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ABSTRACT

A framework of open interoperable simulators for computer
architecture is long overdue. Today there are many sepa-
rate, uncoordinated efforts to develop simulation and model-
ing artifacts (tools) for computer architecture research. The
artifacts are used to empirically evaluate new computer ar-
chitecture innovations and compare them with the state of
the art. The artifacts are usually developed by individual
groups, often for a specific purpose, and may not be publicly
released. Consequently, it is difficult to leverage investment
in artifact development and to repeat or reproduce experi-
ments. In this position paper, we present recommendations
and a roadmap for sharing and building open-source, inter-
operable simulation and modeling artifacts. The recommen-
dations are the outcome of a community workshop involving
industry, government and academia to determine how to co-
ordinate effort, share tools and improve methodology.
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1. INTRODUCTION
Software simulation, hardware emulation, analytic modeling
and benchmarking are pivotal to the development and evalu-
ation of all types of computer architectures and systems from
simple microcontrollers in deeply embedded applications to
sophisticated and parallel general-purpose and graphics pro-
cessing units in exascale systems. These techniques are used
to analyze existing systems and their bottlenecks, develop
new hardware capabilities, and study and evaluate design
trade-offs, leading to faster, lower energy and higher relia-
bility computers. Many research groups have made a large
investment in computer architecture artifacts, i.e., evalua-
tion tools and workloads. A primary purpose of these ar-
tifacts is to enable experiments, or observational studies of
proposed architectural capabilities.

While artifacts are fundamental to empirical evaluation of
computer architectures, the collection of artifacts suffers from
a few important problems. They are often fragmented, ad
hoc, and internal (i.e., not released publicly) efforts. Further
investment (e.g., to produce an artifact suitable for external
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release) is perceived contrary to expediency of the particu-
lar research effort, where the focus is on the end research
results, rather than the artifacts and experiments them-
selves. There is often little to no incentive to build, release
and maintain soundly developed and robust artifacts for the
broader community. As a result, the artifacts that are de-
veloped are many times brittle, difficult to reuse and extend
for new purposes, scalable to only a few design and bench-
mark sizes, insufficiently documented, and minimally tested
and validated. It is onerous to repeat or reproduce results
for comparison or trust the conclusions drawn with these
artifacts, which impedes the quality and pace of computer
architecture innovation.

Given this state of affairs, researchers may use an existing
artifact without a good understanding of how choices made
in the artifact interact with their new models. Alterna-
tively, they may resort to “rolling their own” to have control
and detailed understanding of the artifact. The prolifera-
tion of artifacts for CPU/cache (e.g., Simics, SimpleScalar,
M5, PTLsim, Opal, QEMU, gem5, Sniper), main memory
(e.g., DRAMsim2, MemSim, Ruby), storage (e.g., DiskSim,
FlashSim, DiskSim-SSD, FRP) and network-on-a-chip (e.g.,
GARNET, Noxim, DARSIM, Hornet) simulation and emu-
lation (e.g., RAMP, FAST, ProtoFlex), reflects the state of
the tools, where a significant investment has been made that
cannot be readily recouped. These exemplars represent only
the ones released to the community and do not include the
copious effort in internally developed (i.e., point solution)
tools and benchmarks.

The challenge is recognized by the architecture community
and efforts are underway to begin to address it. In this pa-
per, we report on the outcomes of a workshop, “Community
Supported Computer Architecture Design and Evaluation
Framework” (CSA), that brought together artifact develop-
ers and users to assess the current situation and to establish
strategies and build a community for coordinated develop-
ment and experimentation. The workshop fostered the for-
mation and growth of a community of users (i.e., researchers
that use the artifacts) and implementers dedicated to build-
ing open-source, extensible, scalable, tested, and interoper-
able infrastructure for processor, cache, network-on-a-chip
(NoC), main memory, and storage. The CSA workshop en-
gaged developers and users from academia, government and
industry.
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In this position paper, we report on the CSA workshop ac-
tivities and the outcomes. Through a series of talks, in-
tensive whole and small group discussion, the participants
developed a set of directions, formulated as a roadmap, and
tangible recommendations for working together as a commu-
nity. The roadmap and recommendations were intended as
guidance to the community on how to leverage investment,
improve artifact quality, and share results.

2. CONVENING THE COMMUNITY
The two-day CSA workshop was sponsored by the National
Science Foundation. Participation was by invitation. The
thirty-six participants represented artifact users and devel-
opers from academia, government and industry. Participa-
tion from representatives of these different groups was im-
portant to ensure a broad perspective, taking into account
relevant concerns of the groups (e.g., simulators for academic
research versus industrial chip development). An archive
of participant presentations and discussion transcripts are
available from the CSA web site, http://csa.cs.pitt.edu.

