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Cognitive Radios

General system model

Figure: Cognitive radio setting.
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Cognitive Radios

Exploration and Exploitation

Cognitive Radio Setting:
The secondary network is entitled to reuse efficiently spectrum holes,

so to minimally interfere the primary network;
so to maximise the throughput of secondary transmissions;
with little or no feedback from the primary network, i.e. autonomously.

To this end, the secondary (or smart, cognitive) network must
learn about the environment: this is the exploration phase.
communicate within the secondary network: this is the exploitation phase.

Both scenarios are inherently multi-dimensional:
efficient exploration requires large sensor networks;
networks may be composed of multiple users with possibly multiple antennas.

We will discuss both exploration and exploitation phases as (possibly large) multivariate systems.
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Exploration: Spectrum Hole Detection

Formulation of the exploration problem

We assume the scenario of a cognitive radio made of
a primary network of K transmitters, equipped with n1, . . . , nK antennas;
a secondary network in sensing mode, equipped of N collocated sensors.

At time m, the secondary network receives y(m) ∈ CN as

y(m) =
KX

k=1

p
Pk Hk x(m)

k + σw(m)

Depending on prior information, the secondary network will
try to infer the presence of a signal (we will assume a unique transmitter)
try to infer the transmit powers of the K transmitters.

This information allows for:

the detection of spectrum holes;

the evaluation of the optimal secondary coverage;

ideally, the elaboration of a ‘map’ of space-frequency resources.
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Exploration: Spectrum Hole Detection

Problem formulation

We consider the model

y(m) =


σw(m) , (H0)√

PHx(m) + σw(m) , (H1)

We wish to confront the hypotheses H0 and H1 given the data matrix
Y , [y(1), . . . , y(M)] ∈ CN×M .

We consider, in a Bayesian framework, the Neyman-Pearson test ratio

C(Y)
∆
=

PH1|Y,I(Y)

PH0|Y,I(Y)

with prior information I on H, x(m), σ, . . ..
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R. Couillet (Supélec, ST-Ericsson) Random Matrix Theory for Future Wireless Networks 12/11/2010 8 / 39



Exploration: Spectrum Hole Detection

Problem formulation

We consider the model

y(m) =


σw(m) , (H0)√

PHx(m) + σw(m) , (H1)

We wish to confront the hypotheses H0 and H1 given the data matrix
Y , [y(1), . . . , y(M)] ∈ CN×M .

We consider, in a Bayesian framework, the Neyman-Pearson test ratio

C(Y)
∆
=

PH1|Y,I(Y)

PH0|Y,I(Y)

with prior information I on H, x(m), σ, . . ..
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Exploration: Spectrum Hole Detection

A Bayesian framework for cognitive radios

We assume prior statistical and deterministic knowledge I on H, σ, P

Using the maximum entropy principle (MaxEnt), a prior P(H,σ,P)(H, σ, P) can be derived

PY|Hi ,I(Y) =

Z
(H,σ,P)

PY|Hi ,I,H,σ,P(Y)P(H,σ,P)(H, σ, P)d(H, σ, P)

In the following,
we derive the case P = 1, σ known and the knowledge about H conveys unitary invariance

E[tr HHH] known: this is what we assume here;
E[HHH] = Q unknown but such that E[tr Q] is known;
rank(HHH) known.

we compare alternative methods when P = 1 and σ are unknown.
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Exploration: Spectrum Hole Detection

Evaluation of PY|Hi ,I(Y)

by MaxEnt, X, W are standard Gaussian matrix with Xij , Wij ∼ CN (0, 1).
Under H0:

Y = σW

PY|H0,I(Y) =
1

(πσ2)NM
e−

1
σ2 tr YYH

.

