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Large-Scale Distributed Systems Research

Large-scale parallel and distributed systems are in production today
I HPC (clusters, petascale systems,

soon exascale...)

I Grid platforms

I Peer-to-peer file sharing

I Distributed volunteer computing

I Cloud Computing
562,960 coresComplex platforms with many open issues

I resource discovery and monitoring

I resource & data management

I energy consumption reduction

I resource economics

I application scheduling

I fault-tolerance and availability

I scalability and performance

I decentralized algorithms

Such applications and systems deserve very advanced analysis

I Their debugging and tuning are technically difficult

I Their use induce high methodological challenges
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Outline

1 Failure Trace Archive: Statistical Analysis

2 SimGrid/SMPI: HPC Application Analysis and Model Validation

3 Trace Visualization
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Enabling Comparative Analysis of Diverse Distributed

System

Failures in distributed systems have increasingly high negative impact and
complex dynamics
Hard to evaluate and compare algorithms and models for fault-tolerance:

Lack of public trace data sets

Lack of standard trace format

Lack of parsing and analytical tools

Lots of trace repository projects (PWA, Grid Observatory, GWA, . . . ) but
little on failures.

The Failure Trace Archive: http://fta.inria.fr
(D. Kondo, J.-M. Vincent, B. Javadi)

Availability traces of distributed systems, di�ering in scale, volatility,
and usage

Standard event-based format for failure traces

Scripts and tools for parsing and analyzing traces in svn repository
10 / 49
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FTA

Currently 25 Data Sets including:

SETI@home: availability of 226,208 CPU for 1.5 years (2007-2009).
2.2GB with gzip.

Overnet: availability of 3,000 hosts was checked (probes) every 20
minutes for 2 weeks (2003)

g5k06: availability of 2,500+ processors (Grid'5000) obtained through
periodic inspection with OARmiddleware called OAR.

microsoft99: log �les of 51,663 desktops PCs at Microsoft Corporation
where their reachability was determined with a ping every hour

EGEE: state of 2500 queues for 1 month. 9.7GB with gzip
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Failure modeling

Approach

Model availability and unavailability intervals, each with a single
probability distribution

Assume availability and unavailability is identically and independently
distributed

Checking such assumptions with randomness test often leads to reject
half the data

For each candidate probability distribution

Compute parameters that maximize the distribution's likelihood

Measure goodness of �t using Kolomorov-Smirnov (KS) and
Anderson-Darling (AD) tests

Other kind of study: classify by distribution (clustering)
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P-Values for KS & AD
Goodness-of-fit tests

Availability

Unavailability

(Un)availability
generally

not
heavy-tailed

p-value < 0.05 or 0.10
⇒ reject H0 that data came 

from fitted distribution

Typical Study
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P-Values for KS & AD
Goodness-of-fit tests

Availability

Unavailability
Weibull and Log-
Normal provide

best fit

p-value < 0.05 or 0.10
⇒ reject H0 that data came 

from fitted distribution

Typical Study
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Outline

1 Failure Trace Archive: Statistical Analysis

2 SimGrid/SMPI: HPC Application Analysis and Model Validation

3 Trace Visualization
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SimGrid

MPI simulation: what for ?
1 Helping application developers

Non-intrusive tracing and repeatable execution
Classical debugging tools (gdb, valgrind) can be used
Save computing resources (runs on your laptop if possible)

2 Helping application users (provide sound baseline)
3 Capacity planning (can we save on components? what-if analysis)

Simulation can help but packet-level simulations are not an option.

SimGrid in a nutshell

A 13 years old, open source/science project (France, USA, . . . )

SimGrid relies on �ow-level models that take topology into account.