The workshop had four tasks: 1) assess current architec-
ture simulation, hardware emulation, analytic modeling and
benchmarking infrastructure; 2) determine the needs and
development priorities for the simulation framework, includ-
ing what capabilities should be added to future artifacts; 3)
identify ways to leverage, combine and coordinate disparate
investment in the simulation framework by multiple groups;
and, 4) develop strategies and actions to build a community
that supports a suite of well tested, validated and interopera-
ble artifacts, and the experimental results collected with the
artifacts. These tasks were done through break-out sessions
and group discussion to (a) form a cohesive view of today’s
infrastructure for simulation and emulation; (b) develop the
roadmap; and, (c) identify near-term actions.

3. THE CHALLENGE
CSA examined the state of artifact development to learn
why the community has generally not worked together on
interoperable artifacts and shared experiments. The assess-
ment identified several issues, which we report below, that
frame the challenge of building and maintaining open-source
interoperable tools.

The assessment considered various different evaluation method-
ologies used in computer architecture, namely:

• Analytic modeling is used in early designs to ask early
“what-if” questions when many choices need to be con-
sidered quickly. Analytic modeling is also useful to
scale design evaluation to large systems and long-running
applications (e.g., statistical sampling to reduce simu-
lation time).

• Software simulation relies on a computer program to
mimic hardware behavior. It is used in middle design
stages to behaviorally model new architecture ideas for
coarse-grain study and evaluation because the simula-
tors can be developed reasonably quickly, but a trade-
off between accuracy and speed is typically required.

• Hardware emulation implements actual circuits in a
programmable device, such as a field-programmable
gate array (FPGA), to prototype design choices. It
provides increased accuracy and speed but with the
need for additional development investment. Hard-
ware emulation is often done later than software sim-
ulation, once design choices are narrowed.

• Hybrid simulation–emulation achieves the benefits of
simulation (earlier design through behavioral model-
ing) and emulation (fast and detailed modeling), which
enables the consideration of more architecture choices
and better decisions. Hybrid software simulation and
hardware emulation techniques are becoming more use-
ful as computer architectures, benchmarks, and input
data sets grow larger.

For each assessment method, an additional dimension to
the experimental space is the evaluation workload. This
requires benchmarking artifacts. Benchmarking evaluates
design choices under a range of software programs and data
sets to determine relative benefit and cost. Benchmarks are
the stimulus that drives analytic modeling, software simula-
tion and hardware emulation.

• Benchmarks may be actual software applications, sim-
plified variants exhibiting similar behavior as full ap-
plications (“mini-apps”), execution traces of a partic-
ular application behaviors (e.g., MPI calls, memory
addresses), or analytic models (e.g., state machines).

Several issues exist when creating and using such tools for
evaluation of computer architecture capabilities. Below we
discuss the issues of (a) the breadth of tools, (b) fragmen-
tation of development, (c) longevity of the tool, (d) interop-
erability, (e) performance and scalability, and (f) perceived
value/reward by the community.

The first issue is the breadth of characteristics ex-
hibited by each artifact category that inherently di-
vides tool development. For example, the concerns of
benchmark developers are different than the concerns of sim-
ulator developers. Benchmarks tend to be relatively stable,
which avoids the “moving target syndrome” faced by de-
velopers of an actively used simulator. Even in a single
category, there are competing needs driven by separate sub-
communities. For example, high-performance computing is
concerned with modeling systems“at scale”, often for a small
set of specific applications. This focus strongly influences
how evaluation is approached (i.e., abstraction and fidelity)
and the underlying mechanisms that are used (e.g., parallel
discrete event simulation). For general-purpose evaluation,
there may be less emphasis placed on scale, but more em-
phasis placed on low-level detail (e.g., interaction of perfor-
mance and thermals). Furthermore, in each category, the
tools differ in several dimensions: levels of integration; scal-
ability and coverage; performance; methods and techniques
supported; fidelity and validation; flexibility and modular-
ity; metrics gathered and reported; and, functional vs. real
data-driven workloads.

