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Project definition and objectives

“develop a framework of big data processing analysis (notably graph-based
methods) relying on random matrix tools”
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RMT4GRAPH

Applications to
Big Data Processing

Random Matrix Models
for Random Graphs

Objects of interest Matrix models

Studied quantities SP&ML applications

Deterministic equivalents
Random equivalents
Limiting spectrum
Isolated eigenvalues
Extreme eigenvalues

Kernel random matrices
Spiked random matrices
Random Laplacian matrices
Other Hermitian models
Non-Hermitian models

Limiting graph behavior
Asymptotic consistence
Performance analysis
Algorithm stability
Improvement parameters

Random graph systems
Classification and clustering
Signal Processing on graphs
Scan statistics on graphs
Echo-state neural networks
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Work Packages and Timeline

I WP1. Random Matrix Models for Random Graphs.
I Task 1.1. Kernel random matrix models.
I Task 1.2. Hermitian models and spikes.
I Task 1.3. Random matrices with non-linear or recursive entries

(formerly “Task 1.3. Non-hermitian random matrix models)

I WP2. Applications to Big Data Processing.
I Task 2.1. Applications to machine learning.
I Task 2.2. Signal processing on graphs
I Task 2.3. Neural networks

(formerly restricted to ”Task 2.3. Echo-state neural networks)

WP1

WP2

Task 1.1

Task 1.2

Task 1.3

Task 2.1

Task 2.2

Task 2.3

Deliverables D1 D2 D3
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Taskforce and Actions

Taskforce
I Principal Investigator. Romain Couillet.

I Students.
I Hafiz Tiomoko Ali (PhD student, RMT4GRAPH grant, 2015-2018): community

detection, neural networks.
I Xiaoyi Mai (PhD student, DIGICOSME grant, 2016-2019): semi-supervised learning.
I Zhenyu Liao (intern, ERC-MORE grant, 2016): support vector machines.
I Cosme Louart (intern, ERC-MORE grant, 2016): neural networks (extreme learning

machines).
I Evgeny Kusmenko (PhD student, ERC-MORE grant, jan. 2015-dec. 2015): spectral

clustering.
I Harry Sevi (intern, ERC-MORE grant, 2015): echo-state neural networks.

I Collaborators.
I Florent Benaych-Georges (professor at Universit Paris Descartes): kernel random

matrices.
I Gilles Wainrib (assistant professor at ENS Paris): neural networks.
I Abla Kammoun (research scientist at KAUST): subspace clustering.

Actions and Publications.
I Publications: 3 journal articles, 7 conference articles

I Dissemination:
I Organization of the summer school “Large Random Matrices and High Dimensional

Statistical Signal Processing”, Telecom ParisTech, June 7-8, 2016.
I SSP’16 Special Session “Random matrices in signal processing and machine learning”
I Distinguished keynote speaker at EUSIPCO 2016
I Special Issue on Random Matrices in “Revue du Traitement du Signal”
I Several invited talks and contributions to local events
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System Setting

Assume n-node, m-edge graph G, with

I “intrinsic” average connectivity q1, . . . , qn ∼ µ i.i.d.

I k classes C1, . . . , Ck independent of {qi} of (large) sizes n1, . . . , nk, with
preferential attachment Cab between Ca and Cb

I induces edge probability for node i ∈ Ca, j ∈ Cb,

P (i ∼ j) = qiqjCab.
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System Setting

Objective:
Understand and improve performance of spectral community detection methods:

I based on adjacency A or modularity A− ddT

2m
matrices (adapted to dense nets)

I based on Bethe Hessian (r2 − 1)In − rA+D (adapted to sparse nets!).

0 spikes

⇓ Eigenvectors ⇓
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System Setting
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Limitations of Adjacency/Modularity Approach

Scenario: 3 classes with µ bi-modal (e.g., µ = 3
4
δ0.1 + 1

4
δ0.5)

→ Leading eigenvectors of A (or modularity A− ddT

2m
) biased by qi distribution.

→ Similar behavior for Bethe Hessian.

(Modularity) (Bethe Hessian)

11 / 27



Limitations of Adjacency/Modularity Approach

Scenario: 3 classes with µ bi-modal (e.g., µ = 3
4
δ0.1 + 1

4
δ0.5)

→ Leading eigenvectors of A (or modularity A− ddT

2m
) biased by qi distribution.

