1 = T2.

If there is any set of d interactions of strength t that produce ex-
actly the outcomes obtained when using a (d, t)-locating array A
to conduct experiments, then there is exactly one such set of in-
teractions. To avoid enumeration of all sets of d interactions of
strength t, one can employ a stronger condition that for every in-
teraction T of strength at most T and every set T1 ⊆ It that does
not contain T and for which T1 ∪{T} is independent, it holds that
ρ(A, T) = ρ(A,T1) ⇔ T ∈ T1. A locating array meeting this
stronger condition is termed a detecting array in [8]. When using
a detecting array, if there are at most d independent faulty inter-
actions each of strength at most t, they are characterized precisely
as the interactions that appear in no run that passes. We typically
employ the term locating array to refer to both, but for reasons of
computational efficiency the locating arrays that we use are, in fact,
detecting arrays.

In practice, one does not know a priori how many interactions are
faulty, or their strengths. Nevertheless, when responses are contin-

uous, we can select a threshold on the responses so as to limit the
number of design points yielding a “fail” outcome to locate those
that make the most substantial contribution to the response. We
exploit this fact later in §3.2.

2.1 A Small Example
An example is provided to demonstrate fault location, and show
the limitations of covering arrays for this purpose. Suppose that
we use the experimental design for five binary factors in Table 1.
It is a covering array in which each of the 22

(
5
2

)
= 40 two-way

interactions is covered. A response for each design point run is
listed in the adjacent column.

Table 1: Experimental design and response for each run.

Factors
1 2 3 4 5 Response

Design Points

1 0 1 1 1 1 Fail
2 1 0 1 0 0 Pass
3 0 1 0 0 0 Fail
4 1 0 0 1 1 Pass
5 0 0 0 0 1 Pass
6 1 1 0 1 0 Pass

First, let us locate faults due to main effects (i.e., the individual fac-
tors or one-way interactions). The second design point run passes,
so all (factor, level) pairs in it are known not to be faulty. Therefore
in Table 2(a), that considers only the second design point, when
factor 1 is set to one, the run is not faulty. Similarly, for factors
2, 3, 4, and 5 set to zero, one, zero, and zero, respectively. This
is indicated by a check-mark (�) in the table. Repeating to check
coverage of each one-way interaction for each successful run, no
single (factor, level) error accounts for the faults; see Table 2(b).

Table 2: Locating faults due to main effects.

(a) Run 2 (b) All Runs
Factors 0 1 Factors 0 1

1 � 1 � �
2 � 2 � �
3 � 3 � �
4 � 4 � �
5 � 5 � �

Computing ρ(T) for every one-way interaction, we obtain the sets
in Table 3. Because no two sets are equal, the array is (1, 1)-
locating and when there is a single faulty one-way interaction it can
be located. However, because {1, 3, 5} ∪ {2, 3, 5} = {1, 3, 5} ∪
{1, 2}, when rows 1, 3, and 5 fail and 2, 4, and 6 pass, we can-
not determine the two faulty interactions — the array is not (2, 1)-
locating.

Table 3: ρ(T) for one-way interactions T = {(c, ν)}.

ν ↓ c→ 1 2 3 4 5
0 {1,3,5} {2,4,5} {3,4,5,6} {2,3,5} {2,3,6}
1 {2,4,6} {1,3,6} {1,2} {1,4,6} {1,4,6}

Now, let us try to locate faults due to two-way interactions. Be-
cause the second design point run passes, all two-way interactions
in it are known not to be faulty; Table 4(a) records the results. Re-
peating to check for coverage of each two-way interaction for each
successful run, those interactions not found to pass in this way in

33

Table 4: Locating faults due to two-way interactions.

(a) Run 2 (b) All Runs
Factors 00 01 10 11 Factors 00 01 10 11

1, 2 � 1, 2 � � �
1, 3 � 1, 3 � � �
1, 4 � 1, 4 � � �
1, 5 � 1, 5 � � �
2, 3 � 2, 3 � � �
2, 4 � 2, 4 � � �
2, 5 � 2, 5 � � �
3, 4 � 3, 4 � � �
3, 5 � 3, 5 � � �
4, 5 � 4, 5 � � � �

Table 4(b) form a set of candidate faults. In this example, there are
nine interactions in the set of candidate faults. Now for the two-
way interaction {(1, 0), (2, 1)}, ρ({(1, 0), (2, 1)}) = {1, 3}, and
it is the only two-way interaction for which this holds; and, no one-
way interaction T has ρ(T) = {1, 3}. Hence if there is a single
fault, it must be {(1, 0), (2, 1)}, and we have located the fault.

Our success for one response is not sufficient, however. Because
ρ({(1, 0), (2, 1)}) = {1} = ρ({(2, 1), (3, 1)}), if only run 1 fails,
there are at least two equally plausible explanations using only a
single two-way interaction. Indeed A is not (1, 2)-locating. Thus
the ability to locate is more than simply coverage!

3. SCREENING AN ENGINEERED SYSTEM
We now apply locating arrays for screening in a complex engi-
neered system. One example of a CES for which it has been par-
ticularly difficult to develop models is a mobile ad hoc network
(MANET). A MANET is a collection of mobile wireless nodes that
self-organize without the use of any fixed infrastructure or central-
ized control. We seek to use a locating array to screen for the influ-
ential factors and interactions on average transport control protocol
(TCP) throughput in a simulation model of a MANET.

