
ANR-14-CE28-0006 RMT4GRAPH Project.

Deliverable D1:
Report on investigations at t0 + 1 year

1 Project Summary at t0 + 1 year

We first provide a summary of the research activities and contributions as of September 2016 and an update on the
technical program.

Important Note: Since the main funding of the RMT4GRAPH project concerns the hiring of a PhD student who could
not be found by October 2014 (date when the project was funded), the project was officially kicked-off on October 1st,
2015 and will be completed on September 30th, 2018.

1.1 Project Progress

Due to the one-year delay before the official project kick-off, the position of the project as of October 2016 is well ahead
of time as compared to the promised output in the original program. Notably, while the original plan was for delivery D1
to provide a mere literature review and position with respect to the project objectives, the present updated D1 delivery
shall provide more substantial inputs and results.

In detail, an important progress on the tasks T1.1 and T1.2 of WP1 was made. This progress is the consequence
of a major contribution by the PI and his collaborator Florent Benaych-Georges who published together two articles
who set the stage for an expectedly fast development of all subsequent works. This fast development was further
accelerated by the numerous high potential intern students and visitors who joined the group and contributed to the
project. We notably estimate that T1.1 is 1/2 complete and T1.2 is almost complete. Task T1.3 was not investigated
so far as our early studies did not reveal the necessity for immediate investigations in this direction. It is proposed to
replace T1.3 by the analysis of random matrices with non-linear entries, of more fundamental reach notably in neural
network applications than non-Hermitian random matrices. As for WP2, in its original description at submission time,
it is almost entirely covered. We therefore updated the content of WP2 to encompass more studies than we originally
assumed could be covered in the allotted time. Former T2.1 is almost complete and was expanded to cover new aspects
of kernel methods: semi-supervised learning and the technically more challenging support vector machines; T2.2 is also
well underway (estimated at 1/3 complete) and T2.3 has known significant developments (however restricted so far to
the less challenging linear neural network setting).

1.2 Key Outputs

The major outputs and contributions of the project can be summarized as follows.

WP1. Random Matrix Models for Random Graphs.
This work package proposes the mathematical investigation of new families of random matrices of important use in
machine learning applications. In the course of the first (unofficial) year of the project, important advances were made
in the mathematical understanding of kernel random matrices, which kick-started many of the investigations of WP2
programmed for a later time. The deeper investigation of structured spiked random matrix models naturally unfolded.
In parallel, an (off-project opportunistic) neural network investigation was carried out which also kick-started parts of
the project themes and naturally led to the development of a new project branch on random matrices with non-linear
or recursively defined entries.

• Task 1.1. Kernel random matrix models. By assuming a properly scaled Gaussian-mixture for the input of a
kernel random matrix model, we proved that a concentration effect emerges by which the kernel can be linearised
by Taylor series expansion. This linearisation produces an asymptotically close approximation of the kernel matrix
which, if not completely standard in classical random matrix studies, is amenable to theoretical analysis. This
constitutes a major breakthrough which allows for the understanding of many kernel methods in machine learning
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when applied to Gaussian mixture inputs.
−→ This study unfolded in two major publications [1, 2] in the Electronic Journal of Statistics (EJS) and ESAIM:
Probability and Statistics. Many invited talks were solicited on these articles.

• Task 1.2. Hermitian models and spikes. The objective of the task is a deeper study of certain models of
spiked random matrices, notably those models exhibiting strong structures such as finitely many classes of vector
distributions (as in Gaussian mixtures). The latter models present eigenvectors looking like noisy staircase vectors;
the objective is to quantity the staircase levels and the noise variances as a function of the deterministic system
parameters. As a follow-up of the preliminaries of the works [1, 2], we obtained such quantitative relations and
notably obtained a limiting multivariate Gaussian behavior for the dominant so-many eigenvectors of such models.
−→ This study was exploited both in publications to kernel clustering [1] and community detection in graphs [3].

• Task 1.3. Random matrices with non-linear or recursive entries. (formerly “Task 1.3. Non-Hermitian
random matrix models”). This task, initially dedicated to non-Hermitian random matrices, was motivated by
several aspects of neural networks (such as stability related to largest isolated eigenvalues) as well as community
detection on non-symmetric graphs (with notably the non-backtracking operator method). However, the former
aspect is a very specific qualitative rather than quantitative aspect of neural networks, disrupting the flow of
our quantitative investigation of the performance of neural networks, while the latter non-backtracking operator
turned out to be recently supplanted by a more powerful Hermitian operator (the Bethe Hessian matrix). In the
meantime, very recent developments within our group working in neural networks put forth the need for a deeper
investigation of matrices with recursive dependence between columns or with non-linear entries (however not in
the simpler form of kernels of large vectors). Advances were made in the study of random matrices with recursively
defined columns, however only so far in the linear setting.
−→ The main outcome of this study is the understanding of the performance of the recursively defined echo-state
networks [4].

WP2. Applications to Big Data Processing.
This work package involves the applications of the mathematical toolbox comprising the outcomes of WP1. Our main
findings in this respect are threefold: an immediate application to kernel spectral clustering unfolding from the study
of kernel random matrices, a parallel application of T1.2 to community detection on realistic random graphs, and an
application to the results of T1.3 to the performance analysis of linear echo-state networks.

• Task 2.1. Applications to machine learning. The spectral analysis of large dimensional kernel random
matrices, based on Gaussian mixture inputs, provided an asymptotic tractable random matrix equivalent of the
kernel matrices, from which the existence of isolated (spiked) eigenvalues was studied. This allowed us to exhibit
a phase transition phenomenon below which clustering is asymptotically impossible. Beyond the phase transition
though, the eigenvectors associated with the spiked eigenvalues carry structural information under the form of a
noisy staircase aspect of these eigenvectors. A thorough investigation of the plateaus and joint fluctuations of the
eigenvectors about these plateaus allowed for a precise estimation of the probability of correct clustering. More
importantly, although the study is confined to idealistic Gaussian inputs, the application to actual image datasets
revealed a sharp connection between theory and practice, thereby providing strong indication of the usefulness of
our results to actual large dimensional data clustering. A further application to the specific context of subspace
clustering (for which a whole new study was made under a different convergence rate) was also performed.
−→ These results are reported in [1, 5].

• Task 2.2. Signal processing on graphs. Paralleling the study of kernel methods, but still exploiting the
developments on structured spiked random matrix models, we obtained new results on community detection on
dense “realistic” graphs. That is, assuming a network with communities and heterogeneous degree distribution for
each node, we derive a family of modified spectral clustering algorithms (depending on a regularization parameter
to handle the deleterious effects of degree heterogeneity), the performance of which is thoroughly studied as the
number of nodes tends to infinity. An on-line method is further derived which selects among the (asymptotically)
most appropriate regularization parameter. Comparisons to state-of-the-art methods suggest strong advantages of
our novel method and comparable performance in benchmark community detection networks.
−→ Early results have been published in [3].

• Task 2.3. Neural networks. (formerly restricted to “Task 2.3. Echo-state neural networks”) In the scope
of an informal collaboration with the computer science department of ENS Paris, a performance study of linear
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echo-state networks was performed, which allows to understand some underlying mechanisms of recurrent neural
networks. Echo-state networks are convenient to study as opposed to traditional recurrent neural networks as they
suppose neuronal connections to be all fixed but for the output layer which is learned by linear regression: while
not capable of performing tremendous tasks like back-propagated networks, this setup ensures stability and few
hyper-parameters to be tuned. Our initial studies, restricted to (the least interesting) linear networks, provide
strong insights and quantitative figures on the adequate tuning of the hyper-parameters and reveal an enhanced
notion of memory capacity of the network.
In the course of this study, it turned out that the major difficulty in addressing neural networks performance lies
primarily, not in the involved recursive nature of networks such as echo-state networks, but rather in the non-
linearity of the neuronal activations (which cannot be handled via Taylor series expansions as for kernel random
matrices), therefore shifting our investigation from echo-state networks to the much broader scope of neural
networks, starting with the simplest extreme learning machines to then move on to more involved structures,
hence the change of objectives in Task 2.3.
−→ These results are reported in [6, 7].