Many naive �ow-level models implemented in other simulators are
documented as wrong

Some tools are validated by general agreement

Some tools present convincing graphs, which are hardly reproducible

Some tools are optimistically validated

Instead, we try to invalidate and improve our models
17 / 49



SMPI � O�ine vs. Online Simulation

Timed Trace
[0.001000] 0 compute 1e6 0.01000
[0.010028] 0 send 1 1e6 0.009028
[0.040113] 0 recv 3 1e6 0.030085

[0.010028] 1 recv 0 1e6 0.010028
...

time slice

Visualization

Paje

TRIVA

<?xml version=1.0?>
<!DOCTYPE platform SYSTEM "simgrid.dtd">
<platform version="3">
<cluster id="griffon" prefix="griffon-"
               suffix=".grid5000.fr" radical="1-144"
               power="286.087kf" bw="125MBps" lat="24us"
               bb_bw="1.25GBps" bb_lat="0" sharing_policy="FULLDUPLEX" />

Platform Description
DownUp DownUp DownUp DownUp

10G
1G

1−39 40−74 105−14475−104

13G

10G

Limiter

... ...... ...
1.5G
1G

Limiter

DownUp

Simulated Execution Time
43.232 seconds

Model the machine 
of your dreams

mpirun 
tau, PAPI 

Trace once on a

simple cluster

SMPI
Simulated or Emulated 

Computations

Simulated 
Communications

Time Independent
Trace

0 compute 1e6
0 send 1 1e6
0 recv 3 1e6

1 recv 0 1e6
1 compute 1e6
1 send 2 1e6

2 recv 1 1e6
2 compute 1e6
2 send 3 1e6

3 recv 2 1e6
3 compute 1e6
3 send 0 1e6

Replay the trace
as many times as

you want

MPI Application

On-line: simulate/emulate unmodified 
complex applications

- Possible memory folding and shadow execution
- Handles non-deterministic applications

Off-line: trace replay

O�ine simulation

1 Obtain a time independent trace

2 Replay it on top of SimGrid as often as desired

3 Analyze with the comfort of a simulator

Fast, but requires extrapolation and limited to non-adaptive codes
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Replay the trace
as many times as

you want

MPI Application

On-line: simulate/emulate unmodified 
complex applications

- Possible memory folding and shadow execution
- Handles non-deterministic applications

Off-line: trace replay

Online simulation

Directly run the code on top of SimGrid

Possible memory sharing between simulated processes (reduces
memory footprint) and kernel sampling (reduces simulation time)

Complies with most of the MPICH3 testsuite, compatible with many C
F77 and F90 codes (NAS, LinPACK, Sweep3D, BigDFT, SpecFEM3D)
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Validation: Non-trivial Application Scaling

Experiments also run using real Physics code (BigDFT, SPECFEM3D) on
Tibidabo (ARM cluster prototype)

The set of collective operations may completely change depending on
the instance, hence the need to use online simulation
Very good accuracy (especially compared to LogP)

Tibidabo
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Similar Related Ongoing Work: StarPU

StarPU : a Dynamic Task-Based Runtime System for Heterogeneous
Multi-Core Architectures (Bordeaux)
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A few �gures

SMPI article

http://hal.inria.fr/hal-00919507

26GB of uncompressed traces

Available on Figshare a posteriori

http://�gshare.com/articles/SC13_Publication_on_SMPI/833851

Store the org-�le that combines the article and all the scripts

StarPU study

This time, traces are uploaded while conducting the study
http://�gshare.com/account/projects/326 a minima

Keep using org-mode and R for writing reproducible articles
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Data Aggregation and Alternative
Visualization Techniques for Parallel and

Distributed Program Analysis

Lucas Mello Schnorr (CNRS)
LIG-MESCAL, Grenoble, France

TUD-ZIH-Colloquium – Dresden, Germany

July 26th, 2012

1/ 34

Visualizing More Performance Data Than What Fits on Your
Screen
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Challenges and Motivation
Very large applications
→ Top500 has machines with 1.5 million cores
Low-intrusion tracing techniques
→ Buffering, hardware support, simulation traces

Space/Time trace size explosion

Very detailed in time, many entities in space
Data representation without care
→ may deceive understanding

Real BOINC availability trace file
Availability is either true or false
8-month period, then 12-day zoom
One volunteer

Plot with GNUPlot to a PDF (vector) file
3/ 34
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Motivation (BOINC example)

One volunteer client (top: 8-month, bottom: 12-day)
Reasonable view, with a zoom for details

4/ 34
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Motivation – trust the rendering?

