Traces de grands systèmes distribués

A. Legrand (MESCAL)

Séminaire Ingénierie-Recherche du LIG

Large-Scale Distributed Systems Research

Large-scale parallel and distributed systems are in production today

- HPC (clusters, petascale systems, soon exascale...)
- Grid platforms
- Peer-to-peer file sharing
- Distributed volunteer computing
- Cloud Computing

- resource discovery and monitoring
- resource & data management
- energy consumption reduction
- resource economics

- application scheduling
- fault-tolerance and availability
- scalability and performance
- decentralized algorithms

Large-Scale Distributed Systems Research

Large-scale parallel and distributed systems are in production today

- HPC (clusters, petascale systems, soon exascale...)
- Grid platforms
- Peer-to-peer file sharing
- Distributed volunteer computing
- Cloud Computing

- resource discovery and monitoring
- resource & data management
- energy consumption reduction
- resource economics

- application scheduling
- fault-tolerance and availability
- scalability and performance
- decentralized algorithms

Large-Scale Distributed Systems Research

Large-scale parallel and distributed systems are in production today

- HPC (clusters, petascale systems, soon exascale...)
- Grid platforms
- Peer-to-peer file sharing
- Distributed volunteer computing
- Cloud Computing

- resource discovery and monitoring
- resource & data management
- energy consumption reduction
- resource economics

- application scheduling
- fault-tolerance and availability
- scalability and performance
- decentralized algorithms

Large-Scale Distributed Systems Research

Large-scale parallel and distributed systems are in production today

- HPC (clusters, petascale systems, soon exascale...)
- Grid platforms
- Peer-to-peer file sharing
- Distributed volunteer computing
- Cloud Computing

- resource discovery and monitoring
- resource & data management
- energy consumption reduction
- resource economics

- application scheduling
- fault-tolerance and availability
- scalability and performance
- decentralized algorithms

Large-Scale Distributed Systems Research

Large-scale parallel and distributed systems are in production today

- HPC (clusters, petascale systems, soon exascale...)
- Grid platforms
- Peer-to-peer file sharing
- Distributed volunteer computing
- Cloud Computing

- resource discovery and monitoring
- resource & data management
- energy consumption reduction
- resource economics

- application scheduling
- fault-tolerance and availability
- scalability and performance
- decentralized algorithms

Large-Scale Distributed Systems Research

Large-scale parallel and distributed systems are in production today

- HPC (clusters, petascale systems, soon exascale...)
- Grid platforms
- Peer-to-peer file sharing
- Distributed volunteer computing
- Cloud Computing

Complex platforms with many open issues

- resource discovery and monitoring
- resource & data management
- energy consumption reduction
- resource economics

- application scheduling
- fault-tolerance and availability
- scalability and performance
- decentralized algorithms

Such applications and systems deserve very advanced analysis

- Their debugging and tuning are technically difficult
- Their use induce high methodological challenges

1 Failure Trace Archive: Statistical Analysis

2 SimGrid/SMPI: HPC Application Analysis and Model Validation

1 Failure Trace Archive: Statistical Analysis

2 SimGrid/SMPI: HPC Application Analysis and Model Validation

3 Trace Visualization

Enabling Comparative Analysis of Diverse Distributed System

Failures in distributed systems have increasingly high negative impact and complex dynamics

Hard to evaluate and compare algorithms and models for fault-tolerance:

- Lack of public trace data sets
- Lack of standard trace format
- Lack of parsing and analytical tools

Lots of trace repository projects (PWA, Grid Observatory, GWA, \ldots) but little on failures.