Under H1:

Y =
ˆ√

PH σIN
˜ »X

W

–
PY|H1

(Y) =

Z
Σ≥0

PY|Σ,H1
(Y,Σ)PΣ(Σ)dΣ

with Σ = E[y(1)y(1)H] = HHH + σ2IN .
From unitary invariance of H, denoting Σ = UGUH, diag(G) = (g1, . . . , gn, σ2, . . . , σ2)

PY|H1
(Y) =

Z
U(N)×(σ2,∞)n

PY|UGUH,H1
(Y, U, G)PU(U)P(g1,...,gn)(g1, . . . , gn)dUdg1 . . . dgn

where
PY|UGUH,H1

is Gaussian with zero mean and variance UGUH;

PU is a constant (dU is a Haar measure);

if H is Gaussian, P
(g1−σ2,...,gn−σ2)

is the joint eigenvalue distribution of a central Wishart;
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R. Couillet (Supélec, ST-Ericsson) Random Matrix Theory for Future Wireless Networks 12/11/2010 10 / 39



Exploration: Spectrum Hole Detection

Evaluation of PY|Hi ,I(Y)

by MaxEnt, X, W are standard Gaussian matrix with Xij , Wij ∼ CN (0, 1).
Under H0:

Y = σW

PY|H0,I(Y) =
1

(πσ2)NM
e−

1
σ2 tr YYH

.

Under H1:

Y =
ˆ√

PH σIN
˜ »X

W

–
PY|H1

(Y) =

Z
Σ≥0

PY|Σ,H1
(Y,Σ)PΣ(Σ)dΣ

with Σ = E[y(1)y(1)H] = HHH + σ2IN .
From unitary invariance of H, denoting Σ = UGUH, diag(G) = (g1, . . . , gn, σ2, . . . , σ2)

PY|H1
(Y) =

Z
U(N)×(σ2,∞)n

PY|UGUH,H1
(Y, U, G)PU(U)P(g1,...,gn)(g1, . . . , gn)dUdg1 . . . dgn

where
PY|UGUH,H1

is Gaussian with zero mean and variance UGUH;

PU is a constant (dU is a Haar measure);

if H is Gaussian, P
(g1−σ2,...,gn−σ2)

is the joint eigenvalue distribution of a central Wishart;
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R. Couillet (Supélec, ST-Ericsson) Random Matrix Theory for Future Wireless Networks 12/11/2010 10 / 39



Exploration: Spectrum Hole Detection

Result in the Gaussian case, n = 1

R. Couillet, M. Debbah, “A Bayesian Framework for Collaborative Multi-Source Signal Sensing”,
IEEE Transactions on Signal Processing, vol. 58, no. 10, pp. 5186-5195, 2010.

Theorem (Neyman-Pearson test)

The ratio C(Y) when the receiver knows n = 1, P = 1, E[ 1
N tr HHH] = 1 and σ2, reads

C(Y) =
1
N

NX
l=1

σ2(N+M−1)eσ2+
λl
σ2QN

i=1
i 6=l

(λl − λi )
JN−M−1(σ

2, λl )

with λ1, . . . , λN the eigenvalues of YYH and where

Jk (x , y) ,
Z +∞

x
tk e−t− y

t dt .

non trivial dependency on λ1, . . . , λN

contrary to energy detector,
P

i λi is not a sufficient statistic;

integration over σ2 (or P when P 6= 1) is difficult.
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Exploration: Spectrum Hole Detection

Comparison to energy detector
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Figure: ROC curve for single-source detection, K = 1, N = 4, M = 8, SNR = −3 dB, FAR range of practical
interest, with signal power E = 0 dBm, either known or unknown at the receiver.
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Exploration: Spectrum Hole Detection

Unknown power and noise variances

Bayesian approaches:

PY|Hi ,I(Y) =

Z
R2

+

PY|Hi ,σ,P(Y)P(σ,P)(σ, P)d(σ, P)

limited by computational complexity (two-dimension numerical integration);
inconsistence in MaxEnt uninformative priors on σ, P.

non-parametric GLRT approach:

CGLRT(Y)
∆
=

supH,σ PY|H1
(Y)

supσ PY|H0
(Y)

CGLRT(Y) expresses as a monotonic function of maxi λi
1
N
P

i λi
;

excludes prior information on H, σ, P.

ad-hoc methods, such as conditioning number:

Ccond(Y) ,
maxi λi

mini λi

based on large random matrix considerations: underH0, as N/M → c

maxi λi

mini λi

a.s.−→
(1 +

√
c)2

(1−
√

c)2

totally empirical.
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Exploration: Spectrum Hole Detection

