Research Program

Romain COUILLET

CentraleSupélec
Université Paris-Sud 11

11 février 2016

CentraleSupélec

Outline

Curriculum Vitae

Research Project: Learning in Large Dimensions
Axis 1 : Robust Estimation in Large Dimensions
Axis 2 : Classification in Large Dimensions
Axis 3 : Random Matrices and Neural Networks
Axis 4 : Graphs

Outline

Curriculum Vitae

```
Research Project: Learning in Large Dimensions
    Axis 1: Robust Estimation in Large Dimensions
    Axis 2: Classification in Large Dimensions
    Axis 3:Random Matrices and Neural Networks
    Axis 4:Graphs
```


Education and Professional Experience

Professional Experience
Full ProfessorCentraleSupélec, Gif sur Yvette, France.Telecom Department, LANEAS group, Dvision Signals \& Stats
Diplomas
Habilitation à Diriger des Recherches Feb. 2015
Place University Paris-Saclay, France
Topic Robust Estimation in the Large Random Matrix Regime
PhD in Physics Nov. 2010
Place CentraleSupélec, Gif sur Yvette, FranceTopic Application of Random Matrix Theory to Future WirelessFlexible Networks
Advis. Mérouane Debbah
Engineer and Master Diplomas Mar. 2008Place Telecom ParisTech, Paris, FranceGrade Very Good (Très Bien)
Topic Communications, embedded systems, computer science.

Teaching Activities and Research Projects

Teaching Activities
ENS Cachan, Cachan, France since 2013
Courses Master MVA, 18 hrs/year
CentraleSupélec, Gif sur Yvette, France since 2011Courses PhD level, $18 \mathrm{hrs} /$ year
Master SAR, research seminars, 24 hrs/yearUndergraduate, lectures + practical courses, $70 \mathrm{hrs} /$ yearAdvising Interns, undergraduate projects, $\sim 8 /$ year
Research : Projects

HUAWEI RMTin5G	100% (PI)	$2015-2016$
ANR RMT4GRAPH	100% (PI)	$2014-2017$
ERC MORE	50%	$2012-2017$
ANR DIONISOS	25%	$2012-2016$

Research: Community Life
Special Session organizations 4
IEEE Senior Member since 2015
IEEE SPTM technical committee member since 2014
IEEE TSP Associate Editor since 2015
since 2011

PhD students

Research Activities

Publication Record (as of February 1st, 2016)

Publications Books:1, Chapters:3, Journals: 36, Conferences : 53, Patents : 4 .
Citations Indices

Subjects
Mathematics random matrix theory, statistics
Applications machine learning, signal processing, communications

Journal Articles per Area

Research Activities

Prizes and Awards
IEEE Senior Member 2016
CNRS Bronze Medal (section INS2I) 2013
IEEE ComSoc Outstanding Young Researcher Award (EMEA region) 2013
EEA/GdR ISIS/GRETSI PhD thesis award 2011
Paper Awards
Second prize of the IEEE Australia Council Student Paper Contest 2013
Best Student Paper Award Final of the IEEE Asilomar Conference 2011
Best Student Paper Award of the ValueTools Conference 2008

Outline

Curriculum Vitae

Research Project : Learning in Large Dimensions

Axis 1 : Robust Estimation in Large Dimensions
Axis 2 : Classification in Large Dimensions
Axis 3 : Random Matrices and Neural Networks
Axis 4 : Graphs

Context

The "BigData" Challenge

Context

The "BigData" Challenge

1. dramatic increase of data dimension (and number)

Context

The "BigData" Challenge

1. dramatic increase of data dimension (and number)
2. importance of outlying and missing data

Context

The "BigData" Challenge

1. dramatic increase of data dimension (and number)
2. importance of outlying and missing data
3. data heterogeneity

Context

The "BigData" Challenge

1. dramatic increase of data dimension (and number)
2. importance of outlying and missing data
3. data heterogeneity

Limitations of classical tools

Context

The "BigData" Challenge

1. dramatic increase of data dimension (and number)
2. importance of outlying and missing data
3. data heterogeneity

Limitations of classical tools

1. classical statistics limited by small but numerous data hypothesis

Context

The "BigData" Challenge

1. dramatic increase of data dimension (and number)
2. importance of outlying and missing data
3. data heterogeneity

Limitations of classical tools

1. classical statistics limited by small but numerous data hypothesis
2. techniques relying on poorly robust empirical estimates or barely usable robust approaches

Context

The "BigData" Challenge

1. dramatic increase of data dimension (and number)
2. importance of outlying and missing data
3. data heterogeneity

Limitations of classical tools

1. classical statistics limited by small but numerous data hypothesis
2. techniques relying on poorly robust empirical estimates or barely usable robust approaches
3. bipolarity between :

- powerful techniques based on models (signal processing approach)
- ad-hoc techniques based on data (machine learning/stats approach)

Context

The "BigData" Challenge

1. dramatic increase of data dimension (and number)
2. importance of outlying and missing data
3. data heterogeneity

Limitations of classical tools

1. classical statistics limited by small but numerous data hypothesis
2. techniques relying on poorly robust empirical estimates or barely usable robust approaches
3. bipolarity between :

- powerful techniques based on models (signal processing approach)
- ad-hoc techniques based on data (machine learning/stats approach)

Our approach

Context

The "BigData" Challenge

1. dramatic increase of data dimension (and number)
2. importance of outlying and missing data
3. data heterogeneity

Limitations of classical tools

1. classical statistics limited by small but numerous data hypothesis
2. techniques relying on poorly robust empirical estimates or barely usable robust approaches
3. bipolarity between :

- powerful techniques based on models (signal processing approach)
- ad-hoc techniques based on data (machine learning/stats approach)

Our approach

1. development of methods and mathematical tools to handle large and numerous datasets

Context

The "BigData" Challenge

1. dramatic increase of data dimension (and number)
2. importance of outlying and missing data
3. data heterogeneity

Limitations of classical tools

1. classical statistics limited by small but numerous data hypothesis
2. techniques relying on poorly robust empirical estimates or barely usable robust approaches
3. bipolarity between :

- powerful techniques based on models (signal processing approach)
- ad-hoc techniques based on data (machine learning/stats approach)

Our approach

1. development of methods and mathematical tools to handle large and numerous datasets
2. revisit robust statistics in large dimensions

Context

The "BigData" Challenge

1. dramatic increase of data dimension (and number)
2. importance of outlying and missing data
3. data heterogeneity

Limitations of classical tools

1. classical statistics limited by small but numerous data hypothesis
2. techniques relying on poorly robust empirical estimates or barely usable robust approaches
3. bipolarity between :

- powerful techniques based on models (signal processing approach)
- ad-hoc techniques based on data (machine learning/stats approach)

Our approach

1. development of methods and mathematical tools to handle large and numerous datasets
2. revisit robust statistics in large dimensions
3. (for lack of better approach) better understand and improve ad-hoc techniques on simple but large dimensional models.

