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Education and Professional Experience

Professional Experience

Full Professor since Jan. 2011
CentraleSupélec, Gif sur Yvette, France.
Telecom Department, LANEAS group, Dvision Signals & Stats

Diplomas

Habilitation à Diriger des Recherches Feb. 2015
Place University Paris–Saclay, France
Topic Robust Estimation in the Large Random Matrix Regime

PhD in Physics Nov. 2010
Place CentraleSupélec, Gif sur Yvette, France
Topic Application of Random Matrix Theory to Future Wireless

Flexible Networks
Advis. Mérouane Debbah

Engineer and Master Diplomas Mar. 2008
Place Telecom ParisTech, Paris, France
Grade Very Good (Très Bien)
Topic Communications, embedded systems, computer science.
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Teaching Activities and Research Projects

Teaching Activities

ENS Cachan, Cachan, France since 2013
Courses Master MVA, 18 hrs/year

CentraleSupélec, Gif sur Yvette, France since 2011
Courses PhD level, 18 hrs/year

Master SAR, research seminars, 24 hrs/year
Undergraduate, lectures + practical courses, 70 hrs/year

Advising Interns, undergraduate projects, ∼8/year

Research : Projects

HUAWEI RMTin5G 100% (PI) 2015-2016
ANR RMT4GRAPH 100% (PI) 2014-2017
ERC MORE 50% 2012-2017
ANR DIONISOS 25% 2012-2016

Research : Community Life

Special Session organizations 4
IEEE Senior Member since 2015
IEEE SPTM technical committee member since 2014
IEEE TSP Associate Editor since 2015
Member of GRETSI since 2011
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PhD students

4 Axel MÜLLER (research engineer at HUAWEI Labs, Paris) 2011–2014
Subject Random matrix models for multi-cellular wireless communications
Advising 50%, with M. Debbah (CentraleSupélec)
Publications 3 articles in IEEE-JSTSP, -TIT, -TSP, 5 IEEE conferences
Awards 1 best student paper award.

4 Julia VINOGRADOVA (postdoc at Linköping University, Sweden) 2011–2014
Subject Random matrix theory applied to detection and estimation in antenna arrays
Advising 50%, with W. Hachem (Telecom ParisTech)
Publications 2 articles in IEEE-TSP, 2 IEEE conferences

4 Azary ABBOUD (postdoc at INRIA, France) 2012–2015
Subject Distributed optimization in smart grids
Advising 33%, with M. Debbah and H. Siguerdidjane (CentraleSupélec)
Publications 1 article in IEEE-TSP, 1 IEEE conference

. Gil KATZ 2013–2016
Subject Interactive communications for distributed computation
Advising 33%, with M. Debbah and P. Piantanida (CentraleSupélec)
Publications 1 IEEE conference

. Hafiz TIOMOKO ALI 2015–2018
Subject Random matrices in machine learning
Advising 100%
Publications 2 IEEE conferences.
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Research Activities

Publication Record (as of February 1st, 2016)

Publications Books : 1, Chapters : 3, Journals : 36, Conferences : 53, Patents : 4.
Citations 1256 (five best : 282, 204, 84, 49, 33)
Indices h-index : 17, i10-index : 25

Subjects

Mathematics random matrix theory, statistics
Applications machine learning, signal processing, communications

2009 2010 2011 2012 2013 2014 2015 soumis

2

4

6

8

Journal Articles per Area

Telecom

Signal

Maths/stats

Learning

7 / 38



Curriculum Vitae/ 8/38

Research Activities

Prizes and Awards

IEEE Senior Member 2016
CNRS Bronze Medal (section INS2I) 2013
IEEE ComSoc Outstanding Young Researcher Award (EMEA region) 2013
EEA/GdR ISIS/GRETSI PhD thesis award 2011

Paper Awards

Second prize of the IEEE Australia Council Student Paper Contest 2013
Best Student Paper Award Final of the IEEE Asilomar Conference 2011
Best Student Paper Award of the ValueTools Conference 2008
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Context

