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2ST-Ericsson, Sophia-Antipolis, FRANCE

{romain.couillet,merouane.debbah}@supelec.fr

European Wireless
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Shannon, Wiener and Cognitive Radios

1948: Cybernetics and Theory of Communications

C. E. Shannon, “A Mathematical Theory of Communication,” Bell System Technical Journal, 1948.

N. Wiener, “Cybernetics, or Control and Communication in the Animal and the Machine,” Herman
et Cie, The Technology Press, 1948.

Claude Shannon, 1916-2001 Norbert Wiener, 1894-1964
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Shannon, Wiener and Cognitive Radios

Information and Noise against Black Box and Feedback
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Shannon, Wiener and Cognitive Radios

2008: 60 years later... MIMO Random Networks
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Shannon, Wiener and Cognitive Radios

2008: 60 years later... Flexible MIMO Random Networks
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Shannon, Wiener and Cognitive Radios

2008: 60 years later... Flexible MIMO Random Networks

FEEDBACK
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Shannon, Wiener and Cognitive Radios

2008: 60 years later... Mobile Flexible MIMO Random Networks

FEEDBACK

We must learn and control the black box

within a fraction of time

with finite energy.

In many cases, the number of inputs/outputs (the dimensionality of the system) is of the same
order as the time scale changes of the box.
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Shannon, Wiener and Cognitive Radios

Example: Multi-antenna systems

TxRx
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Shannon, Wiener and Cognitive Radios

Example: Cognitive Network MIMO
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Shannon, Wiener and Cognitive Radios

Information transfer in MIMO flexible networks

y = Wx + n

C = H(y)− H(y | x)

= log det (πeRy )− log det (πeRn)

C = log
(

det (Ry )

det (Rn)

)
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Shannon, Wiener and Cognitive Radios

Understanding the network in a finite time

y = Wx + n

Rate = log
det (Ry)

det (Rn)

In the Gaussian case, one can write
y i = Ry

1
2 u i

where u i is zero mean i.i.d Gaussian.

One has only n samples:

R̂ =
1

n

n
∑

i=1

y i y
H
i = Ry

1
2 (

1

L
UUH)Ry

1
2 → 1

L
UUHRy

The non-zero eigenvalues of R̂ are the same as the eigenvalues of 1
L UUHRy .

We know the eigenvalues of 1
L UUH and R̂. Can we determine the eigenvalues of Ry?
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Shannon, Wiener and Cognitive Radios

Information transfer in MIMO flexible networks

y = Wx + n

The capacity per dimension is given by:

C =
1

N
log det

(

I +
1

σ2
WWH

)

=
1

N

N
∑

i=1

log(1 +
1

σ2
λi ) =

∫

log(1 +
1

σ2
λ)f N(λ)dλ

with

f N(λ) =
1

N

N
∑

i=1

δ(λ− λi )

All we need to know is how the empirical eigenvalue distribution behaves.
It is often sufficient to determine the moments MN

1 ,MN
2 , . . .

MN
k =

1

N

N
∑

i=1

λk
i

Sometimes, we need more involved tools, such as Fourier transform, or Stieltjes transform...
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Tools for Random Matrix Theory Introduction to Large Dimensional Random Matrix Theory

Large dimensional data

Let w1,w2 . . . ∈ CN be independently drawn from an N-variate process of mean zero and
covariance R = E[w1wH

1 ] ∈ CN×N .

Law of large numbers

As n → ∞,
1

n

n
∑

i=1

w i w
H
i = WWH a.s.−→ R

In reality, one cannot afford n → ∞.

if n ≫ N,

Rn =
1

n

n
∑

i=1

w i w
H
i

is a “good” estimate of R.

if N/n = O(1), and if both (n,N) are large, we can still say, for all (i, j),

(Rn)ij
a.s.−→ (R)ij

What about the global behaviour? What about the eigenvalue distribution?
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Tools for Random Matrix Theory Introduction to Large Dimensional Random Matrix Theory

Empirical and limit spectra of Wishart matrices
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Figure: Histogram of the eigenvalues of Rn for n = 2000, N = 500, R = IN
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Tools for Random Matrix Theory Introduction to Large Dimensional Random Matrix Theory

The Marc̆enko-Pastur Law
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Figure: Marc̆enko-Pastur law for different limit ratios c = lim N/n.
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Tools for Random Matrix Theory Introduction to Large Dimensional Random Matrix Theory

Deriving the Marc̆enko-Pastur law

We wish to determine the density fc(λ) of the asymptotic law, defined by

fc(λ) = lim
N→∞
n→∞

N/n→c

N
∑

i=1

δ (λ− λi (Rn))

Denoting α = N/n, the moments of this distribution are given by

MN
1 =

1

N
tr Rn =

1

N

N
∑

i=1

λi (Rn) →
∫

λfc(λ)dλ = 1

MN
2 =

1

N
tr R2

n =
1

N

N
∑

i=1

λi (Rn)
2 →

∫

λ2fc(λ)dλ = 1 + α

MN
3 =

1

N
tr R3

n =
1

N

N
∑

i=1

λi (Rn)
3 →

∫

λ3fc(λ)dλ = α2 + 3α+ 1

· · · = · · ·

These moments correspond to a unique distribution function (under mild assumptions), which
has density the Marc̆enko-Pastur law

f (x) = (1 − 1

α
)+δ(x) +

√

(x − a)+(b − x)+

2παx
, with a = (1 −√

α)2, b = (1 +
√
α)2.
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Tools for Random Matrix Theory History of Mathematical Advances
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Tools for Random Matrix Theory History of Mathematical Advances

Wigner and semi-circle law

Schrödinger’s equation
HΦi = EiΦi

where Φi is the wave function,
Ei is the energy level,
H is the Hamiltonian.

Magnetic interactions between the spins of electrons
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Tools for Random Matrix Theory History of Mathematical Advances

The birth of large dimensional random matrix theory

Eugene Paul Wigner, 1902-1995
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Tools for Random Matrix Theory History of Mathematical Advances

The birth of large dimensional random matrix theory

E. Wigner, “Characteristic vectors of bordered matrices with infinite dimensions,” The annals of
mathematics, vol. 62, pp. 546-564, 1955.

XN =
1√
N























0 +1 +1 +1 −1 −1 · · ·
+1 0 −1 +1 +1 +1 · · ·
+1 −1 0 +1 +1 +1 · · ·
+1 +1 +1 0 +1 +1 · · ·
−1 +1 +1 +1 0 −1 · · ·
−1 +1 +1 +1 −1 0 · · ·
...

...
...

...
...

...
. . .























As the matrix dimension increases, what can we say about the eigenvalues (energy levels)?
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Tools for Random Matrix Theory History of Mathematical Advances

Semi-circle law, Full circle law...

If XN ∈ CN×N is Hermitian with i.i.d. entries of mean 0, variance 1/N above the diagonal,
then F XN

a.s.−→ F where F has density f the semi-circle law

f (x) =
1

2π

√

(4 − x2)+

Shown from the method of moments

lim
N→∞

1

N
tr X2k

N =
1

k + 1
C2k

k

which are exactly the moments of f (x)!