3.1 Designing the Experiment
We use the ns-2 simulator [37], version 2.34, for our experimen-
tation. Since our response of interest is average TCP throughput,
we select the file transfer protocol (FTP) as our application because
it uses TCP for reliability. We select the internet protocol (IP), the
Ad hoc On-demand Distance Vector routing protocol (AODV) [42],
and IEEE 802.11b direct sequence spread spectrum (DSSS) as pro-
tocols at the network, data link, and physical layers of the protocol
stack. We also use the mobility, energy, error, and propagation
models in ns-2. From these protocols and models we identify
75 controllable factors. The region of interest for each factor, i.e.,
the range over which the factor is varied, ranges from two to ten
levels, with some set according to recommendations in [33]. See
Appendix A for a pointer to details of the factors and their levels.

The full-factorial design for this factor space is infeasible; it has
over 1043 design points! In contrast, the locating array constructed
and checked manually has only 421 design points. Except for small
locating arrays [51], no general construction methods have been
published. We adopted a heuristic approach to construct the LA.

Initially we selected a covering array with 75 factors and 10 levels
per factor, constructed using a standard product construction [7].
We applied a post-optimization method [34] to reduce the number

of levels for each factor to the desired number, eliminating rows in
the process and forming an array C with 143 design points. The
resulting array provides coverage of two-way interactions but does
not support location. When T and T ′ are interactions, to distin-
guish them we require that ρ(T) �= ρ(T ′), but we ask for more,
namely that |ρ(T) \ ρ(T ′)| ≥ 2 and |ρ(T ′) \ ρ(T)| ≥ 2; this en-
sures that for every two interactions of interest, there are at least
two design points containing one but not the other. To accomplish
this, we formed three copies of C, randomly permuted their sym-
bols within each column, and formed their union (so that every
two-way interaction is covered at least three times). The resulting
array B with 429 rows turned out to be (1, 2)-detecting. Three rows
were selected by a greedy method to ensure the stronger condition
that |ρ(T) \ ρ(T ′)| ≥ 2 for every pair T, T ′ of interactions; then
eleven rows were deleted by a greedy algorithm to remove redun-
dant rows, ultimately producing a design with 421 rows. Appendix
A gives a pointer to the locating array used as the experimental
design. Our objective was not to find the smallest possible array,
because a fair evaluation of the efficacy of locating arrays should
not rely on substantial additional structure being present.

Ten replicates of each design point in the LA are run in ns-2;
for each a response of TCP throughput is measured. These are
averaged for each design point resulting in a vector with 421 entries
of observed average TCP throughput obsTh.

3.2 Screening Algorithm
We describe an algorithm for screening at a high level to facilitate
understanding. In each iteration of the algorithm the most signifi-
cant main effect or two-way interaction is identified. These terms
are accumulated in a screening model of average TCP through-
put. However, this screening model is not intended as a predictive
model; the quality of its current estimate allows the algorithm to
select the next most significant term. The screening model is used
only to identify influential main effects and two-way interactions.
With its output, a predictive model can be built; see §4.

Initially, the screening model has no terms. With no other infor-
mation, it should estimate the average TCP throughput to be the
average of the vector of observed average throughput. This is un-
likely to be a very good estimation!

Our strategy to identify the most significant factor or interaction
as the term to add to the screening model is as follows. Suppose
that factor Fj , 1 ≤ k ≤ 75, has �j levels Lj = {vj,1, . . . vj,�j}.
For each level �, 1 ≤ � ≤ �j , of factor Fj iterate through each
of the 421 design points of the locating array A. For each design
point i, 1 ≤ i ≤ 421, partition the contribution of the (factor Fj ,
level vj,�) combination into one of two sets: S or S. If the design
point has the factor Fj set to level �, i.e., ai,j = vj,�, then add
the throughput measured for design point i, obsTh[i], to S; other-
wise add obsTh[i] to S. Then, compute the (absolute) difference
of the average of sets S and S. (Of course, metrics other than the
difference of averages could be used.) Either the difference is zero
(i.e., the average TCP throughput collected in the sets S and S is
the same), or it is non-zero. If the difference is non-zero, then one
possible explanation is that the (factor Fj , level vj,�) combination
is responsible for the difference.

Our hypothesis is that the (factor Fj , level vj,�) combination over
all combinations for which the difference between the sets is the
greatest is the most significant one. If this is correct, then a term
of the form c · (Fj , vj,�) is added to the screening model. The

34

coefficient c is equal to the difference in average TCP throughput
of each set. When this term is added to the screening model, it
makes the same estimation for average TCP throughput for sets S
and S.

In the first iteration of this algorithm, the estimate (i.e., the average
of the vector of observed average TCP throughput) is used to de-
termine deviations from each entry in the vector obsTh. We now
have a screening model that apparently includes the most signifi-
cant factor. It is now used to produce a new estimate of average
TCP throughput and update the vector of residual throughput. The
algorithm can be applied repeatedly to the residuals to identify the
next most important factor or interaction.

While this algorithm is described for (factor, level) combinations,
we actually iterate over all one-way (i.e., all (factor, level) combi-
nations) and all two-way interactions (i.e., all pairs of (factor, level)
combinations) to identify the main effect or two-way interaction of
highest significance. Any number of stopping conditions may be
used to decide when to terminate the model development. We use
the R2, the coefficient of determination, indicating how well data
fits a line or curve; when it shows marginal improvement, we stop.

