
04/12/2015

1

Simulation Parallèles Stochastiques

“Reproductibles”?
Hill David

(Credit : Pierre Schweitzer - Dao Van Toan)

Université Blaise Pascal

ISIMA/LIMOS UMR CNRS 6158

REPRODUCIBILITY

BEGINNER’s

04/12/2015

2

Reproducibility ? (defn.)
In Fomel and Claerbout 2009:

Reproducibility often means replication

depending on scientists

In Drummond 20091:

“Reproducibility requires changes; replicability avoids them”

In Demmel and Nguyen 2013

“Reproducibility, i.e. getting bitwise identical results from

run to run”

In Revol and Théveny 2013.

“What is called numerical reproducibility is the problem of

getting the same result when the scientific computation is run

several times, either on the same machine or on different

machines, with different numbers of processing units, types,

execution environments, computational loads, etc.”

1: http://www.site.uottawa.ca/ICML09WS/papers/w2.pdf

4

 Easier if they fit with the independent bag-of-work

paradigm.

 Such stochastic simulations can easily tolerate a loss of

jobs, if hopefully enough jobs finish for the final

statistics..

 Must use “independent” Parallel random streams.

 Statuses should be small and fast to store at Exascale

(Original MT – 6Kb status – MRG32K3a 6 integers)

 Should fit with different distributed computing

platforms

 Using regular processors

 Using hardware accelerators (GP-GPUs, Intel Phi…)

Application Driven Parallel Stochastic

Simulations - various requirements…

04/12/2015

3

Aim: Repeatability of parallel

stochastic simulations
Remember that a stochastic program is « deterministic » if we use
(initialize and parallelize) correctly the pseudo-random number.

1. A process or object oriented approach has to be chosen for
every stochastic objects which has its own random stream.

2. Select a modern and statistically sound generators according to
the most stringent testing battery (TestU01);

3. Select a fine parallelization technique adapted to the selected
generator,

4. The simulation must first be designed as a sequential program
which would emulate parallelism: this sequential execution –
with a compiler disabling of “out of order” execution will be the
reference to compare parallel and sequential execution at small
scales on the same node.

5. Externalize, sort or give IDs to the results for reduction in order
to keep the execution order or use compensated algorithms

[Hill 2015] : Hill D., “Parallel Random Numbers, Simulation, Science and reproducibility”.
IEEE/AIP - Computing in Science and Engineering, vol. 17, no 4, 2015, pp. 66-71.

An object-oriented approach?

A system being of collection of interacting “objects”
(dictionary definition) – a simulation will make all
those objects evolve during the simulation time with
a precise modeling goal.

Assign an « independent » random stream to each
stochastic object of the simulation.

Each object (for instance a particle) must have its
own reproducible random stream.

An object could also encapsulate a random variate
used at some points of the simulation. Every
random variate could also have their own random
stream.

[Hill 1996] : HILL D., “Object-oriented Analysis and Simulation”,
Addison-Wesley, 1996, 291 p.

04/12/2015

4

Back to basics for stochastic simulations

Repeatable Par.Rand.Num.Generators

Quick check with some top PRNGs used with
different execution context (hardware, operating
systems, compilers…

1. Use exactly the same inputs

2. Execute on various environments

3. Compare our outputs
with author’s outputs
(from publications
or given files)

Reproducing results – portability 1/4

 Errors found:
• for different hardware,

• different operating systems,

• different compilers.

04/12/2015

5

Reproducing results – portability 2/4

Errors found:
• Different Compilers (2 cases)

• With Identical Hardware (2 cases)

• Operating Systems (2 cases)

Reproducing results – portability 3/4

Errors found :
Problems Encountered With 32 And 64 Bits Architecture For

The Same Compiler (lcc compiler 32 bits – ok for 64 bits)

04/12/2015

6

Reproducing results – portability 4/4

Errors found :
when comparing between:
a “Real” Core 2 Duo T7100 and a “Virtual Machine” (Virtual
Box on top of Windows 7 with Intel(R) Core™ i7-4800MQ)

 Will this impact Docker for Windows since it works on top
of virtual Box ?

*Let’s « see » the potential
impact of the generator quality…

Two results of the same simulation (sequential) – PDE Harmonic
solution computed with Brownian movements.
On the left the image is obtained with Linux rand (which is already far
better than the old std UNIX rand on 15bits)
On the right – same simulation with Mastumoto Mersenne Twister
(1997 version) – right solution elipsoid with a circular section.

04/12/2015

7

*There is no perfect Generator…
Ex: First Mersenne Twister : a known default…

13

Between 1997 and 2002 : very long recovery of
zero-excess initial state for MT19237
(700 000 draws…)

14

Some top PRNGs (Pseudo Random Number
Generators)Only Green PRNG are recommended:

LCG (Linear Congruential Generator) - xi = (a*xi-1 + c) mod m
forget them for Scientific Computing see [L’Ecuyer 2010]

LCGPM (Linear Congruential Generator with Prime Modulus –
could be Mersenne or Sophie Germain primes)

MRG (Multiple Recursive Generator)
xi = (a1*xi-1 + a2*xi-2 + … + ak*xi-k + c) mod m – with k>1

 (Ex: MRG32k3a & MRG32kp – by L’Ecuyer and Panneton)

LFG (Lagged Fibonacci Generator)
xi = xi-p xi-q

MLFG (Multiple Lagged Fibonacci Generator) – Non linear
by Michael Mascagni MLFG 6331_64

L & GFSR (Generalised FeedBack Shift Register…) Mod 2

 Mersenne Twisters – by Matsumoto, Nishimura, Saito (MT,
SFMT, MTGP, TinyMT) – WELLs Matsumoto, L’Ecuyer, Panneton

See [Hill et al 2013] for advices including hardware accelerators

04/12/2015

8

15

*The Central Server (CS) technique (avoid for flexible reproducibility)

*The Leap Frog (LF) technique. Means partitioning a sequence {xi, i=0,
1, …} into ‘n’ sub-sequences, the jth sub-sequence is {xkn+j-1, k=0, 1, …} -
like a deck of cards dealt to card players.

