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Introduction/ 2/148

High-dimensional data

Let x1, x2 . . . ∈ CN be independently drawn from an N-variate process of mean zero and
covariance R = E [x1xH

1 ].

From the law of large numbers, as n→∞,

1

n

n∑
i=1

xix
H
i =

1

n
XXH a.s.−→ R

with X = [x1, . . . , xn] ∈ CN×n.
In reality, one cannot afford n→∞.

I if n� N,

Rn =
1

n

n∑
i=1

xix
H
i

is a “good” estimator of R.

I if N/n = O(1), and if both (n, N) are large, we can still say, for all (i , j),

(Rn)ij
a.s.−→ (R)ij

What about the global behaviour? What about the eigenvalue distribution?

Assume R = IN and draw the eigenvalues of Rn for n, N large.
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Empirical and limit spectra of Wishart matrices
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Figure : Histogram of the eigenvalues of Rn for n = 2000, N = 500, R = IN
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Finite size against asymptotic considerations

The field of random matrices is often segmented into
I Finite-size random matrices:

I of interest are: joint entry distributions, ordered eigenvalue distributions, e.s.d., expectation of
functionals

I particularly suitable to small size matrices
I however, much problems arise for models more involved than i.i.d. Gaussian

I Limiting results:
I of interest are: limit spectral distributions (l.s.d.), functionals of l.s.d., central limit theorems etc.
I suitable to large matrices, but often good approximation to smaller matrices
I much easier to work with than finite size, more flexible (i.i.d., Kronecker, variance profile models,

structured matrices)
I possesses a variety of powerful tools: Stieltjes transform, free probability

Remark: This tutorial will exclusively focus on limiting results.
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Why is this useful to wireless communications?

I increasing number of parameters: multi-user systems, multiple concurrent cells, multiple
antennas

I matrices with random entries are the basis for MIMO channels, CDMA codes

I it is no longer possible to treat large dimensional problems with classical probability
approaches

Example
MIMO channel capacity Call H ∈ Cn×N the realization of a MIMO channel matrix whose entries
and distributed according to some random process. We have the per-antenna mutual information

C(σ2) =
1

N
log det

[
IN +

1

σ2
HHH

]

Note that, with hi the i th column of H, HHH =
∑N

i=1 hih
H
i . If H has i.i.d. entries, then, as both

n, N →∞, n/N → c,

C(σ2)→
∫

log

[
1 +

t

σ2

]
dFc(t)

with Fc the Marc̆enko-Pastur law with parameter c.



Introduction/ 5/148

Why is this useful to wireless communications?

I increasing number of parameters: multi-user systems, multiple concurrent cells, multiple
antennas

I matrices with random entries are the basis for MIMO channels, CDMA codes

I it is no longer possible to treat large dimensional problems with classical probability
approaches

Example
MIMO channel capacity Call H ∈ Cn×N the realization of a MIMO channel matrix whose entries
and distributed according to some random process. We have the per-antenna mutual information

C(σ2) =
1

N
log det

[
IN +

1

σ2
HHH

]
Note that, with hi the i th column of H, HHH =

∑N
i=1 hih

H
i . If H has i.i.d. entries, then, as both

n, N →∞, n/N → c,

C(σ2)→
∫

log

[
1 +

t

σ2

]
dFc(t)

with Fc the Marc̆enko-Pastur law with parameter c.



Introduction/ 6/148

Why is this useful to signal processing?

I increasing system dimensions: large antenna arrays, large datasets, (not so) large number of
snapshots

I need for detection and estimation based on large dimensional random inputs: subspace
methods in array processing

I the assumption “sample space >> population space” is less and less valid: large arrays,
systems with fast dynamics

Example
MUSIC with “few” samples (or in large arrays) Call A(Θ) = [a(θ1), . . . , a(θK )] ∈ CN×K , N large,
K small, the steering vectors to identify and Y = [y1, . . . , yn] ∈ CN×n the n samples, taken from

yt =

K∑
k=1

a(θk)
√

pk sk,t +σwt .

The MUSIC localization function reads γ(θ) = a(θ)HÛW ÛH
W a(θ) in the “signal vs. noise”

spectral decomposition YYH = ÛSΛ̂S Û
H
S + ÛW Λ̂W ÛH

W .

Writing equivalently A(Θ)PA(Θ)H +σ2IN = USΛSU
H
S +σ2UW UH

W , as n, N →∞, n/N → c,
from our previous remarks

UW UH
W 6→ ÛW ÛH

W

⇒ Music is NOT consistent in the large N, n regime! We need improved RMT-based solutions.
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H
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Marc̆enko-Pastur law, Semi-circle law, Full circle law...

V. A. Marc̆enko, L. A. Pastur, “Distributions of eigenvalues for some sets of random matrices”,
Math USSR-Sbornik, vol. 1, no. 4, pp. 457-483, 1967.

I If XN ∈ CN×n has i.i.d. entries of mean 0, variance 1/n, then (almost surely) FXNXH
N ⇒ Fc

as N, n→∞, N/n→ c, with Fc the Marc̆enko-Pastur law with density

fc(x) = (1 − c−1)+δ(x) +
1

2πcx

√
(x − a)+(b − x)+, a = (1 −

√
c)2, b = (1 +

√
c)2.

E. Wigner, “Characteristic vectors of bordered matrices with infinite dimensions,” The annals of
mathematics, vol. 62, pp. 546-564, 1955.

I If XN ∈ CN×N is Hermitian with i.i.d. entries of mean 0, variance 1/N, then (almost surely)
FXN ⇒ F where F has density f the semi-circle law

f (x) =
1

2π

√
(4 − x2)+.

I If XN ∈ CN×N has with i.i.d. 0 mean, variance 1/N entries, then asymptotically its complex
eigenvalues distribute uniformly on the complex unit circle.
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Marc̆enko-Pastur law

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

Eigenvalues of Rn

D
en

si
ty

Empirical eigenvalue distribution

Marc̆enko-Pastur Law

Figure : Histogram of the eigenvalues of Rn for n = 2000, N = 500, R = IN
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Semi-circle law
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Figure : Histogram of the eigenvalues of Wigner matrices and the semi-circle law, for N = 500
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Wigner’s proof

I Proof based on the limiting moment of the eigenvalue distribution.

I For X ∈ CN×N Hermitian with Xij ∼ CN(0, 1/N), the limiting density f of the eigenvalues

lim
N→∞ 1

N
tr (X2k+1) = 0

lim
N→∞ 1

N
tr (X2k) =

1

k + 1
C 2k

k

known as the Catalan numbers.

I These are exactly the moments of a semi-cicle distribution!

α2k =
1

π

∫2

−2
x2k
√

4 − x2dx = −
1

2π

∫2

−2

−x√
4 − x2

x2k−1(4 − x2)dx

=
1

2π

∫2

−2

√
4 − x2(x2k−1(4 − x2)) ′dx = 4(2k − 1)α2k−2 − (2k + 1)α2k .

which gives the recursive relation

α2k =
2(2k − 1)

k + 1
α2k−2, defining the Catalan numbers.

Proof impractical for more involved models
Difficult in general to move from moments to distributions / to compute the moments directly.
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Circular law
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Figure : Eigenvalues of XN with i.i.d. standard Gaussian entries, for N = 500.
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More involved matrix models

I much study has surrounded the Marc̆enko-Pastur law, the Wigner semi-circle law etc.
I for practical purposes, we often need more general matrix models

I products and sums of random matrices
I i.i.d. models with correlation/variance profile
I distribution of inverses etc.

I for these models, it is often impossible to have an expression of the limiting distribution.

I sometimes we do not have a limiting convergence.

Tools for random matrix theory
To study these models, a consistent powerful mathematical framework is required.
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Tools for RMT

Various approaches used to deal with random matrices.
I Asymptotic spectrum:

I Method of moments: identify eigenvalue distribution through its moments [e.g. Wigner]
I Free probability theory: study spectrum of random matrix operations through moments of limiting

distributions [e.g. Petz, Biane, Benaych-Georges]
I Stieltjes transform method: study spectrum of random matrix operations through Stieltjes transform

[e.g. Bai, Silverstein, Pastur]
I Gaussian tools on resolvents: study spectrum of Gaussian random matrix operations through

Gaussian tricks on the resolvent [e.g. Pastur, Loubaton, Hachem]
I Replica method: Non-rigorous physical tools to study deterministic equivalents [e.g. Tanaka,

Moustakas, Riegler]
I Orthogonal polynomials and Fredholm determinants: study hole probability, e.g. extreme eigenvalue

distribution through determinantal equations [e.g. Johnstone, Tracy, Widom, Guionnet]
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Outline of the tutorial

I Part 1: Fundamentals of Random Matrix Theory
I 1.1. Introduction to the Stieltjes transform method and proof of the Marc̆enko–Pastur law
I 1.2. Extreme eigenvalues: no eigenvalue outside the support, exact separation, and Tracy–Widom

law
I 1.3. Extreme eigenvalues: the spiked model
I 1.4. Spectrum analysis and G-estimation

I Part 2: Source Detection
I 2.1. Eigenvalue-based detection

I Part 3: Statistical Inference
I 3.1. Generic model: source power and direction of arrival estimation (G-MUSIC)
I 3.2. Spiked model case: spiked G-MUSIC, offline failure diagnosis in sensor networks

I Part 4: Random Matrix Theory and Robust Estimation
I 4.1. Introduction to robust estimation
I 4.2. Initial results and open problems
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The Stieltjes transform

Definition
Let F be a real probability distribution function. The Stieltjes transform mF of F is the function
defined, for z ∈ C+, as

mF (z) =

∫
1

λ− z
dF(λ)

For a < b continuity points of F , denoting z = x + iy , we have the inverse formula

F(b) − F(a) = lim
y→0

1

π

∫b

a
=[mF (x + iy)]dx

If F has a density f at x , then

f (x) = lim
y→0

1

π
=[mF (x + iy)]

Equivalence F ↔ mF

Similar to the Fourier transform, knowing mF is the same as knowing F .
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Stieltjes transform and Matrix Spectra

I If F is the e.s.d. of a Hermitian matrix X ∈ CN×N , we might denote mX , mF , and

mX(z) =

∫
1

λ− z
dF(λ) =

1

N

N∑
i=1

1

λi − z
=

1

N
tr (diag({λi }) − zIN)−1 =

1

N
tr (XN − zIN)−1

I For compactly supported F , mF (z) is linked to the moments Mk = E [ 1
N tr (Xk)]

mF (z) = −

∞∑
k=0

Mk z−k−1

I mF defined in general on C+ but exists everywhere outside the support of F .

I if X ∈ CN×n, the spectral distribution of XXH and XHX only differ by a mass of |N − n|
zeros. Say N > n,

mXXH(z) =
1

N

N∑
i=1

1

λi − z
=

1

N

n∑
i=1

1

λi − z
+

1

N
(N − n)

−1

z

hence

mXXH(z) =
n

N
mXHX −

N − n

N

1

z
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Asymptotic results using the Stieltjes transform

J. W. Silverstein, Z. D. Bai, “On the empirical distribution of eigenvalues of a class of large
dimensional random matrices,” Journal of Multivariate Analysis, vol. 54, no. 2, pp. 175-192,
1995.

Theorem
Let BN = XNTNXH

N ∈ CN×N , where XN ∈ CN×n has i.i.d. entries of mean 0 and variance 1/N,

FTN ⇒ F T and n/N → c. Then, FBN converges weakly and almost surely to F with Stieltjes
transform

mF (z) =

(
c

∫
t

1 + tmF (z)
dF T (t) − z

)−1

whose solution is unique in the set {z ∈ C+, mF (z) ∈ C+}.

I in general, no explicit expression for F .

I the theorem above characterizes also the Stieltjes transform of BN = T
1
2
NXH

NXNT
1
2
N with

asymptotic distribution F ,

mF = cmF + (c − 1)
1

z

This gives access to the spectrum of the sample covariance matrix model of y, when

yi = T
1
2
Nxi , xi i.i.d., TN = E [yyH].
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Getting F ′ from mF

I Remember that, for a < b real,

F ′(x) = lim
y→0

1

π
=[mF (x + iy)]

where mF is (up to now) only defined on C+.

I to plot the density F ′,
I first approach: span z = x + iy on the line {x ∈ R, y = ε} parallel but close to the real axis, solve

mF (z) for each z, and plot =[mF (z)].
I refined approach: spectral analysis, to come next.

Example (Sample covariance matrix)

For N multiple of 3, let FTN (x) = 1
31x61 + 1

31x63 + 1
31x6K and let BN = T

1
2
NXH

NXNT
1
2
N with

FBN → F , then

mF = cmF + (c − 1)
1

z

mF (z) =

(
c

∫
t

1 + tmF (z)
dF T (t) − z

)−1

We take c = 1/10 and alternatively K = 7 and K = 4.
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Spectrum of the sample covariance matrix
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Figure : Histogram of the eigenvalues of BN = T
1
2
N XH

NXNT
1
2
N , N = 3000, n = 300, with TN diagonal composed

of three evenly weighted masses in (i) 1, 3 and 7 on top, (ii) 1, 3 and 4 at bottom.
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Side remark: the “Shannon”-transform

A. M. Tulino, S. Verdù, “Random matrix theory and wireless communications,” Now Publishers
Inc., 2004.

Definition
Let F be a probability distribution, mF its Stieltjes transform, then the Shannon-transform VF of
F is defined as

VF (x) ,
∫∞

0
log(1 + xλ)dF(λ) =

∫∞
x

(
1

t
− mF (−t)

)
dt

I This quantity is fundamental to wireless communication purposes!