The locating array constructed for our CES is a (d = 1, t = 2)-
locating array, meaning it only guarantees to be able to locate (iden-
tify) at most one (d = 1) main effect or two-way (i.e., up to t = 2-
way) interaction. It is interesting that the LA may be used iter-
atively to identify subsequent significant main effects or interac-
tions. In this sense, the algorithm uses a “heavy-hitters” approach
as in compressive sensing [6].

3.3 Example of the Screening Algorithm
A small example is provided to step through one iteration of the
screening algorithm. Suppose that we use the experimental de-
sign for four binary factors in Table 5. It is a covering array of
strength three and therefore also a (2, 1)-detecting array. Factor 1
corresponds to the distribution function used for introducing errors
(uniformly or exponentially distributed), factor 2 to the error rate
(10−7 or 10−5), factor 3 to the number of flows at the application
layer (1 or 18), and factor 4 to the TCP packet size (64 or 2048);
the levels are taken as “binary” for this example. All remaining fac-
tors are set to their default levels for experimentation. A response
of observed TCP throughput for each design point, averaged over
ten replicates, is listed in the column obsTh. (All measures are
truncated to integers for simplicity.)

Table 5: Experimental design and average TCP throughput.

Factors
1 2 3 4 obsTh resTh

D
es

ig
n

Po
in

ts

1 0 0 0 0 63339 -14699
2 0 0 1 1 29860 -48178
3 0 1 0 1 80801 2764
4 0 1 1 0 3804 -74234
5 1 0 0 1 373866 295828
6 1 0 1 0 3879 -74159
7 1 1 0 0 56656 -21382
8 1 1 1 1 12095 -65943

The overall mean of the obsTh is 78038. Therefore, the screening
model initially estimates this value for average TCP throughput,
i.e., T = 78038. The residuals (resTh) are computed in Table 5 by
taking the difference of the observed average throughput for each

design point with this initial fitted value.

Now, we iterate over each (factor,level) combination. Factor 1 is set
to its low level in design points 1–4. Therefore S = 1

4

∑4
1 resTh[i] =

−134347
4

= −33586 and S = 1
4

∑8
5 resTh[i] =

134344
4

= 33586.
The absolute difference, |S − S| = |-33586− 33586| = 67172.

Repeating for each (factor, level) combination, as well as all two-
way interactions, we find that it is a main effect that has highest
absolute difference with a value of 131255. It occurs when factor
3 is set to its lowest level, namely when the number of flows at
the application layer is only one. Hence we attribute this as the
explanation for the largest difference and add the term c · (F3, v3,0)
to the model. The method of ordinary least squares (OLS) is used
to fit the intercept and coefficient c of the new term. This results
in an updated model of T = 12410 + 131255 · (F3, v3,0). Its
coefficient of determination is R2 = 0.33.

Using this updated model, the residuals can be recomputed as input
to the next iteration of the algorithm.

Next, we describe some of the obstacles arising in the practical
application of the screening algorithm.

3.4 Applying the Screening Algorithm
In applying the screening algorithm to our CES, several obstacles
arose. The first is that the measured average TCP throughput is not
normally distributed, as Figure 2 shows; this is not uncommon in
systems experimentation [12]. The best transformation of the data
is a natural logarithm (Figure 3a). From the normal probability plot
(Figure 3b), we find that the transformed data are still not normally
distributed; nevertheless, we work with this transformation of the
data.

F
re

qu
en

cy

50

100

150

200

250

300
72%

18%

5%

2%
1% 1% 0% 0% 0% 0%

0 50,000 100,000 150,000 200,000 250,00
obsTH1

(a) Throughput distribution.

N
or

m
al

 P
ro

ba
bi

lit
y

0.003

0.015

0.06

0.12

0.25

0.5

0.75

0.88

0.94

0.985

0 50,000 100,000 150,000 200,000 250,000

obsTH1

(b) Normal probability plot.

Figure 2: Distribution of the original observed average throughput,
and corresponding normal probability plot.

A much larger problem arises from the fact that the LA does not
cover each main effect and two-way interaction the same number
of times. Indeed, binary factors are covered much more frequently
(some as many as two hundred times in the 421 row LA) compared
to two-way interactions of factors with ten levels (only a handful
of times). This is unavoidable when one-way and two-way interac-
tions are compared, and when factors have a different numbers of
levels.

Consider the behaviour of the screening algorithm. For a binary
factor the sets S and S have the same or nearly the same size and,
as a result, the average of each set has small variance. In the exam-
ple in §3.3, each (factor, level) combination is covered four times

35

F
re

qu
en

cy

20

40

60

80

100

1%
1%

4%

5%
5%

8%

7%

14%

21%

26%

6%

1%

2 4 6 8 10 12
ln(obsTH1)

(a) ln transformation.
N

or
m

al
 P

ro
ba

bi
lit

y

0.003

0.015

0.06

0.12

0.25

0.5

0.75

0.88

0.94

0.985

2 4 6 8 10 12

ln(obsTH1

(b) Normal probability plot.

Figure 3: Natural logarithm transformation of the original observed
throughput, and corresponding normal probability plot.