Outline

Curriculum Vitae

Research Project: Learning in Large Dimensions Axis 1 : Robust Estimation in Large Dimensions
Axis 2: Classification in Large Dimensions Axis 3 : Random Matrices and Neural Networks Axis 4 : Graphs

Axis 1: Robust Estimation in Large Dimensions

Baseline Scenario : $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ i.i.d. with $E\left[x_{1}\right]=0, E\left[x_{1} x_{1}^{*}\right]=C_{p}$, but

- potentially heavy tailed
- existence of outliers

Axis 1: Robust Estimation in Large Dimensions

Baseline Scenario : $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ i.i.d. with $E\left[x_{1}\right]=0, E\left[x_{1} x_{1}^{*}\right]=C_{p}$, but

- potentially heavy tailed
- existence of outliers

Several Estimators for C_{p}

Axis 1: Robust Estimation in Large Dimensions

Baseline Scenario : $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ i.i.d. with $E\left[x_{1}\right]=0, E\left[x_{1} x_{1}^{*}\right]=C_{p}$, but

- potentially heavy tailed
- existence of outliers

Several Estimators for C_{p}

- ML estimator in Gaussian case : sample covariance matrix

$$
\hat{C}_{p}=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{*}
$$

- very practical, used in many methods
- but very sensitive to outliers

Axis 1: Robust Estimation in Large Dimensions

Baseline Scenario : $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ i.i.d. with $E\left[x_{1}\right]=0, E\left[x_{1} x_{1}^{*}\right]=C_{p}$, but

- potentially heavy tailed
- existence of outliers

Several Estimators for C_{p}

- ML estimator in Gaussian case : sample covariance matrix

$$
\hat{C}_{p}=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{*} .
$$

- very practical, used in many methods
- but very sensitive to outliers
- [Huber'67 ; Maronna'76] Robust Estimators (outliers or heavy tails)

$$
\hat{C}_{p}=\frac{1}{n} \sum_{i=1}^{n} u\left(\frac{1}{p} x_{i}^{*} \hat{C}_{p}^{-1} x_{i}\right) x_{i} x_{i}^{*} .
$$

Axis 1: Robust Estimation in Large Dimensions

Baseline Scenario : $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ i.i.d. with $E\left[x_{1}\right]=0, E\left[x_{1} x_{1}^{*}\right]=C_{p}$, but

- potentially heavy tailed
- existence of outliers

Several Estimators for C_{p}

- ML estimator in Gaussian case : sample covariance matrix

$$
\hat{C}_{p}=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{*}
$$

- very practical, used in many methods
- but very sensitive to outliers
- [Huber'67 ; Maronna'76] Robust Estimators (outliers or heavy tails)

$$
\hat{C}_{p}=\frac{1}{n} \sum_{i=1}^{n} u\left(\frac{1}{p} x_{i}^{*} \hat{C}_{p}^{-1} x_{i}\right) x_{i} x_{i}^{*} .
$$

- [Pascal'13; Chen'11] Regularized Versions for Large Data (all n, p),

$$
\hat{C}_{p}(\rho)=(1-\rho) \frac{1}{n} \sum_{i=1}^{n} \frac{x_{i} x_{i}^{*}}{\frac{1}{p} x_{i}^{*} \hat{C}_{p}^{-1}(\rho) x_{i}}+\rho I_{N} .
$$

Axis 1 : Robust Estimation in Large Dimensions

Problem and Objectives

Axis 1 : Robust Estimation in Large Dimensions

Problem and Objectives

- III-understood estimators, difficult to use (implicit definition of \hat{C}_{p})

Axis 1: Robust Estimation in Large Dimensions

Problem and Objectives

- III-understood estimators, difficult to use (implicit definition of \hat{C}_{p})
- Only known results for fixed p and $n \rightarrow \infty$: not appropriate in BigData.

Axis 1 : Robust Estimation in Large Dimensions

Problem and Objectives

- III-understood estimators, difficult to use (implicit definition of \hat{C}_{p})
- Only known results for fixed p and $n \rightarrow \infty$: not appropriate in BigData.
- We thus need :
- study \hat{C}_{p} as $n, p \rightarrow \infty$
- exploit the double-concentration effect to better understand \hat{C}_{p}.

Axis 1: Robust Estimation in Large Dimensions

Problem and Objectives

- III-understood estimators, difficult to use (implicit definition of \hat{C}_{p})
- Only known results for fixed p and $n \rightarrow \infty$: not appropriate in BigData.
- We thus need:
- study \hat{C}_{p} as $n, p \rightarrow \infty$
- exploit the double-concentration effect to better understand \hat{C}_{p}.

Results and Perspectives

\checkmark Asymptotic approximation of \hat{C}_{p} by a tractable equivalent model
\checkmark Second order statistics (CLT type) for \hat{C}_{p}
\checkmark Study of elliptical cases, outliers, regularized or not.
\checkmark Applications:

- radar array processing (impulsiveness due to clutter)
- financial data processing

Axis 1: Robust Estimation in Large Dimensions

Problem and Objectives

- III-understood estimators, difficult to use (implicit definition of \hat{C}_{p})
- Only known results for fixed p and $n \rightarrow \infty$: not appropriate in BigData.
- We thus need:
- study \hat{C}_{p} as $n, p \rightarrow \infty$
- exploit the double-concentration effect to better understand \hat{C}_{p}.

Results and Perspectives

\checkmark Asymptotic approximation of \hat{C}_{p} by a tractable equivalent model
\checkmark Second order statistics (CLT type) for \hat{C}_{p}
\checkmark Study of elliptical cases, outliers, regularized or not.
\checkmark Applications:

- radar array processing (impulsiveness due to clutter)
- financial data processing

Q Joint mean and covariance estimation
Qtudy of robust regression
Q More generally, deeper study of iterative methods in large dimensions (such as AMP).

Axis 1 : Robust Estimation in Large Dimensions

Theorem ([Couillet,Pascal,Silverstein'15] Maronna Estimator) For $x_{i}=\sqrt{\tau_{i}} w_{i}$, with τ_{i} impulsive, w_{i} orthogonal and isotropic, $\left\|w_{i}\right\|=p$,

$$
\left\|\hat{C}_{p}-\hat{S}_{p}\right\| \xrightarrow{\text { p.s. }} 0
$$

in spectral norm, where

$$
\begin{aligned}
\hat{C}_{p} & =\frac{1}{n} \sum_{i=1}^{n} u\left(\frac{1}{p} x_{i}^{*} \hat{C}_{p}^{-1} x_{i}\right) x_{i} x_{i}^{*} \\
\hat{S}_{p} & =\frac{1}{n} \sum_{i=1}^{n} v\left(\tau_{i} \gamma_{p}\right) x_{i} x_{i}^{*}
\end{aligned}
$$

with $v(t)$ similar to $u(t)$ and γ_{p} unique solution of

$$
1=\frac{1}{n} \sum_{j=1}^{n} \frac{\gamma_{p} v\left(\tau_{i} \gamma_{p}\right)}{1+c \gamma_{p} v\left(\tau_{i} \gamma_{p}\right)}
$$

Axis 1 : Robust Estimation in Large Dimensions

Consequences

Axis 1 : Robust Estimation in Large Dimensions

Consequences

- Difficult object \hat{C}_{p} made tractable thanks to \hat{S}_{p}

Axis 1: Robust Estimation in Large Dimensions

Consequences

- Difficult object \hat{C}_{p} made tractable thanks to \hat{S}_{p}
- Analysis and optimization possible by replacing \hat{C}_{p} by \hat{S}_{p}.

Axis 1 : Robust Estimation in Large Dimensions

Consequences

- Difficult object \hat{C}_{p} made tractable thanks to \hat{S}_{p}
- Analysis and optimization possible by replacing \hat{C}_{p} by \hat{S}_{p}.

Figure $-n=2500, p=500, C_{p}=\operatorname{diag}\left(I_{125}, 3 I_{125}, 10 I_{250}\right), \tau_{i} \sim \Gamma(.5,2)$ i.i.d.

Axis 1 : Robust Estimation in Large Dimensions

Consequences

- Difficult object \hat{C}_{p} made tractable thanks to \hat{S}_{p}
- Analysis and optimization possible by replacing \hat{C}_{p} by \hat{S}_{p}.

Figure $-n=2500, p=500, C_{p}=\operatorname{diag}\left(I_{125}, 3 I_{125}, 10 I_{250}\right), \tau_{i} \sim \Gamma(.5,2)$ i.i.d.

Axis 1 : Robust Estimation in Large Dimensions

Consequences

- Difficult object \hat{C}_{p} made tractable thanks to \hat{S}_{p}
- Analysis and optimization possible by replacing \hat{C}_{p} by \hat{S}_{p}.

Figure $-n=2500, p=500, C_{p}=\operatorname{diag}\left(I_{125}, 3 I_{125}, 10 I_{250}\right), \tau_{i} \sim \Gamma(.5,2)$ i.i.d.

