
Automated Assessment of Secure Search Systems

Mayank Varia
MIT Lincoln Laboratory

244 Wood Street
Lexington, MA 02420

mayank.varia@ll.mit.edu

Benjamin Price
MIT Lincoln Laboratory

244 Wood Street
Lexington, MA 02420

ben.price@ll.mit.edu

Nicholas Hwang
MIT Lincoln Laboratory

244 Wood Street
Lexington, MA 02420

nicholas.hwang@ll.mit.edu

Ariel Hamlin
MIT Lincoln Laboratory

ariel.hamlin@ll.mit.edu

Jonathan Herzog
∗

Jonathan Herzog Consulting
jherzog@

jonathanherzog.com

Jill Poland
MIT Lincoln Laboratory

jill.poland@ll.mit.edu

Michael Reschly
michael@reschly.com

Sophia Yakoubov
MIT Lincoln Laboratory

sophia.yakoubov@ll.mit.edu

Robert K. Cunningham
MIT Lincoln Laboratory

rkc@ll.mit.edu

ABSTRACT
This work presents the results of a three-year project that
assessed nine different privacy-preserving data search sys-
tems. We detail the design of a software assessment frame-
work that focuses on low system footprint, repeatability, and
reusability. A unique achievement of this project was the
automation and integration of the entire test process, from
the production and execution of tests to the generation of
human-readable evaluation reports. We synthesize our ex-
periences into a set of simple mantras that we recommend
following in the design of any assessment framework.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
monitors, testing tools; D.2.8 [Software Engineering]: Met-
rics—performance measures

General Terms
Reusable libraries, Empirical software validation, Software
design tradeoffs, Information search and retrieval

1. INTRODUCTION
Cyber security system evaluation is a recognized hard prob-
lem that, if solved, will enable the“field to gauge its progress
towards handling security threats”[4, 7]. Advances are needed
in reducing the time to evaluate systems, especially research
prototypes with rapidly evolving requirements and designs.
Today’s testing requires extensive human effort to develop
software to run tests, analyze test results, and write reports
and presentations.

In this paper, we describe advances developed to enable
rapid and repeatable test and evaluation (T&E) of research-

∗Work performed while at MIT Lincoln Laboratory.

This work is sponsored by the Intelligence Advanced Research Projects
Activity under Air Force Contract FA8721-05-C-002. Opinions, interpre-
tations, conclusions and recommendations are those of the authors and are
not necessarily endorsed by the United States Government.

Copyright is held by the authors.

quality privacy-preserving data search systems. Our con-
tributions include the design for an assessment framework
that automatically generates test case inputs, exercises pro-
totypes within an instrumented environment, compares pro-
totype performance relative to a baseline technology, and
generates human-readable evaluation reports within 1 hour
of test completion.

Additionally, we synthesize our experiences into a set of soft-
ware T&E mantras that we believe all software assessment
frameworks should uphold. We believe that our recommen-
dations will help others develop similar assessment frame-
works more accurately and rapidly in the future.

2. SOFTWARE T&E MANTRAS
We first present our software T&E mantras. These are fun-
damental principles that we believe should be incorporated
into all software T&E processes, tools, and frameworks.

End-to-end automation. Build integrated “turnkey” inter-
faces with which an operator can define test parameters,
push a button, and watch the test complete.

Repeatability. Tests should be fully repeatable. Test data,
cases, and environments should be fully recoverable and
quickly replicable.

Black box treatment of systems. Do not depend on the
low-level operation of any system under test. Instead, ex-
pose and document an interface that systems use to interact
with the test framework.

Test-time agility. Time during the test period is precious.
When planning tasks for a T&E program, spend a week of
work to save a few hours of test time.

Real-time status reports. Operators should easily be able
to (1) determine the status and progress of each test case
and (2) inspect the state of each system under test and its
test environment.

22



Minimal overhead. Ensure that the test software does not
impact the system under test or influence any performance
metrics being captured.

Extensibility. To accommodate new test requirements, en-
able rapid addition of new test parameters, test cases, and
environment configurations.

Rapid environment reconfiguration. Build a rapidly de-
ployable plug-and-play framework wherein an operator can
quickly change performer systems, test parameters, or test
environments.

Smoke testing. Prepare tests that can quickly prove the
stability of the system under test and its interoperability
with the assessment framework. This can identify bugs and
reduce risk early in the test.

Comprehensive data capture. All test inputs, environ-
ment configurations, events, and results should be fully cap-
tured and methodically archived to facilitate robust post-
test analysis. Test artifacts should be traceable to a partic-
ular time, set of test inputs, and environment configuration.