The second issue is the size of the community and
fragmentation of the development teams working to-
wards individual goals. Across the spectrum of cate-
gories, the amount of investment is simply huge. Indeed,
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Augmint X X X . X . X . . X . . . . . . . . X . . . . . .
Bochs X X X X X X . . . . . . X . . . . . . . . .
CACTI . . . . . . . X X . . X . . . . . . . . . . . . X . .
CACTI 3.0 . . . . . . . X X . . X . . . . . . . . . . . . X . .
COREMU X X X X . . . . X . . . . . X . . . . . . . .
Fabscalar X X X X X X X X X X X X . . . . .
FeS2 X X X . X X . X X X X X X X X . X . . . . . . . . . .
Flexus 2.0 (simflex) X X X . X . X X X X X X X X X X X X X
Gem5 X X X X X X X X X X X X X X X . X X X X
GEMS X X X X X X X X X X . X X X
HotSport X . . . . . . X X X . X . X X X . . . X X . . . . X X X
IATO (IA64 Toolkit) X . . . . . X X X . X . X X . . X X . . . . . . . . .
M5 X X X X X X X X X X X X X X X . X X X X
Marss X X X X X X . X X X X X X X X X X . X X X . . . . X
M-Sim Version 3.0 X . . . X X . X X . . X . X X . . . . . . . . . . .
NePSim X . . . X . . X . . X X X . . . . X X . X
Noxim . . . . . . . X . . . . . . . . . . . . . . . X . X . .
PTLsim X X X . X X . X X X . X X X X X . X . . . . . . . . . .
QEMU X X . . . X . . . . X . . . . . X X . . . . . . . . . X
RAMP Gold X X X . . X . X X X . X X X . . . X . X X X . . . . . .
RigelSim . X X . . X . X X . . X . X . X . . . X X X . . . . . .
RSIM X . X . X . X X . . X X . X X . . . X X X . . . . . .
SESC X X X X X X X X . X X . . . . . . . . . .
Simics X X . . . . X X X . . . X X . . . . X X . .
SimplePower X . . . . . X X . . . . X . . . . . . . . . . . X . .
SimpleScalar X . . . . . . X X X . X . X X X . . . X X . . . . . . .
SMPCache X X X . . . . . . . X X . . . . . . . . . . . . . . .
wattch X . . . . . . X X � � � � � � � � � � � � � � � � � � �
WinMIPS64 X . . . . . X X . . . . X . . . . . . . . . . . . . X
YASS X . . . . . . . X . . X . X . . . . . . . . . . . . . .

Figure 1: A selection of simulators and their features (rows). We use a ’X’ to mean that a simulator has the
feature, a ’.’ that it does not have the feature, and a blank when it is unclear.

research conferences for computer architecture collectively
attract thousands of attendees each year who have all cer-
tainly developed, extended, or used artifacts and conducted
experiments in their own work. The community has been
astonishingly prolific in artifact production. Figure 1 shows
a small selection of software simulation-based artifacts and
their features. This snapshot demonstrates the diversity in
even a small collection of tools—there is overlap in some
capabilities by multiple tools, but not in others.

The differences and duplication in features is symptomatic
of fragmented, ad hoc and internal (i.e., not released pub-
licly) nature of existing effort and investment. With isolated
development spread across many groups, there is no single
“meeting place”, or exchange, where artifact developers and
users can gather to learn about the tools and coordinate
effort. There is no general catalog of the artifacts, their
capabilities, development status, and where to find them.
Consequently, it is difficult to locate artifacts and to know
whether what is found is appropriate for a particular need.
The information in Figure 1 serves as an example of how a
catalog might be developed for the community. This partial
index is only a starting point; a useful and complete list-
ing requires the community to identify and categorize the
tools. The central exchange could provide a “home base” for
developing and accessing such a catalog.

The third issue is the useful lifetime of the artifacts—
historically, they have tended to exhibit either short

lifetimes or very long ones. An artifact may prove useful
to an individual research group, which then releases the tool
but does not maintain or continue to promote it. This issue
is typical of the “student graduation problem”: A student
may actively develop his/her artifact during thesis research
and release it to others out of altruism. However, when the
student graduates, the artifact quickly becomes an orphan
— the former student has new priorities, his/her previous
research group’s focus shifts, etc. There is no vested interest
to keep the artifact up-to-date by the original authors, and
the artifact becomes the responsibility of the community to
“own”. More likely, the artifact becomes another one that is
discarded in the long history of useful but forgotten tools.

At the other extreme, an artifact may have a much longer
than anticipated lifetime; it needs to be robust and flexi-
ble to last its entire life, and needs to be maintained and
documented sufficiently to hand it off from one set of de-
velopers to the next. Figure 2 illustrates this issue. The
figure shows the lifetime of several publicly available arti-
facts. The x-axis shows a period of 15 years and the y-axis
shows citation count1. The rise and fall in citation count for
an artifact defines its lifetime. To determine the curves, we
examined four conference proceedings (ISCA, HPCA, MI-
CRO and ASPLOS) from 1997 to 2011. We counted how
often a particular tool was mentioned as being used in the

1Citation count is but a proxy for real usage, popularity and
the impact of the research created with the tool.
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Figure 2: Lifetime of some popular evaluation artifacts.

experimental methodology of each paper. In the graph, the
names of the artifacts are anonymized because we intend
this figure to only illustrate the issue of lifetime rather than
making a statement about specific artifact importance.

