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Project definition and objectives

“develop a framework of big data processing analysis (notably graph-based
methods) relying on random matrix tools”

Objects of interest Matrix models

Deterministic equivalents

: Kernel random matrices
Random equivalents Random Matrix Models Spiked random matrices
Limiting spectrum for Random Graphs Random Laplacian matrices

Isolated eigenvalues

Other Hermitian models
Extreme eigenvalues

Non-Hermitian models

T

RMT4GRAPH
@ Studied quantities SP&ML applications
sy . q
=4 Limiting graph behavior . . Random graph systems
§ Asymp?o?ic Eonsistence <] . Appllcatlons tq > Classiﬁca%io:anz clustering
B3 Performance analysis Big Data Processing Signal Processing on graphs
% Algorithm stability Scan statistics on graphs
5@ Improvement parameters

Echo-state neural networks
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Random matrices with non-linear or recursive entries
“Task 1.3. Non-hermitian random matrix models)



Work Packages and Timeline

» WP1. Random Matrix Models for Random Graphs.

> Task 1.1. Kernel random matrix models.

> Task 1.2. Hermitian models and spikes.

» Task 1.3. Random matrices with non-linear or recursive entries
(formerly “Task 1.3. Non-hermitian random matrix models)

» WP2. Applications to Big Data Processing.
> Task 2.1. Applications to machine learning.
> Task 2.2. Signal processing on graphs
> Task 2.3. Neural networks
(formerly restricted to " Task 2.3. Echo-state neural networks)



Work Packages and Timeline

» WP1. Random Matrix Models for Random Graphs.

> Task 1.1. Kernel random matrix models.

> Task 1.2. Hermitian models and spikes.

» Task 1.3. Random matrices with non-linear or recursive entries
(formerly “Task 1.3. Non-hermitian random matrix models)

» WP2. Applications to Big Data Processing.
> Task 2.1. Applications to machine learning.
> Task 2.2. Signal processing on graphs
> Task 2.3. Neural networks
(formerly restricted to " Task 2.3. Echo-state neural networks)

L—-!-—J,-_J
((Task 1.1 )i I I )
(ask 1.2 )i )
(rask 1.3 ) )
((Task2.1 )| )
((Task 2.2 ) )
(Task2.3 ) )




Taskforce and Actions

Taskforce
> Principal Investigator. Romain Couillet.

6/27



Taskforce and Actions

Taskforce
> Principal Investigator. Romain Couillet.

> Stud
>

>

v

ents.

Hafiz Tiomoko Ali (PhD student, RMT4GRAPH grant, 2015-2018): community
detection, neural networks.

Xiaoyi Mai (PhD student, DIGICOSME grant, 2016-2019): semi-supervised learning.
Zhenyu Liao (intern, ERC-MORE grant, 2016): support vector machines.

Cosme Louart (intern, ERC-MORE grant, 2016): neural networks (extreme learning
machines).

Evgeny Kusmenko (PhD student, ERC-MORE grant, jan. 2015-dec. 2015): spectral
clustering.

Harry Sevi (intern, ERC-MORE grant, 2015): echo-state neural networks.



Taskforce and Actions

Taskforce
> Principal Investigator. Romain Couillet.
> Students.
> Hafiz Tiomoko Ali (PhD student, RMT4GRAPH grant, 2015-2018): community

>

>

>

>

>

detection, neural networks.

Xiaoyi Mai (PhD student, DIGICOSME grant, 2016-2019): semi-supervised learning.
Zhenyu Liao (intern, ERC-MORE grant, 2016): support vector machines.

Cosme Louart (intern, ERC-MORE grant, 2016): neural networks (extreme learning
machines).

Evgeny Kusmenko (PhD student, ERC-MORE grant, jan. 2015-dec. 2015): spectral
clustering.

Harry Sevi (intern, ERC-MORE grant, 2015): echo-state neural networks.

» Collaborators.

>

>
>

Florent Benaych-Georges (professor at Universit Paris Descartes): kernel random
matrices.