Reusability. To the extent possible, build a framework that
enables reuse by future T&E work.

The rest of this paper presents our T&E experience in as-
sessing privacy-preserving database systems. We encour-
age readers to view this exposition, especially the evolu-
tion of our assessment framework over time, as a case study
that motivates, supports, and justifies the mantras described
above.

The description of our T&E experience is organized as fol-
lows: Section 3 gives an overview of the SPAR program
for privacy-preserving data searches, Section 4 describes the
methodology used and lessons learned during our T&E effort
on SPAR, and Section 5 details our assessment framework
components.

3. SPAR PROGRAM OVERVIEW
In this section, we describe the project for which we per-
formed our T&E work, in order to provide context for our as-
sessment and explain the driving factors for our framework.
The Security and Privacy Assurance Research (SPAR) pro-
gram was launched in 2010 by the Intelligence Advanced Re-
search Projects Activity. The program objective for SPAR
was to design and build new privacy-preserving data search
technologies that are fast and expressive enough to use in
practice. The program comprised nine research teams who
worked on three Technical Areas (TAs). In this paper, we fo-
cus on TA1, the component of SPAR that designed privacy-
preserving database systems.1

TA1 performers built database management systems that
enabled clients to issue SQL-style queries to a database server
(and a third party intermediary data store) and retrieve all
records matching its query. The performers’ software was
required to operate within a 10× performance factor of a

1Most of Lincoln’s assessment framework design principles
& lessons learned apply to the other two TAs as well [6, 13].

non-privacy-preserving system on a 10 TB database, while
also providing several security benefits [6]:

• The client must learn almost nothing about records
that do not match its query.
• The server must validate that the client’s query matches

a policy without learning anything else about the query
or the records returned.
• The third party must learn almost nothing about ei-

ther the contents of the database or the queries.

In order to meet these objectives, TA1 performers used novel
cryptographic techniques that enabled queries to be exe-
cuted directly on an encrypted copy of the database held
by a third party [2, 9]. A variety of query types were
supported, including equality, range, keyword, stem, string
wildcards and substrings, ranking, and XML queries, as well
as boolean combinations of the above types (and, or, and
threshold). All queries were supported for select * and
select id requests, where the id field was guaranteed to
have a unique value for each record. Lastly, performers sup-
ported database modifications, including row insertions, up-
dates, and deletions.

4. SPAR TEST & EVALUATION
We at MIT Lincoln Laboratory did not serve as a per-
former who built a privacy-preserving search tool as de-
scribed above; instead, we participated as the T&E team
for all nine SPAR performers. Our evaluations for each per-
former comprised two parts: (1) a review of their crypto-
graphic algorithm’s security guarantees, and (2) an empiri-
cal assessment of their software’s correctness, functionality,
and performance. This paper focuses exclusively on the lat-
ter aspect of our evaluation.

SPAR was split into two “phases” (Phases 1 and 2) lasting
about 1.5 years each, and Lincoln conducted empirical eval-
uations [7] of every performer’s software at the end of each
phase. To do so, we built an assessment framework that
measured each performer’s software and reported whether
it met the SPAR program’s requirements [6].

In this section, we discuss (1) our overall test execution pro-
cess, (2) our Phase 1 assessment framework design, (3) the
lessons learned from our Phase 1 experience, and (4) our im-
proved Phase 2 assessment framework. We defer detailed de-
scriptions of our assessment framework components to Sec-
tion 5.

4.1 Test Execution
In this section, we discuss how we performed our tests. One
week each was allocated per performer system for testing,
with a small representative team from performers onsite for
the test. Each test was run with the performers’ software
on Lincoln hardware. Our assessment framework then con-
nected to each machine (client, server, and third party) to
control the execution of tests and archive all results.

Prior to the testing period, we prepared synthetic databases
and queries over that data to use during testing. Addition-
ally, we partitioned the queries into test scripts based on the
genre of query executed (keyword, boolean, range, etc.) and
the expected number of results for each query. In order to

23



properly characterize performers’ database systems, our as-
sessment framework executed each test script twice, first in
a “latency” mode in which performers were given one query
at a time, and second in a “throughput”mode in which per-
formers were given queries as quickly as possible to measure
their system’s parallelization.

At the beginning of each test week, our first action was to
run a smoke test made up of scripts containing a small set of
queries that represented all the query types that would be
executed during the full test. Due to the prototype nature
of these systems, we found that performers usually made
several patches during the test week to (1) communicate
properly with the assessment framework and (2) fix correct-
ness bugs. By exposing problems early in the test week,
the smoke test gave performers adequate time to develop
patches. Hence, smoke testing, and subsequent debugging,
often consumed the first day or two of testing.