Same vector file, two different views
→ Different interpretation depending on the viewer

Evince Acroread

Should we trust the rendering ?
No!
We need to make choices before visualizing data

5/ 34
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Motivation → data aggregation

24-hour time integration

6/ 34
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Space/Time views for trace analysis

Widespread, useful, intuitive, fast adoption
Space (vertical axis) and Time (horizontal)
All trace events represented, causal order

Paje
http://paje.sf.net

Vite
http://vite.gforge.inria.fr

Vampir
http://vampir.eu

However...

Also impacted by ever larger trace sizes
Limited visualization scalability

7/ 34
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Space/Time views – closer look (ViTe tool)

Trust the OpenGL rendering, no data aggregation

Source: http://vite.gforge.inria.fr
8/ 34
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Space/Time views – closer look (old Pajé)

Opaque aggregating filter (no user interaction)
→ Slashed rectangles represent time-integrated states
Self-configure depending on temporal zoom

Source: http://paje.sourceforge.net
10/ 34
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Space/Time views – closer look (old Pajé)

Space dimension: one process per vertical pixel
→ at best, 1000 process represented at the same time

Clustering algorithms by process behavior?
→ Remove similar processes and choose a representative

11/ 34
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Introduction – summary and approach

Data aggregation is key for large-scale visualization
→ Avoid graphical aggregation rendering

Aggregated data may be more representative

Note: Concerns with behavior attenuation
Aggregation may remove important details
Flexible aggregation: operators & neighborhood

Main idea:
Visualization
techniques
based upon
aggregated data

Spatial and temporal trace aggregation
Alternative visualization techniques

Squarified Treemap View
Hierarchical Graph View

12/ 34
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Scenario 3 - Synthetic, Large Scale
Synthetic trace with 100 thousand processes
Two states, four-level hierarchy
Visualization artifacts without spatial aggregation

A Hierarchy: Site (10) - Cluster(10) - Machine (10) -  Processor (100) 
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Scenario 3 - Synthetic, Large Scale
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Scenario 3 - Synthetic, Large Scale
Synthetic trace with 100 thousand processes
Two states, four-level hierarchy
Visualization artifacts without spatial aggregation

E Maximum Aggregation
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Scenario 4 - NAS-DT Class A WH

NAS DT Class A White Hole algorithm
→ Traces from SMPI (Simulated MPI, part of SimGrid)
Network topology – resource utilization by red filling
Only temporal aggregation

time slice

Analysis: interconnection backbone is the bottleneck
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Scenario 4 - NAS-DT Class A WH (second try)

Another deployment with a different mapping
→ by changing the order of machines in hostfile
Explore communication locality

time slice

Note: Small scale and easy scenario – but it is a start

30/ 34

Visualizing More Performance Data Than What Fits on Your
Screen

Courtesy of Lucas Schnorr46 / 49



A visualization of G5K

Clusters

Sites

Hosts

Grid
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Open-source tools

Paje (Space/Time views, pie-charts), LGPL
http://paje.sourceforge.net

Since 2000, GNUstep-based, written in Objective-C
Not only a monolithic visualization tool

Component-based, graph of components
Framework for developing other tools
Paje Protocol

30K SLOC, hard to maintain, hard to install GNUstep

Triva (Treemaps, Hierarchical graph), LGPL
http://triva.gforge.inria.fr

Since 2007, GNUstep and Paje-based, also in Obj-C
Follows the Paje protocol

GNUstep runtime poses scalability problems

32/ 34
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Current line of research

Use notions of Entropy to de�ne meaningul aggegations and to guide
aggregation.

Robin Lamarche-Perrin (MAGMA/MESCAL): Building Meaningful

Macroscopic Descriptions of Large-scale Complex Systems, October
2013.

Damien Dosimont (MOAIS/MESCAL/NANOSIM � SocTrace)
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