If XN ∈ CN×N has i.i.d. 0 mean, variance 1/N entries, then asymptotically its complex
eigenvalues distribute uniformly on the complex unit circle.
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Tools for Random Matrix Theory History of Mathematical Advances

Semi-circle law
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Figure: Histogram of the eigenvalues of Wigner matrices and the semi-circle law, for N = 500
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Tools for Random Matrix Theory History of Mathematical Advances

Circular law
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Figure: Eigenvalues of XN with i.i.d. standard Gaussian entries, for N = 500.
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Tools for Random Matrix Theory History of Mathematical Advances

More involved matrix models

much study has surrounded the Marc̆enko-Pastur law, the Wigner semi-circle law etc.
for practical purposes, we often need more general matrix models

products and sums of random matrices
i.i.d. models with correlation/variance profile
distribution of inverses etc.

for these models, it is often impossible to have a closed-form expression of the limiting
distribution.

sometimes we do not have a limiting convergence.

To study these models, the method of moments is not enough!
A consistent powerful mathematical framework is required.

R. Couillet (Supélec) Eigen-Inference Statistical Methods for Cognitive Radio 12/04/2010 30 / 110



Tools for Random Matrix Theory History of Mathematical Advances

More involved matrix models

much study has surrounded the Marc̆enko-Pastur law, the Wigner semi-circle law etc.
for practical purposes, we often need more general matrix models

products and sums of random matrices
i.i.d. models with correlation/variance profile
distribution of inverses etc.

for these models, it is often impossible to have a closed-form expression of the limiting
distribution.

sometimes we do not have a limiting convergence.

To study these models, the method of moments is not enough!
A consistent powerful mathematical framework is required.
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Tools for Random Matrix Theory The Moment Approach and Free Probability

Eigenvalue distribution and moments

The Hermitian matrix RN ∈ CN×N has successive empirical moments MN
k , k = 1, 2, . . .,

MN
k =

1

N

N
∑

i=1

λk
i

In classical probability theory, for A, B independent,

ck (A + B) = ck (A) + ck (B)

with ck (X) the cumulants of X . The cumulants ck are connected to the moments mk by,

mk =
∑

π∈P(k)

∏

V∈π

c|V |

A natural extension of classical probability for non-commutative random variables exist, called

Free Probability
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Tools for Random Matrix Theory The Moment Approach and Free Probability

Free probability

Free probability applies to asymptotically large random matrices. We denote the moments without
superscript.

To connect the moments of A + B to those of A and B, independence is not enough. A and B
must be asymptotically free,

two Gaussian matrices are free
a Gaussian matrix and any deterministic matrix are free
unitary (Haar distributed) matrices are free
a Haar matrix and a Gaussian matrix are free etc.

Similarly as in classical probability, we define free cumulants Ck ,

C1 = M1

C2 = M2 − M2
1

C3 = M3 − 3M1M2 + 2M2
1

R. Speicher, “Combinatorial theory of the free product with amalgamation and operator-valued
free probability theory,” Mem. A.M.S., vol. 627, 1998.

Combinatorial description by non-crossing partitions,

Mn =
∑

π∈NC(n)

∏

V∈π

C|V |
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Tools for Random Matrix Theory The Moment Approach and Free Probability

Non-crossing partitions

1

2

3

4

5

6

7

8

Figure: Non-crossing partition π = {{1, 3, 4}, {2}, {5, 6, 7}, {8}} of NC(8).
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Tools for Random Matrix Theory The Moment Approach and Free Probability

Moments of sums and products of random matrices

Combinatorial calculus of all moments

Theorem

For free random matrices A and B, we have the relationship,

Ck (A + B) = Ck (A) + Ck (B)

Mn(AB) =
∑

(π1,π2)∈NC(n)

∏

V1∈π1
V2∈π2

C|V1|(A)C|V2|(B)

in conjunction with free moment-cumulant formula, gives all moments of sum and product.

Theorem

If F is a compactly supported distribution function, then F is determined by its moments.

In the absence of support compactness, it is impossible to retrieve the distribution function
from moments. This is in particular the case of Vandermonde matrices.
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Tools for Random Matrix Theory The Moment Approach and Free Probability

Free convolution

In classical probability theory, for independent A, B,

µA+B(x) = µA(x) ∗ µB(x)
∆
=

∫

µA(t)µB(x − t)dt

In free probability, for free A, B, we use the notations

µA+B = µA ⊞ µB , µA = µA+B ⊟ µB , µAB = µA ⊠ µB , µA = µA+B � µB

Ø. Ryan, M. Debbah, “Multiplicative free convolution and information-plus-noise type matrices,”
Arxiv preprint math.PR/0702342, 2007.

Theorem

Convolution of the information-plus-noise model Let WN ∈ CN×n have i.i.d. Gaussian entries of
mean 0 and variance 1, AN ∈ CN×n, such that µ 1

n AN AH
N
⇒ µA, as n/N → c. Then the eigenvalue

distribution of

BN =
1

n
(AN + σWN) (AN + σWN)

H

converges weakly and almost surely to µB such that

µB =
(

(µA � µc) ⊞ δσ2
)

⊠ µc

with µc the Marc̆enko-Pastur law with ratio c.
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Tools for Random Matrix Theory The Moment Approach and Free Probability

Similarities between classical and free probability

Classical Probability Free probability

Moments mk =

∫

xk dF (x) Mk =

∫

xk dF (x)

Cumulants mn =
∑

π∈P(n)

∏

V∈π

c|V | Mn =
∑

π∈NC(n)

∏

V∈π

C|V |

Independence classical independence freeness
Additive convolution fA+B = fA ∗ fB µA+B = µA ⊞ µB

Multiplicative convolution fAB µAB = µA ⊠ µB
Sum Rule ck (A + B) = ck (A) + ck (B) Ck (A + B) = Ck (A) + Ck (B)

Central Limit
1√
n

n
∑

i=1

xi → N (0, 1)
1√
n

n
∑

i=1

Xi ⇒ semi-circle law
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Tools for Random Matrix Theory Introduction of the Stieltjes Transform

The Stieltjes transform

Definition

Let F be a real distribution function. The Stieltjes transform mF of F is the function defined, for
z ∈ C \ R, as

mF (z) =
∫

1

λ− z
dF (λ)

For a < b real, denoting z = x + iy , we have the inverse formula

F ′(x) = lim
y→0

1

π
ℑ[mF (x + iy)]

Knowing the Stieltjes transform is knowing the eigenvalue distribution!
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Tools for Random Matrix Theory Introduction of the Stieltjes Transform

Remark on the Stieltjes transform

If F is the eigenvalue distribution of a Hermitian matrix XN ∈ CN×N , we might denote

mX
∆
=mF , and

mX(z) =
∫

1

λ− z
dF (λ) =

1

N
tr (XN − zIN)

−1

For compactly supported eigenvalue distribution,

mF (z) = −1

z

∫

1

1 − λ
z

= −
∞
∑

k=0

MN
k z−k−1

The Stieltjes transform is doubly more powerful than the moment approach!
conveys more information than any K -finite sequence M1, . . . , MK .

is not handicapped by the support compactness constraint.

however, Stieltjes transform methods, while stronger, are more painful to work with.
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R. Couillet (Supélec) Eigen-Inference Statistical Methods for Cognitive Radio 12/04/2010 41 / 110



Tools for Random Matrix Theory Introduction of the Stieltjes Transform

Remark on the Stieltjes transform

If F is the eigenvalue distribution of a Hermitian matrix XN ∈ CN×N , we might denote

mX
∆
=mF , and

mX(z) =
∫

1

λ− z
dF (λ) =

1

N
tr (XN − zIN)

−1

For compactly supported eigenvalue distribution,

mF (z) = −1

z

∫

1

1 − λ
z

= −
∞
∑

k=0

MN
k z−k−1

The Stieltjes transform is doubly more powerful than the moment approach!
conveys more information than any K -finite sequence M1, . . . , MK .

is not handicapped by the support compactness constraint.

however, Stieltjes transform methods, while stronger, are more painful to work with.
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Tools for Random Matrix Theory Introduction of the Stieltjes Transform

Asymptotic results using the Stieltjes transform

J. W. Silverstein, Z. D. Bai, “On the empirical distribution of eigenvalues of a class of large
dimensional random matrices,” Journal of Multivariate Analysis, vol. 54, no. 2, pp. 175-192, 1995.