Tool 1 is a single core simulator, which can model aggressive
superscalar designs. As measured by the rising and falling
citation counts, it had a lifetime that spanned the full 15
shown in the chart. This example suggests that the com-
munity should be prepared to develop tools for longevity
and to maintain them. For a tool with a long lifetime, mul-
tiple groups probably will need to support the tool; it is
an unreasonable expectation, and possibly an undesirable
one, that a single group will take on the responsibility to
maintain a tool for such a long time period. As Dennard
scaling reached its conclusion and power and thermal effects
of frequency scaling became evident, Tool 1 was gradually
replaced by Tool 2, which focused on multi-core simulation.
The shift in technology brought about a tool change, and
the community should anticipate emerging technologies and
the implications to current and future artifact development
and maintenance. A new artifact can appear and gain quick
use by the community as illustrated by Tool 3. Similarly,
a tool can be widely used, and then have a quick drop-off
in usage. Tool 4 exhibits this behavior: A much improved
version was made available several years after the tool’s first
introduction. In general, the development and maintenance
of the artifacts will follow changes in research priorities, and
investment in artifacts needs to shift with the change.

The fourth issue is the technical differences between
tools that limits integration—whether they have com-
patible interfaces, or can be meaningfully integrated.
The available artifacts have varying levels of integration, and
cover a huge spectrum of capabilities, which compounds the
difficulty of using existing artifacts and having them interop-
erate. Current artifacts address different scales as well, in-
cluding datacenter- and cluster-scale, servers and PCs, and
mobile devices. Most tools exist for the middle of the spec-
trum, i.e., systems with single to a few nodes. There are
current simulators, such as gem5 [7], SST [43] and Mani-
fold [32], that have flexibility and modularity, but their in-
terfaces have not been standardized, which is necessary for
long-term interoperability.

Additional interoperability challenges are to combine cycle-
accurate, functional-driven, and trace-driven tools, to rec-
oncile the performance vs. fidelity tradeoff (e.g., integrating
cycle accurate component models into more abstract mod-
els for full systems), and to reconcile the many metrics—
of varying types and accuracy—provided by existing tools,
which must be composed, including traditional (cycles per
instruction, performance, energy, reliability, etc) and non-
traditional (i.e., application-dependent such as QoS).

A fifth issue is the performance and single-view lim-
itations associated with existing tools. Simulator per-
formance is problematic with increasing data set sizes and
complexity of modern multi-core/heterogeneous architectures.
Today’s tools are not, largely, parallel simulations. This is
a critical limitation, as available computers are largely par-
allel, yet the simulators that model them are not. Some
counter examples are Sniper [10, 17] a parallel multi-core
simulator and Hornet [40], a parallel network-on-chip sim-
ulator. Sniper is not a cycle accurate simulator and uses
abstract modeling for key functions of modern processors
(e.g., out-of-order execution, cache access times, network-
on-chip latencies). Hornet is a cycle accurate network simu-
lator. However, both simulators exhibit scalability concerns
making them only able to leverage four or eight host cores
effectively.

As a result, the methods and techniques that are most com-
monly used to improve performance are statistical sampling
and functional emulation combined with detailed (“cycle ac-
curate”) sequential discrete event simulation. Current arti-
facts rarely allow trade-offs between fidelity and validation
due to performance and integration limitations. That is, the
artifacts model systems only at a single level, and usually do
not allow ‘zooming’ in and out on different aspects to get a
broader or narrower understanding of design trade-offs being
evaluated. This capability is desirable to improve the speed
of design explorations (e.g., abstract modeling of less impor-
tant design aspects to gain enough time to model in detail
the choices where accuracy is critical). This also creates
interface difficulties between tools with different fidelities.

A final issue is lack of value perceived by the com-
munity in building and distributing artifacts. There
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is tremendous pressure to produce new results at an increas-
ingly rapid pace. Consequently, research expediency to in-
novate takes a much higher priority than developing arti-
facts. The value put on dissemination of results (the “ends”)
far outweighs the value put on producing results with ro-
bust, carefully validated and shared artifacts (the “means”).
The scientific methodology of producing results has also suf-
fered; there is minimal accountability in computer architec-
ture research, especially in academic environments, because
the artifacts and metadata needed for repeatability and re-
producibility are rarely disseminated since there is minimal
perceived value in doing so.