The “BigData” Challenge

1. dramatic increase of data dimension (and number)

2. importance of outlying and missing data

3. data heterogeneity

Limitations of classical tools

1. classical statistics limited by small but numerous data hypothesis

2. techniques relying on poorly robust empirical estimates or barely usable robust
approaches

3. bipolarity between :
I powerful techniques based on models (signal processing approach)
I ad-hoc techniques based on data (machine learning/stats approach)

Our approach

1. development of methods and mathematical tools to handle large and numerous
datasets

2. revisit robust statistics in large dimensions

3. (for lack of better approach) better understand and improve ad-hoc techniques
on simple but large dimensional models.
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Research Project : Learning in Large Dimensions/Axis 1 : Robust Estimation in Large Dimensions 12/38

Axis 1 : Robust Estimation in Large Dimensions

Baseline Scenario : x1, . . . , xn ∈ Rp i.i.d. with E[x1] = 0, E[x1x∗1] = Cp, but

I potentially heavy tailed
I existence of outliers

Several Estimators for Cp
I ML estimator in Gaussian case : sample covariance matrix

Ĉp =
1

n

n∑
i=1

xix
∗
i .

I very practical, used in many methods
I but very sensitive to outliers

I [Huber’67 ; Maronna’76] Robust Estimators (outliers or heavy tails)

Ĉp =
1

n

n∑
i=1

u

(
1

p
x∗i Ĉ

−1
p xi

)
xix
∗
i .

I [Pascal’13 ; Chen’11] Regularized Versions for Large Data (all n, p),

Ĉp(ρ) = (1− ρ)
1

n

n∑
i=1

xix
∗
i

1
p
x∗i Ĉ

−1
p (ρ)xi

+ ρIN .
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Axis 1 : Robust Estimation in Large Dimensions

Problem and Objectives

I Ill-understood estimators, difficult to use (implicit definition of Ĉp)

I Only known results for fixed p and n→∞ : not appropriate in BigData.
I We thus need :

I study Ĉp as n, p→∞
I exploit the double-concentration effect to better understand Ĉp.

Results and Perspectives

4 Asymptotic approximation of Ĉp by a tractable equivalent model

4 Second order statistics (CLT type) for Ĉp

4 Study of elliptical cases, outliers, regularized or not.

4 Applications :
I radar array processing (impulsiveness due to clutter)
I financial data processing

. Joint mean and covariance estimation

. Study of robust regression

. More generally, deeper study of iterative methods in large dimensions (such as
AMP).
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Axis 1 : Robust Estimation in Large Dimensions

Theorem ([Couillet,Pascal,Silverstein’15] Maronna Estimator)
For xi =

√
τiwi, with τi impulsive, wi orthogonal and isotropic, ‖wi‖ = p,∥∥∥Ĉp − Ŝp∥∥∥ p.s.−→ 0

in spectral norm, where

Ĉp =
1

n

n∑
i=1

u

(
1

p
x∗i Ĉ

−1
p xi

)
xix
∗
i

Ŝp =
1

n

n∑
i=1

v(τiγp)xix
∗
i

with v(t) similar to u(t) and γp unique solution of

1 =
1

n

n∑
j=1

γpv(τiγp)

1 + cγpv(τiγp)
.
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Axis 1 : Robust Estimation in Large Dimensions

Consequences

I Difficult object Ĉp made tractable thanks to Ŝp

I Analysis and optimization possible by replacing Ĉp by Ŝp.