Publications and Dissemination.

As of September 2016, the number of publications falling in the scope of the RMT4GRAPH project, submitted
articles and on-going works apart, is of 5 conference articles and 2 journal articles. These are listed below.

Published Journal Articles.

• R. Couillet, F. Benaych-Georges, “Kernel Spectral Clustering of Large Dimensional Data”, Electronic Journal of
Statistics, vol. 10, no. 1, pp. 1393-1454, 2016.

• F. Benaych-Georges, R. Couillet, “Spectral Analysis of the Gram Matrix of Mixture Models” (in Press), ESAIM:
Probability and Statistics, 2016.

Published Conference Articles.

• R. Couillet, G. Wainrib, H. Sevi, H. Tiomoko Ali, “A Random Matrix Approach to Echo-State Neural Networks”,
International Conference on Machine Learning (ICML), New York, USA, 2016.

• A. Kammoun, R. Couillet, F. Pascal, M. Slim-Alouini, “Optimal Design of Adaptive Normalized Matched Filter
For Large Antenna Arrays”, IEEE Statistical Signal Processing Workshop (SSP), Palma de Majorca, Spain, 2016.

• R. Couillet, G. Wainrib, H. Sevi, H. Tiomoko Ali, “Training performance of echo state neural networks”, IEEE
Statistical Signal Processing Workshop (SSP), Palma de Majorca, Spain, 2016.

• H. Tiomoko Ali, R. Couillet, “Performance analysis of spectral community detection in realistic graph models”,
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’16), Shangai, China, 2016.

• R. Couillet, F. Benaych-Georges, “Understanding Big Data Spectral Clustering”, IEEE International Workshop
on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP’15), Cancun, Mexico, 2015.

In terms of dissemination, many actions were already undertaken: class lectures in master programs, larger audience
workshops, special sessions, invited talks, special issues, etc. The most important of those actions are listed next.

• Joint ANR-DIONISOS and ANR-RMT4GRAPH Summer School on “Large Random Matrices and
High Dimensional Statistical Signal Processing” (Telecom ParisTech, June 7-8, 2016). In this two-day
joint event co-organized by the ANR DIONISOS and the ANR RMT4GRAPH, lectures on advances of random
matrix theory in signal processing and machine learning were proposed to a large audience, mostly composed
of researchers in France. The summer school was consituted of four 3h-courses as follows: (i) Jamal Najim:
Introduction to large random matrix theory, (ii) Philippe Loubaton: Large random matrices for array processing,
(iii) Abla Kammoun: Robust estimation in large systems, (iv) Romain Couillet: Random matrices and machine
learning.
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• Special Session “Random matrices in signal processing and machine learning” at the Statistical
Signal Processing Workshop (SSP’16). A special session at the 2016 Statistical Signal Processing Workshop
(SSP’16), Palma de Majorca (Spain), was organized by the PI. The session was composed of 7 poster presentations
(ranging from theoretical random matrix theory to applications to machine learning and array processing).

• Distinguished keynote speaker at EUSIPCO 2016. The early results of the ANR-RMT4GRAPH project
were presented in a large audience at the European Signal Processing Conference (EUSIPCO) in September 2016,
as part of the STATOS Thematic Workshop on Machine Learning and BigData. The PI was there invited as a
distinguished keynote speaker.

• Special Issue on Random Matrices in “Revue du Traitement du Signal”. A special issue on Random
Matrices and its applications to signal processing and machine learning was edited by the PI. The special issue
contains 6 articles ranging from introduction to basic notions of random matrices to advanced applications in
robust statistics and machine learning.

• Invited talks and contributions to local events. As a follow up of some of the key publications above, several
invited talks were given by the PI and co-authors (to ENS Paris twice, to ENS Lyon twice, to the University of
Orsay, etc.). A willingness to broadcast the results of RMT4GRAPH was also ensured by proposing talks in
various GdR and local meetings.

1.3 Updated Program and Timeline

As previously mentioned, the main changes in the program and timeline are as follows:

• Task 1.3. The topic of Task 1.3 was altered from “Non-Hermitian random matrix models” to “Random Matrices
with non-linear or recursive entries”. While we do not exclude the study of non-Hermitian random matrix models,
especially in the context of (the adjacency matrix of) directed graphs, a more pressing need for the study of
random matrices with non-linear entries (and possibly recursive) appeared in our early investigations of neural
networks. Our initial assumption was that non-linear neural networks would behave similar (from a mathematical
viewpoint) to kernel random matrices in allowing for Taylor expansions of the non-linearities; thus Task 1.1 was
deemed sufficient for the development of applications within Task 2.3. This turned out not to be a valid guess,
which opens a new avenue of research in the direction of random matrices with non-linear entries. Very recent
calculus suggest that this direction, although technically complex at the onset, promises strikingly new results of
deep importance to machine learning as a whole. The less challenging but equally needed recursive aspect of the
new task (mandatory for the study of recurrent neural networks) has already been opened and provided its first
results.

• Task 2.3. A collaboration with colleagues at ENS Paris accelerated the progress of Task 2.3 for which several
publications appeared and a journal article has been submitted. Although restricted to the linear setting so far
(due again to the lack of mathematical methods at this point to handle the more interesting non-linear case),
these publications constitute a major piece of the originally promised outputs for Task 2.3. As such, we decided
on an extension of this task to more general purpose neural networks. To be more exact, since the mathematical
key resides in tackling random matrices with non-linear entries, Task 2.3 shall now be organized in a natural
progression from the study of elementary non-linear neural networks (such as the single-layer extreme learning
machine) down to more elaborate settings.

As a consequence of the full exploitation of the one-year delay allowed by the ANR to kick-off the project (which
followed from the impossibility to find an appropriate PhD student in time), the PI made significant progress on the
technical program prior to the project official kick-off date. This (positively) shifted the project time frame towards earlier
results and findings than initially assumed. In particular, Work Package 2, which we assumed could not be provided
with any input before conclusive technical results are achieved within Work Package 1, already contains significant
contributions. In the figure below are depicted in pale red the modifications to the initial program and timeline.
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WP1

WP2

Task 1.1

Task 1.2

Task 1.3

Task 2.1

Task 2.2

Task 2.3

Deliverables D1 D2 D3

1.4 Research Group

As argued in the project proposal, the ANR RMT4GRAPH funding serves as a springboard to the building of a research
group focusing on the study of large dimensional machine learning tools and methods. Along with external fundings,
collaborative works and student exchanges, we are happy to say that this objective is already well underway, after only
one year within the project duration. As of today, eight PhD and intern students have contributed to the project, with
a culminating current five students within the team.

The students, collaborators and contributions (all related to the topic scope of the ANR RMT4GRAPH but not
necessarily falling within an ANR support) are listed below.

1.4.1 Collaborators.

The collaborations below all are all informal and do not in particular fall within any funding from the ANR. Nonetheless,
the ANR-RMT4GRAPH project is a strong driver of incentives to open up collaborations to research centers sharing
common scientific interests. This is in particular the case with Professor Benaych-Georges on kernel random matrices
as well as Assistant Professor Gilles Wainrib on (echo-state) neural networks.

• Florent Benaych-Georges (professor at Université Paris Descartes), on kernel random matrices.