Performance comparison for unknown σ2, P
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Figure: ROC curve for a priori unknown σ2 of the Neyman-Pearson test, conditioning number method and GLRT,
K = 1, N = 4, M = 8, SNR = 0 dB. For the Neyman-Pearson test, both uniform and Jeffreys prior, with
exponent β = 1, are provided.
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Exploration: User Detection and Power Inference

Outline

1 Cognitive Radios

2 Exploration: Spectrum Hole Detection

3 Exploration: User Detection and Power Inference
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R. Couillet (Supélec, ST-Ericsson) Random Matrix Theory for Future Wireless Networks 12/11/2010 15 / 39



Exploration: User Detection and Power Inference

Problem Statement

We now consider the model

y(m) =
KX

k=1

p
Pk Hk x(m)

k + σw(m)

and wish to infer P1, . . . , PK .

With Y = [y(1), . . . , y(M)], this can be rewritten

Y =
KX

k=1

p
Pk Hk Xk + σW =

ˆp
P1H1 · · ·

p
PK HK

˜| {z }
,HP

1
2

264X1
...

XK

375
| {z }

,X

+σW =
h
HP

1
2 σIN

i »
X
W

–
.

If H, (XT WT) are unitarily invariant, Y is unitarily invariant.

Most information about P1, . . . , PK is contained in the eigenvalues of BN , 1
M YYH.
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R. Couillet (Supélec, ST-Ericsson) Random Matrix Theory for Future Wireless Networks 12/11/2010 16 / 39



Exploration: User Detection and Power Inference

Problem Statement

We now consider the model

y(m) =
KX

k=1

p
Pk Hk x(m)

k + σw(m)

and wish to infer P1, . . . , PK .

With Y = [y(1), . . . , y(M)], this can be rewritten

Y =
KX

k=1

p
Pk Hk Xk + σW =

ˆp
P1H1 · · ·

p
PK HK

˜| {z }
,HP

1
2

264X1
...

XK

375
| {z }

,X

+σW =
h
HP

1
2 σIN

i »
X
W

–
.

If H, (XT WT) are unitarily invariant, Y is unitarily invariant.

Most information about P1, . . . , PK is contained in the eigenvalues of BN , 1
M YYH.
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Exploration: User Detection and Power Inference

From small to large system analysis

0.1 1 3 10
0

0.025

0.05

0.075

0.1

Eigenvalues of YYH

D
en

si
ty

Eigenvalues of BN = 1
M YYH

The classical approach requires to evaluate PP1,...,PK |Y

assuming Gaussian parameters, this is similar to previous calculus

leads to a sum of two-dimensional integrals

prohibitively expensive to evaluate even for small N, nk , M
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Limiting spectrum of BN

Assuming dimensions N, nk , M grow large, large dimensional random matrix theory provides
a link between:

the “observation”: the limiting spectral distribution (l.s.d.) of BN ;
the “hidden parameters”: the powers P1, . . . , PK , i.e. the l.s.d. of P.

consistent estimators of the hidden parameters.
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Exploration: User Detection and Power Inference

Limiting spectrum of the sample covariance matrix

Definition. The Stieltjes transform mF (z), of a distribution function F is defined as

mF (z) =

Z
1

ω − z
dF (ω).

Knowing the Stieltjes transform of F is equivalent to knowing F (similar to Fourier transform).

for simplicity, consider the sample covariance matrix model

Y∆
=T

1
2 X ∈ CN×n, BN =

1
n

YYH ∈ CN×N , BN =
1
n

YHY ∈ Cn×n

where T ∈ CN×N has eigenvalues t1, . . . , tK , tk with multiplicity Nk and X ∈ CN×n is i.i.d. zero
mean, variance 1.

If F T ⇒ T , then mFBN (z) = mBN (z)
a.s.−→ mF (z) such that

mT
`
−1/mF (z)

´
= −zmF (z)mF (z)

with mF (z) = cmF (z) + (c − 1) 1
z and N/n → c.
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Exploration: User Detection and Power Inference

Complex integration

From Cauchy integral formula, denoting Ck a contour enclosing only tk ,

tk =
1

2πi

I
Ck

ω

ω − tk
dω =

1
2πi

I
Ck

1
Nk

KX
j=1

Nj
ω

ω − tj
dω =

N
2πiNk

I
Ck

ωmT (ω)dω.