(each column of the array has four zeros and four ones). However
in general, as the number of levels for a factor increases, the size of
the sets S and S may become markedly different, and the variance
of the average of each set may increase greatly. Returning to the
example in §3.3, the two-way interactions are not covered equally.
Consider the two-way interaction {(1, 0), (2, 0)}. It is covered in
only two rows of the array, namely |ρ({(1, 0), (2, 0)})| = |{1, 2}| =
2 (this is true for all two-way interactions in this example). Even
in this small array, the coverage of two-way interactions is unbal-
anced resulting in S accumulating two values and S accumulating
six values. This makes any direct comparison among (factor, level)
combinations and/or two-way interactions impossible.

To address this problem, factors are grouped according to the num-
ber of times each level is covered in the LA; see Appendix A for
a pointer to the details on how groups are formed. Now, in each
iteration of the screening algorithm, the first step is to select the
most significant factor or interaction from each group. Then from
these candidates, the most significant factor or interaction overall
is selected.

The Figure 4 shows the graphical tests for normality of the residu-
als after the first iteration of the screening algorithm. (Similar be-
haviour of the residuals is observed after each iteration.) While the
figures indicate that the residuals are close to normally distributed,
we check using the non-parametric Shapiro-Wilk test. This test in-
dicates that the residuals are still not normally distributed. Hence,
we use the Wilcoxon rank sum test and the Mann-Whitney U -
test [14, 28, 54] to select the most significant factor or two-way
interaction within each group. Then, to select the most signifi-
cant factor or interaction over all groups, the Akaike information
criterion (AICC) [1] is used.

We still need to fit the intercept and the coefficients of the terms.
For a linear model with the assumptions of expected error of zero
and expected variance in the error to be equal, the method of ordi-
nary least squares (OLS) is used. However, if the expected variance
in the error is unequal, OLS is no longer appropriate [32]. In this
case, the method of weighted least squares (WLS) is used to fit the
intercept and coefficients of the terms in the screening model.

3.4.1 The Resulting Screening Model
Table 6 gives the screening model for average TCP throughput de-
veloped in twelve iterations of the screening algorithm; Table 8 lists
its unique factors. A Student’s t-test was run on each term in the
screening model and each was found to be significant; β0 is the

F
re

qu
en

cy

20

40

60

80

100

0%

1% 1%

5%

8%

12%

18%

24%

13%

9%

6%

1%

-6 -4 -2 0 2 4
Residuals of TCP throughput after iteration 1

(a) Distribution of first residual.

N
or

m
al

 P
ro

ba
bi

lit
y

0.003

0.015

0.06

0.12

0.25

0.5

0.75

0.88

0.94

0.985

-6 -4 -2 0 2 4

Residuals of TCP throughput after iteration 1

(b) Normal probability plot.

Figure 4: Distribution of residuals after the first iteration of the
screening algorithm, and corresponding normal probability plot.

intercept and βi is the coefficient of term i, 1 ≤ i ≤ 12.

Table 6: Screening model with twelve terms.

t-Test βi Factor or interaction, and level(s)

52.6 5.6
34.5 4.4 ErrorModel_ranvar_ Uniform
32.8 4.0 ErrorModel_unit_ pkt)

-29.1 -4.7 (ErrorModel_ranvar_ Uniform) *
(ErrorModel_unit_ pkt)

-11.8 -1.6 TCP_packetSize_ 64
-12.1 -1.5 MAC_RTSThreshold_ 0

-9.3 -1.2 TCP_packetSize_ 128
6.5 0.9 (TCP_RTTvar_exp_ 2) *

(TCP_min_max_RTO_ 0.1)
6.6 0.7 TCP_min_max_RTO_ 0.2
8.4 1.1 (ErrorModel_unit_ pkt) *

(ErrorModel_rate_ 1.0E-07)
6.3 1.1 (ErrorModel_ranvar_ Uniform) *

(MAC_RTSThreshold_ 0)
5.5 0.7 APP_flows_ 1
5.2 0.5 RWP_Area_ 8

The first notable observation about this screening model is that it
contains both main effects and two-way interactions. Moreover, it
contains factors from across the layers of the protocol stack (ap-
plication, transport, and MAC) and not just the transport layer; in
addition, it includes factors from the error model and the mobil-
ity model. Aside from these differences with other models of TCP
throughput (such as [15, 18, 30, 39–41, 55, 57, 58]), the screening
model includes not just which factors or two-way interactions are
significant, but the level at which each is significant.

From the statistical point of view, Table 7 shows a strong cor-
relation among the regressors and the response of average TCP
throughput. The F statistic indicates that the model is significant
to the response.

Table 7: Summary statistics of the screening model in Table 6.

R2 and Adjusted R2: 0.84
Standard deviation: 0.92
F statistic: 180.6 on 12 and 408 df, p-value < 7.89e-155

We are encouraged by the factors and interactions identified. This
includes how and into what unit errors are introduced (using a uni-

36

form distribution into packets rather than bit errors), and their in-
teraction. Smaller sized packets (64 and 128 bytes) tend to reduce
throughput. When RTS/CTS is always on (i.e., the threshold is
zero bytes), there is a negative impact on throughput compared to
when it is configured to 1500 or 3000 bytes (always off). The re-
transmission timeout (RTO) and round trip time (RTT) are part of
TCP’s congestion control mechanism; the RTO infers packet loss
by observing duplicate acknowledgements and the RTT is related
to the propagation delay. The RTO is significant by itself, and in
its interaction with the RTT as they work to correct and prevent
network congestion. The synthetic error model of the simulator
drops packets comparing them with data from an uniform distribu-
tion at a steady-state loss event rate of 1.0E-07; this is the lowest
error rate used and naturally it corresponds with higher through-
put. Smaller simulation areas also result in higher throughput; a
larger area has longer average shortest-hop path lengths and aver-
age higher network partition rates both of which negatively affect
throughput. The throughput response is higher with fewer flows
because increasing the number of flows not only may overload the
network but more flows are more challenging to route in a MANET.