Gilles Wainrib (assistant professor at ENS Paris): neural networks.

Abla Kammoun (research scientist at KAUST): subspace clustering.



Taskforce and Actions

Taskforce
> Principal Investigator. Romain Couillet.
> Students.
> Hafiz Tiomoko Ali (PhD student, RMT4GRAPH grant, 2015-2018): community

>

>

>

>

>

detection, neural networks.

Xiaoyi Mai (PhD student, DIGICOSME grant, 2016-2019): semi-supervised learning.
Zhenyu Liao (intern, ERC-MORE grant, 2016): support vector machines.

Cosme Louart (intern, ERC-MORE grant, 2016): neural networks (extreme learning
machines).
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>

Florent Benaych-Georges (professor at Universit Paris Descartes): kernel random
matrices.

Gilles Wainrib (assistant professor at ENS Paris): neural networks.

Abla Kammoun (research scientist at KAUST): subspace clustering.

Actions and Publications.
> Publications: 3 journal articles, 7 conference articles

» Dissemination:

>

vyvyyvyy

Organization of the summer school “Large Random Matrices and High Dimensional
Statistical Signal Processing”, Telecom ParisTech, June 7-8, 2016.

SSP’16 Special Session “Random matrices in signal processing and machine learning”
Distinguished keynote speaker at EUSIPCO 2016

Special Issue on Random Matrices in “Revue du Traitement du Signal”

Several invited talks and contributions to local events
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System Setting

Assume n-node, m-edge graph G, with

> ‘“intrinsic” average connectivity q1,...,qn ~ p i.i.d.

» k classes C1,..., Cy, independent of {g;} of (large) sizes n1,..., nyg, with

preferential attachment C\;, between C, and C
» induces edge probability for node i € Cq, j € Cp,

P(i~j)=4iqiCab-

o inter-class Cq <> Cp
P connectlmty Cab

|

\\P‘

Ehoy
M\‘\b\ "'

AN/
vl ‘&'f*«%

intrinsic node
connectivity ¢;



System Setting

Objective:
Understand and improve performance of spectral community detection methods:

T
> based on adjacency A or modularity A — % matrices (adapted to dense nets)
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System Setting

Objective:
Understand and improve performance of spectral community detection methods:
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System Setting

Eigenv. 1

Eigenv. 2
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System Setting
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System Setting

Eigenv. 1

Eigenv. 2

| I I —

|} p-dimensional representation |}

= T T T
><>)<( XX
[ Xx%‘ n
% X;S
X%
.
X

Eigenvector 2
I

Eigenvector 1

EM or k-means clustering.
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Limitations of Adjacency/Modularity Approach

Scenario: 3 classes with u bi-modal (e.g., p = %60_1 + i60_5)

— Leading eigenvectors of A (or modularity A — %) biased by ¢; distribution.
— Similar behavior for Bethe Hessian.
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Regularized Modularity Approach

Connectivity Model: P(i ~ j) = q;qjCqp for i € Cq, j € Cp.

Dense Regime Assumptions: Non trivial regime when, as n — oo,

Map
Jn

Cap =1+

with Mg, = O(1) (fixed).



Regularized Modularity Approach

Connectivity Model: P(i ~ j) = q;qjCqp for i € Cq, j € Cp.

Dense Regime Assumptions: Non trivial regime when, as n — oo,

Map
Jn

Cap =1+
with Mg, = O(1) (fixed).

Considered Matrix:
For o € [0, 1], (and with D = diag(Al,) = diag(d) the degree matrix)

1 dd’
a=(02m)*—=D" - — B
L & D™ |A D~
vn 2m

o
N}



Asymptotic Equivalence

Theorem (Limiting Random Matrix Equivalent)
For each a € [0,1], as n — oo,

Lo — [~/Q|| — 0 almost surely, where
1 dd’
Lo = (2m)® ——D~® [A - —} D«
vn 2m
~ 1

_ - - T
La = —=Dy XDy +UAU

with Dy = diag({g;}), X zero-mean random matrix,

U= [D(}_aﬁ ﬁDq_aXln] , rankk+1

A= (I — Lee"HM (I, — c1])  —1g
i) 0

and J = [j1,...,jk}, Ja = [0,...,0, 11,1 ,0,..., O]T € R™ canonical vector of class Cg.
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For each o € [0,1], asn — 00, ||La — La || = 0 almost surely, where

.