0 1 2
0

1

2

3
Eigenvalues of Ĉp

Figure – n = 2500, p = 500, Cp = diag(I125, 3I125, 10I250), τi ∼ Γ(.5, 2) i.i.d.
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Axis 1 : Robust Estimation in Large Dimensions

Application to Detection in Radars

I Hypothesis testing under impulsive noise : purely noisy inputs x1, . . . , xn,
xi =

√
τiwi, new datum

y =

{ √
τw , H0

s+
√
τw , H1

I Robust detector Tp(ρ) given by

Tp(ρ)
H1

≷
H0

γ
√
p

where

Tp(ρ) =
|y∗Ĉ−1

p (ρ)s|√
y∗Ĉ−1

p (ρ)y
√
p∗Ĉ−1

p (ρ)p

Ĉp(ρ) = (1− ρ)
1

n

n∑
i=1

xix
∗
i

1
p
x∗i Ĉp(ρ)−1xi

+ ρIp.

Objectives
I performance analysis
I find optimal regularization ρ parameter.
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ρ
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Empirical Estimator

Detector

Figure – False alarm rate P (
√
pTp(ρ) > γ), for p = 20 (left), p = 100 (right),

s = p−
1
2 [1, . . . , 1]T, [Cp]ij = 0.7|i−j|, p/n = 1/2.
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Axis 1 : Robust Estimation in Large Dimensions
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Figure – False alarm rate P (Tp(ρ̂∗p) > Γ), ρ̂∗p best estimated ρ, for p = 20 and p = 100,

s = p−
1
2 [1, . . . , 1]T, p/n = 1/2 and [Cp]ij = 0.7|i−j|.
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Axis 1 : Robust Estimation in Large Dimensions

Theoretical Results (clickable title links)

R. Couillet, M. McKay, “Large Dimensional Analysis and Optimization of Robust Shrinkage
Covariance Matrix Estimators”, Elsevier Journal of Multivariate Analysis, vol. 131, pp.
99-120, 2014.

R. Couillet, F. Pascal, J. W. Silverstein, “The Random Matrix Regime of Maronna’s
M-estimator with elliptically distributed samples”, Elsevier Journal of Multivariate Analysis,
vol. 139, pp. 56-78, 2015.

D. Morales-Jimenez, R. Couillet, M. McKay, “Large Dimensional Analysis of Robust
M-Estimators of Covariance with Outliers”, IEEE Transactions on Signal Processing, vol. 63,
no. 21, pp. 5784-5797, 2015.

R. Couillet, A. Kammoun, F. Pascal, “Second order statistics of robust estimators of scatter.
Application to GLRT detection for elliptical signals”, Elsevier Journal of Multivariate
Analysis, vol. 143, pp. 249-274, 2016.

Applications (clickable title links)

R. Couillet, A. Kammoun, F. Pascal, “Second order statistics of robust estimators of scatter.
Application to GLRT detection for elliptical signals”, Elsevier Journal of Multivariate
Analysis, vol. 143, pp. 249-274, 2016.

R. Couillet, “Robust spiked random matrices and a robust G-MUSIC estimator”, Elsevier
Journal of Multivariate Analysis, vol. 140, pp. 139-161, 2015.
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L. Yang, R. Couillet, M. McKay, “A Robust Statistics Approach to Minimum Variance
Portfolio Optimization” IEEE Transactions on Signal Processing, vol. 63, no. 24, pp.
6684–6697, 2015.

A. Kammoun, R. Couillet, F. Pascal, M.-S. Alouini, “Optimal Design of the Adaptive
Normalized Matched Filter Detector” (submitted to) IEEE Transactions on Information
Theory, 2015, arXiv Preprint 1504.01252.
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Outline

Curriculum Vitae

Research Project : Learning in Large Dimensions
Axis 1 : Robust Estimation in Large Dimensions
Axis 2 : Classification in Large Dimensions
Axis 3 : Random Matrices and Neural Networks
Axis 4 : Graphs
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Axis 2 : Classification in Large Dimensions

Baseline Scenario : x1, . . . , xn ∈ Rp belonging to k classes C1, . . . , Ck to identify

I in supervised manner : numerous labelled data (e.g., support vector machine)

I in unsupervised manner : no labelled data (e.g., kernel spectral clustering)

I in semi-supervised manner : (few) labelled data (e.g., harmonic function method).