– 2 journal articles (EJS, ESAIM Probability and Statistics)

– 1 conference article (CAMSAP 2015)

• Gilles Wainrib (assistant professor at ENS Paris), on neural networks.

– 2 conference articles (ICML 2016, SSP 2016)

– 1 journal article submitted (JMLR)

• Matthew M. McKay (professor at Hong Kong UST), on sparse PCA and applied robust estimation.

– 1 journal article (IEEE-TSP)

– 2 conference article (CAMSAP 2015, SSP 2016)

• Abla Kammoun (research scientist at KAUST), on subspace clustering and robust estimation.

– 1 conference article (Asilomar 2016)

– 1 journal article under preparation.
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1.4.2 Students.

All the students listed below have worked on topics covered by the ANR-RMT4GRAPH project. Hafiz Tiomoko Ali is
the only “permanent” PhD student of the group, funded himself by the RMT4GRAPH grant.

• Hafiz Tiomoko Ali (PhD student under RMT4GRAPH grant, sep. 2015-2018), on community detection and
neural networks.

– 4 conference articles (ICASSP 2015, Asilomar 2016, ICML 2016, SSP 2016)

– 1 journal article submitted (JMLR)

– 1 journal article under preparation (JMVA)

• Xiaoyi Mai (intern, under ERC-MORE grant, 2016), on large dimensional semi-supervised learning performance.

– Prospective PhD student within the group

– 1 conference article under preparation (ICASSP 2017)

• Zhenyu Liao (intern, under ERC-MORE grant, 2016), on large dimensional support vector machines performance.

– Prospective PhD student within the group

– 1 conference article under preparation (ICASSP 2017)

• Cosme Louart (intern, under ERC-MORE grant, 2016), on neural networks and random matrices (extreme
learning machines).

– 1 conference article under preparation (ICASSP 2017)

• Harry Sevi (intern, under ERC-MORE grant, 2015), on recurrent (echo-state) neural networks.

– 2 conference articles (ICML 2016, SSP 2016)

– 1 journal article submitted (JMLR)

• Liusha Yang (PhD student, visiting from HKUST, 2015), on financial applications of robust estimation.

– Visiting student from Hong-Kong UST

– 2 conference articles (Asilomar 2014, CAMSAP 2015)

– 1 journal article (IEEE-TSP)

• Evgeny Kusmenko (PhD student under ERC-MORE grant, jan. 2015-dec. 2015), on spectral clustering meth-
ods.

• Aymeric Thibault (intern, under ERC-MORE grant, 2015), on eigenvectors of sample covariance matrices,
applied to clustering.

2 Technical Aspects

2.1 Random Matrix Methods (within Tasks 1.1 and 1.2)

2.1.1 Kernel Random Matrices

Motivated by a large family of applications in machine learning tools using kernel representations, this section deals
with the asymptotic behavior of the random kernel matrix

K ≡ {κ (xi, xj)}ni,j=1

where κ(x, y) is some affinity function between the vectors x ∈ Rp and y ∈ Rp. Two types of kernel functions are common
in the literature: (i) the radial kernel with κ(x, y) = f(‖x− y‖2) and (ii) the inner product kernel κ(x, y) = f(xTy), for
some function f .
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Our interest is here on the more popular (and technically more involved) radial kernel. Precisely, with an added
normalization for simplicity of exposition, we consider the kernel matrix:

K ≡
{
f

(
1

p
‖xi − xj‖2

)}n
i,j=1

where f will be taken smooth enough (precisely, we shall request it to be at least three times differentiable).
The objective is to study the asymptotic behavior of K as n, p→∞ with p/n away from zero and infinity, when the

vectors xi are independent random vectors extracted from a Gaussian mixture of k classes. Precisely, we assume that
there exist k classes C1, . . . , Ck, and that x1, . . . , xn1

∈ C1, up to xn−nk
, . . . , xn ∈ Ck, where

x ∈ Ca ⇔ x ∼ N (µa, Ca).

For simplicity, we also assume that, for each a, na = |Ca| is such that na/n remains away from zero as n→∞.

Since the ultimate goal is to study the performance of spectral clustering, support vector machines, or semi-supervised
learning methods based on kernels, our interest is precisely focused on the case where the classes are barely distinguishable.
That is, we shall enforce that, as n, p→∞, the probability to state that xi belongs to its proper class, based solely on
matrix K, should not tend to one (and obviously, should not always be zero). A careful study of the matrix K reveals
that the proper conditions for this to be achieved is that the following growth rates be simultaneously ensured.

Assumption 1 (Growth Rate) As n→∞, the following conditions hold.

1. Data scaling: defining c0 , p
n

0 < lim inf
n

c0 ≤ lim sup
n

c0 <∞

2. Class scaling: for each a ∈ {1, . . . , k}, defining ca , na

n ,

0 < lim inf
n

ca ≤ lim sup
n

ca <∞.

We shall denote c , {ca}ka=1.

3. Mean scaling: let µ◦ ,
∑k
i=1

ni

n µi and for each a ∈ {1, . . . , k}, µ◦a , µa − µ◦, then

lim sup
n

max
1≤a≤k

‖µ◦a‖ <∞

4. Covariance scaling: let C◦ ,
∑k
i=1

ni

n Ci and for each a ∈ {1, . . . , k}, C◦a , Ca − C◦, then

lim sup
n

max
1≤a≤k

‖Ca‖ <∞

lim sup
n

max
1≤a≤k

1√
n

trC◦a <∞.

For further use, we add the definition

τ ,
2

p
trC◦.

This quantity is important since it is easily shown that, under Assumption 1,

max
1≤i,j≤n
i 6=j

{
1

p
‖xi − xj‖2 − τ

}
→ 0 (2.1)

almost surely. This result is at the same time mathematically extremely interesting as it shall allow for a natural Taylor
expansion of all (non-diagonal) entries of K around the limiting τ but is quite intriguing on the onset. Indeed, since
all entries of K have the same limit, it seems unlikely that one can retrieve the class-indentity of the xi’s from K.
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This is however made possible thanks to a “redundancy” effect within K that shall bring forward structured dominant
eigenvectors containing the class information.

To proceed with the Taylor expansion of the matrix K, note that it is fundamental not to control the residual
matrix terms through the amplitude of their respective entries but through their operator norms. As such, while
entries are individually Taylor expanded, what matters most in the approximation lies in the spectral norm of the
successively obtained matrices. This leads to non obvious (and rather painstaking) calculus. As an example, note
that, letting X = {Xij}ni,j=1 be a matrix with, say, Xij N (0, 1), it is well-known that ‖X‖ = O(

√
n), while if instead

Xij = 1 (therefore of the same order of magnitude as if N (0, 1)), then ‖X‖ = n and the two obtained matrices are not
comparable in norm while their entries have comparable amplitudes. In performing this Taylor development, we follow
here the tracks of [8] who first proposed the study of kernel random matrices, however only for matrices [x1, . . . , xn]
with i.i.d. zero mean columns (in our case, this corresponds to a single-class scenario with µ1 = 0).

With this in mind, let xi = µa +
√
pwi, with wi ∼ N (0, 1

pCa), whenever xi ∈ Ca. Then, we start by writing, for
xi ∈ Ca and xj ∈ Cb,

1

p
‖xj − xi‖2 = ‖wj − wi‖2 +

1

p
‖µb − µa‖2 +

2
√
p

(µb − µa)T(wj − wi)

= τ +
1

p
trC◦a +

1

p
trC◦b + ψj + ψi − 2wT

i wj

+
‖µb − µa‖2

p
+

2
√
p

(µb − µa)T(wj − wi)

in which we introduced the value ψi = ‖wi‖2 − 1
p trCa (for xi ∈ Ca). The object of this development is to introduce

redundant information which, at the scale of the matrix K, shall play leading role in the dominant eigenspaces. This
information is encapsulated in the deterministic values ‖µb − µa‖, trC◦a , etc., which appear in large blocks of size
na × nb in K. As for residues such as ψi, they are zero mean random variables independent across i and thus bring no
redundancy.