With the need to produce results, an “island model” of re-
search dominates, where individual researchers develop ar-
tifacts and extensions to existing artifacts (possibly to an
open source artifact) strictly within their own group. The
artifacts are not typically released beyond the group; given
the time and effort it takes to develop such artifacts, this
is to be expected. Importantly, the island model also pre-
serves competitive advantage: The capability offered by a
tool developed in-house, or perhaps a combination of tools
put together in some unique way, is a powerful means for an
academic or industry research group to “carve out” a space
for their own research. This “island” is then difficult difficult
for other researchers to enter without making a similar in-
vestment in tools (i.e., “setup your own island”). The island
model is perceived to have more value to individual research
groups than a community collaborative model.

The balance of value between the island and community
models must shift to enable open-source interoperable arti-
facts. Services, capabilities, recognition and access to needed
capabilities can be used to create more value from the com-
munity approach. The value needs to be high enough to
achieve critical mass in contribution and to sustain the ef-
fort. This may require an incentive model or reward struc-
ture for users to share their artifacts and experiments with
the larger community. Some compromise may also be nec-
essary, such as limiting access to tools and the research in-
novations implemented with them until some time period
has elapsed after the research has been described. Such
“time access rights” can help mitigate the conflict between
competitive advantage and openness for credible scientific
methodology. For industrial research, especially centering
around products, it may be unrealistic to expect that actual
simulators embodying commercial designs will be provided.
However, research innovations, including ones made by in-
dustry research labs, that point the way to new directions—
not actual designs developed and evaluated in industry—can
and should be released as part of sound science.

4. ROADMAP FOR INVESTMENT
From the assessment, the workshop participants proposed
several approaches to begin to address the challenges. To lay
the groundwork for a well maintained, robust, interoperable
infrastructure, requires several aspects to be addressed. The
approaches are formulated as a “roadmap”.

First, a needs document describing the range of what
the community requires should be developed. This
document would capture how artifact infrastructures would
be used. It could also indicate the simulation, emulation,

and benchmarking capabilities that are necessary to provide
for community requirements. It would also identify emerg-
ing technologies and approaches that will need to be modeled
in the future. This will help ensure the artifacts proactively
anticipate future needs. This will help researchers avoid hav-
ing to implement their own simulators because current ones
are limited or unsuitable for their needs. It would also help
direct investment by the community on existing and newly
proposed artifacts.

Second, a model of governance for consensus and
decision-making is necessary. This will help ensure that
the entire community can participate. It will also keep
the community “on the same page”. A governance struc-
ture should be formed to establish community-recommended
practices and methodologies for artifacts. The issues to be
addressed by this governance body are enumerated in some
detail in Table 1. Policies and procedures for these issues
must ensure the artifacts are beneficial to a wide selection of
community members to attract participation. The policies
and procedures developed by this governance body must also
be developed with due consideration of the burden placed
on the administration for such policies.

Third, a central repository is needed. This reposi-
tory could be managed under the model of governance. The
repository will need full-time staff support and should not
solely be an effort of graduate students. It will also need
some way to validate and test the objects (simulators, emu-
lators, experiments) contributed to the repository, including
ways to curate, index and search the objects. This repos-
itory can also serve as the gateway to an experimentation
instrument. Researchers may then use the instrument to run
artifacts and create new experiments, perhaps taking advan-
tage of compute resources not locally available from multiple
server instances to specialized hardware (e.g., GPUs and
FPGAs. As a result, experiments may be evaluated with
additional workloads and/or become the baseline for direct
comparisons with newly proposed experiments without nec-
essarily revealing underlying details. Artifact modifications
can be available to other users and developers with various
levels of validation from certified to “use at your own risk”.
Thus, an important component of managing the repository
will be ensuring these capabilities to be compatible with
policies for use as established by the community governance.

Fourth, the “glue logic” between simulator and em-
ulator components and models needs to be defined
and developed. This glue logic would define simulation
layers and their interfaces. It should be simple and must
support existing artifacts to make it easier to boot-strap in-
teroperability. It should be intuitive and uniform, support-
ing many different design choices and people that will use it.
It should not hurt simulation performance or the possibility
of parallelization. It will require varying abstractions han-
dled by the artifacts. It will be seamless at different levels of
abstraction, including parallelization, virtualized execution,
and execution on accelerators such as GPUs and FPGAs.
It will define the data formats for communication across in-
terfaces, including semantics, statistics, report generation,
automated analysis (particularly anomalies), and visualiza-
tion. The interfaces must be adaptable and extensible for
future change, as nothing in computer architecture is static.
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Resource
Management

Determine policies for fair allocation of local and distributed development, including access to re-
sources; credit and recognition strategies for contributing resources, development, and/or obtaining
higher reward seals for creating quality artifacts; financial contribution toward maintenance and
sustainability of development.

Methodology Define best practices of development, testing, validation; surveying users for their feedback (similar
to EBay or Amazon) on artifacts; reward types, their meaning and the criteria for reward of
noteworthy artifacts.