The Failure Trace Archive: http://fta.inria.fr (D. Kondo, J.-M. Vincent, B. Javadi)

- Availability traces of distributed systems, differing in scale, volatility, and usage
- Standard event-based format for failure traces
- Scripts and tools for parsing and analyzing traces in svn repository

Currently 25 Data Sets including:

- SETI@home: availability of 226,208 CPU for 1.5 years (2007-2009). 2.2GB with gzip.
- Overnet: availability of 3,000 hosts was checked (probes) every 20 minutes for 2 weeks (2003)
- g5k06: availability of 2,500+ processors (Grid'5000) obtained through periodic inspection with OARmiddleware called OAR.
- microsoft99: log files of 51,663 desktops PCs at Microsoft Corporation where their reachability was determined with a ping every hour
- EGEE: state of 2500 queues for 1 month. 9.7GB with gzip

Failure modeling

Approach

- Model availability and unavailability intervals, each with a single probability distribution
- Assume availability and unavailability is identically and independently distributed
- Checking such assumptions with randomness test often leads to reject half the data

Failure modeling

Approach

- Model availability and unavailability intervals, each with a single probability distribution
- Assume availability and unavailability is identically and independently distributed
- Checking such assumptions with randomness test often leads to reject half the data

	Le		
Parameter	Low	High	Unit
V: Volatility	V < 50	V > 100	hour
A: Availability	A < 60	A > 90	%
M: Measurement	M < 6	M > 12	month
S: Scale	S < 1	S > 2	10 ³ nodes

Trace	V	A	M	S	Failure model
lanl05	L	Η	Н	H	Long-tailed/Long-tailed
g5k06	M	Μ	Η	M	Long-tailed/Long-tailed
microsoft99	M	Μ	L	H	Short-tailed/Heavy-tailed
websites02	H	Η	M	L	Long-tailed/Long-tailed
p105	L	Μ	Η	L	Long-tailed/Long-tailed
ldns04	L	Н	L	H	Long-tailed/Short-tailed
overnet03	H	L	L	H	Short-tailed/Heavy-tailed
nd07cpu	H	Μ	M	L	Heavy-tailed/Long-tailed
skype06	H	L	L	H	Short-tailed/Short-tailed

Failure modeling

Approach

- Model availability and unavailability intervals, each with a single probability distribution
- Assume availability and unavailability is identically and independently distributed
- Checking such assumptions with randomness test often leads to reject half the data

For each candidate probability distribution

- Compute parameters that maximize the distribution's likelihood
- Measure goodness of fit using Kolomorov-Smirnov (KS) and Anderson-Darling (AD) tests

Other kind of study: classify by distribution (clustering)

Typical Study

P-Values for KS & AD Goodness-of-fit tests

p-value < 0.05 or 0.10
 ⇒ reject H0 that data came
 from fitted distribution

Availability

Trace	Exponential	Weibull	Pareto	Log-Normal	Gamma
lanl05	0.005 0.025	0.416 0.571	0.002 0.010	0.475 0.611	0.345 0.488
g5k06	0.012 0.038	0.472 0.597	0.003 0.018	0.394 0.564	0.409 0.507
microsoft99	0.005 0.084	0.294 0.546	0.000 0.049	0.371 0.611	0.198 0.418
websites02	0.000 0.006	0.079 0.354	0.000 0.027	0.188 0.401	0.055 0.182
pl05	0.000 0.000	0.080 0.245	0.002 0.016	0.168 0.321	0.043 0.131
ldns04	0.009 0.042	0.316 0.510	0.002 0.010	0.357 0.527	0.287 0.472
overnet03	0.045 0.460	0.068 0.532	0.000 0.013	0.160 0.660	0.052 0.481
nd07cpu	0.001 0.011	0.348 0.526	0.002 0.063	0.408 0.596	0.167 0.284
skype06	0.048 0.105	0.373 0.493	0.000 0.002	0.452 0.581	0.257 0.375