Spectral Algorithms

I Data often non linearly separable

I Numerous methods based on kernel matrices K ∈ Rn×n, with (for instance)

Kij = f
(
‖xi − xj‖2

)
and f some function (often decreasing).

I Spectral methods consist in :
I extracting dominating eigenvectors of K (spectral clustering)
I solve optimization problem based on K (support vector machine)
I linear functional of K (semi-supervised methods)
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Axis 2 : Classification in Large Dimensions

Problems and Objectives

I Matrix K very difficult to analyze for small dimensional xi (even Gaussian)

I Qualitative understanding of the tools, difficult to optimize.
I We need here :

I study K as n, p→∞
I exploit the double-concentration to better understand K
I deduce quantitative performance of learning methods
I improve performances as well as methods.

Results and Perspectives

4 Development of tools for large dimensional analysis of kernel matrices.

4 Thorough analysis of spectral clustering performance in (large) Gaussian mixtures.

4 Optimization for subspace clustering (new approach, undergoing patent by
HUAWEI).

. Generalization to semi-supervised case.

. Study of support vector machines in this context.

. Generalization to more realistic models, deeper comparison to real datasets.
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Axis 2 : Classification in Large Dimensions

Model : Consider Laplacian matrix (core of Ng–Weiss–Jordan algorithm)

L = nD−
1
2KD−

1
2 − n

D
1
2 1n1T

nD
1
2

1T
nD1n

where D = diag(K1n) and xi ∈ Ca ⇔ xi ∼ N (µa,
1
p
Ca), |Ca| = na.

Theorem ([Couillet,Benaych’16] Equivalent to Laplacian Matrix)
As n, p→∞, under appropriate hypotheses, ‖L− L̂‖ a.s.−→ 0 with

L̂ = −2
f ′(τ)

f(τ)

[
1

p
PWTWP + UBUT

]
+ α(τ)In

where τ = 2
∑
a
na
np

trCa, W = [w1, . . . , wn] (xi = µa + wi), P = In − 1
n

1n1T
n,

U = [,Φ, ψ] , B =

[
B11 ∗
∗ ∗

]
B11 = MTM +

(
5f ′(τ)

8f(τ)
−
f ′′(τ)

2f ′(τ)

)
ttT −

f ′′(τ)

f ′(τ)
T +

p

n

f(τ)α(τ)

2f ′(τ)
1k1T

k .

Important Notations :
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1√
p
J = [j1, . . . , jk], ja canonical vector of class Ca.
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Important Notations :
M = [µ◦1, . . . , µ

◦
k], µ◦a = µa −

∑k
b=1

nb
n
µb.
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Axis 2 : Classification in Large Dimensions

Consequences :

I thorough understanding of eigenvector structure
I important consequences to kernel choice (depends on derivatives f (`)(τ))

Application to real data : MNIST database (µa, Ca evaluated from full database)

Figure – Four leading eigenvectors of D−
1
2KD−

1
2 for MNIST dataset (red), equivalent

Gaussian model (black), and asymptotic results (blue).
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Axis 2 : Classification in Large Dimensions

Eigenvector 2/Eigenvector 1 Eigenvector 3/Eigenvector 2

Figure – 2D plot of eigenvectors of L, MNIST database. Theoretical 1-σ and 2-σ standard
deviations in blue. Classes 0, 1, 2 in colors.
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Outline

Curriculum Vitae

Research Project : Learning in Large Dimensions
Axis 1 : Robust Estimation in Large Dimensions
Axis 2 : Classification in Large Dimensions
Axis 3 : Random Matrices and Neural Networks
Axis 4 : Graphs
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Axis 3 : Random Matrices and Neural Networks

Baseline Scenario : Study of large recurrent neural nets (RNN and ESN)

I dynamical model

xt = S (Wxt−1 +mut + ηεt)

with
I n-node network with connectivity W ∈ Rn×n
I activation function S
I internal noise εt (biological model essentially)

I readout ω ∈ Rn training only (depth-1 NN) by LS regression

ω = (XXT)−1Xr

for T -long training u↔ r ∈ RT and X = [x1, . . . , xT ].