During formal testing, we maintained a set of logs to cap-
ture test events and manage the chaos of the test week.
Performer systems can fail in unpredictable ways, and com-
prehensively capturing why and when anomalies occurred
was vital for root-cause analysis and planning future test
days (for example, to determine which tests to re-run after
a performer deployed a patch). Additionally, logs helped de-
termine which test results should be discarded, perhaps due
to performer bugs that were later patched or because a test
was executed improperly.

The post-test process of tracing events to logs and filtering
out invalid test results for analysis proved to be complex and
time consuming, particularly in Phase 1 when the level of
automation in our framework was lower. Therefore, in Phase
2 we were determined to increase the end-to-end automation
of our testing procedure, particularly to improve our team’s
test-time agility and maximize human time available during
the turbulent and fast-paced testing process.

4.2 Phase 1 Framework
We developed the Phase 1 assessment framework for TA1
based upon three primary guidelines. First, we wanted to
capture comprehensive measurements for query latency and
throughput at the 10 TB scale with minimal overhead. Sec-
ond, we needed to consider the unique difficulties of test-
ing privacy-preserving systems; for example, encrypted com-
munications between parties precluded the test framework
from performing traffic inspection, and necessitated black
box treatment of systems. Third, recognizing the need to ex-
pand our framework in Phase 2, we planned for extensibility
in our design to make additions as seamless as possible.

Our Phase 1 test framework, shown in Figure 1, had three
central components: a data generator, a baseline comparison
system, and a test harness.

First, our data generator built artificial but realistic-looking
data corresponding to people’s names, addresses, birthdays,
etc. based upon data from the US Census Bureau [10, 11]
and Project Gutenberg [8] in a repeatable fashion [12].

Then, we built a MySQL database system as a baseline for
comparison. Our decision of MySQL was motivated by a

desire to use open-source software (for ease of distribution)
and to simulate an “off-the-shelf” solution that one might
deploy with little customization if privacy were not critical.

Next, our test harness actuated and monitored the per-
former and baseline systems. It used the previously gener-
ated test scripts to coordinate the execution of queries and
database updates. Detailed, timestamped outputs would
be saved in test logs. We optimized the test harness’ per-
formance so that it could handle massive string I/O with
minimal CPU, RAM, and disk usage.

We had three additional components that completed the
framework design. First, our query generator created queries
that were well-distributed among several variables of inter-
est, such as the number of records returned. Second, our log
parsers transformed test logs into comma-separated value
files containing raw results and performance data. Third,
our data visualization tools produced graphs and tables sum-
marizing each system’s performance relative to the baseline.
For more details on the Phase 1 framework components, see
Section 5.

4.3 Phase 1 Lessons Learned
Our Phase 1 framework upheld only some of the mantras in
Section 2 of this paper. As a result, it had some inefficien-
cies that we could only overcome with tedious human effort
before, during, and after testing.

First, query generation and test script preparation were man-
ual, error-prone processes (i.e., lacked end-to-end automa-
tion). Queries were generated without prior knowledge of
the responses and had to be vetted against the baseline to
determine the correct responses. Another related issue was
that we had little idea of how long test scripts would take to
run if they were not previously executed against the base-
line. As a result, we sometimes were forced to “test blind”
without ground truth knowledge, and sometimes struggled
to accommodate last-minute test changes.

Second, during test execution, simple shell scripts were writ-
ten to deploy system components on various machines and
run each test case. However, these scripts quickly became
unwieldy because each performer had different system re-
quirements that were prone to change many times during a
test (e.g., package dependencies, prerequisite files, network
setup). Other dynamics such as the need to re-run a very
specific selection of tests, point to newly patched performer
software, change output directories, and switch in and out of
“debug” mode necessitated continual modification of these
scripts (i.e., we lacked rapid environment reconfiguration).
As a result, configuration management was difficult, and
our test artifact archives quickly became disorganized.

Third, due to insufficient logging of the ad hoc decisions
made during testing (see Section 4.1), post-test analysis
was burdensome (i.e., lacked comprehensive data capture).
Weeks were spent aggregating test artifacts and determin-
ing which should be discarded due to human error or per-
former bugs. Additionally, the process of using our data
visualization tools to produce an easily-readable report was
extremely human-time intensive, and we needed to iterate
over this process many times because deficiencies in our data

24



Figure 1: Phase 1 test framework (see Section 4.2)

selection would often only be found from a readable report.