I Note that mF itself is of interest, not F !
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Proof of the Marc̆enko-Pastur law

V. A. Marc̆enko, L. A. Pastur, “Distributions of eigenvalues for some sets of random matrices”,
Math USSR-Sbornik, vol. 1, no. 4, pp. 457-483, 1967.

The theorem to be proven is the following

Theorem
Let XN ∈ CN×n have i.i.d. zero mean variance 1/n entries with finite eighth order moments. As
n, N →∞ with N

n → c ∈ (0,∞), the e.s.d. of XNXH
N converges almost surely to a nonrandom

distribution function Fc with density fc given by

fc(x) = (1 − c−1)+δ(x) +
1

2πcx

√
(x − a)+(b − x)+

where a = (1 −
√

c)2, and b = (1 +
√

c)2.
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The Marc̆enko-Pastur density

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

x

D
en

si
ty

f c
(x

)

c = 0.1

c = 0.2

c = 0.5

Figure : Marc̆enko-Pastur law for different limit ratios c = limN→∞ N/n.
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Diagonal entries of the resolvent

Since we want an expression of mF , we start by identifying the diagonal entries of the resolvent
(XNXH

N − zIN)−1 of XNXH
N . Denote

XN =

[
yH

Y

]

Now, for z ∈ C+, we have

(
XNXH

N − zIN
)−1

=

[
yHy− z yHYH

Yy YYH − zIN−1

]−1

Consider the first diagonal element of (RN − zIN)−1. From the matrix inversion lemma,(
A B
C D

)−1

=

(
(A−BD−1C)−1 −A−1B(D−CA−1B)−1

−(A−BD−1C)−1CA−1 (D− CA−1B)−1

)
which here gives [(

XNXH
N − zIN

)−1
]

11
=

1

−z − zyH(YHY− zIn)−1y
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Trace Lemma

Z. Bai, J. Silverstein, “Spectral Analysis of Large Dimensional Random Matrices”, Springer Series
in Statistics, 2009.

To go further, we need the following result,

Theorem
Let {AN } ∈ CN×N with bounded spectral norm. Let {xN } ∈ CN , be a random vector of i.i.d.
entries with zero mean, variance 1/N and finite 8th order moment, independent of AN . Then

xH
NANxN −

1

N
trAN

a.s.−→ 0.

For large N, we therefore have approximately[(
XNXH

N − zIN
)−1

]
11
' 1

−z − z 1
N tr (YHY− zIn)−1



Part 1: Fundamentals of Random Matrix Theory/1.1. The Stieltjes Transform Method 27/148

Rank-1 perturbation lemma

J. W. Silverstein, Z. D. Bai, “On the empirical distribution of eigenvalues of a class of large
dimensional random matrices,” Journal of Multivariate Analysis, vol. 54, no. 2, pp. 175-192,
1995.

It is somewhat intuitive that adding a single column to Y won’t affect the trace in the limit.

Theorem
Let A and B be N ×N with B Hermitian positive definite, and v ∈ CN . For z ∈ C \ R−,∣∣∣∣ 1

N
tr
(
(B− zIN)−1 − (B+ vvH − zIN)−1

)
A

∣∣∣∣ 6 1

N

‖A‖
dist(z,R+)

with ‖A‖ the spectral norm of A, and dist(z, A) = infy∈A ‖y − z‖.
Therefore, for large N, we have approximately,[(

XNXH
N − zIN

)−1
]

11
' 1

−z − z 1
N tr (YHY− zIn)−1

' 1

−z − z 1
N tr (XH

NXN − zIn)−1

=
1

−z − z n
N mF (z)

in which we recognize the Stieltjes transform mF of the l.s.d. of XH
NXN .
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End of the proof

We have again the relation
n

N
mF (z) = mF (z) +

N − n

N

1

z

hence [(
XNXH

N − zIN
)−1

]
11
' 1

n
N − 1 − z − zmF (z)

Note that the choice (1, 1) is irrelevant here, so the expression is valid for all pair (i , i). Summing
over the N terms and averaging, we finally have

mF (z) =
1

N
tr
(
XNXH

N − zIN
)−1
' 1

c − 1 − z − zmF (z)

which solve a polynomial of second order. Finally

mF (z) =
c − 1

2z
−

1

2
+

√
(c − 1 − z)2 − 4z

2z
.

From the inverse Stieltjes transform formula, we then verify that mF is the Stieltjes transform of
the Marc̆enko-Pastur law.
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A classical pitfall

I Limiting spectral results only say where the “mass” of eigenvalues lies asymptotically. Say

FN ⇒ F , with FN(x) = 1
N

∑N
k=1 1x6ak

.

I F(0)
N (x) = 1

N δ(x) + 1
N

∑N−1
k=1 1x6ak

also converges to F .

I more generally, if FN and F(0)
N are discrete and differ by o(N) bounded masses, F(0)

N ⇒ F .

I We know that, for XN ∈ CN×n with i.i.d. zero mean variance 1/n,

FXNXH
N ⇒ Fc

with Fc is the compactly supported Marc̆enko-Pastur law of parameter c = limN
N
n .

Question: for very large N, where are the extreme eigenvalues of XNXH
N ?
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Are there eigenvalues outside the support ?
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Figure : Histogram of the eigenvalues of Rn for n = 2000, N = 500
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No eigenvalue outside the support of sample covariance matrices

Z. D. Bai, J. W. Silverstein, “No eigenvalues outside the support of the limiting spectral
distribution of large-dimensional sample covariance matrices,” The Annals of Probability, vol. 26,
no.1 pp. 316-345, 1998.

Theorem
Let XN ∈ CN×n with i.i.d. entries with zero mean, variance 1/n and 4th order moment of order
O(1/n2). Let TN ∈ CN×N be nonrandom and bounded in norm and with FTN ⇒ F T . We know
that

FBN ⇒ F almost surely, BN = T
1
2
NXNXH

NT
1
2
N .

Let FN be the distribution with mN(z) solution of

mN = −

(
z −

N

n

∫
τ

1 + τmN
dFTN (τ)

)−1

, mN(z) =
N

n
mN(z) +

N − n

n

1

z
.

Choose N0 ∈ N and [a, b], a > 0, outside the union of the supports of F and FN for all N > N0.
Denote LN the set of eigenvalues of BN . Then,

P(LN ∩ [a, b] 6= ∅ i.o.) = 0.
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How to read the result?

I If TN = IN for all N, then this result is equivalent to

“For [a, b] outside the support of the Marc̆enko-Pastur law, with probability 1, BN has no
eigenvalue in [a, b] for all large N”

I If TN is not identity,
I call S the support of the limiting F .
I for some N0, take the l.s.d. of BN as if limN FTN = F

TN0 , and call its support SN0
.

I do the previous for all N > N0. Call A = S ∪
⋂

N>N0
SN .

I take [a, b] outside A, and pick a random sequence B1,B2, . . .. The result shows that, for all N large,
there is no eigenvalue of BN in [a, b].

I this is very different from taking [a, b] only outside the support of F only!

I this is essential to understand spiked models, discussed later.
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No eigenvalue outside the support: which models?

J. W. Silverstein, P. Debashis, “No eigenvalues outside the support of the limiting empirical
spectral distribution of a separable covariance matrix,” J. of Multivariate Analysis vol. 100, no. 1,
pp. 37-57, 2009.

I It has already been shown that (for all large N) there is no eigenvalues outside the support of
I Marc̆enko-Pastur law: XXH, X i.i.d. with zero mean, variance 1/N, finite 4th order moment.

I Sample covariance matrix: T
1
2 XXHT

1
2 and XHTX, X i.i.d. with zero mean, variance 1/N, finite 4th

order moment.
I Doubly-correlated matrix: R

1
2 XTXHR

1
2 , X with i.i.d. zero mean, variance 1/N, finite 4th order

moment.

J. W. Silverstein, Z.D. Bai, Y.Q. Yin, “A note on the largest eigenvalue of a large dimensional
sample covariance matrix,” Journal of Multivariate Analysis, vol. 26, no. 2, pp. 166-168, 1988.

I If 4th order moment is infinite,

lim sup
N
λXX

H

max =∞
J. Silverstein, Z. Bai, “No eigenvalues outside the support of the limiting spectral distribution of
information-plus-noise type matrices” to appear in Random Matrices: Theory and Applications.

I Only recently, information plus noise models, X with i.i.d. zero mean, variance 1/N, finite
4th order moment

(X+A)(X+A)H
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Sketch of Proof
I Proof entirely relies on the Stieltjes transform.
I Up to now, we know |mBN

(z) − mN(z)|
a.s.−→ 0 for z ∈ C \ R−.

I This is not enough, we need in fact to show: for z = x + i
√

kvN , vN = N−1/68, k = 1, . . . , 34,

max
16k634

sup
x∈[a,b]

∣∣∣mBN
(x + ik

1
2 vN) − mN((x + ik

1
2 vN)

∣∣∣ = o(v67
N ).

I Expanding the Stieltjes transforms and considering only the imaginary parts, this is

max
16k634

sup
x∈[a,b]

∣∣∣∣∣
∫

d(FBN (λ) − FN(λ))

(x − λ)2 + kv2
N

∣∣∣∣∣ = o(v66
N )

almost surely. Taking successive differences over the 34 values of k, we end up with

sup
x∈[a,b]

∣∣∣∣∣
∫
(v2

N)33d(FBN (λ) − FN(λ))∏34
k=1((x − λ)2 + kv2

N)

∣∣∣∣∣ = o(v66
N )

Consider a ′ < a and b ′ > b such that [a ′, b ′] is outside the support of F . We then have

sup
x∈[a,b]

∣∣∣∣∣∣
∫

1R+\[a′,b ′](λ)d(FBN(λ) − FN(λ))∏34
k=1((x − λ)2 + kv2

N)
+

∑
λj∈[a′,b ′]

v68
N∏34

k=1((x − λj)2 + kv2
N)

∣∣∣∣∣∣ = o(1)

almost surely. If, there is one eigenvalue of all Bφ(N) in [a, b], then one term of the sum is
1/34! > 0. So the integral must away from zero. But the integral tends to 0. Contradiction.
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Exact eigenvalue separation

Z. D. Bai, J. W. Silverstein, “Exact Separation of Eigenvalues of Large Dimensional Sample
Covariance Matrices,” The Annals of Probability, vol. 27, no. 3, pp. 1536-1555, 1999.

I The result on “no eigenvalue outside the support”
I says where eigenvalues are not to be found
I does not say, as we feel, that (if cluster separation) in cluster k, there are exactly nk eigenvalues.

I This is in fact the case,

Theorem
Let BN = T

1
2
NXNXH

NT
1
2
N with l.s.d. F , XN i.i.d., zero mean, variance 1/n, finite 4th moment,

FTN ⇒ F T , and N
n → c. Consider 0 < a < b such that [a, b] is outside the support of F . Denote

additionally λk ’s and τk ’s the ordered eigenvalues of BN and TN . Then we have
1. If c(1 − F T (0)) > 1, then the smallest eigenvalue x0 of the support of F is positive and λN → x0

almost surely, as N →∞.
2. If c(1 − F T (0)) 6 1, or c(1 − F T (0)) > 1 but [a, b] is not contained in [0, x0], then, almost surely,

there exists N0 such that for all N > N0,

λiN
> b, λiN+1 < a

where iN is the unique integer such that

τiN
> −1/mF (b)

τiN+1 < −1/mF (a).
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Consequence of exact separation

I If eigenvalues are found outside the expected clusters, some extra “signal” must have been
transmitted.

I The quantity of eigenvalues in each cluster gives an exact estimate of the multiplicity of the
population!

I This is essential for eigen-inference.

I Exact separation is only known for the sample covariance matrix model so far.

I Very recently, extension to information-plus-noise model.
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What’s the use of all that to signal processing?

Assume N sensors wish to detect the presence of a signal. They scan successive samples
x1, . . . , xn. Then

I if Rn = 1
n

∑n
i=1 xix

H
i has eigenvalues outside the support: with high probability, the data

source is not i.i.d. white and may contain informative data.
I if Rn has all eigenvalues inside the expected noise support, what can we say?

I we cannot conclude so far
I we need to further study the spectrum
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Extreme eigenvalues: Deeper into the spectrum

I In order to derive statistical detection tests, we need more information on the extreme
eigenvalues.