Education Identify needs for training materials of best practices for software engineering practices relevant
to artifact development by computer architecture researchers; encourage community to contribute
materials (e.g., presentation slides, recording of presentations, etc.); organize and distribute the
materials (e.g., indexing presentations from FAQs)

Assessment Define statistics (#users, #citations, etc.) for assessing impact of artifacts and determining devel-
opment priorities and needs; design user satisfaction survey; analyzes statistics; define and refine
strategy for future development.

Ontology Define common terminology, classifications and characterizations of artifacts and expressing the
needs of community in a common language.

Licensing Evaluate license choices, characterize licenses and the impact of selecting a particular license for
a tool developer, recommend licensing choices to allow open development by academia, industry
and government; address issues surrounding properties artifacts (e.g., tools from industry) and
competitiveness.

Table 1: Governance issues for community-supported computer architecture artifacts

Finally, the interoperable artifacts must build on a
foundation that is acceptable to the broader com-
munity. The foundation must migrate and wrap existing
artifacts in the APIs and interfaces to achieve interoperabil-
ity. An overarching infrastructure should be developed to
implement basic components and runtimes, provide func-
tional and metric validation. It must address parallelization
directly to move beyond current performance limitations and
restrictions in the scales of the systems that can be modeled.
Development guidelines may be necessary in the foundation
to govern modules at different fidelities and accuracy to al-
low better abstraction and valid composition.

5. PLAN OF ACTION
The roadmap identifies the general directions toward im-
proving computer architecture artifacts. At these meetings,
a “plan of action” was also developed to determine imme-
diate and tangible steps that can and should be taken by
the community to begin achieving the directions stated in
the roadmap. Short and long term steps were both recom-
mended, which we outline below.

First, small working groups should be developed to
continue the CSA effort and to address technical de-
tails. The working groups should particularly address the
governance issues (Table 1) as these affect the whole com-
munity and require broad support. The working groups will
solicit and aggregate needs and requirements from the com-
munity. The groups will define standard layers, and eventu-
ally, the groups will develop definitions of standard simula-
tion and emulation interfaces. Multiple discussion sessions
among community participants, including those outside the
architecture community (e.g., application developers), must
be undertaken to ensure everyone is comfortable with the
results of the working groups and ensure the groups are syn-
chronized and speaking the same language. Participation is
needed from academia, industry and government to ensure
the issues of the different stakeholders are brought to the
forefront and collectively addressed.

This step is in motion through Bird of a Feather sessions
at Supercomputing in 2012, 2013 and 2014 (SC12, SC13,

SC14). A meeting, attended by forty-five participants, was
held to plan the working groups at the International Sympo-
sium on Microarchitecture (MICRO-45), Vancouver, Canada,
2012. The REPRODUCE workshop, held during the Confer-
ence on High-Performance Computer Architecture (HPCA),
Orlando, FL, 2014, served as an interdisciplinary forum for
researchers, practitioners and developers in computer en-
gineering to discuss ideas, experience, trusted and repro-
ducible research methodologies, practical techniques, tools
and repositories. A similar workshop, TRUST, to bridge be-
tween architecture and the compiler communities was held
at the Conference on Programming Language Design and
Implementation (PLDI), Edinburgh, Scotland, 2014.

Second, a central repository should be established.
It could be built iteratively, with existing tools like gem5
and SST, before interfaces are defined. An education and
training portal could be started to include tutorials, videos,
slideshows and webinars on best practices for constructing
and using the simulation and emulation tools. Community
backing should be sought for the repository and grown grad-
ually to ensure traction and long-term sustainability. The
ultimate goal is to have the repository become integral to
computer architecture research and development.

The Open Curation for Computer Architecture Modeling
(OCCAM) project is undertaking the infrastructure, com-
munity and education development needed for the central
repository. OCCAM is a community-supported instrument
for open-access to tools and experiments for computer ar-
chitecture research (http://www.occamportal.org). The
project is a pilot to learn community requirements and con-
cerns in sharing artifacts and experimental results. It builds
and engages an active community of users, establishes gover-
nance and access policies, and determines the requirements
for software services of the repository that will create value
to encourage researchers to leave their island model and par-
ticipate in more open ways. OCCAM aims to show that
individual effort can be saved by sharing simulators and
experiments to avoid the burden of re-implementing and
re-creating tools, experiments, data sets, benchmarks, etc.
These savings can then be directed on innovating new ar-
chitectural techniques for better computer systems. Unique
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capabilities can also be created from the tools and experi-
ments provided in the exchange from the whole community,
which cannot be done through an island model. The OC-
CAM pilot gives an opportunity for community members to
comment and give suggestions to evolve and refine the ap-
proach, and find the most compelling ways to change the
value balance from an island model to one with more open-
ness.

