Random Matrices for Big Data Signal Processing and Machine Learning (ICASSP'2017, New Orleans)

Romain COUILLET and Hafiz TIOMOKO ALI

CentraleSupélec, France

March, 2017

CentraleSupélec

Outline

Basics of Random Matrix Theory
Motivation: Large Sample Covariance Matrices
The Stieltjes Transform Method
Spiked Models
Other Common Random Matrix Models

Applications
Random Matrices and Robust Estimation
Spectral Clustering Methods and Random Matrices
Community Detection on Graphs
Kernel Spectral Clustering
Kernel Spectral Clustering: Subspace Clustering
Semi-supervised Learning
Support Vector Machines
Neural Networks: Extreme Learning Machines

Perspectives

Outline

Basics of Random Matrix Theory

Motivation: Large Sample Covariance Matrices
The Stieltjes Transform Method
Spiked Models
Other Common Random Matrix Models

Applications
Random Matrices and Robust Estimation
Spectral Clustering Methods and Random Matrices
Community Detection on Graphs
Kernel Spectral Clustering
Kernel Spectral Clustering: Subspace Clustering
Semi-supervised Learning
Support Vector Machines
Neural Networks: Extreme Learning Machines

Perspectives

Outline

\author{
Basics of Random Matrix Theory
 Motivation: Large Sample Covariance Matrices
 The Stieltjes Transform Method
 Spiked Models
 Other Common Random Matrix Models
 ```
Applications
 Random Matrices and Robust Estimation
 Spectral Clustering Methods and Random Matrices
 Community Detection on Graphs
 Kernel Spectral Clustering
 Kernel Spectral Clustering: Subspace Clustering
 Semi-supervised Learning
 Support Vector Machines
 Neural Networks: Extreme Learning Machines

``` \\ Perspectives
}

\section*{Context}

Baseline scenario: \(x_{1}, \ldots, x_{n} \in \mathbb{C}^{N}\left(\right.\) or \(\left.\mathbb{R}^{N}\right)\) i.i.d. with \(E\left[x_{1}\right]=0, E\left[x_{1} x_{1}^{*}\right]=C_{N}\) :

\section*{Context}

Baseline scenario: \(x_{1}, \ldots, x_{n} \in \mathbb{C}^{N}\left(\right.\) or \(\left.\mathbb{R}^{N}\right)\) i.i.d. with \(E\left[x_{1}\right]=0, E\left[x_{1} x_{1}^{*}\right]=C_{N}\) :
- If \(x_{1} \sim \mathcal{N}\left(0, C_{N}\right)\), ML estimator for \(C_{N}\) is the sample covariance matrix (SCM)
\[
\hat{C}_{N}=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{*}
\]

\section*{Context}

Baseline scenario: \(x_{1}, \ldots, x_{n} \in \mathbb{C}^{N}\left(\right.\) or \(\left.\mathbb{R}^{N}\right)\) i.i.d. with \(E\left[x_{1}\right]=0, E\left[x_{1} x_{1}^{*}\right]=C_{N}\) :
- If \(x_{1} \sim \mathcal{N}\left(0, C_{N}\right)\), ML estimator for \(C_{N}\) is the sample covariance matrix (SCM)
\[
\hat{C}_{N}=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{*}
\]
- If \(n \rightarrow \infty\), then, strong law of large numbers
\[
\hat{C}_{N} \xrightarrow{\text { a.s. }} C_{N} .
\]
or equivalently, in spectral norm
\[
\left\|\hat{C}_{N}-C_{N}\right\| \xrightarrow{\text { a.s. }} 0 .
\]

\section*{Context}

Baseline scenario: \(x_{1}, \ldots, x_{n} \in \mathbb{C}^{N}\left(\right.\) or \(\left.\mathbb{R}^{N}\right)\) i.i.d. with \(E\left[x_{1}\right]=0, E\left[x_{1} x_{1}^{*}\right]=C_{N}\) :
- If \(x_{1} \sim \mathcal{N}\left(0, C_{N}\right)\), ML estimator for \(C_{N}\) is the sample covariance matrix (SCM)
\[
\hat{C}_{N}=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{*}
\]
- If \(n \rightarrow \infty\), then, strong law of large numbers
\[
\hat{C}_{N} \xrightarrow{\text { a.s. }} C_{N} .
\]
or equivalently, in spectral norm
\[
\left\|\hat{C}_{N}-C_{N}\right\| \xrightarrow{\text { a.s. }} 0 .
\]