(Un)availability generally not heavy-tailed

Unavailability

Trace	Exponential	Weibull	Pareto	Log-Normal	Gamma
lan105	0.000 0.004	0.196 0.346	0.000 0.001	0.481 0.607	0.042 0.095
g5k06	0.000 0.000	0.008 0.073	0.000 0.000	0.037 0.144	0.003 0.022
microsoft99	0.004 0.180	0.048 0.529	0.000 0.376	0.076 0.611	0.052 0.368
websites02	0.000 0.023	0.001 0.150	0.000 0.002	0.005 0.209	0.003 0.090
pl05	0.000 0.000	0.035 0.178	0.000 0.004	0.081 0.274	0.019 0.079
ldns04	0.035 0.112	0.404 0.538	0.000 0.001	0.464 0.607	0.277 0.411
overnet03	0.000 0.040	0.003 0.305	0.000 0.204	0.011 0.389	0.005 0.118
nd07cpu	0.000 0.004	0.028 0.219	0.000 0.031	0.126 0.559	0.003 0.032
skype06	0.071 0.191	0.288 0.478	0.002 0.015	0.182 0.449	0.267 0.408
	<u></u>				

Typical Study

P-Values for KS & AD Goodness-of-fit tests

p-value < 0.05 or 0.10
 ⇒ reject H0 that data came
 from fitted distribution

Availability

Trace	Exponential	Weibull	Pareto	Log-Normal	Gamma
lanl05	0.005 0.025	0.416 0.571	0.002 0.010	0.475 0.611	0.345 0.488
g5k06	0.012 0.038	0.472 0.597	0.003 0.018	0.394 0.564	0.409 0.507
microsoft99	0.005 0.084	0.294 0.546	0.000 0.049	0.371 0.611	0.198 0.418
websites02	0.000 0.006	0.079 0.354	0.000 0.027	0.188 0.401	0.055 0.182
pl05	0.000 0.000	0.080 0.245	0.002 0.016	0.168 0.321	0.043 0.131
ldns04	0.009 0.042	0.316 0.510	0.002 0.010	0.357 0.527	0.287 0.472
overnet03	0.045 0.460	0.068 0.532	0.000 0.013	0.160 0.660	0.052 0.481
nd07cpu	0.001 0.011	0.348 0.526	0.002 0.063	0.408 0.596	0.167 0.284
skype06	0.048 0.105	0.373 0.493	0.000 0.002	0.452 0.581	0.257 0.375

Gamma a good fit. Amenable for Markov Models

Unavailability

Trace	Exponential	Weibull	Pareto	Log-Normal	Gamma
lanl05	0.000 0.004	0.196 0.346	0.000 0.001	0.481 0.607	0.042 0.095
g5k06	0.000 0.000	0.008 0.073	0.000 0.000	0.037 0.144	0.003 0.022
microsoft99	0.004 0.180	0.048 0.529	0.000 0.376	0.076 0.611	0.052 0.368
websites02	0.000 0.023	0.001 0.150	0.000 0.002	0.005 0.209	0.003 0.090
pl05	0.000 0.000	0.035 0.178	0.000 0.004	0.081 0.274	0.019 0.079
ldns04	0.035 0.112	0.404 0.538	0.000 0.001	0.464 0.607	0.277 0.411
overnet03	0.000 0.040	0.003 0.305	0.000 0.204	0.011 0.389	0.005 0.118
nd07cpu	0.000 0.004	0.028 0.219	0.000 0.031	0.126 0.559	0.003 0.032
skype06	0.071 0.191	0.288 0.478	0.002 0.015	0.182 0.449	0.267 0.408
	26				