Theorem

Let BN = XNTNXH
N ∈ CN×N , XN ∈ CN×n has i.i.d. entries of mean 0 and variance 1/N,

F TN ⇒ F T , n/N → c. Then, F BN ⇒ F almost surely, F having Stieltjes transform

mF (z) =

(

c
∫

t

1 + tmF (z)
dF T (t)− z

)−1

=

[

1

N
tr TN

(

mF (z)TN + IN
)−1 − z

]−1

which has a unique solution mF (z) ∈ C+ if z ∈ C+, and mF (z) > 0 if z < 0.

in general, no explicit expression for F .

Stieltjes transform of BN = T
1
2
N XH

NXNT
1
2
N with asymptotic distribution F ,

mF = cmF + (c − 1)
1

z

Spectrum of the sample covariance matrix model BN =
∑n

i=1 x i xH
i , with XH

N = [x1, . . . , xn], x i i.i.d.
with zero mean and covariance TN = E[x1xH

1 ].
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Tools for Random Matrix Theory Introduction of the Stieltjes Transform

Getting F ′ from mF

Remember that, for a < b real,

f (x)
∆
=F ′(x) = lim

y→0

1

π
ℑ[mF (x + iy)]

to plot the density f (x), span z = x + iy on the line {x ∈ R, y = ε} parallel but close to the
real axis, solve mF (z) for each z, and plot ℑ[mF (z)].

Example (Sample covariance matrix)

For N multiple of 3, let dF T (x) = 1
3 δ(x − 1) + 1

3 δ(x − 3) + 1
3 δ(x − K ) and let BN = T

1
2
N XH

NXNT
1
2
N

with F BN → F , then

mF = cmF + (c − 1)
1

z

mF (z) =

(

c
∫

t

1 + tmF (z)
dF T (t)− z

)−1

We take c = 1/10 and alternatively K = 7 and K = 4.
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Tools for Random Matrix Theory Introduction of the Stieltjes Transform

Spectrum of the sample covariance matrix
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Figure: Histogram of the eigenvalues of BN = T
1
2
N XH

N XN T
1
2
N , N = 3000, n = 300, with TN diagonal composed of

three evenly weighted masses in (i) 1, 3 and 7 on top, (ii) 1, 3 and 4 at bottom.
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Tools for Random Matrix Theory Introduction of the Stieltjes Transform

The Shannon Transform

A. M. Tulino, S. Verdù, “Random matrix theory and wireless communications,” Now Publishers Inc.,
2004.

Definition

Let F be a probability distribution, mF its Stieltjes transform, then the Shannon-transform VF of F
is defined as

VF (x)
∆
=

∫ ∞

0
log(1 + xλ)dF (λ) =

∫ ∞

x

(

1

t
− mF (−t)

)

dt

If F is the distribution function of the eigenvalues of XXH ∈ CN×N ,

VF (x) =
1

N
log det

(

IN + xXXH
)

.

Note that this last relation is fundamental to wireless communication purposes!
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Tools for Random Matrix Theory Summary of what we know and what is left to be done

Models studied with analytic tools

Stieltjes transform: models involving i.i.d. matrices

sample covariance matrix models, XTXH and T
1
2 XHXT

1
2

doubly correlated models, R
1
2 XTXHR

1
2 . With X Gaussian, Kronecker model.

doubly correlated models with external matrix, R
1
2 XTXHR

1
2 + A.

variance profile, XXH, where X has i.i.d. entries with mean 0, variance σ2
i,j .

Ricean channels, XXH + A, where X has a variance profile.

sum of doubly correlated i.i.d. matrices,
∑K

k=1 R
1
2
k Xk Tk XH

k R
1
2
k .

information-plus-noise models (X + A)(X + A)H

frequency-selective doubly-correlated channels (
∑K

k=1 R
1
2
k Xk Tk Xk R

1
2
k )(

∑K
k=1 R

1
2
k Xk Tk Xk R

1
2
k )

sum of frequency-selective doubly-correlated channels
∑K

k=1 R
1
2
k Hk Tk HH

k R
1
2
k , where

Hk =
∑L

l=1 R′
kl

1
2 Xkl T

′
kl X

H
kl R

′
kl

1
2 .

R- and S-transforms: models involving a column subset W of unitary matrices

doubly correlated Haar matrix R
1
2 WTWHR

1
2

sum of simply correlated Haar matrices
∑K

k=1 Wk Tk WH
k

In most cases, T and R can be taken random, but independent of X. More involved random
matrices, such as Vandermonde matrices, were not yet studied.
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Tools for Random Matrix Theory Summary of what we know and what is left to be done

Models studied with moments/free probability

asymptotic results
most of the above models with Gaussian X.
products V1VH

1 T1V2VH
2 T2... of Vandermonde and deterministic matrices

conjecture: any probability space of matrices invariant to row or column permutations.

marginal studies, not yet fully explored
rectangular free convolution: singular values of rectangular matrices
finite size models. Instead of almost sure convergence of mXN

as N → ∞, we can study finite size
behaviour of E[mXN

].
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Tools for Random Matrix Theory Summary of what we know and what is left to be done

Open problems, to be explored

Stieltjes transform methods for more structured matrices: e.g. Vandermonde matrices

clean framework for band matrix models

finite dimensional methods for Ricean matrices

other ?
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Random Matrix Theory and Performance Analysis

Example of use: uplink random CDMA

Uplink Random CDMA Network

{P1,w1}

{P2,w2}

{P3,w3} {P4,w4}

h1

h2

h3

h4
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Random Matrix Theory and Performance Analysis

Capacity of uplink random CDMA

System model conditions,
uplink random CDMA
K mobile users, 1 base station
N chips per CDMA spreading code.
User k , k ∈ {1, . . . , K} has code wk ∼ CN (0, IN )
User k transmits the symbol sk .
User k ’s channel is hk

√

Pk , with Pk the power of user k

The base station receives

y =
K
∑

k=1

hk wk

√

Pk sk + n

This can be written in the more compact form

y = WHP
1
2 s + n

with
s = [s1, . . . , sK ]

T ∈ C
K ,

W = [w1, . . . , wK ] ∈ C
N×K ,

P = diag(P1, . . . , PK ) ∈ C
K×K ,

H = diag(h1, . . . , hK ) ∈ C
K×K .