→ Similar behavior for Bethe Hessian.

(Modularity) (Bethe Hessian)

11 / 27



Regularized Modularity Approach

Connectivity Model: P (i ∼ j) = qiqjCab for i ∈ Ca, j ∈ Cb.

Dense Regime Assumptions: Non trivial regime when, as n→∞,

Cab = 1 +
Mab√
n

with Mab = O(1) (fixed).

Considered Matrix:
For α ∈ [0, 1], (and with D = diag(A1n) = diag(d) the degree matrix)

Lα = (2m)α
1
√
n
D−α

[
A−

ddT

2m

]
D−α.
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Asymptotic Equivalence

Theorem (Limiting Random Matrix Equivalent)
For each α ∈ [0, 1], as n→∞, ‖Lα − L̃α‖ → 0 almost surely, where

Lα = (2m)α
1
√
n
D−α

[
A−

ddT

2m

]
D−α

L̃α =
1
√
n
D−αq XD−αq + UΛUT

with Dq = diag({qi}), X zero-mean random matrix,

U =
[
D1−α
q

J√
n

1
1T
nDq1n

D−αq X1n
]
, rank k + 1

Λ =

[
(Ik − 1kc

T)M(Ik − c1T
k) −1k

1T
k 0

]
and J = [j1, . . . , jk], ja = [0, . . . , 0, 1T

na
, 0, . . . , 0]T ∈ Rn canonical vector of class Ca.

Consequences:
I L̃α is a well-known spiked random matrix
I it is “easy” to study and leads to a full analysis of the spectral clustering

performance!
I it helps us correct and optimize classical spectral clustering into a powerful new

algorithm.
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Performance Results (2 masses of qi)

(Modularity) (Bethe Hessian)

(Algo with α = 1) (Algo with αopt)

Figure: Two dominant eigenvectors (x-y axes) for n = 2000, K = 3, µ = 3
4 δq1 + 1

4 δq2 ,

q1 = 0.1, q2 = 0.5, c1 = c2 = 1
4 , c3 = 1

2 , M = 100I3.
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Performance Results (2 masses for qi)
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Figure: Overlap performance for n = 3000, K = 3, µ = 3
4 δq1 + 1

4 δq2 with q1 = 0.1 and

q2 ∈ [0.1, 0.9], M = 10(2I3 − 131
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3), ci =
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Kernel Spectral Clustering

Problem Statement

I Dataset x1, . . . , xn ∈ Rp
I Objective: “cluster” data in k similarity classes S1, . . . ,Sk.

I Typical metric to optimize:

(RatioCut) argminS1∪...∪Sk={1,...,n}

k∑
i=1

∑
j∈Si
j̄ /∈Si

κ(xj , xj̄)

|Si|

for some similarity kernel κ(x, y) ≥ 0 (large if x similar to y).

I Can be shown equivalent to

(RatioCut) argminM∈M trMT(D −K)M

where M⊂ Rn×k ∩
{
M ; Mij ∈ {0, |Sj |−

1
2 }
}

(in particular, MTM = Ik) and

K = {κ(xi, xj)}ni,j=1, Dii =
n∑
j=1

Kij .

I But integer problem! Usually NP-complete.
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Kernel Spectral Clustering

Towards kernel spectral clustering

I Kernel spectral clustering: discrete-to-continuous relaxations of such metrics

(RatioCut) argminM, MTM=IK
trMT(D −K)M

i.e., eigenvector problem:
1. find eigenvectors of smallest eigenvalues
2. retrieve classes from eigenvector components

I Refinements:
I working on K, D −K, In −D−1K, In −D−

1
2KD−

1
2 , etc.

I several steps algorithms: Ng–Jordan–Weiss, Shi–Malik, etc.
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Kernel Spectral Clustering

Figure: Leading four eigenvectors of D−
1
2KD−

1
2 for MNIST data.
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Methodology and objectives

Objectives and Roadmap:

I Develop mathematical analysis framework for BigData kernel spectral clustering
(p, n→∞)

I Understand:
1. Phase transition effects (i.e., when is clustering possible?)
2. Content of each eigenvector
3. Influence of kernel function
4. Performance comparison of clustering algorithms

Methodology:

I Use statistical assumptions (Gaussian mixture)

I Benefit from doubly-infinite independence and random matrix tools
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Model and Assumptions

Gaussian mixture model:

I x1, . . . , xn ∈ Rp,

I k classes C1, . . . , Ck,

I x ∈ Ca ⇔ x ∼ N (µa, Ca).