Lo = (2m)*—— Do [A - ﬂ} D
vn 2m

~ 1

_ - - T
La = —=Dy XDy +UAU

with Dy = diag({g;}), X zero-mean random matrix,

U=[Pit mpp Da X rankh 1
A= (I — Lee"HM (I, — c1])  —1g
i) 0
and J = [j1,...,jk}, Ja = [0,...,0, 11,1 ,0,..., O]T € R™ canonical vector of class Cg.
Consequences:

» L is a well-known spiked random matrix

> it is “easy” to study and leads to a full analysis of the spectral clustering
performance!

> it helps us correct and optimize classical spectral clustering into a powerful new
algorithm.
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Performance Results (2 masses of ¢;)

(Modularity)

(Bethe Hessian)
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(Modularity) (Bethe Hessian)
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Performance Results (2 masses of ¢;)

(Bethe Hessian)
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Performance Results (2 masses for ¢;)

1
a =0
= 0.5
............ a=1
08| —— o = aops 7
— . — . - Bethe Hessian -~

Overlap

g2 (@1 =0.1)

Figure: Overlap performance for n = 3000, K = 3, u = %5(11 + izsqz with g1 = 0.1 and

a2 €10.1,0.9], M = 10(213 — 131}), ¢; = 3.
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Outline

Machine Learning: Kernel Spectral Clustering
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Problem Statement
» Dataset z1,...,x, € RP
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Kernel Spectral Clustering

Problem Statement
» Dataset z1,...,x, € RP
> Objective: “cluster” data in k similarity classes S1,...,Sk.

> Typical metric to optimize:
k
. . K(Ijv I;)
(RatioCut) argming, y...us,={1,...,n} Z Z T
i=1j€S; *
JESi

for some similarity kernel (x,y) > 0 (large if « similar to y).

> Can be shown equivalent to

(RatioCut) argmin ;e g tr M™(D - K)M

where M C R™"*k N {M; M;; € {0, |Sj\_%}} (in particular, MTM = I) and

K = {x(zi,z;)}} Dii =

ij=1 Kij.

n
=1

J

> But integer problem! Usually NP-complete.



Kernel Spectral Clustering

Towards kernel spectral clustering

> Kernel spectral clustering: discrete-to-continuous relaxations of such metrics
. . T _
(RatioCut) argminy, yrp—y, tr M (D — K)M
i.e., eigenvector problem:

1. find eigenvectors of smallest eigenvalues
2. retrieve classes from eigenvector components
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Kernel Spectral Clustering

Towards kernel spectral clustering

> Kernel spectral clustering: discrete-to-continuous relaxations of such metrics
. . T
(RatioCut) argminy, yrp—y, tr M (D — K)M

i.e., eigenvector problem:

1. find eigenvectors of smallest eigenvalues
2. retrieve classes from eigenvector components

» Refinements:

1 1
» workingon K, D — K, I,, — DK, I, — D 2KD 2, etc.
> several steps algorithms: Ng—Jordan—Weiss, Shi—-Malik, etc.