R. Couillet (Supélec) Eigen-Inference Statistical Methods for Cognitive Radio 12/04/2010 54 / 110



Random Matrix Theory and Performance Analysis The Uplink CDMA MMSE Decoder

Outline

1 Shannon, Wiener and Cognitive Radios

2 Tools for Random Matrix Theory
Introduction to Large Dimensional Random Matrix Theory
History of Mathematical Advances
The Moment Approach and Free Probability
Introduction of the Stieltjes Transform
Summary of what we know and what is left to be done

3 Random Matrix Theory and Performance Analysis
The Uplink CDMA MMSE Decoder
The Uplink CDMA Matched-Filter and Optimal Decoder

4 Random Matrix Theory and Signal Source Sensing
Finite Random Matrix Analysis
Large Dimensional Random Matrix Analysis

5 Random Matrix Theory and Multi-Source Power Estimation
Free Probability Approach
Analytic Approach
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Random Matrix Theory and Performance Analysis The Uplink CDMA MMSE Decoder

MMSE decoder

Consists into taking

rk = wH
k

(

WHPHHWH + σ2IN
)−1

y

as symbol for user k .
The SINR for user’s k signal is

γ
(MMSE)
k = Pk |hk |2wH

k (
∑

1≤i≤K
i 6=k

Pi |hi |2w i w
H
i + σ2IN)

−1wk (1)

= Pk |hk |2wH
k (WHPHHWH − Pk |hk |2wk wH

k + σ2IN)
−1wk . (2)

Now we have the following result

Theorem (Trace Lemma)

If x ∈ CN is i.i.d. with entries of zero mean, variance 1/N, and A ∈ CN×N is independent of x, then

xHAx =
∑

i,j

x∗
i xj Aij

a.s.−→ 1

N
tr A.

Applying this result, for N large,

wH
k (WHPHHWH−Pk |hk |2wk wH

k +σ2IN)
−1wk−

1

N
tr(WHPHHWH−Pk |hk |2wk wH

k +σ2IN)
−1 a.s.−→ 0.
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Random Matrix Theory and Performance Analysis The Uplink CDMA MMSE Decoder

MMSE decoder

wH
k (WHPHHWH−Pk |hk |2wk wH

k +σ2IN)
−1wk −

1

N
tr(WHPHHWH−Pk |hk |2wk wH

k +σ2IN)
−1 a.s.−→ 0.

Second important result,

Theorem (Rank 1 perturbation Lemma)

Let A ∈ CN×N , x ∈ CN , t > 0, then
∣

∣

∣

∣

1

N
tr(A + t IN)

−1 − 1

N
tr(A + xxH + t IN)

−1
∣

∣

∣

∣

≤ 1

tN

As N grows large,

1

N
tr
(

WHPHHWH − Pk |hk |2wk wH
k + σ2IN

)−1
− 1

N
tr
(

WHPHHWH + σ2IN
)−1

→ 0,

The RHS is the Stieltjes transform of WHPHHWH in z = −σ2!

mWHPHHWH (−σ2)
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Random Matrix Theory and Performance Analysis The Uplink CDMA MMSE Decoder

MMSE decoder

From previous result,
mWHPHHWH (−σ2)− mN(−σ2)

a.s.−→ 0

with mN(−σ2) the unique positive solution of

m =

[

1

N
tr HPHH

(

mHPHH + IK
)−1

+ σ2
]−1

independent of k !

This is also

m =



σ2 +
1

N

∑

1≤i≤K

Pi |hi |2
1 + mPi |hi |2





−1

Finally,
γ
(MMSE)
k − mN(−σ2)

a.s.−→ 0

and the capacity reads

C(MMSE)(σ2)− log2(1 + mN(−σ2))
a.s.−→ 0.
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Random Matrix Theory and Performance Analysis The Uplink CDMA MMSE Decoder

MMSE decoder

C(MMSE)(σ2)− log2(1 + mN(−σ2))
a.s.−→ 0.

AWGN channel, Pk = P, hk = 1,

C(MMSE)(σ2)
a.s.−→ c log2

(

1 +
−(σ2 + (c − 1)P) +

√

(σ2 + (c − 1)P)2 + 4Pσ2

2σ2

)

Rayleigh channel, Pk = P, |hk | Rayleigh,

m =

[

σ2 + c
∫

Pt

1 + Ptm
e−t dt

]−1

and

CMMSE(σ
2)

a.s.−→ c
∫

log2

(

1 + Ptm(−σ2)
)

e−t dt .
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Random Matrix Theory and Performance Analysis The Uplink CDMA Matched-Filter and Optimal Decoder

Matched-Filter, Optimal decoder ...

R. Couillet, M. Debbah, J. W. Silverstein, “A Deterministic Equivalent for the Capacity Analysis of
Correlated Multi-User MIMO Channels,” IEEE Trans. on Information Theory, accepted, on arXiv.

Similarly, we can compute deterministic equivalents for the matched-filter performance,
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N
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1 +
Pk |hk |2

1
N
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i=1 Pi |hi |2 + σ2
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a.s.−→ 0

AWGN case,

CMF(σ
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a.s.−→ c log2

(

1 +
P

Pc + σ2

)

Rayleigh case,

CMF(σ
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a.s.−→ −c log2(e)e
Pc+σ2

P Ei

(

−Pc + σ2

P

)

... and the optimal joint-decoder performance

Copt(σ
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σ2N
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Pk |hk |2
1 + cPk |hk |2mN(−σ2)
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K
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k=1

log2

(

1 + cPk |hk |2mN(−σ2)
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− log2(e)
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)

a.s.−→ 0.

with mN(−σ2) defined as previously.
Similar expressions are obtained for the AWGN and Rayleigh cases.
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Random Matrix Theory and Performance Analysis The Uplink CDMA Matched-Filter and Optimal Decoder

Simulation results: AWGN case
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Figure: Spectral efficiency of random CDMA decoders, AWGN channels. Comparison between simulations and
deterministic equivalents (det. eq.), for the matched-filter, the MMSE decoder and the optimal decoder, K = 16
users, N = 32 chips per code. Rayleigh channels. Error bars indicate two standard deviations.
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Simulation results: Rayleigh case
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Figure: Spectral efficiency of random CDMA decoders, Rayleigh fading channels. Comparison between
simulations and deterministic equivalents (det. eq.), for the matched-filter, the MMSE decoder and the optimal
decoder, K = 16 users, N = 32 chips per code. Rayleigh channels. Error bars indicate two standard deviations.
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Random Matrix Theory and Performance Analysis The Uplink CDMA Matched-Filter and Optimal Decoder

Simulation results: Performance as a function of K/N
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Figure: Spectral efficiency of random CDMA decoders, for different asymptotic ratios c = K/N, SNR=10 dB,
AWGN channels. Deterministic equivalents for the matched-filter, the MMSE decoder and the optimal decoder.
Rayleigh channels.
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Random Matrix Theory and Signal Source Sensing

Outline

1 Shannon, Wiener and Cognitive Radios

2 Tools for Random Matrix Theory
Introduction to Large Dimensional Random Matrix Theory
History of Mathematical Advances
The Moment Approach and Free Probability
Introduction of the Stieltjes Transform
Summary of what we know and what is left to be done

3 Random Matrix Theory and Performance Analysis
The Uplink CDMA MMSE Decoder
The Uplink CDMA Matched-Filter and Optimal Decoder

4 Random Matrix Theory and Signal Source Sensing
Finite Random Matrix Analysis
Large Dimensional Random Matrix Analysis

5 Random Matrix Theory and Multi-Source Power Estimation
Free Probability Approach
Analytic Approach
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Random Matrix Theory and Signal Source Sensing

Signal Sensing in Cognitive Radios

R. Couillet (Supélec) Eigen-Inference Statistical Methods for Cognitive Radio 12/04/2010 66 / 110



Random Matrix Theory and Signal Source Sensing

Position of the Problem

Decide on presence of informative signal or pure noise.