4. VALIDATION AND VERIFICATION
From the 75 controllable factors used in experimentation, nine unique
factors are present in the twelve terms in the screening model in Ta-
ble 6; these are listed in Table 8.

Table 8: Unique factors in the screening model in Table 6.

Level
Factor Minimum Maximum
TCP_RTTvar_exp_ 2 4
ErrorModel_ranvar_ Uniform Exponential
ErrorModel_unit_ pkt bit
MAC_RTSThreshold_ 0 3000
ErrorModel_rate_ 1.0E-07 1.0E-05
RWP_Area_ 8 40
TCP_min_max_RTO_ 0.1 40
APP_flows_ 1 18
TCP_packetSize_ 64 2048

In order to validate the factors and interactions identified, we first
conduct a full-factorial experiment for these nine factors using the
extremes of their region of interest, using the statistical software
JMP to analyze the results. From this, we produce a predictive
model of average TCP throughput. We then examine the quality
of this predictive model by comparing how it performs on random
design points (i.e., a design point in which the level of each factor
is selected at random).

We present our validation results next.

4.1 Full-Factorial Screening in JMP
We conduct an independent 29 full-factorial experiment on the nine
factors in Table 8. All remaining 75 − 9 = 66 factors are fixed to
their default levels. Ten replicates of each of the 29 design points is
run, and TCP throughput measured. The results of the experimen-
tation are input to the JMP statistical software, version 11.0 [45].

The results from the full-factorial screening experiment are given in
Table 9. It includes only the main effects and two-way interactions
sorted in increasing order by the p-value. The results indicate high
commonality with the main effects and two-factor interactions se-
lected by the screening algorithm that formed the screening model

Table 9: Partial results of a 29 full-factorial screening experiment
using JMP 11.0 on the nine factors in Table 8.

Term p-Value

ErrorModel_ranvar_*ErrorModel_unit_ <.0001*
ErrorModel_ranvar_ <.0001*
ErrorModel_unit_ <.0001*
TCP_packetSize_ <.0001*
APP_flows_ <.0001*
TCP_min_max_RTO_ <.0001*
RWP_Area_ <.0001*
MAC_RTSThreshold_ <.0001*
ErrorModel_unit_*TCP_packetSize_ <.0001*
ErrorModel_rate_ <.0001*
ErrorModel_ranvar_*MAC_RTSThreshold_ <.0001*
APP_flows_*RWP_Area_ <.0001*
ErrorModel_unit_*ErrorModel_rate_ <.0001*
TCP_packetSize_*ErrorModel_rate_ <.0001*
ErrorModel_unit_*MAC_RTSThreshold_ <.0001*
ErrorModel_ranvar_*APP_flows_ <.0001*
APP_flows_*TCP_min_max_RTO_ <.0001*
ErrorModel_unit_*APP_flows_ <.0001*
ErrorModel_ranvar_*TCP_min_max_RTO_ <.0001*
ErrorModel_ranvar_*TCP_packetSize_ <.0001*
TCP_packetSize_*APP_flows_ <.0001*
TCP_min_max_RTO_*RWP_Area_ <.0001*
ErrorModel_ranvar_*RWP_Area_ <.0001*
MAC_RTSThreshold_*ErrorModel_rate_ <.0001*
TCP_min_max_RTO_*ErrorModel_rate_ <.0001*
TCP_min_max_RTO_*TCP_rttvar_exp_ 0.0001
ErrorModel_unit_*TCP_min_max_RTO_ 0.0001
APP_flows_*ErrorModel_rate_ 0.0003
RWP_Area_*MAC_RTSThreshold_ 0.0006
ErrorModel_unit_*RWP_Area_ 0.001
TCP_rttvar_exp_ 0.0012
TCP_packetSize_*RWP_Area_ 0.002
APP_flows_*MAC_RTSThreshold_ 0.0116
RWP_Area_*ErrorModel_rate_ 0.0444
ErrorModel_ranvar_*TCP_rttvar_exp_ 0.0515

in Table 6. Indeed, both models have the same four most significant
terms (though in a different order), and all factors and interactions
in Table 6 are a subset of the terms in Table 9. Appendix A gives
a pointer to the details of the predictive model for average TCP
throughput that was fit using a subset of the significant terms in
Table 9.

Figure 5 shows the results of evaluating the JMP predictive model
as a function of the TCP packet size, for the three levels of error
rate. As in the experimentation, all remaining factors are fixed at
their default levels. As expected, the results show that the highest
TCP throughput is achieved when the error rate is at the lowest level
(1.0E-07). For a given error rate the TCP throughput increases as
a function of packet size, after which it decreases. An exception
is for packet size 1024. Aside from this exception, these results
also confirm our intuition of TCP throughput behaviour. The rea-
son for this exception deserves further study but may be related to
the default settings used for the other 66 factors not varied in this
screening experiment.

We now examine the predictive accuracy of the JMP model for ran-
dom design points.