4.4 Phase 2 Framework
Based on the lessons learned in Phase 1, we imposed two
new primary guidelines for our Phase 2 improvements: (1)
automating each component to minimize the amount of hu-
man interaction required, and (2) integrating components to
enable a single end-to-end test process.

We improved the automation of our assessment framework
in four ways. First, we built a query generator that could
automatically produce queries for each test database based
on a single high-level description of the desired query types.
Second, we automated and standardized the process of test
script generation so that each test would run for an average
of 30 minutes. Third, we built an automated test orches-
trator that deployed and monitored test systems based on
a performer-provided specification of their system’s require-
ments. Fourth, we built a turnkey report generator that
automatically produced a sponsor-ready LaTeX report.

We integrated the framework components together through
a lightweight, portable SQLite database that served as a cen-
tral repository for information between all framework com-
ponents. Each component stored its results in the SQLite
database for use by other components.

With these improvements, Phase 2 tests were conducted

Figure 2: Phase 2 test framework (see Section 4.4)

with great success. The end-to-end automation increased
our test-time agility and enabled us to observe real-time
status during tests, while the comprehensive data capture
allowed us to deliver a report to the sponsor within minutes
of the end of a test.

5. T&E SOFTWARE COMPONENTS
In this section, we describe the detailed design of each com-
ponent of our software assessment framework. We also ex-
plain the transformation of each component throughout the
two phases of the program for improved automation and
integration.

Many components were designed with reusability in mind,
and readers are encouraged to explore our assessment frame-
work’s open source repository at github.com/mitll-csa/sparta.
We believe that many components, especially the synthetic
data generator and knots data structure, can be used in
other assessment efforts to better uphold our recommended
software T&E mantras.

5.1 Data & Query Generator
In order to assess performer systems, we needed to construct
three corpora of data: (1) raw data that systems could ingest
as “rows” into a relational database, (2) a set of queries over
those rows, and (3) “ground truth” answers and metadata
for each query. This section describes the requirements for
these corpora and the tools we built to generate them. More
details can be found in a separate paper [5].

25



Requirements. The set of tests we were interested in re-
quired a variety of database sizes ranging from 103 rows to
109 rows. Each database had to be generated in an agreed
upon schema and file format that could be easily ingested
by performer systems and the MySQL baseline. Lastly, each
database needed a set of “extra” rows that could be used as
new data for the database modification tests.

Additionally, we needed to generate a set of queries to test
each database. Test queries needed to be sufficiently var-
ied in query type and result set sizes. Additional complex-
ity was required for compound queries, as each individual
clause in the compound query had similar diversity require-
ments independent of the overall query’s requirements. For
instance, we might desire conjunction queries of the form
“A ∧B” where |A| ≈ 100, |B| ≈ 1000, and |A ∧B| ≈ 10. To
complicate matters further, each performer imposed differ-
ent restrictions on their support for each query type.

The project’s schedule and end-goals imposed another set
of requirements. Rows and queries needed to be “realistic”
(i.e., illustrate an actual use case with privacy concerns) so
that our assessment would be more relevant to potential end
users of the technology. Furthermore, the exact database
contents and test queries needed to be unpredictable so that
performers could not “game” the evaluation. The project’s
schedule requirements further dictated that the generator
be built in a language that would enable rapid development
(we chose Python) and be optimized and parallelized.

Data generator. We searched for existing datasets or au-
tomatic data generators, but none operated at the scale we
needed. Hence, we built a new data generator that would
produce a set of realistic but synthetic rows. To ensure
data realism, our generator contained“learner”modules that
trained on data sets provided by the US Census Bureau [10,
11] and public-domain novels from Project Gutenberg [8].
Learners generated probability distributions for each field of
interest, and a “row generator” used these distributions to
generate rows. These rows were submitted to a map-reduce
framework that executed jobs (which we called “aggrega-
tors”) on each row. One of these aggregators was responsible
for writing the rows out to files that were eventually used to
create test databases. For repeatability, data generation was
parameterized by a random seed; this allowed performers to
generate identical databases to ours and thus obviated the
need to transmit large data sets.

Performance-wise, our Phase 1 data generator exploited par-
allelism to build 10 TB of synthetic data in about 1 day
on a 12-core machine. By profiling our data generator to
determine its bottlenecks, re-writing a small percentage of
critical code in Cython (cython.org), and performing other
optimizations, we were able to reduce the runtime of the
generator to 9 hours in Phase 2.

The data generator was built in an extensible fashion. By
gathering new training data and implementing new learners,
it can be reused to generate a wide variety of synthetic test
data sets such as realistic network traffic, HTML files, and
file system contents. Also, our map-reduce framework [3]
permits aggregation of custom statistics on the generated
data, a feature that we utilized in Phase 2 query generation.