Limited a priori Knowledge

Known parameters: the prior information I
N sensors
L sampling periods
unit transmit power
unit channel variance

Possibly unknown parameters
M signal sources
noise power equals σ2

One situation, one solution

For a given prior information I, there must be a unique solution to the detection problem.
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Random Matrix Theory and Signal Source Sensing

Problem statement

Signal detection is a typical hypothesis testing problem.

H0: only background noise.

Y = σΘ = σ







θ11 · · · θ1L
...

. . .
...

θN1 · · · θNL







H1: informative signal plus noise.

Y =







h11 . . . h1M σ · · · 0
...

...
...

...
. . .

...
hN1 . . . hNM 0 · · · σ































s(1)1 · · · · · · s(L)1
...

...
...

...

s(1)M · · · · · · s(L)M
θ11 · · · · · · θ1L

...
...

...
...

θN1 · · · · · · θNL
























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Random Matrix Theory and Signal Source Sensing Finite Random Matrix Analysis

Outline

1 Shannon, Wiener and Cognitive Radios

2 Tools for Random Matrix Theory
Introduction to Large Dimensional Random Matrix Theory
History of Mathematical Advances
The Moment Approach and Free Probability
Introduction of the Stieltjes Transform
Summary of what we know and what is left to be done

3 Random Matrix Theory and Performance Analysis
The Uplink CDMA MMSE Decoder
The Uplink CDMA Matched-Filter and Optimal Decoder

4 Random Matrix Theory and Signal Source Sensing
Finite Random Matrix Analysis
Large Dimensional Random Matrix Analysis

5 Random Matrix Theory and Multi-Source Power Estimation
Free Probability Approach
Analytic Approach
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Random Matrix Theory and Signal Source Sensing Finite Random Matrix Analysis

Solution

Solution of hypothesis testing is the function

C(Y) =
PH1|Y(Y)

PH0|Y(Y)
=

PH1 · PY|H1
(Y)

PH0 · PY|H0
(Y)

If the receiver does not know if H1 is more likely than H0,

PH1 = PH0 =
1

2

Therefore,

C(Y) =
PY|H1

(Y)

PY|H0
(Y)
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Random Matrix Theory and Signal Source Sensing Finite Random Matrix Analysis

Odds for hypothesis H0

If the SNR is known then the maximum Entropy Principle leads to

PY|H0
(Y) =

1

(πσ2)NL
e
− 1

σ2 tr YYH
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Random Matrix Theory and Signal Source Sensing Finite Random Matrix Analysis

Odds for hypothesis H1

If known N, M, SNR only then

PY|H1
(Y) =

∫

Σ

PY|ΣH1
(Y,Σ)PΣ(Σ)dΣ

=

∫

U(N)×R+N
PY|ΣH1

(Y,U, LΛ)PΛ(Λ)dUdΛ

with

Σ = L







h11 . . . h1M σ · · · 0
...

...
...

...
. . .

...
hN1 . . . hNM 0 · · · σ













h11 . . . h1M σ · · · 0
...

...
...

...
. . .

...
hN1 . . . hNM 0 · · · σ







H

= U (LΛ)UH
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Random Matrix Theory and Signal Source Sensing Finite Random Matrix Analysis

Odds for hypothesis H1 (2)

Case M = 1.
Maximum Entropy distribution for H is Gaussian i.i.d channel. Unordered eigenvalue distribution
for Σ,

PΛ(Λ)dΛ = 1(λ1>σ2)

1

N
(λ1 − σ2)N−1 e−(λ1−σ2)

(N − 1)!

N
∏

i=2

δ(λi − σ2)dλ1 . . . dλN

Maximum Entropy distribution for Y|ΣH1 is correlated Gaussian,

PY|ΣI1(Y,U, LΛ) =
1

πLN det(Λ)L
e
− tr

(

YYH UΛ
−1UH

)
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Random Matrix Theory and Signal Source Sensing Finite Random Matrix Analysis

Neyman-Pearson Test

M = 1,

PY|I1 (Y) =
e
σ2− 1

σ2
∑N

i=1 λi

NπLNσ2(N−1)(L−1)

N
∑

l=1

e
λl
σ2

∏N
i=1
i 6=l

(λl − λi )
JN−L−1(σ

2, λl )

with (λ1, . . . , λN) = eig(YYH) and

Jk (x , y) =
∫ +∞

x
tk e−t− y

t dt

From which we have the Neyman-Pearson test

CY|I1 (Y) =
1

N

N
∑

l=1

σ2(N+L−1)e
σ2+

λl
σ2

∏N
i=1
i 6=l

(λl − λi )
JN−L−1(σ

2, λl )

Neyman-Pearson test only depends on the eigenvalues! But in an involved way!
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Random Matrix Theory and Signal Source Sensing Finite Random Matrix Analysis

Neyman-Pearson Test against energy detector, SNR known
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Figure: ROC curve for SIMO transmission, M = 1, N = 4, L = 8, SNR = −3 dB, FAR range of practical interest.
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Random Matrix Theory and Signal Source Sensing Finite Random Matrix Analysis

What if Nt is unknown?

Need to integrate out prior for M

P(Y|I0) =
Mmax
∑

i=1

P(Y|“M = i”, I0) · P(“M = i”|I0)

=
1

Mmax

Mmax
∑

i=1

P(Y|“M = i”, I0)
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Random Matrix Theory and Signal Source Sensing Finite Random Matrix Analysis

Neyman-Pearson Test, Unknown SNR

We need to integrate out the prior for σ2.

This leads to

C(Y) =

∫

PY|σ2,I′M
(Y, σ2)Pσ2 (σ2)dσ2

∫

PY|σ2,H0
(Y, σ2)Pσ2 (σ2)dσ2

prior Pσ2 (σ2) is chosen to be

uniform over [σ2
−, σ2

+]

Jeffrey over (0,∞)
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Random Matrix Theory and Signal Source Sensing Large Dimensional Random Matrix Analysis

Outline

1 Shannon, Wiener and Cognitive Radios

2 Tools for Random Matrix Theory
Introduction to Large Dimensional Random Matrix Theory
History of Mathematical Advances
The Moment Approach and Free Probability
Introduction of the Stieltjes Transform
Summary of what we know and what is left to be done
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The Uplink CDMA MMSE Decoder
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Random Matrix Theory and Signal Source Sensing Large Dimensional Random Matrix Analysis

Reminder: the Marc̆enko-Pastur Law

If H0, then the eigenvalues of 1
N YYH asymptotically distribute as
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Figure: Marc̆enko-Pastur law with c = lim N/L.
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Random Matrix Theory and Signal Source Sensing Large Dimensional Random Matrix Analysis

Alternative Tests in Large Random Matrix Theory

Z. D. Bai, J. W. Silverstein, “No eigenvalues outside the support of the limiting spectral distribution
of large-dimensional sample covariance matrices,” The Annals of Probability, vol. 26, no.1 pp.
316-345, 1998.