At this point, we then need to evaluate the respective orders of amplitudes of each term in the expansion of 1
p‖xj−xi‖

2

before applying the f function to it. Clearly (as as mentioned earlier), τ is the only term of non-vanishing order, and
thus the Taylor expansion can be performed around τ . This means that, τ aside, all terms in the above formula shall
be brought to successive powers. The operator norm of the resulting matrices will need to be individually evaluated,
resulting finally, after intensive calculus and book-keeping, to the following main result which we only present in the
case where f ′(τ) is away from zero (other results are available in the other case).

Theorem 1 (Asymptotic Approximation for K) In addition to Assumption 1, assume that f ′(τ) remains bounded
and bounded away from zero as n→∞. Then the following holds

K = −2f ′ (τ)
(
PWTWP + V AV T

)
+ (f(0)− f(τ) + τf ′(τ))In +O‖·‖(n

− 1
2 )

where V is the n× (2k + 4) matrix defined by

V ,

[
J
√
p
, v1, . . . , vk, ṽ, ψ

◦,
√
p(ψ)2,

√
pψ̃

]
va , PWTµ◦a

ṽ ,
{

(WP )Taµ
◦
a

}k
a=1

ψ̃ , diag

({
ta

1na√
p

}k
a=1

)
ψ

with P = In − 1
n1n1Tn, W = [w1, . . . , wn], (ψ)2 the vector with entries ψ2

i , Ya ∈ Rp×na the class-Ca submatrix of Y and
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A , An +A√n +A1, with An, A√n and A1 the symmetric matrices

An , − f(τ)

2f ′(τ)
p

[
1k1′k 0k×k+4

∗ 0k+4×k+4

]

A√n , −1

2

√
p


{ta + tb}ka,b=1 0k×k 0k×1 1k 0k×1 0k×1

∗ 0k×k 0k×1 0k×1 0k×1 0k×1

∗ ∗ 0 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0



A1 ,



A1,11 Ik −1k − f ′′(τ)
2f ′(τ) t −

f ′′(τ)
4f ′(τ)1k − f ′′(τ)

2f ′(τ)1k
∗ 0k×k 0k×1 0k×1 0k×1 0k×1

∗ ∗ 0 0 0 0

∗ ∗ ∗ − f ′′(τ)
2f ′(τ) 0 0

∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0


A1,11 =

{
−1

2
‖µb − µa‖2 −

f ′′(τ)

4f ′(τ)
(ta + tb)

2 − f ′′(τ)

f ′(τ)

1

p
trCaCb

}k
a,b=1

.

The theorem suggests that, aside from a shift by a proportion of the identity matrix, K can be well approximated
by a “sort of” spiked random matrix model. This model differs from the classically studied spiked models in that:

1. the matrix PWTWP is not a straightforward sample covariance matrix model (a model well explored under the
spiked hypothesis [9, 10]) as the columns of W are not identically distributed; in fact, PWTWP may itself be
seen as a spiked model as P introduced an isolated eigenvalue (but this has little consequences in our follow-up
investigations);

2. the “information matrix” V AV T also contains noise terms, usually not a considered setting; more technically
challenging, these noise terms are not independent of W ;

3. the matrix V AV T contains terms of much higher orders than PWTWP , which on the onset poses important
problems of generalization of classical spiked proof methods [11].

As shall be seen in the subsequent sections, while the spiked study of K is non trivial, alterations of K, as proposed
in the machine learning literature (notably the normalized kernel matrix D−

1
2KD−

1
2 where D = diag(K1n)), do not

suffer all the problems of K itself. In particular, we shall see that the most problematic item 3) above is no longer a

difficulty with the matrix D−
1
2KD−

1
2 .

2.1.2 Structured Spiked Models

Spiked models appear naturally in machine learning methods, where they are often used in so-called spectral methods.
A spectral method consists in general of the following multi-step approach:

1. Given data x1, . . . , xn (these could be vectors that one wishes to cluster or nodes of a graph from which communities
should be extracted), form an affinity matrix A ∈ Rn×n with Aij evaluating the proximity between xi and xj . In
particular, A may be a graph adjacency of (normalized, unnormalized) Laplacian matrix, or the (normalized or
unnormalized) affinity kernel of vectors x1, . . . , xn.

2. Extract the so many dominant eigenvectors v1, . . . , v` of A, where by dominant we mean those corresponding to
extreme (smallest or largest in general) eigenvalues. The exact count of how many are needed is often directly
related to the number of classes one needs the data to be shared into, although, as we shall subsequently see, this
may not be the case.

3. Construct the matrix V = [v1, . . . , v`] ∈ Rn×` and, up to a possible additional row normalization, proceed to a
popular low-dimensional clustering of the rows of A, seen as n vectors in R`, in k classes. Popular clustering
methods are k-means, or EM (expectation maximization, which assumes the n vectors in R` are issued from a
multivariate Gaussian mixture).
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4. The result of the clustering provides classes for the data x1, . . . , xn.

Our interest is to understand why such procedures work out and what are their limits. More precisely, under the
various settings of investigation (community detection over graph or kernel spectral clustering), the interest is set over
a refined analysis of the content of the dominant eigenvectors. Classical spiked model (say Y = X + B with B the low
rank perturbation and X a noise matrix) analyses are usually restricted to showing (i) the existence of finitely many
isolated eigenvalues in Y outside a main bulk of close-by eigenvalues, and (ii) that the eigenvectors associated with these
eigenvalues are somehow aligned to the deterministic eigenvectors of B (but orthogonal when the eigenvalues are not
isolated). This raises a notion of phase transition by which, beyond a certain threshold, some eigenvalues tend to isolate
and the eigenvectors associated with these eigenvalues are all the more correlated to B that the eigenvalues are far from
the others.

In the applicative context of clustering, this shall carry an important piece of information: below some data-dependent
threshold, clustering will be asymptotically impossible using spectral methods as no relevant information is carried within
the dominant eigenvectors. However, the fact the mere information that dominant eigenvectors “correlate to some extent”
to the eigenvectors of B will not provide us with an accurate enough measure of performance of spectral clustering. To
this end, we need extra investigation. Precisely, in the context of a k-class clustering, the dominant eigenvectors take
the form of noisy step functions, each step being mapped to one of the k classes. Our additional investigation then
consists in:

1. evaluating the average level of each plateau of the eigenvector step functions

2. studying the fluctuations around each plateau average: in the simplest cases, each eigenvector entry within a given
class fluctuates like a Gaussian random variable with a given (class-dependent) variance; in more advanced settings
(such as in heterogeneous graphs), individual entries fluctuate with their own variance.

Let us place ourself in a generic spiked model context Y = X + B ∈ Rn×n, where B is a finite-rank ` matrix and
X a rank O(n)-rank matrix, possibly dependent of B. Both matrices are supposed to be of operator norm O(1). The
relevant information is further supposed to be carried within the eigenvectors of B and, as n→∞, we assume that the
eigenvalues of X converge to (one or several) connected components.

Assuming that the dominant eigenvectors of Y will be shaped as step functions with steps of sizes n1, . . . , nk
(
∑k
a=1 na = n), we may then write an individual eigenvector uYi (say, the i-th dominant eigenvector of Y ) as

uYi =

k∑
a=1

αia
ja√
na

+ σiaω
i
a

where ja ∈ Rn is the indicator vector for the indices of plateau a (or class Ca), ωia ∈ Rn is a random vector, orthogonal
to ja, of unit norm, supported on the indices of Ca, where its entries are identically distributed. The scalars αia ∈ R and
σia ≥ 0 are the coefficients of alignment to ja and the standard deviation of the fluctuations around αia

ja√
na

, respectively.