I We will study the fluctuations of the extreme eigenvalues (second order statistics)

I However, the Stieltjes transform method is not adapted here!
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Distribution of the largest eigenvalues of XXH

C. A. Tracy, H. Widom, “On orthogonal and symplectic matrix ensembles,” Communications in
Mathematical Physics, vol. 177, no. 3, pp. 727-754, 1996.
K. Johansson, “Shape Fluctuations and Random Matrices,” Comm. Math. Phys. vol. 209, pp.
437-476, 2000.

Theorem
Let X ∈ CN×n have i.i.d. Gaussian entries of zero mean and variance 1/n. Denoting λ+N the

largest eigenvalue of XXH, then

N
2
3
λ+N − (1 +

√
c)2

(1 +
√

c)
4
3 c

1
2

⇒ X+ ∼ F+

with c = limN N/n and F+ the Tracy-Widom distribution given by

F+(t) = exp

(
−

∫∞
t
(x − t)2q2(x)dx

)
with q the Painlevé II function that solves the differential equation

q ′′(x) = xq(x) + 2q3(x)

q(x) ∼x→∞ Ai(x)

in which Ai(x) is the Airy function.
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The law of Tracy-Widom

−4 −2 0 2
0

0.1

0.2

0.3

0.4

0.5

Centered-scaled largest eigenvalue of XXH

D
en

si
ty

Empirical Eigenvalues

Tracy-Widom law F+

Figure : Distribution of N
2
3 c− 1

2 (1 +
√

c)−
4
3
[
λ+N − (1 +

√
c)2
]

against the distribution of X+ (distributed as

Tracy-Widom law) for N = 500, n = 1500, c = 1/3, for the covariance matrix model XXH. Empirical
distribution taken over 10, 000 Monte-Carlo simulations.
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Techniques of proof
Method of proof requires very different tools:

I orthogonal (Laguerre) polynomials: to write joint unordered eigenvalue distribution as a
kernel determinant.

ρN(λ1, . . . ,λp) =
p

det
i ,j=1

KN(λi ,λj)

with K(x , y) the kernel Laguerre polynomial.

I Fredholm determinants: we can write hole probability as a Fredholm determinant.

P
(

N2/3
(
λi − (1 +

√
c)2
)
∈ A, i = 1, . . . , N

)
= 1 +

∑
k>1

(−1)k

k!

∫
Ac
· · ·
∫

Ac

k
det

i ,j=1
KN(xi , xj )

∏
dxi

, det(IN −KN).

I kernel theory: show that KN converges to a Airy kernel.

KN(x , y)→ KAiry(x , y) =
Ai(x)Ai ′(y) −Ai ′(x)Ai(y)

x − y
.

I differential equation tricks: hole probability in [t,∞) gives right-most eigenvalue distribution,
which is simplified as solution of a Painelvé differential equation: the Tracy-Widom
distribution.

F+(t) = e−
∫∞

t (x−t)q(x)2dx , q ′′ = tq + 2q3, q(x) ∼x→∞ Ai(x).
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Techniques of proof
Method of proof requires very different tools:

I orthogonal (Laguerre) polynomials: to write joint unordered eigenvalue distribution as a
kernel determinant.

ρN(λ1, . . . ,λp) =
p

det
i ,j=1

KN(λi ,λj)

with K(x , y) the kernel Laguerre polynomial.
I Fredholm determinants: we can write hole probability as a Fredholm determinant.

P
(

N2/3
(
λi − (1 +

√
c)2
)
∈ A, i = 1, . . . , N

)
= 1 +

∑
k>1

(−1)k

k!

∫
Ac
· · ·
∫

Ac

k
det

i ,j=1
KN(xi , xj )

∏
dxi

, det(IN −KN).
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Comments on the Tracy-Widom law

I deeper result than limit eigenvalue result

I gives a hint on convergence speed

I fairly biased on the left: even fewer eigenvalues outside the support.

I can be shown to hold for other distributions than Gaussian under mild assumptions
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Spiked models

I We can create sample covariance matrix models T
1
2
NXNXH

NT
1
2
N with l.s.d. F (XN as usual) for

which
I some sample eigenvalues are found outside the support of F
I the l.s.d. F T of TN is a Dirac in 1.

I No contradiction with “no eigenvalue” theorem, since the finitely numerous eigenvalues of
TN will form additional clusters of positive measure in FN .

I However, for practical purposes, the presence of “spikes” determines the presence of a signal!

What about the absence of spikes?
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The first result

J. Baik, J. W. Silverstein, “Eigenvalues of large sample covariance matrices of spiked population
models,” Journal of Multivariate Analysis, vol. 97, no. 6, pp. 1382-1408, 2006.

Theorem
Let BN = T

1
2
NXNXH

NT
1
2
N , where XN ∈ CN×n has i.i.d., zero mean and variance 1/n entries, and

TN ∈ RN×N diagonal given by

TN = diag(1 +ω1, . . . , 1 +ω1︸ ︷︷ ︸
k1

, . . . , 1 +ωM , . . . , 1 +ωM︸ ︷︷ ︸
kM

, 1, . . . , 1︸ ︷︷ ︸
N−
∑M

i=1 ki

)

with ω1 > . . . >ωM > −1, c = limN N/n. We then have

I if ωj >
√

c, λk1+...+kj−1+i
a.s.−→ 1 +ωj + c

1+ωj
ωj

(i.e. beyond the Marc̆enko–Pastur bulk!)

I if ωkj
∈ (0,

√
c], λk1+...+kj−1+i

a.s.−→ (1+
√

c)2 (i.e. right-edge of the Marc̆enko–Pastur bulk!)

I if ωkj
∈ [−

√
c, 0), λk1+...+kj−1+i

a.s.−→ (1 −
√

c)2 (i.e. left-edge of the Marc̆enko–Pastur

bulk!)

I for the other eigenvalues, we discriminate over c:

I if ωkj
< −
√

c, c < 1, λk1+...+kj−1+i
a.s.−→ 1 +ωj + c

1+ωj
ωj

(i.e. beyond the Marc̆enko–Pastur bulk!)

I if ωkj
< −
√

c, c > 1, λk1+...+kj−1+i
a.s.−→ (1 −

√
c)2 (i.e. left-edge of the Marc̆enko–Pastur bulk!)
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Illustration of spiked models
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Marc̆enko-Pastur law, c = 1/3

Empirical Eigenvalues

Figure : Eigenvalues of BN = TN
1
2 XNXN

HTN
1
2 , where FTN ⇒ 1[1,∞), ....Dimensions: N = 500, n = 1500.
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Figure : Eigenvalues of BN = TN
1
2 XNXN

HTN
1
2 , where FTN ⇒ 1[1,∞), but TN is a diagonal of ones but for the

first four entries set to {1 +ω1, 1 +ω1, 1 +ω2, 1 +ω2}, ω1 = 1,ω2 = 2.Dimensions: N = 500, n = 1500.
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Interpretation of the result

I if c is large, or alternatively, if some “population spikes” are small, part to all of the
population spikes are attracted by the support!

I if so, no way to decide on the existence of the spikes from looking at the largest eigenvalues

I in signal processing words, signals might be missed using largest eigenvalues methods.
I as a consequence,

I the more the sensors (N),
I the larger c = lim N/n,
I the more probable we miss a spike
I THAT LOOKS LIKE A PARADOX.
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General characterization of spiked eigenvalues

I Consider the more general model

Σ = (IN + P)
1
2 X

with, for simplicity
I X standard Gaussian
I P = UΩUH, U = [u1, . . . ,ur ] ∈ CN×r , Ω = diag(ω1, . . . ,ωr ), ω1 > . . . >ωr > 0.

I We can study the convergence properties of
I λ1 > . . . > λr , the r largest eigenvalues of ΣΣH

I uH
i ûi ûH

i ui , with ûi the eigenvector associated to λi (not discussed today)

I Systematic study based on two ingredients:
I random matrix tools (the Stieltjes transform method)
I complex analysis (complex contour integration)
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First order limits on eigenvalues
I We start with a study of the limiting extreme eigenvalues.

I Let x > 0, then

det(ΣΣH − xIN) = det(IN +P)det(XXH − xIN + x[IN − (IN +P)−1])

= det(IN +P)det(XXH − xIN)−1 det(IN + xP(IN +P)−1(XXH − xIN)−1).

I if x eigenvalue of ΣΣH but not of XXH, then for n large, x > (1 +
√

c)2 (edge of MP law
support) and

det(IN+xP(IN+P)−1(XXH−xIN)−1) = det(Ir +xΩU∗(IN+UΩUH)−1(XXH−xIN)−1U) = 0

with P = UΩUH, U ∈ CN×r .

I due to unitary invariance of X,

UH(XXH − xIN)−1U
a.s.−→
∫
(t − x)−1dF MP(t)Ir , m(x)Ir

with F MP the MP law, and m(x) the Stieltjes transform of the MP law (often known for
r = 1 as trace lemma).

I finally, we have that the limiting solutions ρk satisfy ρk m(ρk) + (1 +ωk)ω
−1
k = 0.

I replacing m(x), this is finally:

λk
a.s.−→ ρk , 1 +ωk + c(1 +ωk)ω

−1
k , if ωk >

√
c



Part 1: Fundamentals of Random Matrix Theory/1.3. The Spiked Model 51/148

First order limits on eigenvalues
I We start with a study of the limiting extreme eigenvalues.

I Let x > 0, then

det(ΣΣH − xIN) = det(IN +P)det(XXH − xIN + x[IN − (IN +P)−1])

= det(IN +P)det(XXH − xIN)−1 det(IN + xP(IN +P)−1(XXH − xIN)−1).

I if x eigenvalue of ΣΣH but not of XXH, then for n large, x > (1 +
√

c)2 (edge of MP law
support) and

det(IN+xP(IN+P)−1(XXH−xIN)−1) = det(Ir +xΩU∗(IN+UΩUH)−1(XXH−xIN)−1U) = 0

with P = UΩUH, U ∈ CN×r .

I due to unitary invariance of X,

UH(XXH − xIN)−1U
a.s.−→
∫
(t − x)−1dF MP(t)Ir , m(x)Ir

with F MP the MP law, and m(x) the Stieltjes transform of the MP law (often known for
r = 1 as trace lemma).

I finally, we have that the limiting solutions ρk satisfy ρk m(ρk) + (1 +ωk)ω
−1
k = 0.

I replacing m(x), this is finally:

λk
a.s.−→ ρk , 1 +ωk + c(1 +ωk)ω

−1
k , if ωk >

√
c



Part 1: Fundamentals of Random Matrix Theory/1.3. The Spiked Model 51/148

First order limits on eigenvalues
I We start with a study of the limiting extreme eigenvalues.

I Let x > 0, then

det(ΣΣH − xIN) = det(IN +P)det(XXH − xIN + x[IN − (IN +P)−1])

= det(IN +P)det(XXH − xIN)−1 det(IN + xP(IN +P)−1(XXH − xIN)−1).

I if x eigenvalue of ΣΣH but not of XXH, then for n large, x > (1 +
√

c)2 (edge of MP law
support) and

det(IN+xP(IN+P)−1(XXH−xIN)−1) = det(Ir +xΩU∗(IN+UΩUH)−1(XXH−xIN)−1U) = 0

with P = UΩUH, U ∈ CN×r .

I due to unitary invariance of X,

UH(XXH − xIN)−1U
a.s.−→
∫
(t − x)−1dF MP(t)Ir , m(x)Ir

with F MP the MP law, and m(x) the Stieltjes transform of the MP law (often known for
r = 1 as trace lemma).

I finally, we have that the limiting solutions ρk satisfy ρk m(ρk) + (1 +ωk)ω
−1
k = 0.

I replacing m(x), this is finally:

λk
a.s.−→ ρk , 1 +ωk + c(1 +ωk)ω

−1
k , if ωk >

√
c



Part 1: Fundamentals of Random Matrix Theory/1.3. The Spiked Model 51/148

First order limits on eigenvalues
I We start with a study of the limiting extreme eigenvalues.

I Let x > 0, then

det(ΣΣH − xIN) = det(IN +P)det(XXH − xIN + x[IN − (IN +P)−1])

= det(IN +P)det(XXH − xIN)−1 det(IN + xP(IN +P)−1(XXH − xIN)−1).

I if x eigenvalue of ΣΣH but not of XXH, then for n large, x > (1 +
√

c)2 (edge of MP law
support) and

det(IN+xP(IN+P)−1(XXH−xIN)−1) = det(Ir +xΩU∗(IN+UΩUH)−1(XXH−xIN)−1U) = 0

with P = UΩUH, U ∈ CN×r .

I due to unitary invariance of X,

UH(XXH − xIN)−1U
a.s.−→
∫
(t − x)−1dF MP(t)Ir , m(x)Ir

with F MP the MP law, and m(x) the Stieltjes transform of the MP law (often known for
r = 1 as trace lemma).

I finally, we have that the limiting solutions ρk satisfy ρk m(ρk) + (1 +ωk)ω
−1
k = 0.

I replacing m(x), this is finally:

λk
a.s.−→ ρk , 1 +ωk + c(1 +ωk)ω

−1
k , if ωk >

√
c



Part 1: Fundamentals of Random Matrix Theory/1.3. The Spiked Model 51/148

First order limits on eigenvalues
I We start with a study of the limiting extreme eigenvalues.