Figure 3: Shows the data interactions between the data gen-
erator and query generator.

Query generator. Our Phase 1 query and ground truth
generator required three steps. First, we ran the data gen-
erator described above. Second, we inspected the generated
database to find queries that fit our desired needs for result
set size. Third, we ran these queries against our baseline sys-
tem to determine the rest of the ground truth information,
such as the contents of records that match the queries.

This procedure was insufficiently integrated and automated.
The act of inspecting an already-generated database was
wasteful: it took a few hours to run and did not utilize
our ability to inspect database rows as we were generating
them. Additionally, to collect sufficiently many queries, our
inspection procedure had to be run several times in a manual
fashion that took many weeks of human and CPU effort.

In Phase 2, we built a three-stage query generation system
on top of the Phase 2 data generator, shown in Figure 3.
First, it generated potential queries matching a simple user-
specified“query schema”that provided a concise summary of
the types and numbers of queries to generate. These queries
were created based on the distributions from which database
rows were generated, rather than the Phase 1 approach of
using statistics gathered on already-generated databases.

The second step of query generation was integrated with the
data generator’s new map-reduce framework [3]. It built
highly extensible map-reduce jobs (which we called aggrega-
tors) that examined rows as they were being generated to
aggregate desired information about each potential query.
We used this capability to determine the exact ground truth
of all potential queries, plus additional information like the
number of records matching each clause of a compound query.
This new query generator added only a few minutes of over-
head to the data generation proceess for simple queries.
While compound query generation took more CPU time, its
automation enabled us to be more agile and spend precious
human effort near the testing period on other tasks.

26



Finally, after data generation was complete, a post-processing
“refinement”stage filtered out queries that did not satisfy the
query schema’s requirements. The remaining queries, along
with their metadata (such as the number of clauses) and
their ground truth (IDs and hashes for all rows the query
should return) were used to initialize the SQLite integration
database, which in turn served as an input to the test script
generator.

5.2 Test Script Generator
With the above datasets prepared, we next built test scripts
that controlled the execution order of queries and database
modifications. In Phase 1, this was a manual process, which
led to several issues. Scripts were prone to copy-paste errors,
and the time required to construct and modify these scripts
made us inflexible to last-minute test changes.

In Phase 2, we built a test script generator that automat-
ically produced several types of test scripts that the test
harness could run: lists of queries (to run in latency or
throughput mode), and database modifications (inserts, up-
dates, and deletes). To build query test scripts, the gener-
ator leveraged data that the query generator inserted into
the SQLite integration database: query types, the number
of records queries returned, and which queries performers
supported on a particular database size. With this informa-
tion, the generator grouped similar queries (e.g., by query
type, approximate number of results per query, etc.) into
test script files. The size of these groups was determined
by query latencies gathered during a “risk reduction” exer-
cise prior to the Phase 2 test. We built test scripts that
would execute in approximately 30 minutes, with the inten-
tion that a minimal amount of test time and data would be
lost if a test failed or crashed. Database modification test
scripts were generated similarly from extra rows created by
the data generator.

Additionally, the generator created a logical directory and
file nomenclature for the scripts. This not only kept test
data more organized, but also facilitated better integration
with our log parsers and report generation tools.

5.3 Test Harness
To actuate the performers’ software in Phase 1, we built a
test harness that could spawn performer components, exe-
cute the aforementioned test scripts, and log timestamped
results to a file. To facilitate black box system treatment, we
only interacted with performer components through named
pipe connections. We provided a thoroughly documented
protocol by which (1) our test harness would send each com-
ponent commands, and (2) each component would send re-
sults to the test harness. The test harness design did not
change appreciably in Phase 2.

We decided to communicate with performer software via
ASCII strings over named pipes for two reasons. First, SQL
commands and query results are ASCII-based, and there-
fore made ASCII a natural data format to base our protocol
upon. Second, we wanted to have a single common standard
for all of the performers, both for black box consistency and
for better repeatability.

However, this also lead to the biggest challenge we faced with

Operation String Rope Knot

Index O(1) O(log n) O(log n)
Concatenate O(n) O(n) O(1)
Delete O(n) O(log n) O(1)
Substring O(n) O(log n) O(1)a

Iteration O(n) O(n) O(n)
Comparison O(n) O(n)b O(n)

Table 1: Asymptotic comparison of operations
over strings, ropes, and knots.

a If done at front or end of knot, else O(log n).
b Adds 5-10× overhead and does not fail fast.

the test harness, which was the massive amount of string I/O
that would occur during thousands of query commands on
databases as large as 10 TB. Our test harness had to effi-
ciently concatenate query results with no a priori knowledge
of the number or size of results. Moreover, it needed to send
and receive messages with minimal overhead and latency so
as to not influence the performer systems’ performance.