Assuming when needed unit multiplicity for the eigenvalue associated with uYi , our objective is now twofold:

1. Class-wise Eigenvector Means. We first wish to retrieve the values of the αia’s. For this, note that

αia = (uYi )T
ja√
na
. (2.2)

We shall evaluate these quantities by obtaining an estimator for the k×k matrix 1
pJ

TûTi û
T
i J with J = [j1, . . . , jk] ∈

Rn×k. The diagonal entries of the latter will allow us to retrieve |αia| and the off-diagonal entries will be used to
decide on the signs of αi1, . . . , α

i
k (up to a convention in the sign of uYi ).

As per classical spiked model analysis, each isolated eigenvalue-eigenvector pair (λYi , u
Y
i ) is mapped to a corre-

sponding eigenvalue-eigenvector pair (λBi , u
B
i ) of matrix B (for simplicity, let us take λBi of unit multiplicity).

Then the evaluation of αia can be performed based on the Cauchy integral relation

1

n
jTa u

Y
i (uYi )Tja = − 1

2πı

∮
Γi

1

n
jTa (Y − zIn)

−1
jadz

10



for Γi a complex contour circling around λYi . A formal analysis of quadratic forms of the type dT(Y − zIn)−1d,
exploiting in particular Woodbury’s identity (Y − zIn)−1 = Q−QUB(I` +V T

BQUB)−1V T
BQ with Q = (X− zIn)−1

and for some UB ∈ Rn×`, VB ∈ Rn×` such that UBV
T
B = B, allows one to relate 1

nj
T
a u

Y
i (uYi )Tja to deterministic

functions of the resolvent Q of the matrix X. The method of deterministic equivalents [12, 13] provides asymptotic
deterministic approximations for objects of the type dT1Qd2, which finally provides a deterministic complex integral
representation for 1

nj
T
a u

Y
i (uYi )Tja. The evaluation of this resolvent can be made explicit using a residue calculus

approach, which completes the method.

2. Class-wise Eigenvector Inner and Cross Fluctuations. Our second objective is to evaluate the quantities

σi,ja ,

(
uYi − αia

ja√
na

)T

D(ja)

(
uYj − αja

ja√
na

)
= (uYi )TD(ja)uYj − αiaαja

between the fluctuations of two eigenvectors indexed by i and j on the subblock indexing Ca, where D(x) ≡ diag(x).
In particular, letting i = j, σi,ia = (σia)2 from the previous definition (2.2). For this, it is sufficient to exploit the
previous estimates and to evaluate the quantities (uYi )TD(ja)(uY )j . But, to this end, for lack of a better approach,
we shall resort to estimating the more involved object

1

n
JTuYi (uYi )TD(ja)uYj (uYj )TJ

from which (uYi )TD(ja)uYj can be extracted by division of any entry m, l by αimα
i
l .

The actual computation of 1
nJ

TuYi (uYi )TD(ja)uYj (uYj )TJ can be obtained via a double complex integral using twice
the Cauchy theorem

1

n
JTuYi (uYi )TDauYj (uYj )TJ = − 1

4π

∮
Γi

∮
Γj

1

n
JT(Y − zIn)−1Da(Y − z̃In)−1J dzdz̃

which is treated similarly as above using twice the Woodbury identity and requiring now to obtain deterministic
equivalents for quantities of the type dT(X − zIn)−1D(X − z̃In)−1d for deterministic vector and matrix d, D.

This general approach is exploited in both sections below concerning kernel spectral clustering and community
detection on graphs.

2.2 Kernel Spectral Clustering (within Task 2.1)

In this section, exploiting the mathematical results on both the large dimensional approximation of kernel matrices
and the dominant eigenvectors of structured random matrix models, we discuss the study of so-called kernel spectral
clustering methods. Most particularly, our focus is on the popular Ng–Weiss–Jordan algorithm [14] which consists in
performing spectral clustering on the matrix

L = nD−
1
2KD−

1
2

where D = diag(K1n) and n is used here as a (practically irrelevant) normalization factor. Many different matrix
structures have been disputed in the machine learning literature (see [15, 16] for a review). Our own motivation for the
study of L above is driven by the observation that, in the limit n, p→∞, aside from the main dominant eigenvalue of
L equal to n and of unit multiplicity, all other eigenvalues are of order O(1). Besides, the eigenvector associated with

the eigenvalue n is exactly known to be D
1
2 1n. Therefore, the spectral study of L reduces to the study of D

1
2 1n on the

one hand, and of the (more interesting) matrix

L′ ≡ L− nD
1
2 1n1TnD

1
2

1TnD1n
(2.3)

on the other.
We consider the k-class mixture Gaussian setting of Section 2.1.1. Using the results in Section 2.1.1 and the

approach consisting in controlling operator norms of the various matrices in play, we easily find that D is a diagonal
matrix dominated by nf(τ) in the first order, which is then easily developed in Taylor series, and similarly for Dα for

any α. This further allows to evaluate the matrix D
1
2 1n1TnD

1
2 , the scalar 1TnD1n and its inverse, to finally retrieve (after

further painstaking calculus) the approximation for L′ as follows.
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Theorem 2 (Random Equivalent for L′) Let Assumption 1 hold and L′ be defined as in (2.3). Then, as n→∞,∥∥∥L′ − L̂′∥∥∥→ 0

almost surely, where L̂′ is given by

L̂′ , −2
f ′(τ)

f(τ)

(
PWTWP + UBUT

)
+ 2

f ′(τ)

f(τ)
F (τ)In

with F (τ) = f(0)−f(τ)+τf ′(τ)
2f ′(τ) and

U ,

[
1
√
p
J, PWTM,ψ

]

B ,


B11 Ik − 1kc

T
(

5f ′(τ)
8f(τ) −

f ′′(τ)
2f ′(τ)

)
t

Ik − c1Tk 0k×k 0k×1(
5f ′(τ)
8f(τ) −

f ′′(τ)
2f ′(τ)

)
tT 01×k

5f ′(τ)
8f(τ) −

f ′′(τ)
2f ′(τ)


B11 = MTM +

(
5f ′(τ)

8f(τ)
− f ′′(τ)

2f ′(τ)

)
ttT − f ′′(τ)

f ′(τ)
T +

p

n
F (τ)1k1Tk

where we defined the deterministic matrices and vectors

M , [µ◦1, . . . , µ
◦
k] ∈ Rp×k

t ,

{
1
√
p

trC◦a

}k
a=1

∈ Rk

T ,

{
1

p
trC◦aC

◦
b

}k
a,b=1

∈ Rk×k

and the case f ′(τ) = 0 is obtained through extension by continuity (f ′(τ)B being well defined as f ′(τ)→ 0).

Of interest here is the fact that both PWTWP and UBUT are matrices of operator norm O(1), with U ∈ Rn×(2k+1)

of finite rank (but not in general of rank k). The following important comments can be made:

• the eigenvectors of UBUT are related to the matrix J = [j1, . . . , jk] of the class-wise canonical vectors;

• the coefficients in B, which serve as “weights” on the vectors, depend on the following properties of the classes:
their means M , their covariance traces t and their cross-covariance traces T ;

• more importantly, the major drivers for the success or failure of spectral clustering are the values of the successive
derivative of f evaluated at τ ;

• for f ′′(τ) = 0, T is discarded and therefore has no impact on the clustering; similarly, for f ′(τ) = 0, M is discarded
and has no impact; finally, for 5f ′(τ) = 4f ′′(τ), t is discarded and then plays no role in clustering.