I Let x > 0, then

det(ΣΣH − xIN) = det(IN +P)det(XXH − xIN + x[IN − (IN +P)−1])

= det(IN +P)det(XXH − xIN)−1 det(IN + xP(IN +P)−1(XXH − xIN)−1).

I if x eigenvalue of ΣΣH but not of XXH, then for n large, x > (1 +
√

c)2 (edge of MP law
support) and

det(IN+xP(IN+P)−1(XXH−xIN)−1) = det(Ir +xΩU∗(IN+UΩUH)−1(XXH−xIN)−1U) = 0

with P = UΩUH, U ∈ CN×r .

I due to unitary invariance of X,

UH(XXH − xIN)−1U
a.s.−→
∫
(t − x)−1dF MP(t)Ir , m(x)Ir

with F MP the MP law, and m(x) the Stieltjes transform of the MP law (often known for
r = 1 as trace lemma).

I finally, we have that the limiting solutions ρk satisfy ρk m(ρk) + (1 +ωk)ω
−1
k = 0.

I replacing m(x), this is finally:

λk
a.s.−→ ρk , 1 +ωk + c(1 +ωk)ω

−1
k , if ωk >

√
c



Part 1: Fundamentals of Random Matrix Theory/1.3. The Spiked Model 52/148

Generalization of the Tracy-Widom law

J. Baik, G. Ben Arous, S. Péché, “Phase transition of the largest eigenvalue for nonnull complex
sample covariance matrices,” The Annals of Probability, vol. 33, no. 5, pp. 1643-1697, 2005.

Theorem
Let X ∈ CN×n have i.i.d. Gaussian entries of zero mean and variance 1/n and TN = diag(t1, . . . , tN). Assume,
for some fixed r, tr+1 = . . . = tN = 1 and t1 = . . . = tk while tk+1, . . . , tr lie in a compact subset of (0, t1).

Assume further c = lim N/n < 1. Denoting λ+N the largest eigenvalue of T
1
2 XXHT

1
2 , we have

I If t1 < 1 +
√

N
n ,

N
2
3
λ+N − (1 +

√
c)2

(1 +
√

c)
4
3 c

1
2

⇒ X+ ∼ F+

with F+ the Tracy-Widom distribution.

I If t1 > 1 +
√

N
n , (

t2
1 −

t2
1 c

(t1 − 1)2

) 1
2

n
1
2

[
λ+N − (t1 +

t1c

t1 − 1
)

]
⇒ Xk ∼ Gk

for some function Gk that is the distribution of the largest eigenvalue of the k × k GUE.

Gk(x) =
1

Zk

∫ x

−∞ · · ·
∫ x

−∞
∏

16i<j6k

|ξi − ξj |
2

k∏
i=1

e− 1
2ξ

2
i dξ1 . . . dξk

In particular, G1(x) = erf(x)
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Comments on the result

I there exists a “phase transition” when the largest population eigenvalues move from inside to
outside (0, 1 +

√
c).

I more importantly, for t1 < 1 +
√

c, we still have the same Tracy-Widom,
I no way to see the spike even when zooming in
I in fact, simulation suggests that convergence rate to the Tracy-Widom is slower with spikes.
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Presence of a spike in previous model
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Figure : Distribution of N
2
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c)−
4
3
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λ+N − (1 +

√
c)2
]

against the distribution of X+ (distributed as

Tracy-Widom law) for N = 500, n = 1500, c = 1/3, for the covariance matrix model T
1
2 XXHT

1
2 with T

diagonal with all entries 1 but for T11 = 1.5. Empirical distribution taken over 10, 000 Monte-Carlo simulations.
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Stieltjes transform inversion for covariance matrix models

J. W. Silverstein, S. Choi, “Analysis of the limiting spectral distribution of large dimensional
random matrices,” Journal of Multivariate Analysis, vol. 54, no. 2, pp. 295-309, 1995.

I We know for the model T
1
2
NXN , XN ∈ CN×n that, if FTN ⇒ F T , the Stieltjes transform of

the e.s.d. of BN = XH
NTNXN satisfies mBN

(z)
a.s.−→ mF (z), with

mF (z) =

(
−z − c

∫
t

1 + tmF (z)
dF T (t)

)−1

which is unique on the set {z ∈ C+, mF (z) ∈ C+}.

I This can be inverted into

zF (m) = −
1

m
− c

∫
t

1 + tm
dF T (t)

for m ∈ C+.
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J. W. Silverstein, S. Choi, “Analysis of the limiting spectral distribution of large dimensional
random matrices,” Journal of Multivariate Analysis, vol. 54, no. 2, pp. 295-309, 1995.

I We know for the model T
1
2
NXN , XN ∈ CN×n that, if FTN ⇒ F T , the Stieltjes transform of

the e.s.d. of BN = XH
NTNXN satisfies mBN

(z)
a.s.−→ mF (z), with

mF (z) =

(
−z − c

∫
t

1 + tmF (z)
dF T (t)

)−1

which is unique on the set {z ∈ C+, mF (z) ∈ C+}.

I This can be inverted into

zF (m) = −
1

m
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Stieltjes transform inversion and spectrum characterization

Remember that we can evaluate the spectrum density by taking a complex line close to R and
evaluating =[mF (z)] along this line. Now we can do better.

It is shown that
lim

z→x∈R∗
z∈C+

mF (z) = m0(x) exists.

We also have,

I for x0 inside the support, the density f (x) of F in x0 is 1
π=[m0] with m0 the unique solution

m ∈ C+ of

[zF (m) =] x0 = −
1

m
− c

∫
t

1 + tm
dF T (t)

I let m0 ∈ R∗ and xF the equivalent to zF on the real line. Then “x0 outside the support of F ”

is equivalent to “x ′F (mF (x0)) > 0, mF (x0) 6= 0, −1/mF (x0) outside the support of F T ”.

This provides another way to determine the support!. For m ∈ (−∞, 0), evaluate xF (m).
Whenever xF decreases, the image is outside the support. The rest is inside.
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Another way to determine the spectrum: spectrum to analyze
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Empirical eigenvalue distribution

Limit law

Figure : Histogram of the eigenvalues of BN = T
1
2
N XNXH

NT
1
2
N , N = 300, n = 3000, with TN diagonal composed

of three evenly weighted masses in 1, 3 and 7.
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Another way to determine the spectrum: inverse function method

−1 − 1
3 − 1

7
0

1

3

7

m

x F
(m

)

xF (m), m ∈ B

Support of F

Figure : Stieltjes transform of BN = T
1
2
N XNXH

NT
1
2
N , N = 300, n = 3000, with TN diagonal composed of three

evenly weighted masses in 1, 3 and 7. The support of F is read on the vertical axis, whenever mF is decreasing.
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Cluster boundaries in sample covariance matrix models

Xavier Mestre, “Improved estimation of eigenvalues of covariance matrices and their associated
subspaces using their sample estimates,” IEEE Transactions on Information Theory, vol. 54, no.
11, Nov. 2008.

Theorem
Let XN ∈ CN×n have i.i.d. entries of zero mean, variance 1/n, and TN be diagonal such that
FTN ⇒ F T , as n, N →∞, N/n→ c, where F T has K masses in t1, . . . , tK with multiplicity

n1, . . . , nK respectively. Then the l.s.d. of BN = T
1
2
NXNXH

NT
1
2
N has support S given by

S = [x−
1 , x+

1 ]∪ [x−
2 , x+

2 ]∪ . . .∪ [x−
Q , x+

Q ]

with x−
q = xF (m−

q ), x+
q = xF (m+

q ), and

xF (m) = −
1

m
− c

1

n

K∑
k=1

nk
tk

1 + tk m

with 2Q the number of real-valued solutions counting multiplicities of x ′F (m) = 0 denoted in
order m−

1 < m+
1 6 m−

2 < m+
2 6 . . . 6 m−

Q < m+
Q .
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Comments on spectrum characterization

Previous results allows to determine

I the spectrum boundaries

I the number Q of clusters

I as a consequence, the total separation or not of the spectrum in K clusters.

Mestre goes further: to determine local separability of the spectrum,

I identify the K inflexion points, i.e. the K solutions m1, . . . , mK to

x ′′F (m) = 0

I check whether x ′F (mi ) > 0 and x ′F (mi+1) > 0

I if so, the cluster in between corresponds to a single population eigenvalue.
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Eigeninference: Introduction of the problem

I Reminder: for a sequence x1, . . . , xn ∈ CN of independent random variables,

Rn =
1

n

n∑
k=1

xkx
H
k

is an n-consistent estimator of R = E [x1xH
1 ].

I If n, N have comparable sizes, this no longer holds.

I Typically, n, N-consistent estimators of the full R matrix perform very badly.

I If only the eigenvalues of R are of interest, things can be done. The process of retrieving
information about eigenvalues, eigenspace projections, or functional of these is called
eigen-inference.
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Girko and the G -estimators

V. Girko, “Ten years of general statistical analysis,”
http://www.general-statistical-analysis.girko.freewebspace.com/chapter14.pdf

I Girko has come up with more than 50 N, n-consistent estimators, called G -estimators
(Generalized estimators). Among those, we find

I G1-estimator of generalized variance. For

G1(Rn) = α−1
n

[
log det(Rn) + log

n(n − 1)N

(n − N)
∏N

k=1(n − k)

]

with αn any sequence such that α−2
n log(n/(n − N))→ 0, we have

G1(Rn) −α
−1
n log det(R)→ 0

in probability.

I However, Girko’s proofs are rarely readable, if existent.
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A long standing problem

X. Mestre, “Improved estimation of eigenvalues and eigenvectors of covariance matrices using
their sample estimates,” IEEE trans. on Information Theory, vol. 54, no. 11, pp. 5113-5129,
2008.

I Consider the model BN = T
1
2
NXNXH

NT
1
2
N , where FTN is formed of a finite number of masses

t1, . . . , tK .

I It has long been thought the inverse problem of estimating t1, . . . , tK from the Stieltjes
transform method was not possible.

I Only trials were iterative convex optimization methods.

I The problem was partially solved by Mestre in 2008!

I His technique uses elegant complex analysis tools. The description of this technique is the
subject of this course.
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Reminders

I Consider the sample covariance matrix model BN = T
1
2
NXNXH

NT
1
2
N .

I Up to now, we saw:
I that there is no eigenvalue outside the support with probability 1 for all large N.
I that for all large N, when the spectrum is divided into clusters, the number of empirical eigenvalues

in each cluster is exactly as we expect.

I these results are of crucial importance for the following.
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Inverse problem for sample covariance matrix

0.1 1 3 10
0

0.025

0.05

0.075

0.1

Estimated powers

D
en

si
ty

Asymptotic spectrum

Empirical eigenvalues

Figure : Empirical and asymptotic eigenvalue distribution of 1
M YYH when P has three distinct entries P1 = 1,

P2 = 3, P3 = 10, n1 = n2 = n3, N/n = 10, M/N = 10, σ2 = 0.1. Empirical test: n = 60.
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Eigen-inference for the sample covariance matrix model

X. Mestre, “Improved estimation of eigenvalues and eigenvectors of covariance matrices using
their sample estimates,” IEEE trans. on Information Theory, vol. 54, no. 11, pp. 5113-5129,
2008.

Theorem
Consider the model BN = T

1
2
NXNXH

NT
1
2
N , with XN ∈ CN×n, i.i.d. with entries of zero mean,

variance 1/n, and TN ∈ RN×N is diagonal with K distinct entries t1, . . . , tK of multiplicity
N1, . . . , NK of same order as n. Let k ∈ {1, . . . , K}. Then, if the cluster associated to tk is
separated from the clusters associated to k − 1 and k + 1, as N, n→∞, N/n→ c,

t̂k =
n

Nk

∑
m∈Nk

(λm −µm)

is an N, n-consistent estimator of tk , where Nk = {N −
∑K

i=k Ni + 1, . . . , N −
∑K

i=k+1 Ni },
λ1, . . . ,λN are the eigenvalues of BN and µ1, . . . ,µN are the N solutions of

mXH
NTNXN

(µ) = 0

or equivalently, µ1, . . . ,µN are the eigenvalues of diag(λ) − 1
N

√
λ
√
λ

T
.
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Remarks on Mestre’s result

Assuming cluster separation, the result consists in

I taking the empirical ordered λi ’s inside the cluster (note that exact separation ensures there
are Nk of these!)

I getting the ordered eigenvalues µ1, . . . ,µN of

diag(λ) −
1

N

√
λ
√
λ

T

with λ = (λ1, . . . ,λN)T. Keep only those of index inside Nk .

I take the difference and scale.
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How to obtain this result?

I Major trick requires tools from complex analysis

I Silverstein’s Stieltjes transform identity: for the conjugate model BN = X∗NTNXN ,

mN(z) =

(
−z − c

∫
t

1 + tmN(z)
dFTN (t)

)−1

with mN the deterministic equivalent of mBN
. This is the only random matrix result we need.