*The Sequence Splitting (SS) – or blocking or regular/fixed spacing
technique. Means partitioning a sequence {xi, i=0, 1, …,} into ‘n’ sub-
sequences, the jth sub-sequence is {xk+(j-1)m, k=0, …, m1}
where m is the length of each sub-sequence

*Jump Ahead technique (can be used for both Leap Frog or
Sequence splitting)

*The Cycle Division or Jump ahead approach. Analytical computing of
the generator state in advance after a huge number of cycles
(generations)

*The Indexed Sequences (IS) - or random spacing. Means that the
generator is initialized with ‘n’ different seeds/statuses

Quick survey of random streams parallelization
(1) Using the same generator

Quick survey of random streams parallelization
(2) Using different generators:

Parameterization:

The same type of generator is used with different parameters for each
processor meaning that we produce different generators

In the case of linear congruential generators (LCG), this can rapidly
lead to poor results even when the parameters are very carefully
checked. (Ex: Mascagni and Chi proposed that the modulus be
Mersenne or Sophie Germain prime numbers)

Explicit Inversive Congruential generator (EICG) with prime modulus
has some very compelling properties for parallelizing via
parameterizing.

A recent paper describes an implementation of parallel random
number sequences by varying a set of different parameters instead of
splitting a single random sequence
(Chi and Cao 2010).

In 2000 Matsumoto et al proposed a dynamic creation technique16

04/12/2015

9

Reproducible HPC Application

Muonic Tomography - billions of threads…

Puy de Dôme

Volcano

France

Places of
atmospheric
Muons sensors

Principle: atmospheric muons will go through matter. Depending on their

energy and of the matter they traverse it is possible to reconstruct the 3D

inner image of a large edifice with multiple sensors (figure by Samuel Béné)

Principle of muonic tomography

04/12/2015

10

2D Tomographic rendering

Optimization for a single « hybrid » node

(Intel E52650 & Xeon Phi 7120P)

Parallel stochastic simulation of muonic tomography

Parallel programming model using p-threads

On stochastic object for each Muon

Multiple streams using MRG32k3a1

A billion threads handled by a single node

Compiling flags set to maximum reproducibility

(1) P. L'Ecuyer, R. Simard, E. J. Chen, and W. D. Kelton, ``An Objected-Oriented

Random-Number Package with Many Long Streams and Substreams'',

Operations Research, Vol. 50, no. 6 (2002), pp. 1073-1075.

04/12/2015

11

Bit for bit reproducibility

Do not expect bit for bit reproducibility when working on Intel Phi

vs. regular Intel processors1.

We observed bit for bit reproducibility in single precision but not

in double precision (and with the expected compiler flags)

The relative difference between processors (E5 vs Phi) in double

precision were analyzed and are shown below:

(1) Run-to-Run Reproducibility of Floating-Point Calculations for Applications on

Intel® Xeon Phi™ Coprocessors (and Intel® Xeon® Processors) – by Martin Cordel

https://software.intel.com/en-us/articles/run-to-run-reproducibility-of-floating-

point-calculations-for-applications-on-intel-xeon

Relative difference (Phi vs E5)

The results on the two architectures are of the same order,

Both of them have the same sign and the same exponent (even
if some exceptions would be theoretically possible, they would
be very rare).

The only bits that can differ between these results are the least
significant bits of the significand.

For a given exponent e, and a result r1 = m × 2e, the closest
value greater than r1 is r2 = (m + εd) × 2e, where εd is the value
of the least significant bit of the significand: εd = 2-52 ≈ 2.22 10-

16.

Intel Compiler flags:
“-fp-model precise -fp-model source -fimf-precision=high -no-fma”

for the compilation on the Xeon Phi

“-fp-model precise -fp-model source -fimf-precision=high”

for the compilation on the Xeon CPU.

https://software.intel.com/en-us/articles/run-to-run-reproducibility-of-floating-point-calculations-for-applications-on-intel-xeon

04/12/2015

12

Conclusion

Repetability achieved on identical execution plaforms

Numerical differences reduced between classical Xeon and
Intel Xeon Phi.

Numerical Reproducibility is possible for Parallel Stochastic
applications with independent computing on homogeneous
nodes.

This approach can be used for low reliability
supercomputers (with current MTTF below 1 day)

Key elements of a method have been presented to produced
numerically reproducible results for parallel stochastic
simulations comparable with a sequential implementation
(before large scaling on future Exascale systems)

Numerical replication is very important for scientists in many
sensitive areas, finance, nuclear safety, medicine…

24

Perspectives

Simulation of parallel independent processes can be now
considered as “easy”, but simulating time-dependent entities
or interacting entities, with numerical reproducibility across
interactions and cross various heterogeneous communicating
nodes will be tough.

Software simulation of co-routines within the simulation
application and synchronous communications can be required
in addition to the assignment of a different random streams
to each stochastic object.

Numerical replication is very important for scientists in many
sensitive areas, finance, nuclear safety, medicine, national
security.

Get prepared with Fault Injection frameworks like (SEFI – Los
Alamos National Library, USA)

04/12/2015

13

25

Spring 2016 Perspectives
Reproducibility Seminar for Computer Scientists in Auvergne

with the input of Philosophers and Lawyers

Reproducible Research

Numerical Reproducibility

Epistemology – how do we build knowledge

Ethics and more…

26

Questions?