As pointed out previously, the study of the eigenvectors of L then boils down to (i) the study of D
1
2 1n and (ii) the

study of the eigenvectors in the spiked random matrix model PWTWP + UBUT. These results take on involved forms
and do not provide further insights in themselves on the performance of spectral clustering. These are documented in
full in [1] and the companion article [2].

Of particular interest though is the application of our analysis to realistic spectral clustering. Indeed, while our study
focuses on a Gaussian mixture assumption for the vectors x1, . . . , xn, practical applications of spectral clustering concern
the classification of images, time series, etc., which have no reason to be close to Gaussian vectors. In the second part of
our study, we apply the theoretical results to the popular MNIST database clustering. That is, considering here images
of zeros, ones and twos as the vectors xi (as depicted in Figure 1), we apply spectral clustering à la Ng–Weiss–Jordan
and compare the empirical results to the theoretical results that one would obtain if the xi’s were truly Gaussian vectors
with means and covariances computed empirically from the 60, 000 images of the training database.
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Figure 1: Samples from the MNIST database.

The results are provided in Figure 2 which depicts the four dominant eigenvectors of a snapshot of n = 192 evenly
divided images versus the theoretical findings if the (vectorized) images were truly Gaussian vectors. These vectors (call
them u1, . . . , u4) are then collected into a matrix U = [u1, . . . , u4] the rows of which are used to perform clustering
using k-means or EM. Since a four-dimensional representation is not practical, we depict in Figure 3 the 2-dimensional
representations of [u1, u2] and [u2, u3]. In both figures are provided in blue lines the means and one- (and two-) standard
deviations obtained theoretically.

An astounding closeness is observed between theory and practice while, we recall, the dataset under investigation is
far from a family of Gaussian vectors. This strongly suggests that our study, although initially motivated by a deeper
understanding of the inner mechanism of spectral clustering, appropriately models more exotic datasets. As a matter of
fact, it is quite intuitive from our analysis to understand the following phenomenon: real datasets that are difficult to
cluster are inherently separable in the first place through their differences in empirical means, and then, if not enough,
through their differences in second-order statistics. When f ′′(τ) = 0, only the first order statistics play a significant
role, which explains the shortcomings of classical approaches based on principal component analysis. However, when
refining the function f so to push forward more differences visible only in second orders, more advanced clustering can
be realized, hence the need for more elaborate kernels, such as Gaussian kernels f(t) = exp(−t2/σ2).

Further comments and analyses are made in the complete version of the article [1].

Figure 2: Leading four eigenvectors of L (red) versus L̂ (black) and theoretical class-wise means and standard deviations
(blue); MNIST data.
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Figure 3: Two dimensional representation of the eigenvectors one and two (top) and two and three (bottom) of L, for
the MNIST dataset. In blue, theoretical means and one- and two-standard deviations of fluctuations.
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2.3 Community Detection on Graphs (within Task 2.2)

The investigation under this task is the study of community detection algorithms, a subject of heavy interest today in
network mining [17]. Community detection algorithms on graphs are meant to find hidden clusters (based on closed
similarities between the nodes) from an observation of the nodes links on this graph. Spectral algorithms, whose steps
have been described in Section 2.1.2, are one of the popular methods to discover those hidden clusters. Our objective is
to understand the performances and limits of those spectral methods, usually based on different normalizations of the
adjacency (or modularity) matrix, on more realistic structured graph models. Most of the works in community detection
consider the basic model for community structured graphs, the Stochastic Block Model (SBM). This model defines a
matrix of edges probabilities B of size K×K (K being the number of communities) where Bab represents the probability
that node i belonging to community a can get connected to node j belonging to community b. The main limitation
of this model though, is that it is more suited for homogeneous graphs where all nodes have the same average degree
in each community. A degree-corrected version of the SBM, the Degree-Corrected SBM (DC-SBM), was proposed to
take into account degree heterogeneity inside communities. Denoting G a K-class graph of n vertices with communities
C1, . . . , CK and letting qi, 1 ≤ i ≤ n, be some intrinsic weights which affect the probability for node i to connect to any
other network node, the DC-SBM assumes an adjacency matrix A ∈ {0, 1}n×n, with Aij independent Bernoulli random
variables with parameter Pij = qiqjCab, for i ∈ Ca and j ∈ Cb, where Cab is a class-wise correction factor. Our analysis
is based on this more realistic scenario.

Real world networks are in general sparse in the sense that the degrees of the nodes are insensitive to the addition of
new nodes into the graph or equivalently the degree of each node scales in O(1) when the number of nodes n grows large.
When the degrees scale instead like O(log n) or O(n), the network is said to be dense. The standard spectral algorithms
based on the network matrix (adjacency, modularity, Laplacian) of strongly sparse graphs are generally suboptimal in
the sense that they fail to detect the communities down to the transition where the detection is theoretically feasible [18].
New operators (non-backtracking [18], Bethe Hessian [19]) based on statistical physics have recently been proposed and
are shown to perform well down to the aforementioned sparse regime. However, those former methods were developed
by assuming a Stochastic Block Model and we show through some simulations that they completely fail to detect
communities in some pure heterogeneous graphs as well as the other classical spectral algorithms. To illustrate the
aforementioned limitations of spectral methods under the DCSBM model, the top two graphs of Figure 4 provide 2D
representations of dominant eigenvector 1 versus eigenvector 2 for the standard modularity matrix and the sparsity-
improved BH matrix, when half the nodes connect with low probability q1 and half the nodes with high probability
q2.

Modularity Bethe Hessian

Figure 4: Two dominant eigenvectors (x-y axes) for n = 2000, K = 3 classes C1, C2 and C3 of sizes |C1| = |C2| = n
4 ,

|C3| = n
2 , intrinsic probabilities taking two values q1 = 0.1, q2 = 0.5, matrix of weights C = 131

T
3 + 100√

n
I3. Colors

correspond to ground truth classes.

For both methods, this erroneously induces the detection of extra communities and even a confusion of genuine com-
munities in the BH approach. We have come to understand that those extra communities are induced by some biases
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created by the heterogeneity of the intrinsic probabilities qi’s; intuitively, nodes which have the same intrinsic connection
probability tend to create their own sub-clusters inside each community and this creates somehow additional sub com-
munities inside the genuine communities. To correct this, we have first proposed to normalize the adjacency/modularity
matrix by D−1

q̂ where Dq̂ is a diagonal matrix with estimates q̂i’s of the intrinsic weights on the diagonal. In order to
achieve non trivial asymptotic error rates, our analysis is based on a non trivial regime where the class-wise correction
factors Cab differ by O( 1√

n
). This trivial regime is ensured by the following growth rate conditions.

Assumption 2 As n→∞, K remains fixed and, for all i ∈ {1, . . . , n}:

1. Cab = 1 + Mab√
n

for a, b ∈ {1, . . . ,K}, where Mab = O(1); we shall denote M = {Mab}Ka,b=1.

2. qi ∈ (0, 1), i ∈ {1, . . . , n}, are i.i.d. random variables with probability measure µ having compact support in (0, 1).
We shall denote mµ =

∫
tµ(dt).

3. ni

n → ci > 0 and we will denote c = {ck}Kk=1.