Axis 1 : Robust Estimation in Large Dimensions

Application to Detection in Radars

Axis 1: Robust Estimation in Large Dimensions

Application to Detection in Radars

- Hypothesis testing under impulsive noise : purely noisy inputs x_{1}, \ldots, x_{n}, $x_{i}=\sqrt{\tau_{i}} w_{i}$, new datum

$$
y=\left\{\begin{array}{lll}
\sqrt{\tau} w & , \mathcal{H}_{0} \\
s+\sqrt{\tau} w & , \mathcal{H}_{1}
\end{array}\right.
$$

Axis 1: Robust Estimation in Large Dimensions

Application to Detection in Radars

- Hypothesis testing under impulsive noise : purely noisy inputs x_{1}, \ldots, x_{n}, $x_{i}=\sqrt{\tau_{i}} w_{i}$, new datum

$$
y=\left\{\begin{array}{lll}
\sqrt{\tau} w & , \mathcal{H}_{0} \\
s+\sqrt{\tau} w & , \mathcal{H}_{1}
\end{array}\right.
$$

- Robust detector $T_{p}(\rho)$ given by

$$
T_{p}(\rho) \underset{\mathcal{H}_{0}}{\stackrel{\mathcal{H}_{1}}{\gtrless}} \frac{\gamma}{\sqrt{p}}
$$

where

$$
\begin{aligned}
T_{p}(\rho) & =\frac{\left|y^{*} \hat{C}_{p}^{-1}(\rho) s\right|}{\sqrt{y^{*} \hat{C}_{p}^{-1}(\rho) y} \sqrt{p^{*} \hat{C}_{p}^{-1}(\rho) p}} \\
\hat{C}_{p}(\rho) & =(1-\rho) \frac{1}{n} \sum_{i=1}^{n} \frac{x_{i} x_{i}^{*}}{\frac{1}{p} x_{i}^{*} \hat{C}_{p}(\rho)^{-1} x_{i}}+\rho I_{p}
\end{aligned}
$$

Axis 1: Robust Estimation in Large Dimensions

Application to Detection in Radars

- Hypothesis testing under impulsive noise : purely noisy inputs x_{1}, \ldots, x_{n}, $x_{i}=\sqrt{\tau_{i}} w_{i}$, new datum

$$
y=\left\{\begin{array}{lll}
\sqrt{\tau} w & , \mathcal{H}_{0} \\
s+\sqrt{\tau} w & , \mathcal{H}_{1}
\end{array}\right.
$$

- Robust detector $T_{p}(\rho)$ given by

$$
T_{p}(\rho) \underset{\mathcal{H}_{0}}{\stackrel{\mathcal{H}_{1}}{\gtrless}} \frac{\gamma}{\sqrt{p}}
$$

where

$$
\begin{aligned}
T_{p}(\rho) & =\frac{\left|y^{*} \hat{C}_{p}^{-1}(\rho) s\right|}{\sqrt{y^{*} \hat{C}_{p}^{-1}(\rho) y} \sqrt{p^{*} \hat{C}_{p}^{-1}(\rho) p}} \\
\hat{C}_{p}(\rho) & =(1-\rho) \frac{1}{n} \sum_{i=1}^{n} \frac{x_{i} x_{i}^{*}}{\frac{1}{p} x_{i}^{*} \hat{C}_{p}(\rho)^{-1} x_{i}}+\rho I_{p}
\end{aligned}
$$

Objectives

- performance analysis
- find optimal regularization ρ parameter.

Axis 1 : Robust Estimation in Large Dimensions

Figure - False alarm rate $P\left(\sqrt{p} T_{p}(\rho)>\gamma\right)$, for $p=20$ (left), $p=100$ (right),
$s=p^{-\frac{1}{2}}[1, \ldots, 1]^{\top},\left[C_{p}\right]_{i j}=0.7^{|i-j|}, p / n=1 / 2$.

Axis 1 : Robust Estimation in Large Dimensions

Figure - False alarm rate $P\left(T_{p}\left(\hat{\rho}_{p}^{*}\right)>\Gamma\right), \hat{\rho}_{p}^{*}$ best estimated ρ, for $p=20$ and $p=100$, $s=p^{-\frac{1}{2}}[1, \ldots, 1]^{\top}, p / n=1 / 2$ and $\left[C_{p}\right]_{i j}=0.7^{|i-j|}$.

Axis 1: Robust Estimation in Large Dimensions

Theoretical Results (clickable title links)

R. Couillet, M. McKay, "Large Dimensional Analysis and Optimization of Robust Shrinkage Covariance Matrix Estimators", Elsevier Journal of Multivariate Analysis, vol. 131, pp. 99-120, 2014.
R. Couillet, F. Pascal, J. W. Silverstein, "The Random Matrix Regime of Maronna's M-estimator with elliptically distributed samples", Elsevier Journal of Multivariate Analysis, vol. 139, pp. 56-78, 2015.
D. Morales-Jimenez, R. Couillet, M. McKay, "Large Dimensional Analysis of Robust M-Estimators of Covariance with Outliers", IEEE Transactions on Signal Processing, vol. 63, no. 21, pp. 5784-5797, 2015.
R R. Couillet, A. Kammoun, F. Pascal, "Second order statistics of robust estimators of scatter. Application to GLRT detection for elliptical signals", Elsevier Journal of Multivariate Analysis, vol. 143, pp. 249-274, 2016.

Applications (clickable title links)
R. Couillet, A. Kammoun, F. Pascal, "Second order statistics of robust estimators of scatter. Application to GLRT detection for elliptical signals", Elsevier Journal of Multivariate Analysis, vol. 143, pp. 249-274, 2016.
R. Couillet, "Robust spiked random matrices and a robust G-MUSIC estimator", Elsevier Journal of Multivariate Analysis, vol. 140, pp. 139-161, 2015.

Axis 1 : Robust Estimation in Large Dimensions

L. Yang, R. Couillet, M. McKay, "A Robust Statistics Approach to Minimum Variance Portfolio Optimization" IEEE Transactions on Signal Processing, vol. 63, no. 24, pp. 6684-6697, 2015.
A. Kammoun, R. Couillet, F. Pascal, M.-S. Alouini, "Optimal Design of the Adaptive Normalized Matched Filter Detector" (submitted to) IEEE Transactions on Information Theory, 2015, arXiv Preprint 1504.01252.

Outline

Curriculum Vitae

Research Project : Learning in Large Dimensions

Axis 1 : Robust Estimation in Large Dimensions
Axis 2 : Classification in Large Dimensions
Axis 3 : Random Matrices and Neural Networks
Axis 4 : Graphs

Axis 2 : Classification in Large Dimensions

Baseline Scenario : $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ belonging to k classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$ to identify

- in supervised manner : numerous labelled data (e.g., support vector machine)
- in unsupervised manner : no labelled data (e.g., kernel spectral clustering)
- in semi-supervised manner : (few) labelled data (e.g., harmonic function method).

Axis 2 : Classification in Large Dimensions

Baseline Scenario : $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ belonging to k classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$ to identify

- in supervised manner : numerous labelled data (e.g., support vector machine)
- in unsupervised manner : no labelled data (e.g., kernel spectral clustering)
- in semi-supervised manner : (few) labelled data (e.g., harmonic function method).

Spectral Algorithms

Axis 2 : Classification in Large Dimensions

Baseline Scenario : $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ belonging to k classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$ to identify

- in supervised manner : numerous labelled data (e.g., support vector machine)
- in unsupervised manner : no labelled data (e.g., kernel spectral clustering)
- in semi-supervised manner : (few) labelled data (e.g., harmonic function method).

Spectral Algorithms

- Data often non linearly separable

Axis 2 : Classification in Large Dimensions

Baseline Scenario : $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ belonging to k classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$ to identify

- in supervised manner : numerous labelled data (e.g., support vector machine)
- in unsupervised manner : no labelled data (e.g., kernel spectral clustering)
- in semi-supervised manner : (few) labelled data (e.g., harmonic function method).

Spectral Algorithms

- Data often non linearly separable
- Numerous methods based on kernel matrices $K \in \mathbb{R}^{n \times n}$, with (for instance)

$$
K_{i j}=f\left(\left\|x_{i}-x_{j}\right\|^{2}\right)
$$

and f some function (often decreasing).