Third, the community needs to be educated on the
benefits of developing and sharing artifacts. To be
successful, any effort to develop shared infrastructure in
computer architecture will require a concentrated and sus-
tained education and training component. The barriers to
adoption, contribution and use of the infrastructure should
be addressed with training on (1) best practices for simula-
tion and emulation techniques, software development prac-
tices, quality documentation, testing practices, and valida-
tion against real hardware, when possible; (2) ways shared
effort can actually increase research productivity by lever-
aging investment, rather than impede productivity due to
perceived hurdles or burdens on development practices; (3)
needs and benefits of scientifically sound and accountable
experimental methodologies to provide open access to all
metadata for repeatability and reproducibility, including ac-
cess to the source for modeling, simulation, emulation and
benchmark artifacts used in evaluation.

The education effort should address both senior (influential
leaders) and junior (students) members of the community.
The working group activities provide an opportunity to di-
rectly educate members of the community; but materials,
such as online video tutorials, should also be created for
wider community distribution.

Fourth, incentives need to be provided to attract
and sustain participation. A critical key to improving
the state of the artifacts is to create value behind contri-
bution and use of the infrastructure. This value can be
provided by producing quality, simulation and emulation
artifacts. The artifacts must be thoroughly documented
and validated. The artifacts should separate the simulation
framework from the simulator components to ensure it can
be used by different groups. The artifacts may involve mul-
tiple distributions built from the bottom-up. An approach
similar to the one taken for Linux may be a good model, al-
lowing multiple groups to participate. Through the central
repository, individual parts of the infrastructure could be
vetted and integrated. The community must also be incen-
tivized to contribute, including experimental outcomes and
designs evaluated with the infrastructure. The incentives
can be altruistic ones, but other incentives will be necessary,
such as visibility, responsibility, stamps of approval, access
to models and data in return for contributing, and delaying
the release of artifacts and experiments to allow leveraging
one’s own research.

Finally, the infrastructure requires implementers and
manpower behind the community activities and the
working groups. Government and industry funding for a
center with engineers whose specific job is interface mainte-
nance, organizing and curating the contributions, conduct-
ing testing and integration development, etc., is critical to

the long term success of this effort. The infrastructure and
center must also be supported by industry, as they use and
contribute to the artifacts. Industry may be convinced to
dedicate some engineering effort (again, similarly to Linux),
and contribute their research results and simulators used
in their publicly disseminated conference and journal arti-
cles to the repository. Graduate students will be inevitably
involved, but the artifacts will demand professional engi-
neering and support staff to achieve the goal. The center
should be organized and supported from its outset with an
eye towards its sustainability.

6. AVAILABLE ARTIFACTS
There have been many related efforts for open-access repos-
itories, open-access testbeds and open source artifacts that
can help inform and guide the computer architecture com-
munity as it embarks on similar endeavors. Below, we list
some examples as points of reference for the community, as
well as to begin developing a catalog of what is available.

Open-access Repositories: nanoHUB is an effort cen-
tered around a community of researchers and educators for
nanotechnology [34]. This community has come together
to construct (and financially support) an online resource
(nanoHUB.org) and a software framework (hubzero.org) to
host communities, including online simulation tools. nanoHUB
has been wildly successful for nanotechnology because it cre-
ated capabilities that could not be done by any one indi-
vidual group, such as tool frameworks, data sets, GUIs for
building tools, experiment management, and coordinated
education and infrastructure development. nanoHUB’s suc-
cess is evidence that providing a compelling service, educa-
tion and community building can indeed lead to betterment
in the way science is conducted. This report suggests a way
for computer architecture researchers to reproduce this suc-
cess for computer architecture evaluation. Another success-
ful repository is arXiv.org, which is an open collection of
scientific articles, including computer science and engineer-
ing. The CMU Artificial Intelligence repository is one of the
oldest online open-access collections of research (started in
1993) [16]. There are also community-building efforts, such
as HiPEAC [24] and ArtistDesign [3], that foster research
specialties, but do not provide digital curation.

Open-access Testbeds: There are several open-access in-
struments for science and engineering. Open Cirrus supports
cloud computing research across systems, applications, and
services for heterogeneous datacenters [8, 35]. PlanetLab is a
testbed for developing and deploying network services (e.g.,
file sharing, overlay networks, and object location) [13, 38,
39]. XSEDE [45] offers access to computers, services, data
stores and education required for high-performance scien-
tific simulation, visualization, and modeling. CloudLab and
Chameleon are reconfigurable testbeds for cloud comput-
ing research and development open to the academic com-
munity [15, 11]. Amazon, Google and IBM offer scalable
computing, including VMs, databases, and storage, on a
pay-as-you-go basis.