Under Assumption 2, it is easily shown that

max
1≤i≤n

∣∣∣∣∣q̂i − di√
dT1n

∣∣∣∣∣→ 0

so that the degree of node i is, up to a constant, uniformly consistent estimator of the intrinsic probability qi.
Our study is then based on the matrix:

L = 2m
1√
n

D−1

[
A− ddT

2m

]
D−1 (2.4)

where D is a diagonal matrix with the node degrees di’s on the diagonal and m is the total number of edges.
The matrix L has non independent entries since D (and d) depend on A and it does not follow a standard random

matrix model. Our strategy is to approximate Lα by a more tractable random matrix which asymptotically preserves

eigenvalue distribution and isolated eigenvectors. The entries Aij being random variables of mean qiqj(1 +
Mgigj√

n
) and

variance qiqj(1− qiqj) +O(n−
1
2 ), we may write Aij as the sum of its mean and a random variable Xij having zero mean

and the same variance as Aij . From there, we next provide a Taylor expansion of ddT, (dT1)−1, (dT1)α and D−α

around their dominant terms, where d = A1n and D = D(d). By gathering all those expansions consistently following
the structure of Equation (2.4) and by only keeping non-vanishing operator norm terms, we obtain the corresponding
approximate of Lα as follows:

Theorem 3 Let Assumption 2 hold and let L be given by (2.4). Then, as n → ∞, ‖L − L̃‖ → 0 in operator norm,
almost surely, where

L̃ =
1

m2
µ

[
1√
n

D−1
q XD−1

q + UΛUT

]
,

U =
[

J√
n

D−1
q X1n

qT1n

]
,

Λ =

[(
IK − 1KcT

)
M
(
IK − c1TK

)
−1K

−1TK 0

]
.

with Dq = D(q) and X = {Xij}ni,j=1 has independent (up to symmetry) entries of zero mean and variances σ2
ij =

qiqj(1− qiqj) +O(n−
1
2 ).

As for the kernel spectral clustering (Section 2), the matrix L̃ follows an additive spike random matrix model
L̃ = 1√

n
D−1
q XD−1

q + UΛUT where:

• The eigenvectors of the deterministic low matrix UΛUT contain the class canonical vectors J meaning that when
the eigenvalues of the former matrix are sufficiently large, the isolated eigenvectors of L̃ are correlated to J.

• The matrix Λ contains the matrix of affinities between classes M.
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As it is common in spiked random matrix analysis, a complete study of L̃ was performed i) The evaluation of the phase
transition beyond which spectral community detection is possible. ii) Study of the isolated eigenvectors; in particular
the evaluation of the average level of each plateau of the eigenvectors step functions and the average fluctuations around
each plateau using the approaches described in Section 2. The different results can be found in our article[3].

The anticipated performances of spectral community detection were then evaluated using the aforementionned class-
wise means and variances, in a 2−class graph generated using the DC-SBM. As in Figure 5, the empirical and theoretical
correct clustering rates for M = δI2 and varying δ, with µ the uniform distribution in [.2, .8] and µ = δ.5, a perfect
match is obtained between theory and practice. An important outcome from this study is that the limiting spectrum of
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Figure 5: Performance of community detection, for qi uniformly distributed in [.2, .8], M = δI2, c1 = c2 = 1
2 , and for

qi = q0 = .5. Simulations for n = 2000.

the matrix L is larger for more spread out measures µ and this prevents the appearance of spiked eigenvalues. This is
illustrated in Figure 5 where the phase transition point beyond which clustering is feasible is seen to be shifted to larger

values of δ for the uniform distribution. The normalization of the modularity matrix A− qqT

1
nqT1n

by D−1 might be the

reason why the main spectrum of L is more spread out. A natural tradeoff should thus be done between the correction
of the eigenvectors biases and the avoidance of spectrum spread. One could for instance consider the unormalized

modularity matrix A− qqT

1
nqT1n

, and perform spectral clustering on its isolated eigenvectors pre-multiplied by D−1. This

will, at the same time, correct the biases of the eigenvectors and reduce the spectrum spread.

2.4 Echo-state Neural Networks (within Task 2.3)

The contribution to be presented in this section concerns our first steps into the performance characterization of large
dimensional neural networks. The overall line of strategy consists in starting from the study of simple networks (single
layer, randomly connected, with linear activations) down to increasingly more elaborate networks (multiple layers,
recurrent, with non-linear activations, using backpropagation of the error, etc.).

There exist three main barriers to break into the characterizations of neural networks using random matrix tools.
The first easy one, which we shall address next, is the possibly recurrent nature of these networks; this is especially the
case for handling time series. The second difficulty is the non-linearity of the activation functions of neural networks.
This aspect is currently under investigation and first results are appearing, which shall not be presented presently. The
last challenge consists in handling the learning by back-propagation of the error; there the difficulty lies in that the
neural network performance is strongly data dependent.

Presently, our interest is to handle the first aspect of neural networks: their (possibly) recursive nature. As such,
avoiding the difficulty of non-linear activations and back-propagation of the error, we shall focus on a “simple” family
of neural networks, known as echo-state networks, ESN for short. Figure 6 depicts an instance of the ESN under study
here. To define an ESN, we assume here an n-node network with connectivity matrix W ∈ Rn×n such that ‖W‖ < 1,
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Figure 6: Echo-state neural network.

source-to-reservoir vector m ∈ Rn, states xt ∈ Rn, t = −∞, . . . ,∞, and internal noise ηεt ∼ N (0, η2In), fed by a scalar
input ut ∈ R. The state evolution equation follows:

xt+1 = Wxt +mut+1 + ηεt+1. (2.5)

The specificity of ESN’s is that the weight matrix W as well as the input layer m is not trained. Only the network-
to-sink layer, that connects the states xt to a desired output node, is trained. In the training phase, one wishes to map
an input sequence u = [u0, . . . , uT−1]T to a corresponding known output sequence r = [r0, . . . , rT−1]T. To this end, we
shall enforce the reservoir-to-sink connections of the network, gathered into a vector ω ∈ Rn and depicted in color in
Figure 6, so to minimize the quadratic reconstruction error

Eη(u, r) ≡ 1

T

∥∥XTω − r
∥∥2
.

The solution to this classical problem is to take ω to be the least-square regressor

ω ≡
{

(XXT)−1Xr , T > n
X(XTX)−1r , T ≤ n. (2.6)

with X = [x1, . . . , xT ] ∈ Rn×T . The matrix X is inherently random because, in the first place, the additional noise εt
is random and, possibly also, the connectivity matrix W may be random as well. At first, we shall only account for the
randomness in εt.

To such an ω are associated an Eη(u; r) which it is convenient to see here as

Eη(u, r) =

{
limγ↓0 γ

1
T r

TQ̃γr , T > n
0 , T ≤ n (2.7)

where Q̃γ = ( 1
TX

TX + γIT )−1.

To characterize Eη(u, r), we first need a deterministic equivalent for Q̃γ . This is provided in the following result.

Theorem 4 (Deterministic Equivalent) Denote A = MU with M = [m,Wm, . . . ,WT−1m] and U = T−
1
2 {uj−i}T−1

i,j=0.

Then under mild technical assumptions, for γ > 0, and with Qγ = ( 1
TXX

T + γIn)−1 and Q̃γ = ( 1
TX

TX + γIT )−1, we
have that, as n→∞,

Qγ ↔ Q̄γ ≡
1

γ

(
In + η2R̃γ +

1

γ
A
(
IT + η2Rγ

)−1
AT

)−1

Q̃γ ↔ ¯̃Qγ ≡
1

γ

(
IT + η2Rγ +

1

γ
AT
(
In + η2R̃γ

)−1

A

)−1
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where Rγ ∈ RT×T and R̃γ ∈ Rn×n are solutions to

Rγ =

{
1

T
tr
(
Si−jQ̄γ

)}T
i,j=1

R̃γ =

∞∑
q=−∞

1

T
tr
(
Jq ¯̃Qγ

)
Sq

with [Jq]ij ≡ δi+q,j, Sq ≡
∑
k≥0W

k+(−q)+(W k+q+)T (and (x)+ = max(x, 0)).