37

 0

 20000

 40000

 60000

 80000

 100000

 120000

64 128 256 512 768 1024 1280 1536 1792 2048

T
C

P
 t

h
ro

u
g

h
p

u
t

(b
p

s)

Packet size (bytes)

JMP 1.0e-7
JMP 1.0e-6
JMP 1.0e-5

Figure 5: TCP throughput as a function of packet size as predicted
the by JMP model; all other factors are at their default levels.

4.2 Predictive Accuracy of JMP Model
In order to test the predictive accuracy of the JMP model, a new
experimental design of one hundred random design points is con-
structed. In constructing each design point, for each of factor Fj ,
1 ≤ j ≤ 75, a random level from Lj is selected. New mobility
scenarios are also generated. Ten replicates of each of the random
design points are run in the ns-2 simulator, and the TCP through-
put measured. In addition, for each experiment in the design, the
JMP model is evaluated generating a new data set of fitted TCP
throughput.

Figure 6 shows the average TCP throughput from simulation, and
the fitted throughput from the JMP model corresponding to this
random design. The mean TCP throughput from the simulations is
20,892 bps whereas the mean from the JMP model is lower, only
13,946 bps. However, the standard deviation of the results from the
JMP model is smaller than the standard deviation from the simu-
lations. Both models exhibit a few outliers. Approximately 94%
of the results predicted for TCP throughput from the JMP model
are in one standard deviation of the simulation results. Considering
the size of the factor space, we conclude that the predicted average
TCP throughput of the JMP model is similar to the average TCP
throughput measured in simulation.

4.3 Predictive Accuracy of Screening Model
While the model developed in applying the screening algorithm
based on the LA (Table 6) is not intended to be used as a predictive
model, we were curious about its predictive accuracy. Appendix
A gives a pointer to a summary of results similar to those in this
section for the screening model. To our surprise, the predictive ac-
curacy of the screening model is reasonably good. The screening
model does appear to have more variability than the model devel-
oped in JMP.

5. CONCLUSIONS
Locating arrays capture the intuition that in order to see the effect of
a main effect or interaction, some design point must cover it; and in
order to distinguish it, the responses for the set of design points that
cover it must not be equally explained by another small set of main
effects or interactions. In a complex engineered system, many main
effects and interactions may be significant, but our method identi-
fies them one at a time, iteratively improving a screening model. In
this way, an experimental design must be able to repeatedly locate
a single “most significant” main effect or interaction. Our results
show that using locating arrays for screening appears promising.
Indeed while the screening targeted the identification of significant

factors and two-way interactions, the screening model developed
also reflects the actual behaviour well.

Despite this, the method aims only to deal with many factors and
their interactions to identify the significant ones. We advocate that
further experimentation is necessary after the screening is com-
pleted, both to confirm the screening results and to build a pre-
dictive model. One must be cautious not to over-fit the experi-
mental results and claim unwarranted confidence; confirmation is
needed. This is particularly a concern if the stopping criterion cho-
sen locates too many or too few significant interactions; while our
choice of R2 appears to have worked well, future effort should ad-
dress the impact of different stopping criteria. A second concern is
the selection criterion for the next factor or interaction to include.
Subsequent selections depend upon selections already made, so our
method could in principle be misdirected by a bad selection. Our
criterion of using the differences between responses for S and those
for S has also worked well, but we cannot be certain that such a
simple selection suffices in general. Finally, we have employed
only a few locating arrays; while they have worked well in our
analyses, constructing a suitable locating array remains a challeng-
ing problem that merits further research.

Certainly further experimentation is needed to assess the merit of
screening using LAs, in particular on physical not just simulated
complex engineered systems, and draw firm conclusions. What we
can conclude is that in a challenging CES arising from a MANET,
screening using locating arrays is viable and yields useful models.

Acknowledgment
Thanks to Doug Montgomery for his advice on all things statistical.
This material is based in part upon work supported by the National
Science Foundation under Grant No. 1421058.

6. REFERENCES
[1] H. Akaike. A new look at the statistical model identification.

IEEE Transactions on Automatic Control, 19(6):716–723,
1974.

[2] R. C. Bryce and C. J. Colbourn. A density-based greedy
algorithm for higher strength covering arrays. Software
Testing, Verification, and Reliability, 19:37–53, 2009.

[3] J. N. Cawse. Experimental design for combinatorial and high
throughput materials development. GE Global Research
Technical Report, 29(9):769–781, 2002.

[4] C. J. Colbourn. Combinatorial aspects of covering arrays. Le
Matematiche (Catania), 58:121–167, 2004.

[5] C. J. Colbourn. Covering arrays and hash families. In
Information Security and Related Combinatorics, NATO
Peace and Information Security, pages 99–136. IOS Press,
2011.

[6] C. J. Colbourn, D. Horsley, and V. R. Syrotiuk. Frameproof
codes and compressive sensing. In Proc. 48th Annual
Allerton Conference on Communication, Control, and
Computing, 2010.

[7] C. J. Colbourn, S. S. Martirosyan, G. L. Mullen, D. E.
Shasha, G. B. Sherwood, and J. L. Yucas. Products of mixed
covering arrays of strength two. Journal of Combinatorial
Designs, 14(2):124–138, 2006.

[8] C. J. Colbourn and D. W. McClary. Locating and detecting
arrays for interaction faults. Journal of Combinatorial
Optimization, 15:17–48, 2008.

