
Projections Overview
Ronak Buch & Laxmikant (Sanjay) Kale

http://charm.cs.illinois.edu
Parallel Programming Laboratory
Department of Computer Science

University of Illinois at Urbana-Champaign

Manual

http://charm.cs.illinois.
edu/manuals/html/projections/manual-
1p.html

Full reference for Projections, contains
more details than these slides.

http://charm.cs.illinois.edu/manuals/html/projections/manual-1p.html
http://charm.cs.illinois.edu/manuals/html/projections/manual-1p.html
http://charm.cs.illinois.edu/manuals/html/projections/manual-1p.html
http://charm.cs.illinois.edu/manuals/html/projections/manual-1p.html

Projections

● Performance analysis/visualization
tool for use with Charm++
○ Works to limited degree with MPI

● Charm++ uses runtime system to log
execution of programs

● Trace-based, post-mortem analysis
● Configurable levels of detail
● Java-based visualization tool for

performance analysis

Instrumentation

● Enabling Instrumentation
● Basics
● Customizing Tracing
● Tracing Options

How to Instrument Code

● Build Charm++ with the --enable-
tracing flag

● Select a -tracemode when linking
● That’s all!
● Runtime system takes care of

tracking events

Basics

Traces include variety of events:
● Entry methods

○ Methods that can be remotely invoked
● Messages sent and received
● System Events

○ Idleness
○ Message queue times
○ Message pack times
○ etc.

Basics - Continued

● Traces logged in memory and
incrementally written to disk

● Runtime system instruments
computation and communication

● Generates useful data without
excessive overhead (usually)

Custom Tracing - User Events

Users can add custom events to traces by
inserting calls into their application.

Register Event:
int traceRegisterUserEvent(char* EventDesc, int
EventNum=-1)

Track a Point-Event:
void traceUserEvent(int EventNum)

Track a Bracketed-Event:
void traceUserBracketEvent(int EventNum, double
StartTime, double EndTime)

Custom Tracing - Annotations

Annotation supports allows users to easily
customize the set of methods that are traced.

● Annotating entry method with notrace
avoids tracing and saves overhead

● Adding local to non-entry methods (not
traced by default) adds tracing automatically

Custom Tracing - API

API allows users to turn tracing on or off:
● Trace only at certain times
● Trace only subset of processors

Simple API:
● void traceBegin()
● void traceEnd()

Works at granularity of PE.

Custom Tracing - API

● Often used at synchronization points to only
instrument a few iterations

● Reduces size of logs while still capturing
important data

● Allows analysis to be focused on only certain
parts of the application

Tracing Options

Two link-time options:
-tracemode projections

Full tracing (time, sending/receiving
processor, method, object, …)

-tracemode summary
Performance of each PE aggregated into
time bins of equal size

Tradeoff between detail and overhead

Tracing Options - Runtime

● +traceoff disables tracing until a
traceBegin() API call.

● +traceroot <dir> specifies output
folder for tracing data

● +traceprocessors RANGE only
traces PEs in RANGE

Tracing Options - Summary

● +sumdetail aggregate data by entry
method as well as time-intervals. (normal
summary data is aggregated only by time-
interval)

● +numbins <k> reserves enough memory to
hold information for <k> time intervals.
(default is 10,000 bins)

● +binsize <duration> aggregates data
such that each time-interval represents
<duration> seconds of execution time.
(default is 1ms)

Tracing Options - Projections

● +logsize <k> reserves enough buffer
memory to hold <k> events. (default is
1,000,000 events)

● +gz-trace, +gz-no-trace enable/disable
compressed (gzip) log files

Memory Usage

What happens when we run out of
reserved memory?
● -tracemode summary: doubles time-interval

represented by each bin, aggregates data
into the first half and continues.

● -tracemode projections: asynchronously
flushes event log to disk and continues. This
can perturb performance significantly in
some cases.

Projections Client

● Scalable tool to analyze up to 300,000 log
files

● A rich set of tool features : time profile, time
lines, usage profile, histogram, extrema tool

● Detect performance problems: load
imbalance, grain size, communication
bottleneck, etc

● Multi-threaded, optimized for memory
efficiency

Visualizations and Tools

● Tools of aggregated performance viewing
○ Time profile
○ Histogram
○ Communication

● Tools of processor level granularity
○ Overview
○ Timeline

● Tools of derived/processed data
○ Outlier analysis: identifies outliers

Analysis at Scale

● Fine grain details can sometimes
look like one big solid block on
timeline.

● It is hard to mouse-over items that
represent fine-grained events.

● Other times, tiny slivers of activity
become too small to be drawn.

Analysis Techniques

● Zoom in/out to find potential problem
spots.

● Mouseover graohs for extra details.
● Load sufficient but not too much

data.
● Set colors to highlight trends.
● Use the history feature in dialog

boxes to track time-ranges explored.

Dialog Box

Dialog Box

Select processors: 0-2,4-7:2 gives 0,1,2,4,6

Dialog Box

Select time range

Dialog Box

Add presets to history

Aggregate Views

Time Profile

Time spent by each EP summed
across all PEs in time interval

Histogram

Shows statistics in “frequency” domain.

Communication vs. Time

Shows communication over all PEs in
the time domain.

Communication per Processor

Shows how much each PE
communicated over the whole job.

Processor Level Views

Overview

Time on X, different PEs on Y

Intensity of plot represents PE’s
utilization at that time

Timeline

Most common view. Much more
detailed than overview.

Clicking on EPs traces messages,
mouseover shows EP details.

Colors are different EPs. White ticks
on bottom represent message sends,
red ticks on top represent user events.

Processed Data Views

Outlier Analysis

k-Means to find “extreme” processors

Global Average

Non-Outlier Average

Outlier Average

Cluster Representatives and Outliers

Advanced Features

● Live Streaming
○ Run server from job to send performance

traces in real time
● Online Extrema Analysis

○ Perform clustering during job; only save
representatives and outliers

● Multirun Analysis
○ Side by side comparison of data from

multiple runs

Future Directions

● PICS - expose application settings to
RTS for on the fly tuning

● End of run analysis - use remaining
time after job completion to process
performance logs

● Simulation - Increased reliance on
simulation for generating
performance logs

Conclusions

● Projections has been used to
effectively solve performance woes

● Constantly improving the tools
● Scalable analysis is become

increasingly important