Applying Theorem 4 in the limit where γ → 0, we have in particular the following first limiting performance result.

Proposition 1 (Training MSE) Under the same mild assumptions as above, let r ∈ RT be a vector of Euclidean
norm O(

√
T ). Then, with Eη(u, r) defined in (2.7), as n→∞,

Eη(u, r)↔
{

1
T r

TQ̃r , c < 1
0 , c > 1.

where, for c < 1,

Q̃ ≡
(
IT +R+

1

η2
ATR̃−1A

)−1

and R, R̃ are solutions to1

R = c

{
1

n
tr
(
Si−jR̃−1

)}T
i,j=1

R̃ =

∞∑
q=−∞

1

T
tr
(
Jq(IT +R)−1

)
Sq.

Although seemingly not simple, note that, by writing

ATR̃−1A = UT
{
mT(W i−1)TR̃−1W j−1m

}T
i,j=1

U

the matrix Q̃ involved in the asymptotic expression for Eη(u, r) clearly features independently:

• the input data matrix U composed in columns of the successive delayed versions of the vector T−
1
2 [u−(T−1), . . . , uT−1]T;

• the network structuring matrices R and (W i−1)TR̃−1W j−1;

• the factor η−2, not present in R, R̃, which trades off the need for regularizing the ill-conditioned matrix ATR̃−1A
(through the matrix M in A) and the need to increase the weight of the information-carrying matrix ATR̃−1A
(through the matrix U in A).

Note in particular that, since ‖W‖ < 1, the matrix {mT(W i−1)TR̃−1W j−1m}Ti,j=1 has an exponentially decaying

profile down the rows and columns (essentially decaying with i+ j). As such, all but the first few columns of R̃− 1
2MU

vanish as n, T grow large, providing us with a first testimony of the ESN short term memory specificity, since only the
first columns of U (i.e., the first delays of {ut}) are accounted for. The matrix R̃− 1

2M then plays the important role of
tuning the memory decay.

For W random, Theorem 4 further simplifies and we in particular obtain the following short-hand formulation for
W a random orthogonally invariant orthogonal matrix (often called a real Haar matrix).

1R and R̃ are rigorously the limits of Rγ and γR̃γ from Theorem 4, respectively, as γ ↓ 0.
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Corollary 1 (Haar W , n/T < 1) Let W = σZ with Z random real Haar and m be independent of W with ‖m‖ = 1.
Then, under the same mild assumptions as above and with n/T < 1,

Eη(u, r)↔ (1− c) 1

T
rTQr

where Q = (IT + 1
η2U

TDU)−1 with D ∈ RT×T the diagonal matrix

Dii = (1− σ2)σ2(i−1).

We clearly see through Corollary 1 the impact of σ which weighs through Dii the successive delay vectors U·,i
starting from i = 1 for zero delay. This is reminiscent of the works [20] where the diagonal elements of D were
understood qualitatively as a memory curve, with the property that

∑
i≥1Dii = 1, so that the ESN allocates a total

unit amount of memorization capabilities across the successively delayed versions of u.

Similarly, one can further develop relations to characterize the performance of echo-state networks on test datasets.
Since the results take more involved forms while not bringing significant additional insights, we elude their detailing
here. A complete exposition of the results are available in the submitted article [4]. In practice, the derived theoretical
performances are shown to be good matches of the performances of finite dimensional ESN’s. This is depicted through an
example in Figure 7 for the special case of the so-called Mackey–Glass model prediction task (here rt = ut+1). Observe
that, as n, T (and T̂ the testing duration) grow large, the deterministic limiting approximations become extremely tight.

3 On-going and Future Activities

Referring back to the timeline and description of work packages and tasks, along with previous discussions, all tasks
within the project are well engaged, and most particularly tasks falling within WP1. As an overview summary of the
on-going and future activities of WP1:

• Significant advances have been made within Task 1.1 into the understanding of kernel matrices of the radial
type, i.e., with κ(x, y) = f(‖x − y‖2), and for Gaussian input data. While clearly not a major ambition in the
following year of the project (but possibly of the last year), one extension of these results are to consider the
(in fact simpler) outer-product kernels, i.e., with κ(x, y) = f(xTy). Another extension concerns the case of more
“impulsive” or “heavy-tailed” input data, such as elliptical models of input data. Such datasets dramatically
change the developments exposed earlier, as the concentration of all norm differences ‖xi − xj‖2 to a certain limit
no longer holds. Other generalizations concern some shift in the growth regime, such as: increasing the number of
classes with n, changing the growth rate between p and n, etc.

• The study of structured spiked models within Task 1.2 is also well underway and has been used significantly
in the various applications within WP2. Further investigations in this direction concern deeper analysis of the
entry distribution of eigenvectors arising from inhomogeneous datasets (as in particular for community detection
in graphs with inhomogeneous degree distributions).

• Task 1.3, now converted to a wider purpose study of mathematical specificities of neural networks, has covered the
study of some recursive models of matrices. The next challenging work within this task is to investigate matrices
with non-linear entries, largely used in neural networks. Then, if time allows, a study of the performance of neural
networks involving back-propagation of the error will be made; the strong difficulty related to this question has
to do with the fact that gradient descent methods are being used to update in succession the system parameters,
said parameters being function of all the deterministic data and the original random parameters.

As for WP2, the on-going and future investigations can be gathered as follows:

• As an extension of the work [1, 2], and mostly based on the key Theorem 1, two studies are currently being
undertaken:

– kernel semi-supervised learning: this study concerns the case where the dataset is divided into a subset of
labelled data and a subset of unlabelled data. Many kernel methods consist in studying a functional of the
kernel matrix K defined earlier, now subdivided into four submatrices: Kuu, Kul, Klu, Kll depending on
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Figure 7: Training and testing (normalized) MSE for the Mackey Glass one-step prediction, W Haar, n = 200, T =
T̂ = 400 (top) and n = 400, T = T̂ = 800 (bottom). Comparison between Monte Carlo simulations (Monte Carlo) and
theory for fixed and random W .

their data entries being labelled or unlabelled. The performance of such semi-supervised methods are often
described up to a tuning parameter that, so far, is only intuitively, qualitatively selected. Our objective is a
sound performance analysis of these methods so to provide a quantitative understanding of the performances
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and of the optimal hyperparameters tuning.

– kernel support vector machines: on the far end of the labelled versus unlabelled spectrum are (kernel) support
vector machines, which assume the existence of a large set of labelled data, used to create “decision regions”
for subsequent unlabelled data appearing one by one. Similar to the semi-supervised learning study, our
objective is to study the asymptotic performance of support vector machines and derive optimal tuning of its
hyperparameters.

• On the graph community detection side, an important new object of analysis (which came up in the recent literature
of community detection) is the so-called Bethe Hessian matrix which, in case of very sparse networks, demonstrates
performances reaching the so-far optimal (but complex and barely fathomed) belief propagation approach. The
Bethe Hessian matrix is however only studied for homogeneous graph stochastic block models. We wish here to
extend its analysis to inhomogeneous networks. One possible important difficulty is that, as it was designed to
handle sparse networks, the extension of its analysis to the dense network under consideration in our own analyses
might turn out more challenging than expected.

• A second aspect currently under study is the performance of simple but non-linear neural networks. To simplify
the network, we take it to be a one-layer extreme learning machine, which consists of a first fixed (often randomly
selected) connectivity matrix from the input to the neural network and of a network to sink connectivity matrix
which is learned by ridge regression. At the neurons, a non-linear activation function is applied to the input
data. Our objective is to understand the regression performance of such non-linear networks, using the anticipated
results from Task 1.3.
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