I Before going further, we need some reminders from complex analysis.
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Reminders of complex analysis

I Cauchy integration formula

Theorem
Let U ⊂ C be an open set and f : U → C be holomorphic on U. Let γ ⊂ U be a continuous
contour (i.e. closed path). Then, for a inside the surface formed by γ, we have

1

2πi

∮
γ

f (z)

z − a
dz = f (a)

while for a outside the surface formed by γ,

1

2πi

∮
γ

f (z)

z − a
dz = 0.
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Limiting spectrum of the sample covariance matrix

J. W. Silverstein, Z. D. Bai, “On the empirical distribution of eigenvalues of a class of large
dimensional random matrices,” J. of Multivariate Analysis, vol. 54, no. 2, pp. 175-192, 1995.

Reminder:

I If FTN ⇒ F T , then mBN
(z)

a.s.−→ mF (z) such that

mF (z) =

(
c

∫
t

1 + tmF (z)
dF T (t) − z

)−1

or equivalently
mF T

(
−1/mF (z)

)
= −zmF (z)mF (z)

with mF (z) = cmF (z) + (c − 1) 1
z and N/n→ c.
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Reminders of complex analysis (2)

I Residue calculus

Theorem
Let γ be a contour on C. For f holomorphic inside γ but on a discrete number of points, to
compute the expression

1

2πi

∮
γ

f (z)dz

one must
1. determine the poles of f lying inside the surface formed by γ, i.e. those values a such that

lim
z→a

|f (z)| =∞
2. determine the order of each pole, i.e. the smallest k such that

lim
z→a

|(z − a)k f (z)| <∞
3. compute the residues of f at the poles, i.e. evaluate the value

Res(f , a) , lim
z→a

dk−1

dzk−1

[
(z − a)k f (z)

]
4. the integral is then the sum of all residues.

1

2πi

∮
γ

f (z)dz =
∑

a∈{ poles of f }

Res(f , a)
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Complex integration

I From Cauchy integral formula, denoting Ck a contour enclosing only tk ,

tk =
1

2πi

∮
Ck

ω

ω− tk
dω

=
1

2πi

∮
Ck

1

Nk

K∑
j=1

Nj
ω

ω− tj
dω =

N

2πiNk

∮
Ck

ωmT (ω)dω.

I After the variable change ω = −1/mF (z),

tk =
N

Nk

1

2πi

∮
CF ,k

zmF (z)
m ′F (z)

m2
F (z)

dz,

I When the system dimensions are large,

mF (z) ' mBN
(z) ,

1

N

N∑
k=1

1

λk − z
, with (λ1, . . . ,λN) = eig(BN) = eig(YYH).

I Dominated convergence arguments then show

tk − t̂k
a.s.−→ 0 with t̂k =

N

Nk

1

2πi

∮
CF ,k

zmBN
(z)

m ′BN
(z)

m2
BN

(z)
dz



Part 1: Fundamentals of Random Matrix Theory/1.4. Spectrum Analysis and G-estimation 73/148

Complex integration

I From Cauchy integral formula, denoting Ck a contour enclosing only tk ,

tk =
1

2πi

∮
Ck

ω

ω− tk
dω =

1

2πi

∮
Ck

1

Nk

K∑
j=1

Nj
ω

ω− tj
dω

=
N

2πiNk

∮
Ck

ωmT (ω)dω.

I After the variable change ω = −1/mF (z),

tk =
N

Nk

1

2πi

∮
CF ,k

zmF (z)
m ′F (z)

m2
F (z)

dz,

I When the system dimensions are large,

mF (z) ' mBN
(z) ,

1

N

N∑
k=1

1

λk − z
, with (λ1, . . . ,λN) = eig(BN) = eig(YYH).

I Dominated convergence arguments then show

tk − t̂k
a.s.−→ 0 with t̂k =

N

Nk

1

2πi

∮
CF ,k

zmBN
(z)

m ′BN
(z)

m2
BN

(z)
dz



Part 1: Fundamentals of Random Matrix Theory/1.4. Spectrum Analysis and G-estimation 73/148

Complex integration

I From Cauchy integral formula, denoting Ck a contour enclosing only tk ,

tk =
1

2πi

∮
Ck

ω

ω− tk
dω =

1

2πi

∮
Ck

1

Nk

K∑
j=1

Nj
ω

ω− tj
dω =

N

2πiNk

∮
Ck

ωmT (ω)dω.

I After the variable change ω = −1/mF (z),

tk =
N

Nk

1

2πi

∮
CF ,k

zmF (z)
m ′F (z)

m2
F (z)

dz,

I When the system dimensions are large,

mF (z) ' mBN
(z) ,

1

N

N∑
k=1

1

λk − z
, with (λ1, . . . ,λN) = eig(BN) = eig(YYH).

I Dominated convergence arguments then show

tk − t̂k
a.s.−→ 0 with t̂k =

N

Nk

1

2πi

∮
CF ,k

zmBN
(z)

m ′BN
(z)

m2
BN

(z)
dz



Part 1: Fundamentals of Random Matrix Theory/1.4. Spectrum Analysis and G-estimation 73/148

Complex integration

I From Cauchy integral formula, denoting Ck a contour enclosing only tk ,

tk =
1

2πi

∮
Ck

ω

ω− tk
dω =

1

2πi

∮
Ck

1

Nk

K∑
j=1

Nj
ω

ω− tj
dω =

N

2πiNk

∮
Ck

ωmT (ω)dω.

I After the variable change ω = −1/mF (z),

tk =
N

Nk

1

2πi

∮
CF ,k

zmF (z)
m ′F (z)

m2
F (z)

dz,

I When the system dimensions are large,

mF (z) ' mBN
(z) ,

1

N

N∑
k=1

1

λk − z
, with (λ1, . . . ,λN) = eig(BN) = eig(YYH).

I Dominated convergence arguments then show

tk − t̂k
a.s.−→ 0 with t̂k =

N

Nk

1

2πi

∮
CF ,k

zmBN
(z)

m ′BN
(z)

m2
BN

(z)
dz
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Understanding the contour change

−1 − 1
3 − 1

7
0

1

3

7

m1

m2

−1/x1−1/x2

m

x F
(m

)

xF (m), m ∈ B

Support of F

I IF CF ,k encloses cluster k with real points m1 < m2

I THEN −1/m1 = x1 < tk < x2 = −1/m2 and Ck encloses tk .
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Poles and residues

I we find two sets of poles (outside zeros):
I λ1, . . . ,λN , the eigenvalues of BN .
I the solutions µ1, . . . ,µN to m̂N(z) = 0.

I remember that

mBN
(w) =

n

N
mBN

(w) +
n − N

N

1

w

I residue calculus, denote f (w) =
(

n
N wmBN

(w) + n−N
N

) m′BN
(w)

mBN
(w)2 ,

I the λk ’s are poles of order 1 and

lim
z→λk

(z − λk)f (z) = −
n

N
λk

I the µk ’s are also poles of order 1 and by L’Hospital’s rule

lim
z→µk

(z − λk)f (z) = lim
z→µk

n

N

(z −µk)zm ′BN
(z)

mBN
(z)

=
n

N
µk

I So, finally

t̂k =
n

Nk

∑
m∈contour

(λm −µm)
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Which poles in the contour?

I we now need to determine which poles are in the contour of interest.

I Since the µi are rank-1 perturbations of the λi , they have the interleaving property

λ1 < µ2 < λ2 < . . . < µN < λN

I what about µ1? the trick is to use the fact that

1

2πi

∮
Ck

1

z
dz = 0

which leads to
1

2πi

∮
∂Γk

m ′F (w)

mF (w)2
dw = 0

the empirical version of which is

#{i : λi ∈ Γk }− #{i : µi ∈ Γk }

Since their difference tends to 0, there are as many λk ’s as µk ’s in the contour, hence µ1 is
asymptotically in the integration contour.
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Problem formulation

I We want to test the hypothesis H0 against H1,

CN×n 3 Y =

{
hxT +σW , information plus noise, hypothesis H1

σW , pure noise, hpothesis H0

with h ∈ CN , x ∈ CN , W ∈ CN×n.

I We assume no knowledge whatsoever but that W has i.i.d. (non-necessarily Gaussian)
entries.
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Exploiting the conditioning number

L. S. Cardoso, M. Debbah, P. Bianchi, J. Najim, “Cooperative spectrum sensing using random
matrix theory,” International Symposium on Wireless Pervasive Computing, pp. 334-338 , 2008.

I under either hypothesis,
I if H0, for N large, we expect FYYH close to the Marc̆enko-Pastur law, of support

[σ2
(
1 −
√

c
)2

,σ2
(
1 +
√

c
)2
].

I if H1, if population spike more than 1 +
√

N
n , largest eigenvalue is further away.

I the conditioning number of YYH is therefore asymptotically, as N, n→∞, N/n→ c,
I if H0,

cond(Y) ,
λmax

λmin
→

(
1 −
√

c
)2(

1 +
√

c
)2

I if H1,

cond(Y)→ t1 +
ct1

t1 − 1
>

(
1 −
√

c
)2(

1 +
√

c
)2

with t1 =
∑N

k=1 |hk |
2 +σ2

I the conditioning number is independent of σ. We then have the decision criterion, whether
or not σ is known,

decide


H0 : if cond(YYH) 6

(
1−
√

N
n

)2

(
1+
√

N
n

)2 + ε

H1 : otherwise.

for some security margin ε.
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Comments on the method

I Advantages:
I much simpler than finite size analysis
I ratio independent of σ, so σ needs not be known

I Drawbacks:
I only stands for very large N (dimension N for which asymptotic results arise function of σ!)
I ad-hoc method, does not rely on performance criterion.
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Generalized likelihood ratio test

P. Bianchi, M. Debbah, M. Maida, J. Najim, “Performance of Statistical Tests for Source
Detection using Random Matrix Theory,” IEEE Trans. on Information Theory, vol. 57, no. 4, pp.
2400-2419, 2011.

I Alternative generalized likelihood ratio test (GLRT) decision criterion, i.e.

C(Y) =
supσ2,h PY|h,σ2(Y,h,σ2)

supσ2 PY|σ2(Y|σ2)
.

I Denote

TN =
λmax(YYH)

1
N trYYH

To guarantee a maximum false alarm ratio of α,

decide

{
H1 : if

(
1 − 1

N

)(1−N)n
T−n

N

(
1 −

TN
N

)(1−N)n
> ξN

H0 : otherwise.

for some threshold ξN that can be explicitly given as a function of α.

I Optimal test with respect to GLR.

I Performs better than conditioning number test.
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Performance comparison for unknown σ2, P
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Figure : ROC curve for a priori unknown σ2 of the Neyman-Pearson test, conditioning number method and
GLRT, K = 1, N = 4, M = 8, SNR = 0 dB. For the Neyman-Pearson test, both uniform and Jeffreys prior,
with exponent β = 1, are provided.
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Generic inference scenario

Figure : Signal sensing and angle of arrival detection
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Power estimation: problem Statement

I Consider the model

y(m) =

K∑
k=1

√
PkHkx

(m)
k +σw(m)

and wish to infer P1, . . . , PK .

I This gives information on transmit power / source distance.

I Applications in localization (radar, sensor network).

I With Y = [y(1), . . . , y(M)], this can be rewritten

Y =

K∑
k=1

√
PkHkXk +σW =

[√
P1H1 · · ·

√
PKHK

]︸ ︷︷ ︸
,HP

1
2


X1

...
XK


︸ ︷︷ ︸

,X

+σW =
[
HP

1
2 σIN

] [X
W

]
.

I If H, (XT WT) are unitarily invariant, Y is unitarily invariant.

Most information about P1, . . . , PK is contained in the eigenvalues of BN , 1
M YYH.
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From small to large system analysis
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Classical approach requires to assume M >> N as well as N >> nk for each k!
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From small to large system analysis
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Limiting spectrum of BN

Assuming dimensions N, nk , M grow large, large dimensional random matrix theory provides
I a link between:

I the “observation”: the limiting spectral distribution (l.s.d.) of BN ;
I the “hidden parameters”: the powers P1, . . . , PK , i.e. the l.s.d. of P.

I consistent estimators of the hidden parameters.
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Power estimation with random matrices
I Reminder: Method consists in:

I Step 1: link between Stieltjes transform mP of P and limiting Stieltjes transform mF of BN .
I Step 2: Cauchy integral of the parameter to estimate.
I Step 3: Using mBN

as an approximation of mF , residue calculus provides estimator.

I Extending Y with zeros, our model is a “double sample covariance matrix”

Y︸︷︷︸
(N+n)×M

=

[
HP

1
2 σIN

0 0

]
︸ ︷︷ ︸
(N+n)×(N+n)

[
X
W

]
︸ ︷︷ ︸

(N+n)×M

.