[9] C. Croarkin, P. Tobias, J. J. Filliben, B. Hembree,

38

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 10 20 30 40 50 60 70 80 90 100

T
C

P
 t

h
ro

u
g
h
p
u
t

(b
p
s)

Random tests

+StDev Fitted JMP model

-StDev Fitted JMP model

Fitted JMP model
Mean fitted JMP model

(a) Predictions by JMP.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 10 20 30 40 50 60 70 80 90 100

T
C

P
 t

h
ro

u
g
h
p
u
t

(b
p
s)

Random tests

+StDev Simulated

-StDev Simulated

Simulated
Mean Simulated

(b) Simulation results.

Figure 6: Predictions by the JMP model and simulation results for random design points.

W. Guthrie, L. Trutna, and J. Prins, editors.
NIST/SEMATECH e-Handbook of Statistical Methods.
NIST/SEMATECH, 2012.

[10] S. R. Dalal, A. J. N. Karunanithi, J. M. L. Leaton, G. C. P.
Patton, and B. M. Horowitz. Model-based testing in practice.
In Proc. Intl. Conf. on Software Engineering (ICSE ’99),
pages 285–294, 1999.

[11] P. Damaschke. Adaptive versus nonadaptive
attribute-efficient learning. Machine Learning, 41:197–215,
2000.

[12] A. B. de Oliveira, S. Fischmeister, A. Diwan, M. Hauswirth,
and P. F. Sweeney. Why you should care about quantile
regression. In Proc. of the ACM Conf. on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), March 2013.

[13] S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L. Mallows, and
A. Iannino. Applying design of experiments to software
testing. In Proc. Intl. Conf. on Software Engineering (ICSE
’97), pages 205–215, Los Alamitos, CA, 1997. IEEE.

[14] M. Fay and M. Proschan. Wilcoxon-Mann-Whitney or t-test?
On assumptions for hypothesis tests and multiple
interpretations of decision rules. Statistics Surveys, 4:1–39,
2010.

[15] S. Floyd, M. Handley, J. Padhye, and J. Widmer.
Equation-based congestion control for unicast applications:
The extended version. SIGCOMM Computing
Communications Review, 30:43–56, 2000.

[16] M. Forbes, J. Lawrence, Y. Lei, R. N. Kacker, and D. R.

Kuhn. Refining the in-parameter-order strategy for
constructing covering arrays. J. Res. Nat. Inst. Stand. Tech.,
113:287–297, 2008.

[17] S. Ghosh and C. Burns. Comparison of four new general
classes of search designs. Austral. New Zealand J. Stat.,
44:357–366, 2002.

[18] K.-J. Grinnemo and A. Brunstrom. A simulation based
performance analysis of a TCP extension for best-effort
multimedia applications. In Proceedings of the 35th Annual
Simulation Symposium, 2002.

[19] A. Hartman. Software and hardware testing using
combinatorial covering suites. In M. C. Golumbic and
I. B.-A. Hartman, editors, Interdisciplinary Applications of
Graph Theory, Combinatorics, and Algorithms, pages
237–266. Springer, Norwell, MA, 2005.

[20] A. S. Hedayat, N. J. A. Sloane, and J. Stufken. Orthogonal
Arrays. Springer-Verlag, New York, 1999.

[21] D. S. Hoskins, C. J. Colbourn, and M. Kulahci. Truncated
D-optimal designs for screening experiments. American
Journal of Mathematical and Management Sciences,
28:359–383, 2008.

[22] D. S. Hoskins, C. J. Colbourn, and D. C. Montgomery.
D-optimal designs with interaction coverage. Journal of
Statistical Theory and Practice, 3:817–830, 2009.

[23] J. P. C. Kleijnen. An overview of the design and analysis of
simulation experiments for sensitivity analysis. European
Journal of Operational Research, 164:287–300, 2005.

[24] J. P. C. Kleijnen, B. Bettonvil, and F. Persson. Screening for

39

the important factors in large discrete-even simulation
models: Sequential bifurcation and its applications. In A. M.
Dean and S. M. Lewis, editors, Screening: Methods for
Experimentation in Industry, Drug Discovery and Genetics,
chapter 13, pages 287–307. Springer-Verlag, 2006.

[25] D. Kuhn and M. Reilly. An investigation of the applicability
of design of experiments to software testing. In Proc. 27th
Annual NASA Goddard/IEEE Software Engineering
Workshop, pages 91–95, Los Alamitos, CA, 2002. IEEE.

[26] D. R. Kuhn, D. R. Wallace, and A. M. Gallo. Software fault
interactions and implications for software testing. IEEE
Trans. Software Engineering, 30(6):418–421, 2004.

[27] R. Li and D. K. J. Lin. Analysis methods for supersaturated
designs: Some comparisons. Journal of Data Science, pages
249–260, 2003.

[28] H. B. Mann and D. R. Whitney. On a test of whether one of
two random variables is stochastically larger than the other.
Annals of Mathematical Statistics, 18:50–60, 1947.

[29] C. Martínez, L. Moura, D. Panario, and B. Stevens. Locating
errors using ELAs, covering arrays, and adaptive testing
algorithms. SIAM J. Discrete Math., 23:1776–1799, 2009/10.

[30] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The
macroscopic behavior of the TCP congestion avoidance
algorithm. SIGCOMM Comput. Commun. Rev., 27:67–82,
1997.