Theorem

P(no eigenvalues outside [σ2(1 −
√

c)2, σ2(1 +
√

c)2] for all large N) = 1

If H0,
λmax(

1
N YYH)

λmin(
1
N YYH)

a.s.−→ (1 +
√

c)2

(1 −√
c)2

independent of the SNR!
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Random Matrix Theory and Signal Source Sensing Large Dimensional Random Matrix Analysis

Conditioning Number Test

L. S. Cardoso, M. Debbah, P. Bianchi, J. Najim, “Cooperative spectrum sensing using random
matrix theory,” International Symposium on Wireless Pervasive Computing, Santorini, Greece,
2008.

conditioning number test

Ccond(Y) =
λmax(

1
N YYH)

λmin(
1
N YYH)

if Ccond(Y) > τ , presence of a signal.

if Ccond(Y) < τ , absence of signal.

but this is ad-hoc! how good does it compare to optimal?

can we find non ad-hoc approaches?
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Random Matrix Theory and Signal Source Sensing Large Dimensional Random Matrix Analysis

Alternative Tests in Large Random Matrix Theory (2)

Bianchi, J. Najim, M. Maida, M. Debbah, “Performance of Some Eigen-based Hypothesis Tests for
Collaborative Sensing,” Proceedings of IEEE Statistical Signal Processing Workshop, 2009.

Generalized Likelihood Ratio Test

Alternative test to Neyman-Pearson,

CGLRT(Y) =
supH,σ2 PH1|Y,H,σ2 (Y)

supσ2 PH0|Y,σ2 (Y)

based on ratios of maximum likelihood

clearly sub-optimal but avoid the need for priors.

GLRT test

CGLRT(Y) =





(

1 − 1

N

)N−1 λmax(
1
N YYH)

1
N

∑N
i=1 λi

(

1 −
λmax(

1
N YYH)

∑N
i=1 λi

)N−1




−L

.

Contrary to the ad-hoc conditioning number test, GLRT based on

λmax
1
N tr(YYH)
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Random Matrix Theory and Signal Source Sensing Large Dimensional Random Matrix Analysis

Neyman-Pearson Test against Asymptotic Tests

1 · 10−3 5 · 10−3 1 · 10−2 2 · 10−2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

False alarm rate

C
or

re
ct

de
te

ct
io

n
ra

te

Bayesian, Jeffreys

Bayesian, uniform

Cond. number

GLRT

Figure: ROC curve for a priori unknown σ2 of the Bayesian method, conditioning number method and GLRT
method, M = 1, N = 4, L = 8, SNR = 0 dB. For the Bayesian method, both uniform and Jeffreys prior, with
exponent α = 1, are provided.
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Random Matrix Theory and Multi-Source Power Estimation

Outline

1 Shannon, Wiener and Cognitive Radios

2 Tools for Random Matrix Theory
Introduction to Large Dimensional Random Matrix Theory
History of Mathematical Advances
The Moment Approach and Free Probability
Introduction of the Stieltjes Transform
Summary of what we know and what is left to be done

3 Random Matrix Theory and Performance Analysis
The Uplink CDMA MMSE Decoder
The Uplink CDMA Matched-Filter and Optimal Decoder

4 Random Matrix Theory and Signal Source Sensing
Finite Random Matrix Analysis
Large Dimensional Random Matrix Analysis

5 Random Matrix Theory and Multi-Source Power Estimation
Free Probability Approach
Analytic Approach
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Random Matrix Theory and Multi-Source Power Estimation

Application Context: Coverage range in Femtocells
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Random Matrix Theory and Multi-Source Power Estimation

Problem statement

a device embedded with N antennas receives a signal
originating from multiple sources
number of sources K is not necessarily known
source k is equipped with nk antennas (ideally nk >> 1)
signal k goes through unknown MIMO channel Hk ∈ C

N×nk

the variance σ2 of the additive noise is not necessarily known

the problem is to infer
P1, . . . , PK knowing K , n1, . . . , nK
P1, . . . , PK and n1, . . . , nK knowing K
K , P1, . . . , PK and n1, . . . , nK

we will regard the problem under the angle of
free deconvolution: i.e. from the moments of the receive YYH, infer those of P, and infer on P
Stieltjes transform: i.e. from analytical formulas on the asymptotic eigenvalue distribution of YYH, we
derive consistent estimates of each Pk .
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Random Matrix Theory and Multi-Source Power Estimation

System model

at time t , source k transmit signal x(t)
k ∈ Cnk with i.i.d. entries of zero mean and variance 1.

we denote Pk the power emitted by user k

the channel Hk ∈ CN×nk from user k to the receiver has i.i.d. entries of zero mean and
variance 1/N.

at time t , the additive noise is denoted σw(t), with w(t) ∈ CN with i.i.d. entries of zero mean
and variance 1.

hence the receive signal y(t) at time t ,

y(t) =
K
∑

k=1

Hk

√

Pk x(t)
k + σw(t)

k

Gathering M time instant into Y = [y(1) . . . y(M)] ∈ CN×M , this can be written

Y =
K
∑

k=1

Hk

√

Pk Xk + σW = HP
1
2 X + σW

with H = [H1 . . .HK ] ∈ CN×n, n =
∑K

k=1 nk ,
P = diag(P1, . . . ,P1,P2, . . . ,P2, . . . ,PK , . . . ,PK ) where Pk has multiplicity nk on the

diagonal, XH = [XH
1 . . .XH

K ]
H ∈ Cn×M , Xk = [x(1)

k . . . x(M)
k ] ∈ Cnk×M , W defined similarly.
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Random Matrix Theory and Multi-Source Power Estimation Free Probability Approach

Outline

1 Shannon, Wiener and Cognitive Radios
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Free Probability Approach
Analytic Approach
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Random Matrix Theory and Multi-Source Power Estimation Free Probability Approach

Reminder on free deconvolution

Free probability provides tools to compute

dk =
1

K

K
∑

i=1

λ(P)k =
1

K

K
∑

i=1

Pk
i

as a function of

mk =
1

N

N
∑

i=1

λ(
1

M
YYH)k

One can obtain all the successive sum powers of P1, . . . ,PK .
From that, we can infer on the values of each Pk !
The tools come from the relations,

cumulant to moment (and also moment to cumulant),

Mn =
∑

π∈NC(n)

∏

V∈π

C|V|

Sums of cumulants for asymptotically free A and B (of measure µA ⊞ µB ),

Ck (A + B) = Ck (A) + Ck (B)

Products of cumulants for asymptotically free A and B (of measure µA ⊠ µB ),

Mn(AB) =
∑

(π1,π2)∈NC(n)

∏

V1∈π1
V2∈π2

C|V1|
(A)C|V2|

(B)

Moments of information plus noise models BN = 1
n (AN + σWN ) (AN + σWN )