I Limiting distribution of 1
M YYH

Theorem (Spectral analysis of BN )
Let BN = 1

M YYH with eigenvalues λ1, . . . ,λN . Denote mBN
(z) , 1

M

∑M
k=1

1
λk−z , with λi = 0 for

i > N. Then, for M/N → c, N/nk → ck , N/n→ c0, for any z ∈ C+,

mBN
(z)

a.s.−→ mF (z)

with mF (z) the unique solution in C+ of

1

mF (z)
= −σ2 +

1

f (z)

[
c0 − 1

c0
+ mP

(
−

1

f (z)

)]
, with f (z) = (c − 1)mF (z) − czmF (z)2.
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Stieltjes transform method (2)

R. Couillet, J. W. Silverstein, Z. Bai, M. Debbah, “Eigen-Inference for Energy Estimation of
Multiple Sources,” to appear in IEEE Trans. on Inf. Theory, 2010.

I estimator calculus

Theorem (Estimator of P1, . . . ,PK )
Let BN ∈ CN×N be defined as in Theorem 19, and λ = (λ1, . . . ,λN), λ1 < . . . < λN . Assume
that asymptotic cluster separability condition is fulfilled for some k. Then, as N, n, M →∞,

P̂k − Pk
a.s.−→ 0,

where

P̂k =
NM

nk(M − N)

∑
i∈Nk

(ηi −µi )

with Nk the set indexing the eigenvalues in cluster k of F , η1 < . . . < ηN the eigenvalues of

diag(λ) − 1
N

√
λ
√
λ

T
and µ1 < . . . < µN the eigenvalues of diag(λ) − 1

M

√
λ
√
λ

T
.
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Remarks
I solution is computationally simple, explicit, and the final formula compact.

I cluster separability condition is fundamental. This requires
I for all other parameters fixed, the Pk cannot be too close top one another: source separation

problem.
I for all other parameters fixed, σ2 must be kept low: low SNR undecidability problem.
I for all other parameters fixed, M/N cannot be too low: sample deficiency issue (not such an issue

though).
I for all other parameters fixed, N/n cannot be too low: diversity issue.

I exact spectrum separability is an essential ingredient (known for very few models to this day).
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Simulations
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Figure : Histogram of the cluster-mean approach and of P̂k for k ∈ {1, 2, 3}, P1 = 1/16, P2 = 1/4, P3 = 1,
n1 = n2 = n3 = 4 antennas per user, N = 24 sensors, M = 128 samples and SNR = 20 dB.
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Performance comparison
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Figure : Normalized mean square error of largest estimated power P̂3, P1 = 1/16, P2 = 1/4, P3 = 1,
n1 = n2 = n3 = 4 ,N = 24, M = 128. Comparison between classical, moment and Stieltjes transform
approaches.



3. Statistical Inference/3.1. Generic Model 98/148

Outline
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Direction-of-arrival estimation: Position of the problem

I We consider the sensor network scenario with:
I K signal sources
I an array of N receive antennas, N > K
I line-of-sight signal sensing from angles θ1, . . . ,θK .

I Received signal y(t) ∈ CN at time t

y(t) =

K∑
k=1

s(θk)x
(t)
k +σw(t)

with E [sk ] = 0, E [|xk |
2] = Pk .

I Therefore
E [y(t)y(y)H] , R = S(Θ)PS(Θ)H +σ2IN

where S(Θ) = [s(θ1), . . . , s(θK )] ∈ CN×K , P = diag(P1, . . . , PK ).

I Objective: Based on Y , [y(1), . . . , y(M)], estimate θ1, . . . ,θK ,
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k=1

s(θk)x
(t)
k +σw(t)

with E [sk ] = 0, E [|xk |
2] = Pk .

I Therefore
E [y(t)y(y)H] , R = S(Θ)PS(Θ)H +σ2IN

where S(Θ) = [s(θ1), . . . , s(θK )] ∈ CN×K , P = diag(P1, . . . , PK ).

I Objective: Based on Y , [y(1), . . . , y(M)], estimate θ1, . . . ,θK ,
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MUSIC method

I Write

R =
(
EW ES

)(σ2IN−K 0
0 LS

)(
EH

W
EH

S

)
with LS = diag(λN−K+1, . . . ,λN), ES = [eN−K+1, . . . , eN ] the signal subspace and
EW = [e1, . . . , eN−K ] the noise subspace.

I By definition,
η(θk) , s(θk)

HEW EH
W s(θk) = 0

I MUSIC algorithm consists in finding θ such that

η̂(θ) , s(θ)HÊW ÊH
W s(θ).

reaches a local minimum, with ÊW = [ê1, . . . , êN−K ] ∈ CN×(N−K) the subspace spanned by
the N − K smallest eigenvalues of

RN =
1

M

M∑
t=1

y(t)y(t)H.

Only M-consistent!
RMT will provide an (N, M)-consistent procedure.
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Result on quadratic forms

I Contrary to power inference, we need here results on quadratic forms.

I Starting point: Cauchy integration formula

s(θk)
HEW EH

W s(θk) =
1

2πi

∮
C

s(θk) (R− zIN)−1 s(θk)dz

with C circling around σ2 only (only one pole in z = σ2).

I We then use the result:

Lemma
For a ∈ CN deterministic bounded, independent of RN ,

aH (RN − zIN)−1 a− aH

(
1

1 + ceN(z)
R− zIN

)−1

a
a.s.−→ 0

with eN(z) solution to

e =

∫
t

t
1+ce − z

dFR(t).

I By change of variable, dominated convergence arguments, and residue calculus, we conclude.
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G-MUSIC

X. Mestre, M. A. Lagunas, “Finite sample size effect on minimum variance beamformers:
Optimum diagonal loading factor for large arrays,” IEEE Trans. on Signal Processing, vol. 54, no.
1, pp. 69-82, 2006.

Theorem
Under the above conditions,

η(θ) − η̄(θ)
a.s.−→ 0

as N, M →∞ with 0 < lim N/M <∞, where

η̄(θ) = s(θ)H

(
N∑

n=1

φ(n)ênê
H
n

)
s(θ)

with φ(n) defined as

φ(n) =

 1 +
∑N

k=N−K+1

(
λ̂k

λ̂n−λ̂k
−

µ̂k

λ̂n−µ̂k

)
, n 6 N − K

−
∑N−K

k=1

(
λ̂k

λ̂n−λ̂k
−

µ̂k

λ̂n−µ̂k

)
, n > N − K

and with µ1 6 . . . 6 µN the eigenvalues of diag(λ̂) − 1
M

√
λ̂
√
λ̂

T
, λ̂ = (λ̂1, . . . , λ̂N)T.
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Simulation results
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Figure : MUSIC against G-MUSIC for DoA detection of K = 3 signal sources, N = 20 sensors, M = 150
samples, SNR of 10 dB. Angles of arrival of 10◦, 35◦, and 37◦.



3. Statistical Inference/3.1. Generic Model 104/148

Simulation results (2)
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Figure : MUSIC against G-MUSIC for DoA detection of K = 3 signal sources, N = 20 sensors, M = 150
samples, SNR of 10 dB. Angles of arrival of 10◦, 35◦, and 37◦.



3. Statistical Inference/3.1. Generic Model 105/148

Related bibliography

I Ø. Ryan, M. Debbah, “Free deconvolution for signal processing applications,” ISIT, pp. 1846-1850, 2007.

I R. Rao, J. A. Mingo, R. Speicher, A. Edelman, “Statistical eigen-inference from large Wishart matrices,” Annals of Statistics, vol. 36, no. 6, pp.
2850-2885, 2008.

I A. Masucci, Ø. Ryan, S. Yang, M. Debbah, “Finite dimensional statistical inference,” vol. 57, no. 4, pp. 2457-2473, 2011.

I J. W. Silverstein, P. L. Combettes, “Large dimensional random matrix theory for signal detection and estimation in array processing,” Workshop on
Statistical Signal and Array Processing, pp. 276-279, 1992.

I R. Couillet, J. W. Silverstein, Z. Bai, M. Debbah, “Eigen-Inference for Energy Estimation of Multiple Sources,” to appear in IEEE Trans. on Inf.
Theory, 2010.

I J. Yao, R. Couillet, J. Najim, M. Debbah, “Fluctuations of an Improved Population Eigenvalue Estimator in Sample Covariance Matrix Models”,
(submitted to) IEEE Transactions on Information Theory.

I X. Mestre, “On the asymptotic behavior of the sample estimates of eigenvalues and eigenvectors of covariance matrices”, IEEE Transactions on
Signal Processing, vol. 56, no. 11, 2008.

I X. Mestre, “Improved estimation of eigenvalues of covariance matrices and their associated subspaces using their sample estimates”, IEEE
Transactions on Information Theory, vol. 54, no. 11, Nov. 2008.

I A. Johnson, Y. Abramovich, X. Mestre, “MUSIC, G-MUSIC and Maximum Likelihood Performance Breakdown”, IEEE Transactions on Signal
Processing, vol. 56, no. 8, pp. 3944-3958, 2008.

I X. Mestre, M. A. Lagunas, “Modified Subspace Algorithms for DoA Estimation in the Small Sample Size Regime” IEEE Transactions on Signal
Processing, Vol. 56, pp. 598-614, Feb. 2008.

I P. Vallet, P. Loubaton, X. Mestre, “Improved subspace estimation for multivariate observations of high dimension: the deterministic signals case,”
arxiv preprint 1002.3234, 2010.

I W. Hachem, P. Loubaton, X. Mestre, P. Vallet, “A subspace estimator of finite rank perturbations of large random matrices,” arXiv preprint, 2011.



3. Statistical Inference/3.2. Spiked Model 106/148

Outline

Part 1: Fundamentals of Random Matrix Theory
1.1. The Stieltjes Transform Method
1.2. Extreme Eigenvalues
1.3. The Spiked Model
1.4. Spectrum Analysis and G-estimation

2. Source Detection
2.1. Eigenvalue-based Detection
2.2. Detection in unknown Noise Environment

3. Statistical Inference
3.1. Generic Model

3.1.2. Angle-of-arrival estimation
3.1.2. Angle-of-arrival estimation

3.2. Spiked Model
3.2.1. Spiked G-MUSIC
3.2.2. Local Failure Detection in Sensor Networks

4. Random Matrix Theory and Robust Estimation
4.1. Introduction to Robust Estimation
4.1. Initial Results and Open Problems



3. Statistical Inference/3.2. Spiked Model 107/148

Outline

Part 1: Fundamentals of Random Matrix Theory
1.1. The Stieltjes Transform Method
1.2. Extreme Eigenvalues
1.3. The Spiked Model
1.4. Spectrum Analysis and G-estimation

2. Source Detection
2.1. Eigenvalue-based Detection
2.2. Detection in unknown Noise Environment

3. Statistical Inference
3.1. Generic Model

3.1.2. Angle-of-arrival estimation
3.1.2. Angle-of-arrival estimation

3.2. Spiked Model
3.2.1. Spiked G-MUSIC
3.2.2. Local Failure Detection in Sensor Networks

4. Random Matrix Theory and Robust Estimation
4.1. Introduction to Robust Estimation
4.1. Initial Results and Open Problems



3. Statistical Inference/3.2. Spiked Model 108/148

Covariance matrix against spike models

→ The problems under consideration are of the type

Y = A(Θ)X

with Y ∈ CN×n and

I X is random with i.i.d. entries

I A(Θ) is a deterministic matrix-function of Θ (which can be recovered from spectrum
information)

→ We want to retrieve Θ from the observation Y, when both N and n are large, i.e. derivate
(N, n)-consistent estimators

→ As opposed to finite N regime, two RMT approaches:
I A(Θ) is a large rank matrix:

I analysis of the link between 1
n YY

H and A(Θ)
I use of Bai–Silverstein method
I use of statistical inference tools to retrieve Θ
I → Improves classical n-consistent estimators
→ This is the case we already studied.

I A(Θ) is a low-rank matrix:
I 1

n YY
H has a Marcenko-Pastur spectrum

I use of known results for the Marcenko-Pastur law
I use of statistical inference tools to retrieve Θ
I → Simpler but usually less accurate approach
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Localization of small-dimensional sources (1)
→ We consider the scenario of K sources and an N-antenna array capturing

y(m) =

K∑
k=1

a(θk)s
(m)
k +w(m)

I s
(m)
k and w(m) are random with zero mean and unit variance entries

I m = 1, . . . , n with N, n large assuming N/n→ c > 0, and K fixed

(we take σ = 1 for simplicity, which can be included in the a(θ))

→ We consider a spiked random matrix approach. Denoting Y = [y(1), . . . , y(n)]

Y =
[
A IN

] [ x
W

]
with A = [a(θ1), . . . , a(θ)K ].

→ Spectral decomposition of the population covariance

E[yyH] = AAH + IN = USΩUH
S + IN

with US = [u1, . . . ,uK ] ∈ CN×K isometric, Ω = diag(ω1, . . . ,ωK ), ω1 > . . . >ωK .
I E[yyH] is a small-rank perturbation of the identity matrix: spike model
I 1

nYY
H is the empirical sample covariance matrix for this model

→ Some consequences of the model in the RMT setting (see e.g. Weyl’s inequality)
I limiting weak spectrum is the Marcenko–Pastur law!
I up to K eigenvalues can leave the limiting support
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Localization of small-dimensional sources (2)

→ We first need to understand the spectrum of 1
nYY

H

I We know that the weak spectrum is the MP law

I Up to K eigenvalues can leave the support: we identify here these eigenvalues

→ Denote P = AAH = USΩUH
S , Ω = diag(ω1, . . . ,ωK ), and X = [xT WT]T to recover (up to

one row) the generic spiked model

Y = (IN +P)−
1
2 X.