After the variable change ω = −1/mF (z),

tk =
N
Nk

1
2πi

I
CF,k

zmF (z)
m′

F (z)

m2
F (z)

dz,

When the system dimensions are large,

mF (z) ' mBN (z)
∆
=

1
N

NX
k=1

1
λk − z

, with (λ1, . . . , λN) = eig(BN) = eig(YYH).

Dominated convergence arguments then show

tk − t̂k
a.s.−→ 0 with t̂k =

N
Nk

1
2πi

I
CF,k

zmBN (z)
m′

BN
(z)

m2
BN

(z)
dz =

n
Nk

X
m∈Nk

(λm − µm)

with Nk the indexes of cluster k and µ1 < . . . < µN are the ordered eigenvalues of the matrix
diag(λ)− 1

n

√
λ
√

λ
T
, λ = (λ1, . . . , λN)T.
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n

√
λ
√

λ
T
, λ = (λ1, . . . , λN)T.
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Exploration: User Detection and Power Inference

Application to the current model

R. Couillet, J. W. Silverstein, Z. Bai, M. Debbah, “Eigen-Inference for Energy Estimation of Multiple
Sources,” to appear in IEEE Transactions on Information Theory, 2010.

Extending Y with zeros, our model is a “double sample covariance matrix”

Y|{z}
(N+n)×M

=

"
HP

1
2 σIN

0 0

#
| {z }
(N+n)×(N+n)

»
X
W

–
| {z }

(N+n)×M

.

Limiting distribution of 1
M YYH

Theorem (l.s.d. of BN )

Let BN = 1
M YYH with eigenvalues λ1, . . . , λN . Denote mBN

(z)
∆
= 1

M
PM

k=1
1

λk−z , with λi = 0 for
i > N. Then, for M/N → c, N/nk → ck , N/n → c0, for any z ∈ C+,

mBN
(z)

a.s.−→ mF (z)

with mF (z) the unique solution in C+ of

1
mF (z)

= −σ2 +
1

f (z)

»
c0 − 1

c0
+ mP

„
−

1
f (z)

«–
, with f (z) = (c − 1)mF (z)− czmF (z)2.
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Exploration: User Detection and Power Inference

Application to the current model (2)

R. Couillet, J. W. Silverstein, Z. Bai, M. Debbah, “Eigen-Inference for Energy Estimation of Multiple
Sources,” to appear in IEEE Trans. on Inf. Theory, 2010.

estimator calculus

Theorem (Estimator of P1, . . . , PK )

Let BN ∈ CN×N be defined as in Theorem 2, and λ = (λ1, . . . , λN), λ1 < . . . < λN . Assume that
asymptotic cluster separability condition is fulfilled for some k. Then, as N, n, M →∞,

P̂k − Pk
a.s.−→ 0,

where

P̂k =
NM

nk (M − N)

X
i∈Nk

(ηi − µi )

with Nk the set indexing the eigenvalues in cluster k of F , η1 < . . . < ηN the eigenvalues of
diag(λ)− 1

N

√
λ
√

λ
T

and µ1 < . . . < µN the eigenvalues of diag(λ)− 1
M

√
λ
√

λ
T
.
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Exploration: User Detection and Power Inference

Remarks

solution is computationally simple, explicit, and the final formula compact.
cluster separability condition is fundamental. This requires

for all other parameters fixed, the Pk cannot be too close top one another: source separation problem.
for all other parameters fixed, σ2 must be kept low: low SNR undecidability problem.
for all other parameters fixed, M/N cannot be too low: sample deficiency issue (not such an issue
though).
for all other parameters fixed, N/n cannot be too low: diversity issue.

exact spectrum separability is an essential ingredient (known for very few models to this day).