There are also focused open-access testbeds that have been
developed and maintained by a communities related to com-
puter architecture. These testbeds are typically devoted to
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specific needs and do not curate experiments. EmuLab is
a framework for network research and education [23, 18].
It also has an education component to use the framework
as virtual laboratory in coursework. Intel provided grant-
driven access and training for their parallel Single Chip Cloud
Computer through the MARC program [25], which demon-
strates one way in which industry can offer access to propri-
etary capabilities. Seattle is a user-supported infrastructure
for networking and distributed systems research and educa-
tion [9, 42]. FAbRIC is a testbed [19] to create a shared
reconfigurable substrate for hardware emulation. It will be
used to share these expensive, unique resources with the
community.

Simulation and Emulation Artifacts: Many open-source
simulators have been developed for computer architecture.
Due to space limitations, we focus on example artifacts from
recent conference tutorials to give an indication of what is
currently available. GPU Ocelot provides tracing for CUDA
and PTX for GPGPUs [27, 28]. GPGPU-Sim is a GPU
simulator for CUDA and OpenCL workloads [2, 1, 4]. Mac-
Sim is a simulator for heterogeneous architectures employ-
ing both GPGPUs and general-purpose Intel x86 CPUs [29,
30]. multi2sim is another heterogeneous CPU-GPU simu-
lator [44]. MARSSx86 is a full-system Intel x86-64 simula-
tor for multi-core architectures [22], with direct execution
(QEMU [6]) and detailed models for coherent caches and
on-chip networks. Sniper is a multi-core simulator [10, 17]
built on interval core modeling [21] and the Graphite parallel
simulation engine [33].

The Structural Simulation Toolkit (SST) is a modular frame-
work from Sandia National Laboratories for “extreme-scale
architectures” to “plug in” different simulators into a paral-
lel simulation engine [43, 41, 26]. Manifold is a toolkit to
construct scalable heterogeneous many-core simulators [32].
Another modular toolkit is gem5 [20, 7, 5], which supports
multiple processor types, different instruction sets, multi-
core architectures, and full-system simulation.

With the rapid advances of FPGA technology, increasingly
more researchers are accelerating full-system simulation by
splitting tasks within the simulation between FPGAs and
collaborating software modules [12, 14, 36, 37]. UT-FAST [12],
for example, partitions simulators into a speculative func-
tional model (software) that simulates the instruction set
architecture and a timing model (FPGA) that predicts per-
formance. ProtoFlex [14] takes a different approach to par-
titioning and uses “transplanting” to dynamically reassign
a simulated entity, such as a processor, from FPGA hard-
ware to software simulation and vice versa. BlueSPARC
models CPU pipelines in the FPGA and simulates I/O de-
vices in Simics on a host PC. The BlueSPARC simulator,
part of ProtoFlex, has performance comparable to or bet-
ter than the Simics full-system simulator [31] in functional
mode. Penry et al. [37] automatically generate a parallelized
multicore processor simulator from a concurrent, structural
model of the processor. Thanks to the structural model-
ing, their framework allows individual model components
to be replaced with equivalent hardware. Finally, Pellauer
et al. [36] reduced development effort and complexity for
FPGA simulation by splitting a simulator into timing and
functional partitions.

7. CONCLUSION
Computer architecture research continues to suffer from use
of ad-hoc methodologies for innovation, sometimes limiting
advancement. A symptom of this is the fragmented collec-
tion of evaluation artifacts that are used to evaluate new
ideas in this field. By creating a community shift in how
research is conducted, evaluated, and quantitavely shared—
as has been previously demonstrated in other fields such as
nanotechnology—can allow higher productivity in the com-
puter architecture and related fields. In particular, this pa-
per describes an effort to address this challenge through
a community generated roadmap and action plan towards
a more productive set of tools and methodologies in the
computer architecture research space as determined through
community-wide discussion at several workshops.

The actionable items are the following: The development
of a community governance conducted through small topi-
cal working groups, possibly similar to standards commit-
tees, to define requirements based on community need and
to articulate appropriate policies and interfaces. The con-
struction of a central repository to host existing tools and
to provide a backbone for the development of future arti-
facts as specified by the working groups. A concerted effort
promoting the value for developing and sharing artifacts to
the wider community. The development of an incentive lad-
der to promote adoption and enable sustainability of the
approach. Identification of and support for manpower to
spearhead the effort.

Although this effort is being done by and for the computer
architecture community, it is clearly transferable to other
communities that rely on simulations to evaluate their work,
especially if there are many tools in play.
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