H,

µB =
(

(µA � µc) ⊞ δ
σ2

)

⊠ µc

with µc the Marc̆enko-Pastur law with ratio c.
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Random Matrix Theory and Multi-Source Power Estimation Free Probability Approach

Free deconvolution approach

one can deconvolve YYH in three steps,

an information-plus-noise model with “deterministic matrix” HP
1
2 XXHP

1
2 HH,

YYH
= (HP

1
2 X + σW)(HP

1
2 X + σW)

H

from HP
1
2 XXHP

1
2 HH, up to a Gram matrix commutation, we can deconvolve the signal X,

P
1
2 HHHP

1
2 XXH

from P
1
2 HHHP

1
2 , a new matrix commutation allows one to deconvolve HHH

PHHH
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Random Matrix Theory and Multi-Source Power Estimation Free Probability Approach

Free deconvolution operations

In terms of free probability operations, this is

noise deconvolution

µ
1
M HP

1
2 XXHP

1
2 HH

=
(

(µ 1
M YYH � µc) ⊟ δσ2

)

⊠ µc

with µc the Marc̆enko-Pastur law and c = N/M.

signal deconvolution

µ
1
M P

1
2 HHHP

1
2 XXH

=
N

n
µ

1
M HP

1
2 XXHP

1
2 HH

+

(

1 − N

n

)

δ0

channel deconvolution
µP = µP 1

n HHH � µηc1

with c1 = n/N
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Random Matrix Theory and Multi-Source Power Estimation Free Probability Approach

Free deconvolution: moments

from the three previous steps (plus addition of null eigenvalues), the moments of P can be
computed from those of YYH.

this process can be automatized by combinatorics softwares

finite size formulas are also available

the first moments mk of 1
M YYH as a function of the first moments dk of P read

m1 = N−1nd1 + 1

m2 =
(

N−2M−1n + N−1n
)

d2 +
(

N−2n2
+ N−1M−1n2

)

d2
1

+
(

2N−1n + 2M−1n
)

d1 +
(

1 + NM−1
)

m3 =
(

3N−3M−2n + N−3n + 6N−2M−1n + N−1M−2n + N−1n
)

d3

+
(

6N−3M−1n2
+ 6N−2M−2n2

+ 3N−2n2
+ 3N−1M−1n2

)

d2d1

+
(

N−3M−2n3
+ N−3n3

+ 3N−2M−1n3
+ N−1M−2n3

)

d3
1

+
(

6N−2M−1n + 6N−1M−2n + 3N−1n + 3M−1n
)

d2

+
(

3N−2M−2n2
+ 3N−2n2

+ 9N−1M−1n2
+ 3M−2n2

)

d2
1

+
(

3N−1M−2n + 3N−1n + 9M−1n + 3NM−2n
)

d1

where

mk =
1

N

N
∑

i=1

λ(
1

M
YYH)k and dk =

1

K

K
∑

i=1

λ(P)k =
1

K

K
∑

i=1

Pk
i
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from the three previous steps (plus addition of null eigenvalues), the moments of P can be
computed from those of YYH.

this process can be automatized by combinatorics softwares

finite size formulas are also available
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Random Matrix Theory and Multi-Source Power Estimation Free Probability Approach

Free deconvolution: inferring powers

For practical finite size applications, the deconvolved moments will exhibit errors. Different
strategies are available,

direct inversion with Newton-Girard formulas. Assuming perfect evaluation of 1
K

∑K
k=1 Pm

k ,
P1, . . . ,PK are given by the K solutions of the polynomial

X K − Π1X K−1 + Π2X K−2 − . . .+ (−1)KΠK

where the Πm ’s (known as the elementary symmetric polynomials) are iteratively defined as

(−1)k kΠk +
k
∑

i=1

(−1)k+i SiΠk−i = 0

where Sk =
∑k

i=1 Pk
i .

may lead to non-real solutions!
does not minimize any conventional error criterion
convenient for one-shot power inference
when multiple realizations are available, statistical solutions are preferable
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Random Matrix Theory and Multi-Source Power Estimation Free Probability Approach

Free deconvolution: inferring powers

alternative approach: estimators that minimize conventional error metrics

Z. D. Bai, J. W. Silverstein, “CLT of linear spectral statistics of large dimensional sample
covariance matrices,” Annals of Probability, vol. 32, no. 1A, pp. 553-605, 2004.

for the model Y = T
1
2 X, an asymptotic central limit result is known for the moments, i.e. for

m(N)
k the order k empirical moment of 1

N YYH and m◦(N)
k its deterministic equivalent, as

N → ∞,
N
(

m(N)
k − m◦(N)

k

)

⇒ X

where X is a central Gaussian random variable.
for the model under consideration, no such result is known.
if a given model turns out to be Gaussian, then maximum-likelihood or MMSE estimators are
of order. Denoting p = (P1, . . . ,PK ),

p̂ML = arg min
p

log det(C(p)) + (m − m◦(p))TC(p)−1(m − m◦(p))

with, for some p, m = (m(N)
1 , . . . ,m(N)

p ), m◦(p) = (m◦(N)
1 , . . . ,m◦(N)

p ), and C(p) the
covariance matrix of the Gaussian moment vector assuming powers p.
and for the MMSE,

p̂MMSE =

∫

p det(C−1(p))e−(m−m◦(p))TC(p)−1(m−m◦(p))dp
∫

det(C−1(p))e−(m−m◦(p))TC(p)−1(m−m◦(p))dp
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R. Couillet (Supélec) Eigen-Inference Statistical Methods for Cognitive Radio 12/04/2010 94 / 110



Random Matrix Theory and Multi-Source Power Estimation Free Probability Approach

Free deconvolution: inferring powers

alternative approach: estimators that minimize conventional error metrics

Z. D. Bai, J. W. Silverstein, “CLT of linear spectral statistics of large dimensional sample
covariance matrices,” Annals of Probability, vol. 32, no. 1A, pp. 553-605, 2004.

for the model Y = T
1
2 X, an asymptotic central limit result is known for the moments, i.e. for

m(N)
k the order k empirical moment of 1

N YYH and m◦(N)
k its deterministic equivalent, as

N → ∞,
N
(

m(N)
k − m◦(N)

k

)

⇒ X

where X is a central Gaussian random variable.
for the model under consideration, no such result is known.
if a given model turns out to be Gaussian, then maximum-likelihood or MMSE estimators are
of order. Denoting p = (P1, . . . ,PK ),

p̂ML = arg min
p

log det(C(p)) + (m − m◦(p))TC(p)−1(m − m◦(p))

with, for some p, m = (m(N)
1 , . . . ,m(N)

p ), m◦(p) = (m◦(N)
1 , . . . ,m◦(N)

p ), and C(p) the
covariance matrix of the Gaussian moment vector assuming powers p.
and for the MMSE,

p̂MMSE =

∫

p det(C−1(p))e−(m−m◦(p))TC(p)−1(m−m◦(p))dp
∫

det(C−1(p))e−(m−m◦(p))TC(p)−1(m−m◦(p))dp
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Random Matrix Theory and Multi-Source Power Estimation Free Probability Approach

Remarks on free deconvolution approach

convenient approach, computationally not expensive

necessarily suboptimal when finitely many moments are considered

problem to move from moments to estimates: Newton-Girard method may lead to non real
solutions.