Kernel Matrix:

I Kernel matrix of interest:

K =

{
f

(
1

p
‖xi − xj‖2

)}n
i,j=1

for some sufficiently smooth nonnegative f .

I We study the normalized Laplacian:

L = nD−
1
2KD−

1
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Model and Assumptions

Difficulty: L is a very intractable random matrix

I non-linear f

I non-trivial dependence between entries of L

Strategy:

1. Find random equivalent L̂ (i.e., ‖L− L̂‖ a.s.−→ 0 as n, p→∞) based on:
I concentration: Kij → τ , constant, as n, p→∞ (for all i 6= j)
I Taylor expansion around limit point

2. Apply spiked random matrix approach to study:
I existence of isolated eigenvalues in L̂: phase transition
I eigenvector projections on canonical class-basis
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Theoretical Findings versus MNIST

Figure: Leading four eigenvectors of D−
1
2KD−

1
2 for MNIST data (red), versus Gaussian

equivalent model (black), and theoretical findings (blue).
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Theoretical Findings versus MNIST
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Figure: 2D representation of eigenvectors of L, for the MNIST dataset. Theoretical means and 1-
and 2-standard deviations in blue. Class 1 in red, Class 2 in black, Class 3 in green.

24 / 27



Outline

Project Status

Machine Learning: Community Detection on Graphs

Machine Learning: Kernel Spectral Clustering

Future Investigations
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Other Results and Perspectives

Objectives:

I Kernel methods.
4 Subspace spectral clustering (dramatically different case of f ′(τ) = 0)

. Spectral clustering with outer product kernel f(xTy)

. Semi-supervised learning, kernel approaches.

. Support vector machines (SVM).

I Community detection.
4 Complete study of eigenvector contents in adjacency/modularity methods.
� Study of Bethe Hessian approach.
� Analysis of non-necessarily spectral approaches (wavelet approaches).

I Neural Networks.
. Analysis of non-linear extreme learning machines
� non-linear echo-state

I Signal processing on graphs, further graph inference, etc.
� Making graph methods random.

26 / 27



Other Results and Perspectives

Objectives:

I Kernel methods.
4 Subspace spectral clustering (dramatically different case of f ′(τ) = 0)

. Spectral clustering with outer product kernel f(xTy)

. Semi-supervised learning, kernel approaches.

. Support vector machines (SVM).

I Community detection.
4 Complete study of eigenvector contents in adjacency/modularity methods.
� Study of Bethe Hessian approach.
� Analysis of non-necessarily spectral approaches (wavelet approaches).

I Neural Networks.
. Analysis of non-linear extreme learning machines
� non-linear echo-state

I Signal processing on graphs, further graph inference, etc.
� Making graph methods random.

26 / 27



Other Results and Perspectives

Objectives:

I Kernel methods.
4 Subspace spectral clustering (dramatically different case of f ′(τ) = 0)

. Spectral clustering with outer product kernel f(xTy)

. Semi-supervised learning, kernel approaches.

. Support vector machines (SVM).

I Community detection.
4 Complete study of eigenvector contents in adjacency/modularity methods.
� Study of Bethe Hessian approach.
� Analysis of non-necessarily spectral approaches (wavelet approaches).

I Neural Networks.
. Analysis of non-linear extreme learning machines
� non-linear echo-state

I Signal processing on graphs, further graph inference, etc.
� Making graph methods random.

26 / 27



Other Results and Perspectives

Objectives:

I Kernel methods.
4 Subspace spectral clustering (dramatically different case of f ′(τ) = 0)

. Spectral clustering with outer product kernel f(xTy)

. Semi-supervised learning, kernel approaches.

. Support vector machines (SVM).

I Community detection.
4 Complete study of eigenvector contents in adjacency/modularity methods.
� Study of Bethe Hessian approach.
� Analysis of non-necessarily spectral approaches (wavelet approaches).

I Neural Networks.
. Analysis of non-linear extreme learning machines
� non-linear echo-state

I Signal processing on graphs, further graph inference, etc.
� Making graph methods random.

26 / 27



The End

Thank you.
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