I Reminder: If x eigenvalue of 1
nYY

H with x > (1 +
√

c)2 (edge of MP law), for all large n,

x , λk
a.s.−→ ρk , 1 +ωk + c(1 +ωk)ω

−1
k , if ωk >

√
c

for some k.
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nYY

H

I We know that the weak spectrum is the MP law

I Up to K eigenvalues can leave the support: we identify here these eigenvalues

→ Denote P = AAH = USΩUH
S , Ω = diag(ω1, . . . ,ωK ), and X = [xT WT]T to recover (up to

one row) the generic spiked model

Y = (IN +P)−
1
2 X.

I Reminder: If x eigenvalue of 1
nYY
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√

c)2 (edge of MP law), for all large n,
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a.s.−→ ρk , 1 +ωk + c(1 +ωk)ω

−1
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Localization of small-dimensional sources (3)
→ Recall the MUSIC approach: we want to estimate

η(θ) = a(θ)HUW UH
W a(θ) (UW ∈ CN×(N−K) such that UH

W US = 0)

→ Instead of this quantity, we start with the study of

a(θ)Hûi û
H
i a(θ), k = 1, . . . , K

with û1, . . . , ûN the eigenvectors belonging to λ1 > . . . > λN .

→ To fall back on known RMT quantities, we use the Cauchy-integral:

a(θ)Hûi û
H
i a(θ) = −

1

2πı

∮
Ci

a(θ)H(
1

n
YYH − zIN)−1a(θ)dz

with Ci a contour enclosing λi only.

→ Woodbury’s identity (A + UCV )−1 = A−1 − A−1U(C−1 + VA−1U)−1VA−1 gives:

aHûi û
H
i a =

−1

2πı

∮
Ci

aH(IN +P)−
1
2 (

XXH

n
− zIN)−1(IN +P)−

1
2 adz +

1

2πı

∮
Ci

âH
1 Ĥ

−1â2dz

where P = USΩUH
S , and

Ĥ = IK + zΩ(IK +Ω)−1UH
S (

1
n XX

H − zIN)−1US

âH
1 = za(θ)H(IN +P)−

1
2 ( 1

n XX
H − zIN)−1US

â2 = Ω(IK +Ω)−1UH
S (

1
n XX

H − zIN)−1(IN + P)−
1
2 a(θ).
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Ĥ = IK + zΩ(IK +Ω)−1UH
S (

1
n XX

H − zIN)−1US

âH
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â2 = Ω(IK +Ω)−1UH
S (

1
n XX

H − zIN)−1(IN + P)−
1
2 a(θ).



3. Statistical Inference/3.2. Spiked Model 112/148

Localization of small-dimensional sources (4)

I For large n, the first term has no pole, while the second converges to

Ti ,
1

2πı

∮
Ci

aH
1 H

−1a2dz, with


H = IK + zm(z)Ω(IK +Ω)−1

aH
1 = zm(z)a∗(IN +P)−

1
2 US

a2 = m(z)Ω(IK +Ω)−1UH
S (IN +P)−

1
2 a

which after development is

Ti =

K∑
`=1

1

1 +ω`

1

2πı

∮
Ci

zm2(z)
1+ω`
ω`

+ zm(z)
dz.

I Using residue calculus, the sole pole is in ρi and we find

aHûi û
H
i ai

a.s.−→
1 − cω−2

i

1 + cω−1
i

a(θ)Huiu
H
i a(θ).
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Localization of small-dimensional sources (5)

→ We now conclude

a(θ)HUW UH
W a(θ) = a(θ)Ha(θ) −

K∑
k=1

a(θ)Huku
H
k a(θ)

where

a(θ)Huku
H
k a(θ) −

1 + cω−1
k

1 − cω−2
k

a(θ)Hûk û
H
k a(θ)

a.s.−→ 0

→ The ωk are however unknown. But they can be estimated from

λk
a.s.−→ ρk = 1 +ωk + c(1 +ωk)ω

−1
k

→ This gives finally

a(θ)HUW UH
W a(θ) ' a(θ)Ha(θ) −

K∑
k=1

1 + cω̂−1
k

1 − cω̂−2
k

a(θ)Hûk û
H
k a(θ)

with

ω̂k =
λ̂k − (c + 1)

2
+

√
(c + 1 − λ̂k)2 − 4c)

→ We then obtain another (N, n)-consistent MUSIC estimator, only valid for K finite!
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H
k a(θ)

with

ω̂k =
λ̂k − (c + 1)

2
+

√
(c + 1 − λ̂k)2 − 4c)

→ We then obtain another (N, n)-consistent MUSIC estimator, only valid for K finite!



3. Statistical Inference/3.2. Spiked Model 114/148

Outline

Part 1: Fundamentals of Random Matrix Theory
1.1. The Stieltjes Transform Method
1.2. Extreme Eigenvalues
1.3. The Spiked Model
1.4. Spectrum Analysis and G-estimation

2. Source Detection
2.1. Eigenvalue-based Detection
2.2. Detection in unknown Noise Environment

3. Statistical Inference
3.1. Generic Model

3.1.2. Angle-of-arrival estimation
3.1.2. Angle-of-arrival estimation

3.2. Spiked Model
3.2.1. Spiked G-MUSIC
3.2.2. Local Failure Detection in Sensor Networks

4. Random Matrix Theory and Robust Estimation
4.1. Introduction to Robust Estimation
4.1. Initial Results and Open Problems



3. Statistical Inference/3.2. Spiked Model 115/148

Problem statement
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I Localize local failures based on observations from a sensor network.

I Focus on failures modeled as small rank perturbations of large random matrices.
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Target

I Systems with failures modeled by small rank perturbations

I Observation matrix Σ = [s1, . . . , sn] ∈ CN×n modeled by

Σ = (IN +Pk)
1
2 X

with Pk ∈ CN×N of rank rk � N, X with independent CN(0, 1/n) entries.

I Failure scenarios:
I (H0): no failure, E [ssH] = IN .
I (Hk): 1 6 k 6 K , failure of type k, E [ssH] = IN +Pk .

I Subspace approach for:
I detecting a failure: decide between H0 and H̄0
I diagnosing a failure: upon failure detection, decide on the most probable Hk .
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Example 1

Node failure in sensor networks

I Consider the model
y = Hθ+σw

with H ∈ CN×p deterministic, θ ∼ CN(0, Ip), w ∼ CN(0, IN).

I In particular E [y] = 0 and E [yyH] = R , HHH +σ2IN
I With s = R− 1

2 y, E [ssH] = IN .

I Upon failure of sensor k, y becomes

y ′ = (IN − eke
H
k )Hθ+σkeke

H
k θ
′ +σw

for some noise variance σ2
k .

I Now E [y ′] = 0 and E [y ′y′H] = (IN − ekeH
k )HHH(IN − ekeH

k ) +σ
2
kekeH

k +σ2IN .

I With now s = R− 1
2 y ′,

E [ssH] = IN + Pk

with

Pk = −R− 1
2 HHHeke

H
k R

− 1
2 +R− 1

2 ek

[
(eH

k HHHek +σ2
k)e

H
k R

− 1
2 − eH

k HHHR− 1
2

]
of rank-2 (image of Pk in Span(R− 1

2 ek ,R− 1
2 HHHek))
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Example 2

Sudden parameter change detection in sensor networks

I Upon sudden change of parameter θk ,

y ′ = H(Ip +αkeke
∗
k)θ+µkHek +σw

I Then
E [y ′y′H] = H(Ip + [µ2

k + (1 +αk)
2 − 1]eke

H
k )H

H +σ2IN .

I With R = HHH +σ2IN and s = R− 1
2 y ′,

E [ssH] = IN +Pk

with
Pk = [µ2

k + (1 +αk)
2 − 1]R− 1

2 Heke
H
k H

HR− 1
2 .

of rank-1.
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Eigenvalue and eigenvectors statistics: Method

I Consider the model
Σ = (IN + P)

1
2 X

with, for simplicity
I X standard Gaussian
I P = UΩUH, U = [u1, . . . ,ur ] ∈ CN×r , Ω = diag(ω1, . . . ,ωr ), ω1 > . . . >ωr > 0.

I Convergence properties of
I λ1 > . . . > λr , the r largest eigenvalues of ΣΣH

I uH
i ûi ûH

i ui , with ûi the eigenvector associated to λi .

I Study based on two ingredients
I the Stieltjes transform method
I complex analysis
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i ûi ûH
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First order limits

I (Reminder) The limiting ρk are given by:

λk
a.s.−→ ρk , 1 +ωk + c(1 +ωk)ω

−1
k , if ωk >

√
c

I Consider ωi and its corresponding eigenvector ui , then

uH
i ûi û

H
i ui

a.s.−→ ζi ,
1 − cω−2

i

1 + cω−1
i

.
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Fluctuations

Second order behaviour for the joint variable((√
N(λi − ρi )

)r

i=1
,
(√

N(uH
i ûi û

H
i ui − ζi )

)r

i=1

)

R. Couillet, W. Hachem, “Local failure detection and diagnosis in large sensor networks”, IEEE
Transactions on Information Theory, arXiv Preprint 1107.1409.

Theorem
Under the conditions above, assuming ωi >

√
c for each i ∈ {1, . . . , r},

((√
N(λi − ρi )

)r

i=1
,
(√

N(uH
i ûi û

H
i ui − ζi )

)r

i=1

)
⇒N

0,


C(ρ1)

. . .

C(ρr )




where

C(ρi ) ,

 c2(1+ωi )
2

(c+ωi )
2(ω2

i −c)

(
c (1+ωi )

2

(c+ωi )
2 + 1

)
(1+ωi )

3c2

(ωi+c)2ωi

(1+ωi )
3c2

(ωi+c)2ωi

c(1+ωi )
2(ω2

i −c)

ω2
i

 .
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Reminder: Fluctuations at the edge of the bulk

I The previous theorem holds for ωi >
√

c, i.e. “strong perturbations”

I For ωi <
√

c, the eigenvalue fluctuations are:

Theorem
If 0 6ωi <

√
c,

N
2
3 (1 +

√
c)−

4
3 c− 1

2 (λi − (1 +
√

c)2)⇒ T2

where T2 is the complex Tracy-Widom distribution function.
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Failure detection and localization

I The proposed subspace procedure is a two-step approach:
I Failure detection procedure, H0 vs. H̄0: We evaluate the statistics of λ1 against the Tracy-Widom

law for a false alarm rate η,

λ′1

H0
≶
H̄0

(T2)
−1(1 − η)

where λ′1 , N
2
3 (1 +

√
cN)−

4
3 c

− 1
2

N (λ1 − (1 +
√

cN)2).

I Failure diagnosis, selection of Hk : We evaluate the joint statistics of λi , ûH
i uk,i for each

k ∈ {1, . . . , K}, and obtain the maximum-likelihood test,

k̂ = arg max
16k6K

r∏
i=1

f
(((√

N(λi − ρk,i )
)r

i=1
,
(√

N(uH
k,i ûi û

H
i uk,i − ζk,i )

)r

i=1

)
; C(ρk,i )

)
with f (x ;R) the Gaussian density with zero mean and variance R, and indices k corresponding to
hypothesis Hk .
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Results
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Figure : Simulation of sensor failure in an N = 10 node network. Correct detection (CDR) and localization
(CLR) rates for different false alarm rates (FAR) and different n.
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Parameter estimation and sample covariance matrix

P.J. Huber, “Robust Statistics”, 1981.

→ Many statistical inference techniques rely on the sample covariance matrix (SCM) taken from
i.i.d. observations x1, . . . , xn of a r.v. x ∈ CN .

I The main reasons are:
I Assuming E [x] = 0, E [xx∗] = CN , with X = [x1, . . . , xn], by the LLN

ŜN ,
1

n
XX∗

a.s.−→ CN as n→∞.

→ Hence, if θ = f (CN), we often use the n-consistent estimate θ̂ = f (ŜN).
I The SCM ŜN is the ML estimate of CN for Gaussian x
→ One therefore expects θ̂ to closely approximate θ for all finite n.

I This approach however has two limitations:
I if N, n are of the same order of magnitude,

‖ŜN − CN‖ 6→ 0 as N, n→∞, N/n→ c > 0, so that in general |θ̂− θ| 6→ 0

→ This motivated the introduction of G-estimators.
I if x is not Gaussian, but has heavier tails, ŜN is a poor estimator for CN .
→ This motivated the introduction of robust estimators.
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I The SCM ŜN is the ML estimate of CN for Gaussian x
→ One therefore expects θ̂ to closely approximate θ for all finite n.