Axis 2 : Classification in Large Dimensions

Baseline Scenario : $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ belonging to k classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$ to identify

- in supervised manner : numerous labelled data (e.g., support vector machine)
- in unsupervised manner : no labelled data (e.g., kernel spectral clustering)
- in semi-supervised manner : (few) labelled data (e.g., harmonic function method).

Spectral Algorithms

- Data often non linearly separable
- Numerous methods based on kernel matrices $K \in \mathbb{R}^{n \times n}$, with (for instance)

$$
K_{i j}=f\left(\left\|x_{i}-x_{j}\right\|^{2}\right)
$$

and f some function (often decreasing).

- Spectral methods consist in :
- extracting dominating eigenvectors of K (spectral clustering)
- solve optimization problem based on K (support vector machine)
- linear functional of K (semi-supervised methods)

Axis 2 : Classification in Large Dimensions

Problems and Objectives

Axis 2 : Classification in Large Dimensions

Problems and Objectives

- Matrix K very difficult to analyze for small dimensional x_{i} (even Gaussian)
- Qualitative understanding of the tools, difficult to optimize.

Axis 2 : Classification in Large Dimensions

Problems and Objectives

- Matrix K very difficult to analyze for small dimensional x_{i} (even Gaussian)
- Qualitative understanding of the tools, difficult to optimize.
- We need here :
- study K as $n, p \rightarrow \infty$
- exploit the double-concentration to better understand K
- deduce quantitative performance of learning methods
- improve performances as well as methods.

Axis 2 : Classification in Large Dimensions

Problems and Objectives

- Matrix K very difficult to analyze for small dimensional x_{i} (even Gaussian)
- Qualitative understanding of the tools, difficult to optimize.
- We need here :
- study K as $n, p \rightarrow \infty$
- exploit the double-concentration to better understand K
- deduce quantitative performance of learning methods
- improve performances as well as methods.

Results and Perspectives

\checkmark Development of tools for large dimensional analysis of kernel matrices.
\checkmark Thorough analysis of spectral clustering performance in (large) Gaussian mixtures.
\checkmark Optimization for subspace clustering (new approach, undergoing patent by HUAWEI).

Axis 2 : Classification in Large Dimensions

Problems and Objectives

- Matrix K very difficult to analyze for small dimensional x_{i} (even Gaussian)
- Qualitative understanding of the tools, difficult to optimize.
- We need here :
- study K as $n, p \rightarrow \infty$
- exploit the double-concentration to better understand K
- deduce quantitative performance of learning methods
- improve performances as well as methods.

Results and Perspectives

\checkmark Development of tools for large dimensional analysis of kernel matrices.
\checkmark Thorough analysis of spectral clustering performance in (large) Gaussian mixtures.
\checkmark Optimization for subspace clustering (new approach, undergoing patent by HUAWEI).
Q Generalization to semi-supervised case.
Qtudy of support vector machines in this context.
Q Generalization to more realistic models, deeper comparison to real datasets.

Axis 2 : Classification in Large Dimensions

Model : Consider Laplacian matrix (core of Ng -Weiss-Jordan algorithm)

$$
L=n D^{-\frac{1}{2}} K D^{-\frac{1}{2}}-n \frac{D^{\frac{1}{2}} 1_{n} 1_{n}^{\top} D^{\frac{1}{2}}}{1_{n}^{\top} D 1_{n}}
$$

where $D=\operatorname{diag}\left(K 1_{n}\right)$ and $x_{i} \in \mathcal{C}_{a} \Leftrightarrow x_{i} \sim \mathcal{N}\left(\mu_{a}, \frac{1}{p} C_{a}\right),\left|\mathcal{C}_{a}\right|=n_{a}$.

Axis 2 : Classification in Large Dimensions

Model : Consider Laplacian matrix (core of $\mathrm{Ng}-$ Weiss-Jordan algorithm)

$$
L=n D^{-\frac{1}{2}} K D^{-\frac{1}{2}}-n \frac{D^{\frac{1}{2}} 1_{n} 1_{n}^{\top} D^{\frac{1}{2}}}{1_{n}^{\top} D 1_{n}}
$$

where $D=\operatorname{diag}\left(K 1_{n}\right)$ and $x_{i} \in \mathcal{C}_{a} \Leftrightarrow x_{i} \sim \mathcal{N}\left(\mu_{a}, \frac{1}{p} C_{a}\right),\left|\mathcal{C}_{a}\right|=n_{a}$.

Theorem ([Couillet,Benaych'16] Equivalent to Laplacian Matrix) As $n, p \rightarrow \infty$, under appropriate hypotheses, $\|L-\hat{L}\| \xrightarrow{\text { a.s. }} 0$ with

$$
\hat{L}=-2 \frac{f^{\prime}(\tau)}{f(\tau)}\left[\frac{1}{p} P W^{\top} W P+U B U^{\top}\right]+\alpha(\tau) I_{n}
$$

where $\tau=2 \sum_{a} \frac{n_{a}}{n p} \operatorname{tr} C_{a}, W=\left[w_{1}, \ldots, w_{n}\right]\left(x_{i}=\mu_{a}+w_{i}\right), P=I_{n}-\frac{1}{n} 1_{n} 1_{n}^{\top}$,

$$
\begin{aligned}
U & =\left[\frac{1}{\sqrt{p}} J, \Phi, \psi\right], \quad B=\left[\begin{array}{cc}
B_{11} & * \\
* & *
\end{array}\right] \\
B_{11} & =M^{\top} M+\left(\frac{5 f^{\prime}(\tau)}{8 f(\tau)}-\frac{f^{\prime \prime}(\tau)}{2 f^{\prime}(\tau)}\right) t t^{\top}-\frac{f^{\prime \prime}(\tau)}{f^{\prime}(\tau)} T+\frac{p}{n} \frac{f(\tau) \alpha(\tau)}{2 f^{\prime}(\tau)} 1_{k} 1_{k}^{\top} .
\end{aligned}
$$

Axis 2 : Classification in Large Dimensions

Model : Consider Laplacian matrix (core of $\mathrm{Ng}-$ Weiss-Jordan algorithm)

$$
L=n D^{-\frac{1}{2}} K D^{-\frac{1}{2}}-n \frac{D^{\frac{1}{2}} 1_{n} 1_{n}^{\top} D^{\frac{1}{2}}}{1_{n}^{\top} D 1_{n}}
$$

where $D=\operatorname{diag}\left(K 1_{n}\right)$ and $x_{i} \in \mathcal{C}_{a} \Leftrightarrow x_{i} \sim \mathcal{N}\left(\mu_{a}, \frac{1}{p} C_{a}\right),\left|\mathcal{C}_{a}\right|=n_{a}$.

Theorem ([Couillet,Benaych'16] Equivalent to Laplacian Matrix) As $n, p \rightarrow \infty$, under appropriate hypotheses, $\|L-\hat{L}\| \xrightarrow{\text { a.s. }} 0$ with

$$
\hat{L}=-2 \frac{f^{\prime}(\tau)}{f(\tau)}\left[\frac{1}{p} P W^{\top} W P+U B U^{\top}\right]+\alpha(\tau) I_{n}
$$

where $\tau=2 \sum_{a} \frac{n_{a}}{n p} \operatorname{tr} C_{a}, W=\left[w_{1}, \ldots, w_{n}\right]\left(x_{i}=\mu_{a}+w_{i}\right), P=I_{n}-\frac{1}{n} 1_{n} 1_{n}^{\top}$,

$$
\begin{aligned}
U & =\left[\frac{1}{\sqrt{p}} J, \Phi, \psi\right], \quad B=\left[\begin{array}{cc}
B_{11} & * \\
* & *
\end{array}\right] \\
B_{11} & =M^{\top} M+\left(\frac{5 f^{\prime}(\tau)}{8 f(\tau)}-\frac{f^{\prime \prime}(\tau)}{2 f^{\prime}(\tau)}\right) t t^{\top}-\frac{f^{\prime \prime}(\tau)}{f^{\prime}(\tau)} T+\frac{p}{n} \frac{f(\tau) \alpha(\tau)}{2 f^{\prime}(\tau)} 1_{k} 1_{k}^{\top} .
\end{aligned}
$$

Important Notations :

$\frac{1}{\sqrt{p}} J=\left[j_{1}, \ldots, j_{k}\right], j_{a}$ canonical vector of class \mathcal{C}_{a}.