more elaborate methods, e.g. ML, MMSE, are prohibitively expensive
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Random Matrix Theory and Multi-Source Power Estimation Analytic Approach

Outline

1 Shannon, Wiener and Cognitive Radios

2 Tools for Random Matrix Theory
Introduction to Large Dimensional Random Matrix Theory
History of Mathematical Advances
The Moment Approach and Free Probability
Introduction of the Stieltjes Transform
Summary of what we know and what is left to be done

3 Random Matrix Theory and Performance Analysis
The Uplink CDMA MMSE Decoder
The Uplink CDMA Matched-Filter and Optimal Decoder

4 Random Matrix Theory and Signal Source Sensing
Finite Random Matrix Analysis
Large Dimensional Random Matrix Analysis

5 Random Matrix Theory and Multi-Source Power Estimation
Free Probability Approach
Analytic Approach
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Random Matrix Theory and Multi-Source Power Estimation Analytic Approach

Stieltjes transform approach

remember the matrix model
Y = HP

1
2 X + σW

with W,Y ∈ CN×M , H ∈ CN×n, X ∈ Cn×M , and P ∈ Cn×n diagonal.

this can be written in the following way

Y =
[

HP
1
2 σI

]

[

X
W

]

∈ C
N×M

and extend it into the matrix

Yext =

[

HP
1
2 σI

0 0

]

[

X
W

]

∈ C
(N+n)×M

which is a sample covariance matrix model.

the population covariance matrix is
(

HPHH + σ2IN 0
0 0

)

itself a sample covariance matrix.
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Random Matrix Theory and Multi-Source Power Estimation Analytic Approach

Asymptotic spectrum

R. Couillet, J. W. Silverstein, Z. Bai, M. Debbah, “Eigen-inference Energy Estimation of Multiple
Sources”, IEEE Trans. on Information Theory, 2010, submitted.

the asymptotic spectrum of 1
M YYH has Stietljes transform m(z), z ∈ C+, such that

m(z) =
M

N
mN(z) +

M − N

N

1

z

where mN(z) is the unique solution in C+ of

1

mN(z)
= −σ2 +

1

f (z)
− 1

N

K
∑

k=1

nk Pk

1 + Pk f (z)

where f (z) is given by

f (z) =
M − N

N
mN(z)−

M

N
zmN(z)

2
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Random Matrix Theory and Multi-Source Power Estimation Analytic Approach

Asymptotic spectrum of 1
M YYH

0.1 1 3 10
0

0.025

0.05

0.075

0.1

Estimated powers

D
en

si
ty

Asymptotic spectrum

Empirical eigenvalues

Figure: Empirical and asymptotic eigenvalue distribution of 1
M YYH when P has three distinct entries P1 = 1,

P2 = 3, P3 = 10, n1 = n2 = n3, N/n = 10, M/N = 10, σ2 = 0.1. Empirical test: n = 60.
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Random Matrix Theory and Multi-Source Power Estimation Analytic Approach

Complex Integration

X. Mestre, “Improved estimation of eigenvalues and eigenvectors of covariance matrices using
their sample estimates,” IEEE trans. on Information Theory, vol. 54, no. 11, pp. 5113-5129, 2008.

Cauchy integration formula

Theorem

Let f be holomorphic on C and γ ⊂ C be a continuous contour. Then, for a inside γ and b outside
γ,

f (a) =
1

2πi

∮

γ

f (ω)

ω − a
dω and 0 =

1

2πi

∮

γ

f (ω)

ω − b
dω

to estimate Pk , notice that, for some contour Ck enclosing Pk ,

Pk = − 1

2πi

∮

Ck

ω

Pk − ω
dω = − n

nk

1

2πi

∮

Ck

1

N

K
∑

r=1

nr
ω

Pr − ω
dω

We recognize a Stieltjes transform of the distribution with masses in (P1, . . . ,PN)
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Random Matrix Theory and Multi-Source Power Estimation Analytic Approach

Complex analysis: application

The strategy is the following,

variable change. Write 1
N

∑K
r=1 nr

ω
Pr−ω

as a function of m(z), the asymptotic Stieltjes

transform of 1
N YYH,

remember that (
1

mN(z)
= −σ2 +

1

f (z)
− 1

N

K
∑

r=1

nr
Pr

1 + Pr f (z)
)

if clusters are separated, the contour image encircles cluster k !

approximation. For large N, m(z) ≃ m̂(z) = 1
N tr(YYH − zIN)−1, the accessible data!

calculus. We replace m(z) by m̂(z) and do the (residue) calculus.
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Stieltjes transform approach: final result

R. Couillet, J. W. Silverstein, Z. Bai, M. Debbah, “Eigen-inference Energy Estimation of Multiple
Sources”, IEEE Trans. on Information Theory, 2010, submitted.

Theorem

Let BN = 1
M YYH ∈ CN×N , with Y defined as previously. Denote its ordered eigenvalues vector

λ = (λ1, . . . , λN), λ1 < . . . , λN . Further assume asymptotic spectrum separability. Then, for
k ∈ {1, . . . ,K}, as N, n, M grow large, we have

P̂k − Pk
a.s.−→ 0

where the estimate P̂k is given by

P̂k =
NM

nk (M − N)

∑

i∈Nk

(ηi − µi )

with Nk = {N −∑K
i=k ni + 1, . . . ,N −∑K

i=k+1 ni} the set of indexes matching the cluster

corresponding to Pk , (η1, . . . , ηN) the ordered eigenvalues of diag(λ)− 1
N

√
λ
√
λ

T
and

(µ1, . . . , µN) the ordered eigenvalues of diag(λ)− 1
M

√
λ
√
λ

T
.
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Comments on the result

very compact formula

low computational complexity

assuming cluster separation, it allows also to infer the number of eigenvalues, as well as the
multiplicity of each eigenvalue.

however, strong requirement on cluster separation

if separation is not true, the mean of the eigenvalues instead of the eigenvalues themselves is
computed.

it is possible to infer K , all nk and all Pk using the Stieltjes transform method.
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Multi-Source Power Estimation: Performance Comparison
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Figure: Multi-source power estimation, for K = 3, P1 = 1, P2 = 3, P3 = 10, n1/n = n2/n = n3/n = 1/3
,n/N = N/M = 1/10, SNR = 10 dB, for 10, 000 simulation runs; Top n = 60, bottom n = 6.
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Multi-Source Power Estimation: Performance Comparison
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Figure: Normalized mean square error of the vector (P̂1, P̂2, P̂3), P1 = 1, P2 = 3, P3 = 10,
n1/n = n2/n = n3/n = 1/3 ,n/N = N/M = 1/10, for 10, 000 simulation runs.
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General comments and steps left to fulfill

up to this day
the moment approach is much simpler to derive
it does not require any cluster separation
the finite size case is treated in the mean, which the Stieltjes transform approach cannot do.
however, the Stieltjes transform approach makes full use of the spectral knowledge, when the
moment approach is limited to a few moments.
the results are more natural, and more “telling”

in the future, it is expected that the cluster separation requirement can be overtaken.

a natural general framework attached to the Stieltjes transform method could arise

central limit results on the estimates is expected
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Coming up soon...
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