Typical Study

P-Values for KS & AD Goodness-of-fit tests

p-value < 0.05 or 0.10
 ⇒ reject H0 that data came
 from fitted distribution

Availability

Trace	Exponential	Weibull	Pareto	Log-Normal	Gamma
lan105	0.005 0.025	0.416 0.571	0.002 0.010	0.475 0.611	0.345 0.488
g5k06	0.012 0.038	0.472 0.597	0.003 0.018	0.394 0.564	0.409 0.507
microsoft99	0.005 0.084	0.294 0.546	0.000 0.049	0.371 0.611	0.198 0.418
websites02	0.000 0.006	0.079 0.354	0.000 0.027	0.188 0.401	0.055 0.182
pl05	0.000 0.000	0.080 0.245	0.002 0.016	0.168 0.321	0.043 0.131
ldns04	0.009 0.042	0.316 0.510	0.002 0.010	0.357 0.527	0.287 0.472
overnet03	0.045 0.460	0.068 0.532	0.000 0.013	0.160 0.660	0.052 0.481
nd07cpu	0.001 0.011	0.348 0.526	0.002 0.063	0.408 0.596	0.167 0.284
skype06	0.048 0.105	0.373 0.493	0.000 0.002	0.452 0.581	0.257 0.375
ѕкуреоо	0.048 0.105	0.373 0.493	0.000 0.002	0.432 0.381	0.237 0.

Unavailability

Trace	Exponential	Weibull	Pareto	Log-Normal	Gamma
lanl05	0.000 0.004	0.196 0.346	0.000 0.001	0.481 0.607	0.042 0.095
g5k06	0.000 0.000	0.008 0.073	0.000 0.000	0.037 0.144	0.003 0.022
microsoft99	0.004 0.180	0.048 0.529	0.000 0.376	0.076 0.611	0.052 0.368
websites02	0.000 0.023	0.001 0.150	0.000 0.002	0.005 0.209	0.003 0.090
p105	0.000 0.000	0.035 0.178	0.000 0.004	0.081 0.274	0.019 0.079
ldns04	0.035 0.112	0.404 0.538	0.000 0.001	0.464 0.607	0.277 0.411
overnet03	0.000 0.040	0.003 0.305	0.000 0.204	0.011 0.389	0.005 0.118
nd07cpu	0.000 0.004	0.028 0.219	0.000 0.031	0.126 0.559	0.003 0.032
skype06	0.071 0.191	0.288 0.478	0.002 0.015	0.182 0.449	0.267 0.408

Weibull and Log Normal provide best fit

1 Failure Trace Archive: Statistical Analysis

2 SimGrid/SMPI: HPC Application Analysis and Model Validation

3 Trace Visualization

SimGrid

MPI simulation: what for ?

- Helping application developers
 - Non-intrusive tracing and repeatable execution
 - Classical debugging tools (gdb, valgrind) can be used
 - Save computing resources (runs on your laptop if possible)
- e Helping application users (provide sound baseline)

Capacity planning (can we save on components? what-if analysis) Simulation can help but packet-level simulations are not an option.

SimGrid in a nutshell

• A 13 years old, open source/science project (France, USA, ...)

• SimGrid relies on flow-level models that take topology into account.

- Many naive flow-level models implemented in other simulators are *documented as wrong*
- Some tools are validated by general agreement
- Some tools present convincing graphs, which are hardly reproducible
- Some tools are *optimistically validated*
- Instead, we try to invalidate and improve our models

SMPI - Offline vs. Online Simulation

Offline simulation

- Obtain a time independent trace
- Provide a state of the state
- Analyze with the comfort of a simulator

Fast, but requires extrapolation and limited to non-adaptive codes

SMPI - Offline vs. Online Simulation

Online simulation

- Directly run the code on top of SimGrid
- Possible memory sharing between simulated processes (reduces memory footprint) and kernel sampling (reduces simulation time)
- Complies with most of the MPICH3 testsuite, compatible with many C F77 and F90 codes (NAS, LinPACK, Sweep3D, BigDFT, SpecFEM3D)

Validation: Non-trivial Application Scaling

Experiments also run using real Physics code (BigDFT, SPECFEM3D) on Tibidabo (ARM cluster prototype)

- The set of collective operations may completely change depending on the instance, hence the need to use online simulation
- Very good accuracy (especially compared to LogP)

Similar Related Ongoing Work: StarPU

StarPU : a Dynamic Task-Based Runtime System for Heterogeneous Multi-Core Architectures (Bordeaux)