Axis 2 : Classification in Large Dimensions

Model : Consider Laplacian matrix (core of $\mathrm{Ng}-$ Weiss-Jordan algorithm)

$$
L=n D^{-\frac{1}{2}} K D^{-\frac{1}{2}}-n \frac{D^{\frac{1}{2}} 1_{n} 1_{n}^{\top} D^{\frac{1}{2}}}{1_{n}^{\top} D 1_{n}}
$$

where $D=\operatorname{diag}\left(K 1_{n}\right)$ and $x_{i} \in \mathcal{C}_{a} \Leftrightarrow x_{i} \sim \mathcal{N}\left(\mu_{a}, \frac{1}{p} C_{a}\right),\left|\mathcal{C}_{a}\right|=n_{a}$.

Theorem ([Couillet,Benaych'16] Equivalent to Laplacian Matrix)

 As $n, p \rightarrow \infty$, under appropriate hypotheses, $\|L-\hat{L}\| \xrightarrow{\text { a.s. }} 0$ with$$
\hat{L}=-2 \frac{f^{\prime}(\tau)}{f(\tau)}\left[\frac{1}{p} P W^{\top} W P+U B U^{\top}\right]+\alpha(\tau) I_{n}
$$

where $\tau=2 \sum_{a} \frac{n_{a}}{n p} \operatorname{tr} C_{a}, W=\left[w_{1}, \ldots, w_{n}\right]\left(x_{i}=\mu_{a}+w_{i}\right), P=I_{n}-\frac{1}{n} 1_{n} 1_{n}^{\top}$,

$$
\begin{aligned}
U & =\left[\frac{1}{\sqrt{p}} J, \Phi, \psi\right], \quad B=\left[\begin{array}{cc}
B_{11} & * \\
* & *
\end{array}\right] \\
B_{11} & =M^{\top} M+\left(\frac{5 f^{\prime}(\tau)}{8 f(\tau)}-\frac{f^{\prime \prime}(\tau)}{2 f^{\prime}(\tau)}\right) t t^{\top}-\frac{f^{\prime \prime}(\tau)}{f^{\prime}(\tau)} T+\frac{p}{n} \frac{f(\tau) \alpha(\tau)}{2 f^{\prime}(\tau)} 1_{k} 1_{k}^{\top} .
\end{aligned}
$$

Important Notations:
$M=\left[\mu_{1}^{\circ}, \ldots, \mu_{k}^{\circ}\right], \mu_{a}^{\circ}=\mu_{a}-\sum_{b=1}^{k} \frac{n_{b}}{n} \mu_{b}$.

Axis 2 : Classification in Large Dimensions

Model : Consider Laplacian matrix (core of $\mathrm{Ng}-$ Weiss-Jordan algorithm)

$$
L=n D^{-\frac{1}{2}} K D^{-\frac{1}{2}}-n \frac{D^{\frac{1}{2}} 1_{n} 1_{n}^{\top} D^{\frac{1}{2}}}{1_{n}^{\top} D 1_{n}}
$$

where $D=\operatorname{diag}\left(K 1_{n}\right)$ and $x_{i} \in \mathcal{C}_{a} \Leftrightarrow x_{i} \sim \mathcal{N}\left(\mu_{a}, \frac{1}{p} C_{a}\right),\left|\mathcal{C}_{a}\right|=n_{a}$.

Theorem ([Couillet,Benaych'16] Equivalent to Laplacian Matrix)

As $n, p \rightarrow \infty$, under appropriate hypotheses, $\|L-\hat{L}\| \xrightarrow{\text { a.s. }} 0$ with

$$
\hat{L}=-2 \frac{f^{\prime}(\tau)}{f(\tau)}\left[\frac{1}{p} P W^{\top} W P+U B U^{\top}\right]+\alpha(\tau) I_{n}
$$

where $\tau=2 \sum_{a} \frac{n_{a}}{n p} \operatorname{tr} C_{a}, W=\left[w_{1}, \ldots, w_{n}\right]\left(x_{i}=\mu_{a}+w_{i}\right), P=I_{n}-\frac{1}{n} 1_{n} 1_{n}^{\top}$,

$$
\begin{aligned}
U & =\left[\frac{1}{\sqrt{p}} J, \Phi, \psi\right], \quad B=\left[\begin{array}{cc}
B_{11} & * \\
* & *
\end{array}\right] \\
B_{11} & =M^{\top} M+\left(\frac{5 f^{\prime}(\tau)}{8 f(\tau)}-\frac{f^{\prime \prime}(\tau)}{2 f^{\prime}(\tau)}\right) t t^{\top}-\frac{f^{\prime \prime}(\tau)}{f^{\prime}(\tau)} T+\frac{p}{n} \frac{f(\tau) \alpha(\tau)}{2 f^{\prime}(\tau)} 1_{k} 1_{k}^{\top}
\end{aligned}
$$

Important Notations :
$t=\left[\frac{1}{\sqrt{p}} \operatorname{tr} C_{1}^{\circ}, \ldots, \frac{1}{\sqrt{p}} \operatorname{tr} C_{k}^{\circ}\right], C_{a}^{\circ}=C_{a}-\sum_{b=1}^{k} \frac{n_{b}}{n} C_{b}$.

Axis 2 : Classification in Large Dimensions

Model : Consider Laplacian matrix (core of $\mathrm{Ng}-$ Weiss-Jordan algorithm)

$$
L=n D^{-\frac{1}{2}} K D^{-\frac{1}{2}}-n \frac{D^{\frac{1}{2}} 1_{n} 1_{n}^{\top} D^{\frac{1}{2}}}{1_{n}^{\top} D 1_{n}}
$$

where $D=\operatorname{diag}\left(K 1_{n}\right)$ and $x_{i} \in \mathcal{C}_{a} \Leftrightarrow x_{i} \sim \mathcal{N}\left(\mu_{a}, \frac{1}{p} C_{a}\right),\left|\mathcal{C}_{a}\right|=n_{a}$.

Theorem ([Couillet,Benaych'16] Equivalent to Laplacian Matrix)

 As $n, p \rightarrow \infty$, under appropriate hypotheses, $\|L-\hat{L}\| \xrightarrow{\text { a.s. }} 0$ with$$
\hat{L}=-2 \frac{f^{\prime}(\tau)}{f(\tau)}\left[\frac{1}{p} P W^{\top} W P+U B U^{\top}\right]+\alpha(\tau) I_{n}
$$

where $\tau=2 \sum_{a} \frac{n_{a}}{n p} \operatorname{tr} C_{a}, W=\left[w_{1}, \ldots, w_{n}\right]\left(x_{i}=\mu_{a}+w_{i}\right), P=I_{n}-\frac{1}{n} 1_{n} 1_{n}^{\top}$,

$$
\begin{aligned}
U & =\left[\frac{1}{\sqrt{p}} J, \Phi, \psi\right], \quad B=\left[\begin{array}{cc}
B_{11} & * \\
* & *
\end{array}\right] \\
B_{11} & =M^{\top} M+\left(\frac{5 f^{\prime}(\tau)}{8 f(\tau)}-\frac{f^{\prime \prime}(\tau)}{2 f^{\prime}(\tau)}\right) t t^{\top}-\frac{f^{\prime \prime}(\tau)}{f^{\prime}(\tau)} T+\frac{p}{n} \frac{f(\tau) \alpha(\tau)}{2 f^{\prime}(\tau)} 1_{k} 1_{k}^{\top} .
\end{aligned}
$$

Important Notations:

$$
T=\left\{\frac{1}{p} \operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}\right\}_{a, b=1}^{k}, C_{a}^{\circ}=C_{a}-\sum_{b=1}^{k} \frac{n_{b}}{n} C_{b}
$$

Axis 2 : Classification in Large Dimensions

Consequences :

Axis 2 : Classification in Large Dimensions

Consequences :

- thorough understanding of eigenvector structure

Axis 2 : Classification in Large Dimensions

Consequences :

- thorough understanding of eigenvector structure
- important consequences to kernel choice (depends on derivatives $f^{(\ell)}(\tau)$)

Axis 2 : Classification in Large Dimensions

Consequences :

- thorough understanding of eigenvector structure
- important consequences to kernel choice (depends on derivatives $f^{(\ell)}(\tau)$)

Application to real data : MNIST database (μ_{a}, C_{a} evaluated from full database)

Figure - Four leading eigenvectors of $D^{-\frac{1}{2}} K D^{-\frac{1}{2}}$ for MNIST dataset (red), equivalent Gaussian model (black), and asymptotic results (blue).