[31] D. C. Montgomery. Design and Analysis of Experiments.
John Wiley & Sons, Inc., 8 edition, 2012.

[32] D. C. Montgomery, E. A. Peck, and C. G. Vining.
Introduction to Linear Regression Analysis. John Wiley &
Sons, Inc., 4th edition, 2006.

[33] A. Munjal, T. Camp, and W. Navidi. Constructing rigorous
MANET simulation scenarios with realistic mobility. In
European Wireless Conference (EW), pages 817–824, 2010.

[34] P. Nayeri, C. J. Colbourn, and G. Konjevod. Randomized
postoptimization of covering arrays. European Journal of
Combinatorics, 34:91–103, 2013.

[35] Networking and information technology research and
development (NITRD) large scale networking (LSN)
workshop report on complex engineered networks, 2012.

[36] C. Nie and H. Leung. A survey of combinatorial testing.
ACM Computing Surveys, 43, 2011.

[37] The Network Simulator - ns-2.
http://www.isi.edu/nsnam/ns.

[38] K. Nurmela. Upper bounds for covering arrays by tabu
search. Discrete Applied Mathematics, 138(9):143–152,
2004.

[39] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling
TCP throughput: a simple model and its empirical validation.
SIGCOMM Computing Communications Review,
28:303–314, 1998.

[40] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose.
Modeling TCP Reno performance: A simple model and its
empirical validation. IEEE/ACM Transactions on
Networking, 8:133–145, 2000.

[41] N. Parvez, A. Mahanti, and C. Williamson. An analytic
throughput model for TCP NewReno. IEEE/ACM
Transactions on Networking, 18:448–461, 2010.

[42] C. E. Perkins and E. M. Royer. Ad hoc on-demand distance
vector routing. In Proc. Second IEEE Workshop on Mobile
Computing Systems and Applications, pages 90–100, 1999.

[43] S. Poljak, A. Pultr, and V. Rödl. On qualitatively independent

partitions and related problems. Discrete Applied Math.,
6:193–205, 1983.

[44] A. H. Ronneseth and C. J. Colbourn. Merging covering
arrays and compressing multiple sequence alignments.
Discrete Applied Mathematics, 157:2177–2190, 2009.

[45] JMP statistical software from SAS.
http://www.jmp.com.

[46] G. Seroussi and N. H. Bshouty. Vector sets for exhaustive
testing of logic circuits. IEEE Transactions on Information
Theory, 34:513–522, 1988.

[47] D. E. Shasha, A. Y. Kouranov, L. V. Lejay, M. F. Chou, and
G. M. Coruzzi. Using combinatorial design to study
regulation by multiple input signals: A tool for parsimony in
the post-genomics era. Plant Physiology, 127:1590–1594,
2001.

[48] T. Shirakura, T. Takahashi, and J. N. Srivastava. Searching
probabilities for nonzero effects in search designs for the
noisy case. Ann. Statist., 24:2560–2568, 1996.

[49] J. N. Srivastava. Designs for searching non-negligible effects.
In J. N. Srivastava, editor, A Survey of Statistical Design and
Linear Models, pages 507–519. North–Holland, 1975.

[50] D. T. Tang and C. L. Chen. Iterative exhaustive pattern
generation for logic testing. IBM Journal Research and
Development, 28:212–219, 1984.

[51] Y. Tang, C. J. Colbourn, and J. Yin. Optimality and
constructions of locating arrays. J. Stat. Theory Pract.,
6(1):20–29, 2012.

[52] J. Torres-Jimenez and E. Rodriguez-Tello. New upper
bounds for binary covering arrays using simulated annealing.
Information Sciences, 185:137–152, 2012.

[53] K. K. Vadde and V. R. Syrotiuk. Factor interaction on service
delivery in mobile ad hoc networks. IEEE Journal on
Selected Areas in Communications, 22:1335–1346, 2004.

[54] F. Wilcoxon. Individual comparisons by ranking methods.
Biometrics Bulletin, 1:80–83, 1945.

[55] I. Yeom and A. L. N. Reddy. Modeling TCP behavior in a
differentiated services network. IEEE/ACM Transactions on
Networking, 9:31–46, 1999.

[56] C. Yilmaz, M. B. Cohen, and A. Porter. Covering arrays for
efficient fault characterization in complex configuration
spaces. IEEE Transactions on Software Engineering,
31:20–34, 2006.

[57] B. Zhou, C. P. Fu, D.-M. Chiu, C. T. Lau, and L. H. Ngoh. A
simple throughput model for TCP Reno. In Proceedings of
the IEEE International Communications Conference
(ICC’06), 2006.

[58] M. Zorzi, A. Chockalingam, and R. R. Rao. Throughput
analysis of TCP on channels with memory. IEEE Journal on
Selected Areas in Communications, 18:1289–1300, 2000.

APPENDIX

A. GITHUB REPOSITORY
A GitHub repository provides supplementary material at:
https://github.com/locatingarray/screening.git
Specifically, it includes the 75 controllable factors in the ns-2 sim-
ulator used in experimentation and their levels (§3.1), the 421× 75
LA used as the experimental design (§3.1), a description of how
factors are grouped (§3.4), the JMP model for TCP throughput,
along with some statistical analysis (§4.1), and some analysis of
the predictive capability of the screening model (§4.3).

40