A few figures

SMPI article

- http://hal.inria.fr/hal-00919507
- 26GB of uncompressed traces
- Available on Figshare a posteriori http://figshare.com/articles/SC13_Publication_on_SMPI/833851
- Store the org-file that combines the article and all the scripts

StarPU study

- This time, traces are uploaded while conducting the study http://figshare.com/account/projects/326 *a minima*
- Keep using org-mode and R for writing reproducible articles

1 Failure Trace Archive: Statistical Analysis

2 SimGrid/SMPI: HPC Application Analysis and Model Validation

Trace Visualization

Data Aggregation and Alternative Visualization Techniques for Parallel and Distributed Program Analysis

> Lucas Mello Schnorr (CNRS) LIG-MESCAL, Grenoble, France

TUD-ZIH-Colloquium - Dresden, Germany

July 26th, 2012

Challenges and Motivation

- Very large applications
 - \rightarrow Top500 has machines with 1.5 million cores
- Low-intrusion tracing techniques
 - \rightarrow Buffering, hardware support, simulation traces

Space/Time trace size explosion

- Very detailed in time, many entities in space
- Data representation without care
 - \rightarrow may deceive understanding
- Real BOINC availability trace file
 - Availability is either true or false
 - 8-month period, then 12-day zoom
 - One volunteer
- Plot with GNUPlot to a PDF (vector) file

Courtesy of Lucas Schnorr

Motivation (BOINC example)

- One volunteer client (top: 8-month, bottom: 12-day)
- Reasonable view, with a zoom for details

Courtesy of Lucas Sehino r

Motivation - trust the rendering?

Same vector file, two different views

 \rightarrow Different interpretation depending on the viewer

Courtesy of Lucas Sehnber

Motivation - trust the rendering?

Same vector file, two different views

 \rightarrow Different interpretation depending on the viewer

Motivation - trust the rendering?

Same vector file, two different views

 \rightarrow Different interpretation depending on the viewer

- Should we trust the rendering ?
 - No!
 - We need to make choices before visualizing data

Courtesy of Lucas Schnorr

Motivation \rightarrow data aggregation

Courtesy of Lucas Sehinder

Space/Time views for trace analysis

- Widespread, useful, intuitive, fast adoption
- Space (vertical axis) and Time (horizontal)
- All trace events represented, causal order

Space/Time views for trace analysis

- Widespread, useful, intuitive, fast adoption
- Space (vertical axis) and Time (horizontal)
- All trace events represented, causal order

However...

- Also impacted by ever larger trace sizes
- Limited visualization scalability

Courtesy of Lucas Schnor

Space/Time views – closer look (ViTe tool)

Trust the OpenGL rendering, no data aggregation

Source: http://vite.gforge.inria.fr

Courtesy of Lucas Selino9r

Space/Time views – closer look (old Pajé)

- Opaque aggregating filter (no user interaction)
 - \rightarrow Slashed rectangles represent time-integrated states
- Self-configure depending on temporal zoom

sweep3d-5x5x400-10mk-3mmi-16pes.t	race		⊜ ⊜ ⊗
26.19 ms			
rank0 STATE MuPi Barrier	IS 20 UPI Barner UPI Recv		
rank1 STATE			
rank2 STATE NPI Barrier	Mi Pacy Alifi Recy		
rank4 STATE MPI Barrier			
rank5 STATE Mr. Barner			
rank6 STATE MPL Deriver			
rank7 STATE MPI Barner			AT NAV
rank8 STATE	MPI Davier MPI Da	Kan Jan / Y D Bar Star Star Star Star Star Star Star St	
rank10 STATE Mrn Berter			
rank11 STATE MPI Barter			MPI Recy
rank12 STATE			
rank13 STATE WP Berler			
rank14 STATE		A REAL POINT AND	

Source: http://paje.sourceforge.net

Courtesy of Lucas Sehnor

Space/Time views – closer look (old Pajé)