I This approach however has two limitations:
I if N, n are of the same order of magnitude,
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Reminders on robust estimation

J. T. Kent, D. E. Tyler, “Redescending M-estimates of multivariate location and scatter”, 1991.
R. A. Maronna, “Robust M-estimators of multivariate location and scatter”, 1976.
Y. Chitour, F. Pascal, “Exact maximum likelihood estimates for SIRV covariance matrix:
Existence and algorithm analysis”, 2008.

→ The objectives of robust estimators:

I Replace the SCM ŜN by another estimate ĈN of CN which:
I rejects (or downscales) observations deterministically
I or rejects observations inconsistent with the full set of observations

→ Example: Huber estimator, ĈN defined as solution of

ĈN =
1

n

n∑
i=1

βi xi x
∗
i with βi = αmin

{
1,

k2

1
N x∗i Ĉ−1

N xi

}
for some α > 1, k2 function of ĈN .

I Provide scale-free estimators of CN :
→ Example: Tyler’s estimator: if one observes xi = τi zi for unknown scalars τi ,

ĈN =
1

n

n∑
i=1

1
1
N x∗i Ĉ−1

N xi

xi x
∗
i

I existence and uniqueness of ĈN defined up to a constant.
I few constraints on x1, . . . , xn (N + 1 of them must be linearly independent)
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Reminders on robust estimation

→ The objectives of robust estimators:

I replace the SCM ŜN by the ML estimate for CN .
→ Example: Maronna’s estimator for elliptical x

ĈN =
1

n

n∑
i=1

u

(
1

N
x∗i Ĉ−1

N xi

)
xi x
∗
i

with u(s) such that
(i) u(s) is continuous and non-increasing on [0,∞)

(ii) φ(s) = su(s) is non-decreasing, bounded by φ∞ > 1. Moreover, φ(s) increases where φ(s) < φ∞.

(note that Huber’s estimator is compliant with Maronna’s estimators)

I existence is not too demanding
I uniqueness imposes constraints on N, n, u(s), e.g. φ∞ > n

n−N . Inconsistent with random matrix
regime!

I consistency result: ĈN → CN if u(s) meets the ML estimator for CN .
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Robust Estimation and RMT

→ So far, RMT has mostly focused on the SCM ŜN .

I x = AN y , y having i.i.d. zero-mean unit variance entries,

I x satisfies concentration inequalities, e.g. elliptically distributed x .

Robust RMT estimation
Can we study the performance of estimators based on the ĈN ?

I what are the spectral properties of ĈN ?

I can we generate RMT-based estimators relying on ĈN ?
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I can we generate RMT-based estimators relying on ĈN ?
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Outline

Part 1: Fundamentals of Random Matrix Theory
1.1. The Stieltjes Transform Method
1.2. Extreme Eigenvalues
1.3. The Spiked Model
1.4. Spectrum Analysis and G-estimation

2. Source Detection
2.1. Eigenvalue-based Detection
2.2. Detection in unknown Noise Environment

3. Statistical Inference
3.1. Generic Model

3.1.2. Angle-of-arrival estimation
3.1.2. Angle-of-arrival estimation

3.2. Spiked Model
3.2.1. Spiked G-MUSIC
3.2.2. Local Failure Detection in Sensor Networks
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Some first answers
→ Recall that

ĈN =
1

n

N∑
i=1

u

(
1

N
x∗i Ĉ−1

N xi

)
xi x
∗
i

for some i.i.d. x1, . . . , xn taken from a random vector x , and for some function u(s).

→ For x Gaussian and u(s) of Maronna or Tyler type, simulations suggest:
I Marc̆enko-Pastur/Bai-Silverstein distribution, i.e. up to some constant α

FαĈN − F ŜN ⇒ 0 as N, n→∞, N/n→ c > 0

so in particular, for CN = IN ,

FαĈN ⇒ FMP

I Zooming in on the eigenvalues suggests also that

λi (αĈN) − λi (ŜN)⇒ 0

→ This behavior seems to be linked to a concentration result on

1

N
x∗i Ĉ−1

N xi , i = 1, . . . , n

⇒ This is what we are going to prove.

Then, what happens to ĈN when no concentration result occurs?

⇒ So far, we have no general answer to this question!



4. Random Matrix Theory and Robust Estimation/4.1. Initial Results and Open Problems 132/148

Some first answers
→ Recall that
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Some first answers (2)

→ Main difficulties for handling ĈN :

I ĈN does not always exist/is not always unique.
I sometimes, uniqueness results inconsistent with random matrix regime

I Contrary to classical RMT, the column vectors
√

u( 1
N x∗i Ĉ−1

N xi )xi are not independent

I difficult to find an angle to reuse previous results

I In general, it is already difficult to show that both ‖ĈN‖ and ‖Ĉ−1
N ‖ remain bounded as

N, n→∞, N/n→ c > 0.
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N xi )xi are not independent

I difficult to find an angle to reuse previous results

I In general, it is already difficult to show that both ‖ĈN‖ and ‖Ĉ−1
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Robust model

Assumptions

I Assumptions on u(s),
(i) u(s) is continuous and non-increasing on [0,∞)

(ii) φ(s) = su(s) is non-decreasing, bounded by φ∞ > 1. Moreover, φ(s) increases where φ(s) < φ∞.

I Assumptions on x1, . . . , xn,
I xi = AN yi ∈ CN , yi ∈ CM has independent entries with

I E [yi ,j ] = 0
I E [y2

i ,j ] = 0, E [|yi ,j |
2] = 1

I supi ,j E [|yi ,j |
8+η] <∞.

I With cN = N/n, c̄N = M/N > 1,

0 < lim inf
n

cN 6 lim sup
n

cN < 1, lim sup
n

c̄N <∞
I Denoting CN = AN A∗N ,

0 < lim inf
N
{λ1(CN)} 6 lim sup

N
{λN(CN)} <∞
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Robust SCM estimator in the RMT regime

R. Couillet, F. Pascal, J. W. Silverstein, “Robust M-Estimation for Array Processing: A Random
Matrix Approach”, (submitted to) IEEE Trans. on Information Theory, 2013.

Theorem
Assume the above and consider the fixed-point equation in Z ∈ CN×N ,

Z =
1

n

n∑
i=1

u

(
1

N
x∗i Z−1xi

)
xi x
∗
i . (1)

Then,

(I) Equation (1) has a unique solution ĈN for all large N a.s., defined as

ĈN = lim
t→∞Z (t)

where {
Z (0) = IN
Z (t+1) = 1

n

∑n
i=1 u

(
1
N x∗i (Z (t))−1xi

)
xi x
∗
i , t ∈ N.

(II) Defining ĈN = IN when (1) does not have a unique solution,∥∥∥φ−1(1)ĈN − ŜN

∥∥∥ a.s.−→ 0.
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Robust statistical inference in RMT regime

→ From Theorem 1,

I Weak convergence results on ŜN propagate to ĈN ;

I No eigenvalues and exact separation results propagate to ŜN ;

I First order results on spiked models as well, etc.

I Irrelevant of underlying distribution of x , as opposed to the finite N regime

→ (Almost) immediate consequence:

I RMT-based statistical estimators using ŜN can be replaced by identical estimators using ĈN

I e.g. Mestre’s DoA estimator

→ Theorem 1 however does not say anything about second order results.

I Current investigation: CLT on linear statistics for ĈN , for x with i.i.d. entries.

I This should provide the asymptotic performance comparison between robust-RMT estimators
and traditional RMT estimators.

I So far, it seems that limiting variance depends mostly on CN , c, u ′(φ−1(1)), and the
kurtosis of the entries of x .
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Robust G-MUSIC estimator
→ Consider the model

xt =

K∑
k=1

√
pk s(θk)zk,t +σwt = AN yt , AN ,

[
S(Θ)P

1
2 σIN

]
, with

I S(Θ) = [s(θ1), . . . , s(θK )] deterministic bounded norm steering vectors,
I P = diag(p1, . . . , pK ) diagonal of powers,
I yt = (z1,t , . . . , zK ,t , wT

t )T ∈ CN+K , signals and noise vector.

→ From the above results and Mestre’s G-MUSIC,

Theorem (Robust G-MUSIC)
Denote EW ∈ CN×(N−K) the “noise subspace” of CN , êk the eigenvector of ĈN with eigenvalue
λ̂k , λk(ĈN). Then, as N, n→∞ and K fixed,

γ(θ) − γ̂(θ)
a.s.−→ 0, γ(θ) = s(θ)∗EW E∗W s(θ), γ̂(θ) =

N∑
i=1

βi s(θ)
∗êi ê

∗
i s(θ)

and

βi =

 1 +
∑N

k=N−K+1

(
λ̂k

λ̂i−λ̂k
−

µ̂k

λ̂i−µ̂k

)
, i 6 N − K

−
∑N−K

k=1

(
λ̂k

λ̂i−λ̂k
−

µ̂k

λ̂i−µ̂k

)
, i > N − K

with µ̂1 6 . . . 6 µ̂N the eigenvalues of diag(λ̂) − 1
n

√
λ̂
√

λ̂
T

, λ̂ = (λ̂1, . . . , λ̂N)T.
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Results

→ The interest of the above robust-DoA scheme is to:

I handle noise that is “only well-approximated by Gaussian”

I handle model based on bursts of errors on individual antennas

I handle noise distributions with heavier-than-Gaussian tails in radars with distributed
antennas (e.g. MIMO radars)

→ Some strong limitations:
I cannot handle distributions with heavier-than-Gaussian tails in classical radars

I this would impose to choose x e.g. elliptically distributed
I our proof technique collapses here

I cannot handle scale-free detectors/estimators, with u(s) = 1/s
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Simulation results: The Gaussian noise reference
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Figure : MSE performance of the various MUSIC estimators for K = 1, Gaussian noise, N = 10, and n = 50,
u(s) = (1 + ν′)/(s + ν′), ν′ = 0.5.
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Simulation results: Close-to-Gaussian noise with i.i.d. Student entries
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Figure : MSE performance of the various MUSIC estimators for K = 1, Student-t noise with ν = 5, N = 10,
and n = 50, u(s) = (1 + ν′)/(s + ν′), ν′ = 0.5.
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Simulation results: Far-from-Gaussian noise with i.i.d. Student entries
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Figure : MSE performance of the various MUSIC estimators for K = 1, Student-t noise with ν = 2.5, N = 10,
and n = 50, u(s) = (1 + ν′)/(s + ν′), ν′ = 0.5.
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Simulation results: Resolution power
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Figure : Resolution performance of the various MUSIC estimators, θ1 = 10◦, θ2 = 15◦, Student-t noise with
ν = 5, N = 10, and n = 50, u(s) = (1 + ν′)/(s + ν′), ν′ = 0.5.
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Sketch of proof

I Proving existence and uniqueness of a solution ĈN is not simple.

I We only prove the convergence result here.

→ Take (d1, . . . , dn), di =
1
N x∗i Ĉ−1

N xi with ĈN the (almost surely) unique solution:

I We assume d1 6 . . . 6 dn;

I We also define D = diag(u(d1), . . . , u(dn)).

→ u(s) is non-increasing, so
XDX ∗ � u(dn)XX ∗

so that
1

u(dn)
Ŝ−1

N � Ĉ−1
N

and then
1

u(dn)

1

N
x∗n Ŝ−1

N xn > dn

from which

φ(dn) 6
1

N
x∗n Ŝ−1

N xn

→ Proceeding similarly for d1, and using φ non-decreasing, we conclude, for all i

1

N
x∗1 Ŝ−1

N x1 6 φ(d1) 6 φ(di ) 6 φ(dn) 6
1

N
x∗n Ŝ−1

N xn
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N xi with ĈN the (almost surely) unique solution:

I We assume d1 6 . . . 6 dn;

I We also define D = diag(u(d1), . . . , u(dn)).

→ u(s) is non-increasing, so
XDX ∗ � u(dn)XX ∗

so that
1

u(dn)
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Sketch of proof: Convergence
→ It is then possible to show that “the 1

N x∗i Ŝ−1
N xi concentrate” as n→∞, so that

max
i6n

|φ(di ) − 1|
a.s.−→ 0.

→ But φ∞ > 1 so that φ invertible in a neighborhood of 1, and

max
i6n

|di −φ
−1(1)|

a.s.−→ 0

so that

max
i6n

∣∣∣∣u(di ) −
1

φ−1(1)

∣∣∣∣ a.s.−→ 0

(note that φ−1(1)u(φ−1(1)) = 1)

→ We then conclude with

min
i6n

{
u(di ) −

1

φ−1(1)

}
1

n
XX ∗ � 1

n

n∑
i=1

(
u(di ) −

1

φ−1(1)

)
xi x
∗
i � max

i6n

{
u(di ) −

1

φ−1(1)

}
1

n
XX ∗

which entails, along with the a.s. boundedness of ‖ 1
n XX ∗‖,∥∥∥∥ĈN −

1

φ−1(1)
ŜN

∥∥∥∥ a.s.−→ 0
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To know more about all this
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The end

Thank you
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