Axis 2 : Classification in Large Dimensions

Consequences :

- thorough understanding of eigenvector structure
- important consequences to kernel choice (depends on derivatives $f^{(\ell)}(\tau)$)

Application to real data : MNIST database (μ_{a}, C_{a} evaluated from full database)

Figure - Four leading eigenvectors of $D^{-\frac{1}{2}} K D^{-\frac{1}{2}}$ for MNIST dataset (red), equivalent Gaussian model (black), and asymptotic results (blue).

Axis 2 : Classification in Large Dimensions

Consequences :

- thorough understanding of eigenvector structure
- important consequences to kernel choice (depends on derivatives $f^{(\ell)}(\tau)$)

Application to real data : MNIST database (μ_{a}, C_{a} evaluated from full database)

Figure - Four leading eigenvectors of $D^{-\frac{1}{2}} K D^{-\frac{1}{2}}$ for MNIST dataset (red), equivalent Gaussian model (black), and asymptotic results (blue).

Axis 2 : Classification in Large Dimensions

Eigenvector 2/Eigenvector 1

Eigenvector 3/Eigenvector 2

Figure - 2D plot of eigenvectors of L, MNIST database. Theoretical 1- σ and 2- σ standard deviations in blue. Classes $0,1,2$ in colors.

Outline

Curriculum Vitae

Research Project : Learning in Large Dimensions

Axis 1 : Robust Estimation in Large Dimensions
Axis 2 : Classification in Large Dimensions
Axis 3 : Random Matrices and Neural Networks
Axis 4 : Graphs

Axis 3 : Random Matrices and Neural Networks

Baseline Scenario: Study of large recurrent neural nets (RNN and ESN)

Axis 3 : Random Matrices and Neural Networks

Baseline Scenario: Study of large recurrent neural nets (RNN and ESN)

- dynamical model

$$
x_{t}=S\left(W x_{t-1}+m u_{t}+\eta \varepsilon_{t}\right)
$$

with

- n-node network with connectivity $W \in \mathbb{R}^{n \times n}$
- activation function S
- internal noise ε_{t} (biological model essentially)

Axis 3 : Random Matrices and Neural Networks

Baseline Scenario: Study of large recurrent neural nets (RNN and ESN)

- dynamical model

$$
x_{t}=S\left(W x_{t-1}+m u_{t}+\eta \varepsilon_{t}\right)
$$

with

- n-node network with connectivity $W \in \mathbb{R}^{n \times n}$
- activation function S
- internal noise ε_{t} (biological model essentially)
- readout $\omega \in \mathbb{R}^{n}$ training only (depth-1 NN) by LS regression

$$
\omega=\left(X X^{\top}\right)^{-1} X r
$$

for T-long training $u \leftrightarrow r \in \mathbb{R}^{T}$ and $X=\left[x_{1}, \ldots, x_{T}\right]$.

Axis 3 : Random Matrices and Neural Networks

Baseline Scenario: Study of large recurrent neural nets (RNN and ESN)

- dynamical model

$$
x_{t}=S\left(W x_{t-1}+m u_{t}+\eta \varepsilon_{t}\right)
$$

with

- n-node network with connectivity $W \in \mathbb{R}^{n \times n}$
- activation function S
- internal noise ε_{t} (biological model essentially)
- readout $\omega \in \mathbb{R}^{n}$ training only (depth-1 NN) by LS regression

$$
\omega=\left(X X^{\boldsymbol{\top}}\right)^{-1} X r
$$

for T-long training $u \leftrightarrow r \in \mathbb{R}^{T}$ and $X=\left[x_{1}, \ldots, x_{T}\right]$.
Performance Measures : quadratic errors in training and testing

- memory, training

$$
\mathrm{MSE}=\left\|r-X^{\top} \omega\right\|
$$

for training couples $u \leftrightarrow r \in \mathbb{R}^{T}$.

Axis 3 : Random Matrices and Neural Networks

Baseline Scenario: Study of large recurrent neural nets (RNN and ESN)

- dynamical model

$$
x_{t}=S\left(W x_{t-1}+m u_{t}+\eta \varepsilon_{t}\right)
$$

with

- n-node network with connectivity $W \in \mathbb{R}^{n \times n}$
- activation function S
- internal noise ε_{t} (biological model essentially)
- readout $\omega \in \mathbb{R}^{n}$ training only (depth-1 NN) by LS regression

$$
\omega=\left(X X^{\boldsymbol{\top}}\right)^{-1} X r
$$

for T-long training $u \leftrightarrow r \in \mathbb{R}^{T}$ and $X=\left[x_{1}, \ldots, x_{T}\right]$.
Performance Measures : quadratic errors in training and testing

- memory, training

$$
\mathrm{MSE}=\left\|r-X^{\top} \omega\right\|
$$

for training couples $u \leftrightarrow r \in \mathbb{R}^{T}$.

- generalization, test

$$
\mathrm{MSE}=\left\|\hat{r}-\hat{X}^{\top} \omega\right\|
$$

for test couples $\hat{u} \leftrightarrow \hat{r} \in \mathbb{R}^{\hat{T}}, \omega=\omega(u, r)$.

Axis 3 : Random Matrices and Neural Networks

Problems and Objectives

Axis 3 : Random Matrices and Neural Networks

Problems and Objectives

- Performance evaluation essentially qualitative

Axis 3 : Random Matrices and Neural Networks

Problems and Objectives

- Performance evaluation essentially qualitative
- Difficulty linked to randomness in W and ε_{t}

Axis 3 : Random Matrices and Neural Networks

Problems and Objectives

- Performance evaluation essentially qualitative
- Difficulty linked to randomness in W and ε_{t}
- We need here :
- Study asymptotic performances as $n, T, \hat{T} \rightarrow \infty$
- Understand effects of W-defining hyper-parameters
- Generalize study to more advanced models.

Axis 3 : Random Matrices and Neural Networks

Problems and Objectives

- Performance evaluation essentially qualitative
- Difficulty linked to randomness in W and ε_{t}
- We need here :
- Study asymptotic performances as $n, T, \hat{T} \rightarrow \infty$
- Understand effects of W-defining hyper-parameters
- Generalize study to more advanced models.

Results and Perspectives

Axis 3 : Random Matrices and Neural Networks

Problems and Objectives

- Performance evaluation essentially qualitative
- Difficulty linked to randomness in W and ε_{t}
- We need here :
- Study asymptotic performances as $n, T, \hat{T} \rightarrow \infty$
- Understand effects of W-defining hyper-parameters
- Generalize study to more advanced models.

Results and Perspectives

\checkmark Asymptotic deterministic equivalents for training and testing MSE
\checkmark Multiples new consequences and intuitions
\checkmark Proposition of improved structures for W

Axis 3 : Random Matrices and Neural Networks

Problems and Objectives

- Performance evaluation essentially qualitative
- Difficulty linked to randomness in W and ε_{t}
- We need here :
- Study asymptotic performances as $n, T, \hat{T} \rightarrow \infty$
- Understand effects of W-defining hyper-parameters
- Generalize study to more advanced models.