■ Space dimension: one process per vertical pixel → at best, 1000 process represented at the same time

- Clustering algorithms by process behavior?
 - \rightarrow Remove similar processes and choose a representative

Introduction – summary and approach

■ Data aggregation is key for large-scale visualization → Avoid graphical aggregation rendering

Aggregated data may be more representative

 Aggregated data may be more representative
 Aggregated data may be more representative
 Aggregated data may be more representative

- Note: Concerns with behavior attenuation
 - Aggregation may remove important details
 - Flexible aggregation: operators & neighborhood

Main idea: Visualization techniques based upon aggregated data

Spatial and temporal trace aggregation
 Alternative visualization techniques

- Squarified Treemap View
- Hierarchical Graph View

Courtesy of Lucas Sehinder

Scenario 3 - Synthetic, Large Scale

- Synthetic trace with 100 thousand processes
- Two states, four-level hierarchy
- Visualization artifacts without spatial aggregation

Scenario 3 - Synthetic, Large Scale

- Synthetic trace with 100 thousand processes
- Two states, four-level hierarchy
- Visualization artifacts without spatial aggregation

Scenario 3 - Synthetic, Large Scale

- Synthetic trace with 100 thousand processes
- Two states, four-level hierarchy
- Visualization artifacts without spatial aggregation

Scenario 3 - Synthetic, Large Scale

- Synthetic trace with 100 thousand processes
- Two states, four-level hierarchy
- Visualization artifacts without spatial aggregation

D Hierarchy: **Site** (10) - Cluster(10) - Machine (10) - Processor (100)

Scenario 3 - Synthetic, Large Scale

- Synthetic trace with 100 thousand processes
- Two states, four-level hierarchy
- Visualization artifacts without spatial aggregation

E Maximum Aggregation

- NAS DT Class A White Hole algorithm
 Traces from SMPI (Simulated MPI, part of SimGrid)
- Network topology resource utilization by red filling
- Only temporal aggregation

- NAS DT Class A White Hole algorithm

 Traces from SMPI (Simulated MPI, part of SimGrid)
- Network topology resource utilization by red filling
- Only temporal aggregation

- NAS DT Class A White Hole algorithm
 Traces from SMPI (Simulated MPI, part of SimGrid)
- Network topology resource utilization by red filling
- Only temporal aggregation

- NAS DT Class A White Hole algorithm
 Traces from SMPI (Simulated MPI, part of SimGrid)
- Network topology resource utilization by red filling
- Only temporal aggregation

Scenario 4 - NAS-DT Class A WH

- NAS DT Class A White Hole algorithm

 Traces from SMPI (Simulated MPI, part of SimGrid)
- Network topology resource utilization by red filling
- Only temporal aggregation

Analysis: interconnection backbone is the bottleneck

Courtesy of Lucas Sehinder

Scenario 4 - NAS-DT Class A WH (second try)

- Another deployment with a different mapping → by changing the order of machines in hostfile
- Explore communication locality

A visualization of G5K

Open-source tools

- Paje (Space/Time views, pie-charts), LGPL http://paje.sourceforge.net
 - Since 2000, GNUstep-based, written in Objective-C
 - Not only a monolithic visualization tool
 - Component-based, graph of components
 - Framework for developing other tools
 - Paje Protocol
 - 30K SLOC, hard to maintain, hard to install GNUstep
- Triva (Treemaps, Hierarchical graph), LGPL
 - http://triva.gforge.inria.fr
 - Since 2007, GNUstep and Paje-based, also in Obj-C
 - Follows the Paje protocol
 - GNUstep runtime poses scalability problems

Use notions of Entropy to define meaningul aggegations and to guide aggregation.

- Robin Lamarche-Perrin (MAGMA/MESCAL): Building Meaningful Macroscopic Descriptions of Large-scale Complex Systems, October 2013.
- Damien Dosimont (MOAIS/MESCAL/NANOSIM SocTrace)