Standard string representations, like C/C++ char*s or STL

strings, were not well suited to this type of processing be-
cause string concatenation, substring extraction, and string
erasure for these representations require a number of heap
operations that is O(n) with respect to the length of the
string. We first explored using ropes [1], which could do
most of these operations in O(log n) time. Unfortunately,
ropes incur a larger memory overhead, and cannot perform
“fail fast” comparisons (whereby a comparison could return
false without traversing the entire string), which were es-
pecially important for us. In addition to those drawbacks,
ropes further impose approximately a 5-10× overhead for
string comparisons2. Hence, despite their overall runtime
improvement, ropes proved insufficient for our needs.

Our solution was to build a new data structure that we af-
fectionately named knots3 because they were ropes with a
“twist.” The core structure of a knot is a mutable double-
ended queue of nodes, where each node contains a refer-
ence counted pointer to a“strand”(an immutable substring).
Knots offer several benefits over ropes and reduce many of
the operations that were important to us to constant time
(see Table 1 for runtime comparisons to other string rep-
resentations). Additionally, fail fast string comparisons re-
mained just as efficient as they were with standard strings.
Our development of knots allowed us to communicate with
performers’ systems without adding significant overhead that
may have masked system performance characteristics.

As text protocol processing always requires efficient string
handling, our knots data structure offers potential reusability
in any application that requires keyword matching amongst
large and frequent buffer concatenations.

5.4 Baseline System
The baseline system was used to compare performer systems
to a non-privacy preserving system. It supported the same

2www.sgi.com/tech/stl/Rope.html
3The authors have written a white paper detailing our im-
plementation of knots, which can be provided upon request.

27



query types as the performers, and was designed to emulate
a reasonably efficient off-the-shelf database management sys-
tem.

In Phase 1, we used MySQL as the server component of the
baseline system; in Phase 2, we switched to MariaDB due
to its support for non-blocking queries.

We designed a custom client component that translated queries
and their responses between the formats expected by the
commercial server software and our test harness. While
MariaDB natively supported many of the query types re-
quired for SPAR, we needed to enhance existing MariaDB
functionality or build completely new functionality to sup-
port a few query types: threshold queries (akaM -of-N queries)
where results must match at least M of N specified search
terms; ranking queries in which the results of threshold
queries are sorted by the number of matching search terms;
and several types of queries over large text fields such as free
keyword search, keyword search based on word stems, word
proximity queries, and queries over XML.

Threshold and ranking queries were handled by a single
server-side user defined function that evaluated each search
term independently, calculated the total number of matches,
and allowed results to be ordered by the number of match-
ing terms. Queries on large text fields were handled in two
steps. During pre-processing, the server scanned all text
columns and created additional tables containing metadata
to expedite these queries. During query execution, the base-
line client translated queries over large text fields into new
queries that searched these metadata tables.

5.5 Performance Monitor
A new feature built for Phase 2 was the measurement of
system resources used by performer systems. The motiva-
tion for this work was to go beyond simply measuring query
response time and throughput during the evaluation. In
particular, system resource load data allowed us to inform
eventual end-users on how different hardware might affect
system performance (e.g., knowing that memory usage is a
bottleneck allows a user to buy more RAM to compensate).
As a side benefit, these monitoring tools enabled us to detect
bugs in performer software during testing, like the memory
leak shown in Figure 4.

To measure system resource load, we implemented two dif-
ferent automated monitoring systems. The first of these
used the collectd daemon, which gathered statistics from
system hosts and forwarded data to a central repository for
collection and analysis. However, collectd could not accu-
rately sample resource utilization at a rate greater than 1
Hz.

Knowing this limitation, we also architected a measurement
system based on the tcpdump and collectl utilities. tcp-

dump captured packets traversing the network, and allowed
us to measure bandwidth consumption. collectl measured
CPU, RAM, and disk usage, and could do so at arbitrar-
ily high frequencies (though when measured more frequently
than 100 Hz, collectl itself consumes a non-negligible amount
of resources and skews the metrics it is trying to capture).
We built a Python program that consumed the raw output

Figure 4: Capture of the swap (top) and memory (bottom)
usage during a test. Spikes in these graphs correspond to
the start of new tests. Machine crashes at about 7:00 am
due to a memory leak.

from collectl and tcpdump and parsed relevant information
into the SQLite integration database. As a result, queries
into this database could overlay system resource usage with
other test results and use matplotlib to produce visual per-
formance trends.