N}



Kernel Spectral Clustering

1 1
Figure: Leading four eigenvectors of D™ 2 KD~ 2 for MNIST data.
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Methodology and objectives

Objectives and Roadmap:

> Develop mathematical analysis framework for BigData kernel spectral clustering
(p,n — 00)
> Understand:

1. Phase transition effects (i.e., when is clustering possible?)

2. Content of each eigenvector

3. Influence of kernel function

4. Performance comparison of clustering algorithms
Methodology:

> Use statistical assumptions (Gaussian mixture)

> Benefit from doubly-infinite independence and random matrix tools
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Model and Assumptions

Gaussian mixture model:
> x1,...,Tn € RP,
> k classes Cy,...,Cyg,
> 2 €Cq ez~ N(tia,Ca)-

Kernel Matrix:

> Kernel matrix of interest:

K = {f (lnxi - x_,-||2>}
p i,j=1

for some sufficiently smooth nonnegative f.

> We study the normalized Laplacian:
1 1
L=nD 2KD™ 2

with D = diag(K15).



Model and Assumptions
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Model and Assumptions

Difficulty: L is a very intractable random matrix
> non-linear f

> non-trivial dependence between entries of L

Strategy:

1. Find random equivalent L (i.e., ||L — L|| 2% 0 as n,p — o) based on:

> concentration: K;; — T, constant, as n,p — oo (for all © # j)
> Taylor expansion around limit point

2. Apply spiked random matrix approach to study:

> existence of isolated eigenvalues in L: phase transition
> eigenvector projections on canonical class-basis

N
N

o
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Theoretical Findings versus MNIST

1 1
Figure: Leading four eigenvectors of D™ 2 KD~ 2 for MNIST data (red), versus Gaussian
equivalent model (black), and theoretical findings (blue).
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Theoretical Findings versus MNIST
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Figure: Leading four eigenvectors of D~ 2 KD~ 2 for MNIST data (red), versus Gaussian
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Theoretical Findings versus MNIST

Eigenvector 2/Eigenvector 1 Eigenvector 3/Eigenvector 2

| | | | | | |
—.09 —.08 —.07 —.06 —0.1 0 0.1

Figure: 2D representation of eigenvectors of L, for the MNIST dataset. Theoretical means and 1-
and 2-standard deviations in blue. Class 1 in red, Class 2 in black, Class 3 in green.
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Other Results and Perspectives

Objectives:

> Kernel methods.
v Subspace spectral clustering (dramatically different case of f’(7) = 0)
Spectral clustering with outer product kernel f(zTy)
Semi-supervised learning, kernel approaches.
. Support vector machines (SVM).

Ny

o
N



Other Results and Perspectives

Objectives:

> Kernel methods.
v Subspace spectral clustering (dramatically different case of f’(7) = 0)
“ Spectral clustering with outer product kernel f(zTy)
Semi-supervised learning, kernel approaches.
. Support vector machines (SVM).
» Community detection.

v/ Complete study of eigenvector contents in adjacency/modularity methods.
@ Study of Bethe Hessian approach.
Q Analysis of non-necessarily spectral approaches (wavelet approaches).

Ny
o
N



Other Results and Perspectives

Objectives:

> Kernel methods.

v Subspace spectral clustering (dramatically different case of f’(7) = 0)
% Spectral clustering with outer product kernel f(zTy)

Semi-supervised learning, kernel approaches.

% Support vector machines (SVM).

» Community detection.

v/ Complete study of eigenvector contents in adjacency/modularity methods.

@ Study of Bethe Hessian approach.
Q Analysis of non-necessarily spectral approaches (wavelet approaches).

> Neural Networks.

% Analysis of non-linear extreme learning machines
Q non-linear echo-state

Ny

o
N



Other Results and Perspectives

Objectives:

> Kernel methods.
v Subspace spectral clustering (dramatically different case of f’(7) = 0)
“ Spectral clustering with outer product kernel f(zTy)
Semi-supervised learning, kernel approaches.
% Support vector machines (SVM).
» Community detection.

v/ Complete study of eigenvector contents in adjacency/modularity methods.
@ Study of Bethe Hessian approach.
Q Analysis of non-necessarily spectral approaches (wavelet approaches).

> Neural Networks.

% Analysis of non-linear extreme learning machines
Q non-linear echo-state

» Signal processing on graphs, further graph inference, etc.
Q@ Making graph methods random.
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The End

Thank you.
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