Results and Perspectives

\checkmark Asymptotic deterministic equivalents for training and testing MSE
\checkmark Multiples new consequences and intuitions
\checkmark Proposition of improved structures for W
Q Generalization to non-linear setting
Q Introduction of external memory, back-propagation

* Analogous study of deep networks, extreme ML, auto-encoders, etc.

Axis 3 : Random Matrices and Neural Networks

Theorem ([Couillet,Wainrib'16] Training MSE for fixed W) As $n, T \rightarrow \infty$, with $n / T \rightarrow c<1$,

$$
\operatorname{MSE}=\frac{1}{T} r^{\top}\left(I_{T}+\mathcal{R}+\frac{1}{\eta^{2}} U^{\top}\left\{m^{\top}\left(W^{i}\right)^{\top} \tilde{\mathcal{R}}^{-1} W^{j} m\right\}_{i, j=0}^{T-1} U\right)^{-1} r+o(1)
$$

where $U_{i j}=u_{i-j}$ and $\mathcal{R}, \tilde{\mathcal{R}}$ are solutions to

$$
\mathcal{R}=c\left\{\frac{1}{n} \operatorname{tr}\left(S_{i-j} \tilde{\mathcal{R}}^{-1}\right)\right\}_{i, j=1}^{T}, \quad \tilde{\mathcal{R}}=\sum_{q=-\infty}^{\infty} \frac{1}{T} \operatorname{tr}\left(J^{q}\left(I_{T}+\mathcal{R}\right)^{-1}\right) S_{q}
$$

with $\left[J^{q}\right]_{i j} \equiv \boldsymbol{\delta}_{i+q, j}$ and $S_{q} \equiv \sum_{k \geq 0} W^{k+(-q)^{+}}\left(W^{k+q^{+}}\right)^{\top}$.

Axis 3 : Random Matrices and Neural Networks

Theorem ([Couillet,Wainrib'16] Training MSE for fixed W) As $n, T \rightarrow \infty$, with $n / T \rightarrow c<1$,

$$
\operatorname{MSE}=\frac{1}{T} r^{\top}\left(I_{T}+\mathcal{R}+\frac{1}{\eta^{2}} U^{\top}\left\{m^{\top}\left(W^{i}\right)^{\top} \tilde{\mathcal{R}}^{-1} W^{j} m\right\}_{i, j=0}^{T-1} U\right)^{-1} r+o(1)
$$

where $U_{i j}=u_{i-j}$ and $\mathcal{R}, \tilde{\mathcal{R}}$ are solutions to

$$
\mathcal{R}=c\left\{\frac{1}{n} \operatorname{tr}\left(S_{i-j} \tilde{\mathcal{R}}^{-1}\right)\right\}_{i, j=1}^{T}, \quad \tilde{\mathcal{R}}=\sum_{q=-\infty}^{\infty} \frac{1}{T} \operatorname{tr}\left(J^{q}\left(I_{T}+\mathcal{R}\right)^{-1}\right) S_{q}
$$

with $\left[J^{q}\right]_{i j} \equiv \boldsymbol{\delta}_{i+q, j}$ and $S_{q} \equiv \sum_{k \geq 0} W^{k+(-q)^{+}}\left(W^{k+q^{+}}\right)^{\top}$.

Corollaries :

- for $c=0\left(S_{0}=\sum_{k \geq 0} W^{k}\left(W^{k}\right)^{\top}\right)$,

$$
\mathrm{MSE}=\frac{1}{T} r^{\top}\left(I_{T}+\frac{1}{\eta^{2}} U^{\top}\left\{m^{\top}\left(W^{i}\right)^{\top} S_{0}^{-1} W^{j} m\right\}_{i, j=0}^{T-1} U\right)^{-1} r+o(1)
$$

Axis 3 : Random Matrices and Neural Networks

Theorem ([Couillet,Wainrib'16] Training MSE for fixed W) As $n, T \rightarrow \infty$, with $n / T \rightarrow c<1$,

$$
\operatorname{MSE}=\frac{1}{T} r^{\top}\left(I_{T}+\mathcal{R}+\frac{1}{\eta^{2}} U^{\top}\left\{m^{\top}\left(W^{i}\right)^{\top} \tilde{\mathcal{R}}^{-1} W^{j} m\right\}_{i, j=0}^{T-1} U\right)^{-1} r+o(1)
$$

where $U_{i j}=u_{i-j}$ and $\mathcal{R}, \tilde{\mathcal{R}}$ are solutions to

$$
\mathcal{R}=c\left\{\frac{1}{n} \operatorname{tr}\left(S_{i-j} \tilde{\mathcal{R}}^{-1}\right)\right\}_{i, j=1}^{T}, \quad \tilde{\mathcal{R}}=\sum_{q=-\infty}^{\infty} \frac{1}{T} \operatorname{tr}\left(J^{q}\left(I_{T}+\mathcal{R}\right)^{-1}\right) S_{q}
$$

with $\left[J^{q}\right]_{i j} \equiv \boldsymbol{\delta}_{i+q, j}$ and $S_{q} \equiv \sum_{k \geq 0} W^{k+(-q)^{+}}\left(W^{k+q^{+}}\right)^{\top}$.

Corollaries :

- for $c=0\left(S_{0}=\sum_{k \geq 0} W^{k}\left(W^{k}\right)^{\top}\right)$,

$$
\operatorname{MSE}=\frac{1}{T} r^{\top}\left(I_{T}+\frac{1}{\eta^{2}} U^{\top}\left\{m^{\top}\left(W^{i}\right)^{\top} S_{0}^{-1} W^{j} m\right\}_{i, j=0}^{T-1} U\right)^{-1} r+o(1)
$$

- for $W=\sigma Z$ with Z Haar, $\|m\|=1$ independent of W,

$$
\operatorname{MSE}=(1-c) \frac{1}{T} r^{\top}\left(I_{T}+\frac{1}{\eta^{2}} U^{\top} \operatorname{diag}\left\{\left(1-\sigma^{2}\right) \sigma^{2(i-1)}\right\}_{i=1}^{T} U\right)^{-1} r+o(1)
$$

Axis 3 : Random Matrices and Neural Networks

Figure - Prediction for the Mackey Glass model, $W=\sigma Z, \sigma=.9, Z$ Haar.

Axis 3 : Random Matrices and Neural Networks

Consequences: Analysis suggests choice $W=\operatorname{diag}\left(W_{1}, \ldots, W_{k}\right), W_{j}=\sigma_{j} Z_{j}$, $Z_{j} \in \mathbb{R}^{n_{j} \times n_{j}}$ Haar, leading to change

$$
\left(1-\sigma^{2}\right) \sigma^{2 \tau} \leftrightarrow \mathrm{MC}(\tau) \equiv \frac{\sum_{j=1}^{k} c_{j} \sigma_{j}^{2 \tau}}{\sum_{j=1}^{k} c_{j}\left(1-\sigma_{j}^{2}\right)^{-1}} .
$$

Figure - Memory curve (MC) for $W=\operatorname{diag}\left(W_{1}, W_{2}, W_{3}\right), W_{j}=\sigma_{j} Z_{j}, Z_{j} \in \mathbb{R}^{n_{j} \times n_{j}}$ Haar, $\sigma_{1}=.99, n_{1} / n=.01, \sigma_{2}=.9, n_{2} / n=.1$, and $\sigma_{3}=.5, n_{3} / n=.89$. Matrices W_{i}^{+}defined by $W_{i}^{+}=\sigma_{i} Z_{i}^{+}$, with $Z_{i}^{+} \in \mathbb{R}^{n \times n}$ Haar.