5.6 Test Orchestrator
As discussed in Section 4.2, Phase 1 demonstrated the need
for a more robust framework with which to orchestrate test
execution. Test orchestration initially comprised various
shell scripts with hardcoded test parameters; these were not
robust to rapidly changing test requirements and required
frequent manual modification during tests. Moreover, man-
ually executing most of the process in Figure 1 was prone to
operator error, which increased the risk of losing critical test
data and made post-test analysis unnecessarily difficult.

The need for a flexible and structured test orchestrator was
especially highlighted by the difficulty we had integrating
with each performer’s software prior to testing. While per-
formers had access to our assessment framework in Phase
1, a deep understanding of each framework component was
required to use it effectively. As a result, integration never
occurred until the actual evaluation, which reduced our test-
time agility. We needed a solution that would more effec-
tively automate the end-to-end test flow and would simplify
the interface between our framework and performer systems.

As illustrated in Figure 2, the test orchestrator allowed us
to treat performer systems as black boxes. To this end,
the orchestrator performed three high-level functions. First,
test prerequisites were enforced on each remote host in the
test, with any dependent files and packages automatically
installed prior to executing a test case. Second, components
were executed on the appropriate remote hosts via mecha-
nisms that incurred minimal system and network overhead,
required minimal software dependencies on remote hosts,
and enabled real-time monitoring of each component’s state.
Third, all relevant test artifacts were comprehensively cap-

28



Figure 5: Automatically-generated graph displaying one
performer’s query latency as a function of the number of
database records returned.

tured and archived, including the command-line output of
all components and any generated logs.

We initially performed a survey of existing tools (Puppet4,
Chef5, MCollective6, and Ansible7) that could be the basis of
a suitable test orchestrator. Unfortunately, these tools either
required active daemons on remote hosts, were too young a
technology to use at the time of our survey, or required us
to build extensive wrappers around their platforms.

As no off-the-shelf product adequately met our needs, we
built our own tool called remote-runner. remote-runner

was a Python application based on paramiko’s SSHv2 im-
plementation8. It only required two non-daemon packages
to be installed on all remote hosts: OpenSSL9 (to generate
file hashes) and GNU Screen10 (to create attachable sessions
for each task). remote-runner provided a generalized inter-
face with which users could define tasks using two custom
Python classes: Components and Muddlers.

Components were individual tasks requiring remote execu-
tion. Performers would define Components for their client,
server, and third-party software components, and we de-
fined an analogous set for our baseline system. Component

definition was meant to be very intuitive; each would min-
imally specify an executable, a list of arguments, a remote
host, and a list of dependent files with their desired desti-
nations. Additional attributes could be specified as the sit-
uation required, such as login credentials for remote hosts,
the number of CPU cores to allocate for the executable, and
more.

Muddlers were post-processors that received a list of Compo-
nents and altered, composed, and sequenced them as needed.
Performers did not have to compose Muddlers. However,
we put considerable effort into developing Muddlers for test
execution sequences. Our Muddlers simply accepted a set
of performer Components and test parameters specified by

4puppetlabs.com/puppet/puppet-enterprise
5www.getchef.com
6puppetlabs.com/mcollective
7www.ansible.com
8github.com/paramiko/paramiko
9www.openssl.org

10www.gnu.org/software/screen

b=1 b=2 b=3 b=4 b=5

a=0 0 13 74 87 90
a=1 86 89 96 96 97
a=2 86 90 96 99 100
a=3 88 90 100 100 100
a=4 89 94 100 100 100

Table 2: Using same performer data as Figure 5, but now
compared to the baseline. Shows percentage of queries where
performer ≤ a+ b · baseline, in seconds.

a test operator, then proceeded to execute entire test se-
quences. Our Muddlers internally defined special Compo-

nents for our test harness, performance monitors, and any-
thing else required to run a test, and would execute them on
the appropriate hosts in the appropriate sequence to produce
a set of parsable test artifacts. So long as a performer could
properly define their Components, automated end-to-end test
execution became trivial.

remote-runner met all the requirements we wanted to im-
pose on a test orchestrator. Test execution was greatly
streamlined, and it was considerably easier for both us and
performers to integrate new systems into our test frame-
work. Capturing all the data required to generate a report
was greatly simplified, so much that a performer could the-
oretically generate reports independently.

5.7 Report Generation
With all of the test artifacts collected, the final step was to
prepare a concise report that presented a system’s correct-
ness and performance characteristics in such a way that a
human could quickly draw intelligent conclusions about each
performer’s prototype.