Performance Measures : quadratic errors in training and testing
I memory, training

MSE =
∥∥∥r −XTω

∥∥∥
for training couples u↔ r ∈ RT .

I generalization, test

MSE =
∥∥∥r̂ − X̂Tω

∥∥∥
for test couples û↔ r̂ ∈ RT̂ , ω = ω(u, r).
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for test couples û↔ r̂ ∈ RT̂ , ω = ω(u, r).

28 / 38



Research Project : Learning in Large Dimensions/Axis 3 : Random Matrices and Neural Networks 28/38

Axis 3 : Random Matrices and Neural Networks

Baseline Scenario : Study of large recurrent neural nets (RNN and ESN)
I dynamical model

xt = S (Wxt−1 +mut + ηεt)

with
I n-node network with connectivity W ∈ Rn×n
I activation function S
I internal noise εt (biological model essentially)

I readout ω ∈ Rn training only (depth-1 NN) by LS regression

ω = (XXT)−1Xr

for T -long training u↔ r ∈ RT and X = [x1, . . . , xT ].

Performance Measures : quadratic errors in training and testing
I memory, training

MSE =
∥∥∥r −XTω

∥∥∥
for training couples u↔ r ∈ RT .

I generalization, test

MSE =
∥∥∥r̂ − X̂Tω

∥∥∥
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for test couples û↔ r̂ ∈ RT̂ , ω = ω(u, r).

28 / 38



Research Project : Learning in Large Dimensions/Axis 3 : Random Matrices and Neural Networks 29/38

Axis 3 : Random Matrices and Neural Networks

Problems and Objectives

I Performance evaluation essentially qualitative

I Difficulty linked to randomness in W and εt
I We need here :

I Study asymptotic performances as n, T, T̂ →∞
I Understand effects of W -defining hyper-parameters
I Generalize study to more advanced models.

Results and Perspectives

4 Asymptotic deterministic equivalents for training and testing MSE

4 Multiples new consequences and intuitions

4 Proposition of improved structures for W

. Generalization to non-linear setting

. Introduction of external memory, back-propagation

. Analogous study of deep networks, extreme ML, auto-encoders, etc.
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Axis 3 : Random Matrices and Neural Networks

Theorem ([Couillet,Wainrib’16] Training MSE for fixed W )
As n, T →∞, with n/T → c < 1,

MSE =
1

T
rT

(
IT +R+

1

η2
UT
{
mT(W i)TR̃−1W jm

}T−1

i,j=0
U

)−1

r + o(1)

where Uij = ui−j and R, R̃ are solutions to

R = c

{
1

n
tr
(
Si−jR̃−1

)}T
i,j=1

, R̃ =
∞∑

q=−∞

1

T
tr
(
Jq(IT +R)−1

)
Sq

with [Jq ]ij ≡ δi+q,j and Sq ≡
∑
k≥0 W

k+(−q)+ (Wk+q+ )T.

Corollaries :
I for c = 0 (S0 =

∑
k≥0W

k(Wk)T),

MSE =
1

T
rT

(
IT +

1

η2
UT
{
mT(W i)TS−1

0 W jm
}T−1

i,j=0
U

)−1

r + o(1)

I for W = σZ with Z Haar, ‖m‖ = 1 independent of W ,

MSE = (1− c)
1

T
rT

(
IT +

1

η2
UTdiag

{
(1− σ2)σ2(i−1)

}T
i=1

U

)−1

r + o(1).
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Axis 3 : Random Matrices and Neural Networks

10−4 10−3 10−2 10−1 100 101
10−6

10−3

100
Test

Entr.