Outline

Curriculum Vitae

Research Project : Learning in Large Dimensions

Axis 1 : Robust Estimation in Large Dimensions
Axis 2: Classification in Large Dimensions
Axis 3 : Random Matrices and Neural Networks
Axis 4 : Graphs

Axis 4: Graphs

Baseline Scenario : Analysis of inference methods for large graphs

Axis 4: Graphs

Baseline Scenario : Analysis of inference methods for large graphs

- community detection on realistic graphs (spectral methods)

Axis 4: Graphs

Baseline Scenario : Analysis of inference methods for large graphs

- community detection on realistic graphs (spectral methods)
- analysis of signal processing on graphs methods

Axis 4: Graphs

Baseline Scenario : Analysis of inference methods for large graphs

- community detection on realistic graphs (spectral methods)
- analysis of signal processing on graphs methods

Tools :

Axis 4 : Graphs

Baseline Scenario : Analysis of inference methods for large graphs

- community detection on realistic graphs (spectral methods)
- analysis of signal processing on graphs methods

Tools :

- methods based on adjacency A, Laplacian L, or modularity M

$$
\begin{aligned}
L & =D-A \\
M & =A-E[A] .
\end{aligned}
$$

e.g., if $A_{i j} \sim \operatorname{Bern}\left(q_{i} q_{j}\right), M=A-q q^{\top}$.

Axis 4 : Graphs

Baseline Scenario : Analysis of inference methods for large graphs

- community detection on realistic graphs (spectral methods)
- analysis of signal processing on graphs methods

Tools :

- methods based on adjacency A, Laplacian L, or modularity M

$$
\begin{aligned}
L & =D-A \\
M & =A-E[A] .
\end{aligned}
$$

e.g., if $A_{i j} \sim \operatorname{Bern}\left(q_{i} q_{j}\right), M=A-q q^{\top}$.

- spectrum and eigenvectors of A, L fundamental to inference methods

Axis 4 : Graphs

Baseline Scenario : Analysis of inference methods for large graphs

- community detection on realistic graphs (spectral methods)
- analysis of signal processing on graphs methods

Tools :

- methods based on adjacency A, Laplacian L, or modularity M

$$
\begin{aligned}
L & =D-A \\
M & =A-E[A] .
\end{aligned}
$$

e.g., if $A_{i j} \sim \operatorname{Bern}\left(q_{i} q_{j}\right), M=A-q q^{\top}$.

- spectrum and eigenvectors of A, L fundamental to inference methods
- optimization, regression, PCA, etc., based on spectral properties.

Axis 4 : Graphs

Problems and Objectives

Axis 4 : Graphs

Problems and Objectives

- Community detection based on homogeneous graph methods

Axis 4 : Graphs

Problems and Objectives

- Community detection based on homogeneous graph methods
- Signal processing oh graphs purely deterministically studied

Axis 4 : Graphs

Problems and Objectives

- Community detection based on homogeneous graph methods
- Signal processing oh graphs purely deterministically studied
- We need here :
- develop and analyze community detection algorithms for realistic graphs
- analyze performances of signal processing on graphs methods

Axis 4: Graphs

Problems and Objectives

- Community detection based on homogeneous graph methods
- Signal processing oh graphs purely deterministically studied
- We need here :
- develop and analyze community detection algorithms for realistic graphs
- analyze performances of signal processing on graphs methods

Results and Perspectives

Axis 4 : Graphs

Problems and Objectives

- Community detection based on homogeneous graph methods
- Signal processing oh graphs purely deterministically studied
- We need here :
- develop and analyze community detection algorithms for realistic graphs
- analyze performances of signal processing on graphs methods

Results and Perspectives

\checkmark New algorithms (and their analysis) for community detection with heterogeneous nodes

Axis 4: Graphs

Problems and Objectives

- Community detection based on homogeneous graph methods
- Signal processing oh graphs purely deterministically studied
- We need here :
- develop and analyze community detection algorithms for realistic graphs
- analyze performances of signal processing on graphs methods

Results and Perspectives

\checkmark New algorithms (and their analysis) for community detection with heterogeneous nodes

Q Exportation to signal processing on graphs problems.

Axis 4 : Graphs

Model : graph G with n nodes and k classes, with for $i \in \mathcal{C}_{a}, j \in \mathcal{C}_{b}$,

$$
A_{i j} \sim \operatorname{Bern}\left(q_{i} q_{j} C_{a b}\right)
$$

where $C_{a b}=1+n^{-\frac{1}{2}} \Gamma_{a b}, \Gamma_{a b}=O(1)$.

Axis 4: Graphs

Model : graph G with n nodes and k classes, with for $i \in \mathcal{C}_{a}, j \in \mathcal{C}_{b}$,

$$
A_{i j} \sim \operatorname{Bern}\left(q_{i} q_{j} C_{a b}\right)
$$

where $C_{a b}=1+n^{-\frac{1}{2}} \Gamma_{a b}, \Gamma_{a b}=O(1)$.
Limitations of classical approaches: Normalized modularity $\left(\hat{q}=\frac{1}{n} A 1_{n}\right)$

$$
L=\frac{1}{\sqrt{n}} \operatorname{diag}(\hat{q})^{-1}\left[A-\frac{\hat{q} \hat{q}^{\top}}{\frac{1}{n} 1_{n}^{\top} \hat{q}}\right] \operatorname{diag}(\hat{q})^{-1} .
$$

Figure - 2nd eigenvector of A (top) and 1st eigenvector of L (bottom) with bimodal $q_{i}, 2$ classes, $n=1000$.

Axis 4: Graphs

Theorem ([Tiomoko Ali,Couillet'16] Limiting Deterministic Equivalent) As $n \rightarrow \infty,\|L-\tilde{L}\| \xrightarrow{\mathrm{p} . \mathrm{s}} 0$ with

$$
\tilde{L}=\frac{1}{m_{q}^{2}}\left[\frac{1}{\sqrt{n}} D^{-1} X D^{-1}+U \Lambda U^{\top}\right]
$$

where $D=\operatorname{diag}\left(\left\{q_{i}\right\}\right), m_{q}=\lim _{n} \frac{1}{n} \sum_{i} q_{i}$ and

$$
\begin{aligned}
U & =\left[\begin{array}{ll}
\frac{J}{\sqrt{n}} & \frac{1}{n m_{q}} D^{-1} X 1_{n}
\end{array}\right] \\
\Lambda & =\left[\begin{array}{cc}
\left(I_{k}-1_{k} c^{\top}\right) \Gamma\left(I_{k}-c 1_{k}^{\top}\right) & -1_{k} \\
1_{k} & 0
\end{array}\right]
\end{aligned}
$$

$J=\left[j_{1}, \ldots, j_{k}\right], j_{a}=[0, \ldots, 0,1, \ldots, 1,0, \ldots, 0]^{\top} \in \mathbb{R}^{n}$ canonical vector of class \mathcal{C}_{a}.

Axis 4: Graphs

Theorem ([Tiomoko Ali,Couillet'16] Limiting Deterministic Equivalent) As $n \rightarrow \infty,\|L-\tilde{L}\| \xrightarrow{\mathrm{p} . \mathrm{s}} 0$ with

$$
\tilde{L}=\frac{1}{m_{q}^{2}}\left[\frac{1}{\sqrt{n}} D^{-1} X D^{-1}+U \Lambda U^{\top}\right]
$$

where $D=\operatorname{diag}\left(\left\{q_{i}\right\}\right), m_{q}=\lim _{n} \frac{1}{n} \sum_{i} q_{i}$ and

$$
\begin{aligned}
U & =\left[\begin{array}{ll}
\frac{J}{\sqrt{n}} & \frac{1}{n m_{q}} D^{-1} X 1_{n}
\end{array}\right] \\
\Lambda & =\left[\begin{array}{cc}
\left(I_{k}-1_{k} c^{\top}\right) \Gamma\left(I_{k}-c 1_{k}^{\top}\right) & -1_{k} \\
1_{k} & 0
\end{array}\right]
\end{aligned}
$$

$J=\left[j_{1}, \ldots, j_{k}\right], j_{a}=[0, \ldots, 0,1, \ldots, 1,0, \ldots, 0]^{\top} \in \mathbb{R}^{n}$ canonical vector of class \mathcal{C}_{a}.

Consequences :

- detection based on eigenvalues of Γ
- alignment of eigenvectors to j_{a}

Thank you.