0.1 1 3 10
0

0.025

0.05

0.075

0.1

Eigenvalues of YYH

D
en

si
ty

Eigenvalues of BN = 1
M YYH

Limiting spectrum of BN
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Exploration: User Detection and Power Inference

Simulations
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Figure: Histogram of the cluster-mean approach and of P̂k for k ∈ {1, 2, 3}, P1 = 1/16, P2 = 1/4, P3 = 1,
n1 = n2 = n3 = 4 antennas per user, N = 24 sensors, M = 128 samples and SNR = 20 dB.
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Exploration: User Detection and Power Inference

Performance comparison

−5 0 5 10 15 20 25 30
−20

−15

−10

−5

0

SNR [dB]

N
or

m
al

iz
ed

m
ea

n
sq

ua
re

er
ro

r[
dB

]

Stieltjes transform estimator

Moment estimator

Cluster average estimator

Figure: Normalized mean square error of largest estimated power P̂3, P1 = 1/16, P2 = 1/4, P3 = 1,
n1 = n2 = n3 = 4 ,N = 24, M = 128. Comparison between classical, moment and Stieltjes transform
approaches.
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Exploitation: Optimal Ergodic Rate

Outline

1 Cognitive Radios

2 Exploration: Spectrum Hole Detection

3 Exploration: User Detection and Power Inference

4 Exploitation: Optimal Ergodic Rate

5 Perspectives and Conclusion
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Exploitation: Optimal Ergodic Rate

Problem statement

We assume, from the exploration phase, that power Qf can be transmitted in bandwidth Bf .
The exploitation phase consists in optimally using these power resources.
We consider the uplink scenario of

an N-antenna base station;
K users equipped with n1, . . . , nK antennas;

Kronecker channels at all pairs Hk,f = R
1
2
k,f Xk,f T

1
2
k,f ∈ CN×nk at frequency Bf ;

colored noise with covariance Σ.
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R. Couillet (Supélec, ST-Ericsson) Random Matrix Theory for Future Wireless Networks 12/11/2010 26 / 39



Exploitation: Optimal Ergodic Rate

Maximizing ergodic sum rate

Due to mobility, we wish to optimize the uplink ergodic sum rate (per antenna),

I(P1,1, . . . , PK ,F ) ,
1
N

FX
f=1

|Bf |P
f ′ |Bf ′ |

E

24log det

0@IN +
KX

k=1

Σ
− 1

2
f Hk,f Pk,f HH

k,f Σ
− 1

2
f

1A35 .

Determine the sum rate maximizing precoders P?
k,f

(P?
1,1, . . . , P?

K ,F ) = arg max
{Pk,f }PK

k=1 tr Pk,f≤Qf

I(P1,1, . . . , PK ,F ).

Simplifying assumptions:
Problem can be treated for each f independently. We then assume F = 1.
Taking Σ = σ2IN does not restrict generality.
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R. Couillet (Supélec, ST-Ericsson) Random Matrix Theory for Future Wireless Networks 12/11/2010 27 / 39



Exploitation: Optimal Ergodic Rate

Maximizing ergodic sum rate

Due to mobility, we wish to optimize the uplink ergodic sum rate (per antenna),

I(P1,1, . . . , PK ,F ) ,
1
N

FX
f=1

|Bf |P
f ′ |Bf ′ |

E

24log det

0@IN +
KX

k=1

Σ
− 1

2
f Hk,f Pk,f HH

k,f Σ
− 1

2
f

1A35 .

Determine the sum rate maximizing precoders P?
k,f

(P?
1,1, . . . , P?

K ,F ) = arg max
{Pk,f }PK

k=1 tr Pk,f≤Qf

I(P1,1, . . . , PK ,F ).

Simplifying assumptions:
Problem can be treated for each f independently. We then assume F = 1.
Taking Σ = σ2IN does not restrict generality.
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Exploitation: Optimal Ergodic Rate

Deterministic Equivalents of the Sum Rate

The stochastic character of Hk,f makes things difficult.

We instead find a deterministic approximation I◦(P1, . . . , PK ) for I(P1, . . . , PK ) such that

I◦(P1, . . . , PK )− I(P1, . . . , PK ) → 0

as N, n1, . . . , nK →∞, and denote

(P◦1 , . . . , P◦K ) = arg max
{Pk}

I◦(P1, . . . , PK ).

We can show
I(P?

1 , . . . , P?
K )− I(P◦1 , . . . , P◦K ) → 0.
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Exploitation: Optimal Ergodic Rate

Deterministic Equivalents: Strategy

With BN ,
PK

k=1 Hk Pk HH
k (Hk = R

1
2
k Xk T

1
2
k ), notice that

I(P1, . . . , PK ) = E
»

1
N

log det
„

IN +
1
σ2

BN

«–
= E

»Z ∞

σ2

„
1
ω
−

1
N

tr (BN + ωIN)−1
«

dω

–
= E

»Z ∞

σ2

„
1
ω
−mBN (−ω)

«
dω

–
.