In Phase 1, all of our reports were composed by a mostly
manual process aided by some analysis scripts that produced
graphs and tables. The addition of any new data required a
repetition of the entire process, and revisions to graphs and
tables were invariably time consuming.

To simplify this task in Phase 2, we developed a tool that au-
tomatically and quickly (in less than 15 minutes) generated
a detailed report describing the performance and correct-
ness of each system from the SQLite integration database.
The graphs and tables in the report were stored in easily-
updated template files, and substituting in new data simply
involved pointing the tool to an updated SQLite integration
database. The SQLite database’s contents allowed the re-
port generator to easily graph and analyze the dependence
of query latency on various factors; Figure 5 gives an exam-
ple of such a graph. The SQLite database also facilitated
comparisons to the baseline described in Section 5.4; Table
2 gives an example of such a comparison.

In addition to providing the basis for a final report after
testing was completed, the report generator also granted
us test-time agility by allowing us to quickly visualize and
identify anomalies during testing without having to manu-
ally search through test artifacts. This allowed us to quickly
diagnose bugs and configuration issues before repeating tests
to capture better data.

29



6. CONCLUSION
In summary, we built a comprehensive framework for T&E
on the SPAR program with a focus on upholding what we
believe to be fundamental software T&E mantras. This
framework not only effectively evaluated all nine performers’
software under a variety of testing conditions, but was also
designed and implemented with black box interfaces, exten-
sible modules, and reusable components for future software
assessment efforts.

Our assessment framework is open sourced at github.com/
mitll-csa/sparta, along with detailed documentation describ-
ing the design and use of each component. We believe many
readers can find reuse opportunities within our framework.
With minimal reconfiguration, our entire framework could
be used to benchmark a wide variety of database systems.
Particular components, such as the data generator and knots
library, could be used independently to address many syn-
thetic data and high performance string processing needs.

We believe that a well designed assessment effort will, from
the start, begin with consideration of the T&E mantras in
Section 2. We hope that readers of this paper find our recom-
mendations and exemplar assessment framework useful for
their own efforts, and that these contributions can continue
to progress the field of software and cyber system assess-
ment.

7. ACKNOWLEDGEMENTS
The authors would like to acknowledge Oliver Dain for his
design of the test harness architecture and knots data struc-
ture. Additionally, the authors thank Mike Depot, Tim Me-
unier, and John O’Connor for their valuable help.

8. REFERENCES
[1] H.-J. Boehm, R. R. Atkinson, and M. F. Plass. Ropes:

An alternative to strings. Software: Practice and
Experience, 25(12):1315–1330, 1995.

[2] D. Cash, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C.
Rosu, and M. Steiner. Highly-scalable searchable
symmetric encryption with support for boolean
queries. In CRYPTO, volume 8042 of LNCS, pages
353–373. Springer, 2013.

[3] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. Commun. ACM,
51(1):107–113, Jan. 2008.

[4] Department of Homeland Security. A roadmap for
cybersecurity research, November 2009.

[5] A. Hamlin and J. Herzog. A test-suite generator for
database systems. In IEEE High-Performance
Extreme Computing Conference, 2014.

[6] IARPA. Broad agency announcement
IARPA-BAA-11-01: Security and privacy assurance
research (SPAR) program, February 2011.

[7] S. Peisert and M. Bishop. How to design computer
security experiments. In IFIP, volume 237, pages
141–148. Springer, 2007.

[8] Project Gutenberg. http://www.gutenberg.org.

[9] M. Raykova, A. Cui, B. Vo, B. Liu, T. Malkin, S. M.
Bellovin, and S. J. Stolfo. Usable, secure, private
search. IEEE Security & Privacy, 10(5):53–60, 2012.

[10] US Census Bureau. Census 2000 5-percent public use

microdata sample (PUMS) files. http://www2.census.
gov/census_2000/datasets/PUMS/FivePercent/.

[11] US Census Bureau. Genealogy data: Frequently
occurring surnames from census 2000. http://www.
census.gov/genealogy/www/data/2000surnames/.

[12] C. V. Wright, C. Connelly, T. Braje, J. C. Rabek,
L. M. Rossey, and R. K. Cunningham. Generating
client workloads and high-fidelity network traffic for
controllable, repeatable experiments in computer
security. In RAID, volume 6307 of Lecture Notes in
Computer Science, pages 218–237. Springer, 2010.

[13] Y. Yang. Evaluation of somewhat homomorphic
encryption schemes. Master’s thesis, Massachusetts
Institute of Technology, 2013.

30