η2

N
M

S
E

n = 200, T = T̂ = 400

Monte Carlo

Th. (W fixe)

Th. (limite)

10−4 10−3 10−2 10−1 100 101

Test

Train

η2

n = 400, T = T̂ = 800

Monte Carlo

Th. (W fixed)

Th. (limit)

Figure – Prediction for the Mackey Glass model, W = σZ, σ = .9, Z Haar.
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Axis 3 : Random Matrices and Neural Networks

Consequences : Analysis suggests choice W = diag(W1, . . . ,Wk), Wj = σjZj ,
Zj ∈ Rnj×nj Haar, leading to change

(1− σ2)σ2τ ↔ MC(τ) ≡
∑k
j=1 cjσ

2τ
j∑k

j=1 cj(1− σ2
j )−1

.

10 20 30
10−4

10−3

10−2

10−1

100

τ

MC(τ;W )

MC(τ;W
+
1 )

MC(τ;W
+
2 )

MC(τ;W
+
3 )

Figure – Memory curve (MC) for W = diag(W1,W2,W3), Wj = σjZj , Zj ∈ Rnj×nj Haar,

σ1 = .99, n1/n = .01, σ2 = .9, n2/n = .1, and σ3 = .5, n3/n = .89. Matrices W+
i defined

by W+
i = σiZ

+
i , with Z+

i ∈ Rn×n Haar.
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Outline

Curriculum Vitae

Research Project : Learning in Large Dimensions
Axis 1 : Robust Estimation in Large Dimensions
Axis 2 : Classification in Large Dimensions
Axis 3 : Random Matrices and Neural Networks
Axis 4 : Graphs
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Axis 4 : Graphs

Baseline Scenario : Analysis of inference methods for large graphs

I community detection on realistic graphs (spectral methods)

I analysis of signal processing on graphs methods

Tools :

I methods based on adjacency A, Laplacian L, or modularity M

L = D −A
M = A− E[A].

e.g., if Aij ∼ Bern(qiqj), M = A− qqT.

I spectrum and eigenvectors of A, L fundamental to inference methods

I optimization, regression, PCA, etc., based on spectral properties.
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Research Project : Learning in Large Dimensions/Axis 4 : Graphs 35/38

Axis 4 : Graphs

Problems and Objectives

I Community detection based on homogeneous graph methods

I Signal processing oh graphs purely deterministically studied
I We need here :

I develop and analyze community detection algorithms for realistic graphs
I analyze performances of signal processing on graphs methods

Results and Perspectives

4 New algorithms (and their analysis) for community detection with heterogeneous
nodes

. Exportation to signal processing on graphs problems.
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Axis 4 : Graphs

Model : graph G with n nodes and k classes, with for i ∈ Ca, j ∈ Cb,

Aij ∼ Bern (qiqjCab)

where Cab = 1 + n−
1
2 Γab, Γab = O(1).

Limitations of classical approaches : Normalized modularity (q̂ = 1
n
A1n)

L =
1
√
n

diag(q̂)−1

[
A−

q̂q̂T

1
n

1T
nq̂

]
diag(q̂)−1.

1 500 1,000
−0.1

0

0.1

class C1 class C2

degree bias

1 500 1,000
−0.1

0

0.1

class C1 class C2

corrected bias

Figure – 2nd eigenvector of A (top) and 1st eigenvector of L (bottom) with bimodal qi, 2
classes, n = 1000.
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Axis 4 : Graphs

Theorem ([Tiomoko Ali,Couillet’16] Limiting Deterministic Equivalent)
As n→∞, ‖L− L̃‖ p.s.−→ 0 with

L̃ =
1

m2
q

[
1
√
n
D−1XD−1 + UΛUT

]
where D = diag({qi}), mq = limn

1
n

∑
i qi and

U =
[
J√
n

1
nmq

D−1X1n
]

Λ =

[
(Ik − 1kc

T)Γ(Ik − c1T
k) −1k

1k 0

]
J = [j1, . . . , jk], ja = [0, . . . , 0, 1, . . . , 1, 0, . . . , 0]T ∈ Rn canonical vector of class Ca.

Consequences :

I detection based on eigenvalues of Γ

I alignment of eigenvectors to ja
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End

Thank you.
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