It suffices to find a deterministic equivalent for mBN (z).
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Exploitation: Optimal Ergodic Rate

Final Results

R. Couillet, M. Debbah and J. W. Silverstein, “A Deterministic Equivalent for the Analysis of
Correlated MIMO Multiple Access Channels”, to appear in IEEE Transactions on Information
Theory, arXiv Preprint 0906.3667.

Theorem (Deterministic equivalent of the Stieltjes transform)

Under some mild conditions on the Rk and Tk matrices, as N, n1, . . . , nK →∞

mBN (z)−mN(z)
a.s.−→ 0

where

mN(z) =
1
N

tr

0@−z

24 KX
k=1

ēk (z)Rk + IN

351A−1

and {ēi (z)}, i ∈ {1, . . . , K}, form the unique solution to

ei (z) =
1
ni

tr Ri

0@−z

24 KX
k=1

ēk (z)Rk + IN

351A−1

ēi (z) =
1
ni

tr T
1
2
i Pi T

1
2
i

„
−z

»
ei (z)T

1
2
i Pi T

1
2
i + Ini

–«−1
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Exploitation: Optimal Ergodic Rate

Final results (2)

R. Couillet, M. Debbah and J. W. Silverstein, “A Deterministic Equivalent for the Analysis of
Correlated MIMO Multiple Access Channels”, to appear in IEEE Transactions on Information
Theory, arXiv Preprint 0906.3667.

Theorem (Deterministic equivalents of the sum rate)

Under similar conditions, with I(P1, . . . , PK ) = 1
N E log det

“
IN + 1

σ2 BN

”
and z = −σ2,

I(P1, . . . , PK )− I◦(P1, . . . , PK ) → 0

where

I◦(P1, . . . , PK ) =
1
N

log

˛̨̨̨
˛̨IN +

KX
k=1

ēk Rk

˛̨̨̨
˛̨ +

KX
k=1

1
N

log
˛̨̨̨
Ink + ek T

1
2
k Pk T

1
2
k

˛̨̨̨
− σ2

KX
k=1

nk

N
ēk ek .

It remains to maximize I◦(P1, . . . , PK ) over P1, . . . , PK with
P

k tr Pk ≤ Q.
This is obtained by iterative waterfilling

Pk and Tk have the same eigenspaces
with eig(P◦k ) = (p◦k,1, . . . , p◦k,nk

)

p◦k,i =

 
µ−

1
e◦k tk,i

!+

, e◦k = ek (P◦1 , . . . , P◦K ), µ set to satisfy
X

k

tr Pk = Q.
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Exploitation: Optimal Ergodic Rate

Simulation results
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Figure: Ergodic MAC sum rate for an N = 4 antenna receiver and K = 4 single-antenna transmitters under sum
power constraint. Every user transmit signal has different correlation patterns at the receiver, and different path
losses. Deterministic equivalents (det. eq.) against simulation (sim.), with uniform (uni.) or optimal (opt.) power
allocation.
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Perspectives and Conclusion

The road ahead

signal sensing:
optimal hypothesis tests require symmetry, are often computationally prohibitive;
situations with more side information demand simpler tests, based on eigen-structure;
more realistic scenarios with cooperation will demand a further improvement of such tests.

statistical inference:
many methods have been proposed recently (moments, direct inversion, Stieltjes transform . . . )

Stieltjes transform approach seems the most powerful;
Stieltjes transform approach suffers when separability is lost;
estimating number of sources remains.

test performance must be better evaluated;
there is room for extension to more realistic/involved models.

overlaid communications:
capacity evaluation in multi-dimensional networks is progressing fast;
optimal feedback and cooperation needs to be developed with similar random matrix tools.

Future cognitive radio communications with

open-access communications,

secondary networks coordination,

will demand

a characterization of what information to share,

a merger between random matrix theory and game theory,

a stronger effort on graph-oriented random matrix theory.
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Thank you for your attention.
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