\section*{Random Matrix Regime}
- No longer valid if \(N, n \rightarrow \infty\) with \(N / n \rightarrow c \in(0, \infty)\),
\[
\left\|\hat{C}_{N}-C_{N}\right\| \nrightarrow 0
\]

\section*{Context}

Baseline scenario: \(x_{1}, \ldots, x_{n} \in \mathbb{C}^{N}\left(\right.\) or \(\left.\mathbb{R}^{N}\right)\) i.i.d. with \(E\left[x_{1}\right]=0, E\left[x_{1} x_{1}^{*}\right]=C_{N}\) :
- If \(x_{1} \sim \mathcal{N}\left(0, C_{N}\right)\), ML estimator for \(C_{N}\) is the sample covariance matrix (SCM)
\[
\hat{C}_{N}=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{*}
\]
- If \(n \rightarrow \infty\), then, strong law of large numbers
\[
\hat{C}_{N} \xrightarrow{\text { a.s. }} C_{N} .
\]
or equivalently, in spectral norm
\[
\left\|\hat{C}_{N}-C_{N}\right\| \xrightarrow{\text { a.s. }} 0 .
\]

\section*{Random Matrix Regime}
- No longer valid if \(N, n \rightarrow \infty\) with \(N / n \rightarrow c \in(0, \infty)\),
\[
\left\|\hat{C}_{N}-C_{N}\right\| \nrightarrow 0
\]
- For practical \(N, n\) with \(N \simeq n\), leads to dramatically wrong conclusions

\section*{Context}

Baseline scenario: \(x_{1}, \ldots, x_{n} \in \mathbb{C}^{N}\left(\right.\) or \(\left.\mathbb{R}^{N}\right)\) i.i.d. with \(E\left[x_{1}\right]=0, E\left[x_{1} x_{1}^{*}\right]=C_{N}\) :
- If \(x_{1} \sim \mathcal{N}\left(0, C_{N}\right)\), ML estimator for \(C_{N}\) is the sample covariance matrix (SCM)
\[
\hat{C}_{N}=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{*}
\]
- If \(n \rightarrow \infty\), then, strong law of large numbers
\[
\hat{C}_{N} \xrightarrow{\text { a.s. }} C_{N} .
\]
or equivalently, in spectral norm
\[
\left\|\hat{C}_{N}-C_{N}\right\| \xrightarrow{\text { a.s. }} 0 .
\]

\section*{Random Matrix Regime}
- No longer valid if \(N, n \rightarrow \infty\) with \(N / n \rightarrow c \in(0, \infty)\),
\[
\left\|\hat{C}_{N}-C_{N}\right\| \nrightarrow 0
\]
- For practical \(N, n\) with \(N \simeq n\), leads to dramatically wrong conclusions
- Even for \(N=n / 100\).

\section*{The Large Dimensional Fallacies}

Setting: \(x_{i} \in \mathbb{C}^{N}\) i.i.d., \(x_{1} \sim \mathcal{C N}\left(0, I_{N}\right)\)

\section*{The Large Dimensional Fallacies}

Setting: \(x_{i} \in \mathbb{C}^{N}\) i.i.d., \(x_{1} \sim \mathcal{C N}\left(0, I_{N}\right)\)
- assume \(N=N(n)\) such that \(N / n \rightarrow c>1\)

\section*{The Large Dimensional Fallacies}

Setting: \(x_{i} \in \mathbb{C}^{N}\) i.i.d., \(x_{1} \sim \mathcal{C N}\left(0, I_{N}\right)\)
- assume \(N=N(n)\) such that \(N / n \rightarrow c>1\)
- then, joint point-wise convergence
\[
\max _{1 \leq i, j \leq N}\left|\left[\hat{C}_{N}-I_{N}\right]_{i j}\right|=\max _{1 \leq i, j \leq N}\left|\frac{1}{n} X_{j, \cdot} X_{i, \cdot}^{*}-\delta_{i j}\right| \xrightarrow{\text { a.s. }} 0 .
\]

\section*{The Large Dimensional Fallacies}

Setting: \(x_{i} \in \mathbb{C}^{N}\) i.i.d., \(x_{1} \sim \mathcal{C N}\left(0, I_{N}\right)\)
- assume \(N=N(n)\) such that \(N / n \rightarrow c>1\)
- then, joint point-wise convergence
\[
\max _{1 \leq i, j \leq N}\left|\left[\hat{C}_{N}-I_{N}\right]_{i j}\right|=\max _{1 \leq i, j \leq N}\left|\frac{1}{n} X_{j, \cdot} X_{i, \cdot}^{*}-\delta_{i j}\right| \xrightarrow{\text { a.s. }} 0 .
\]
- however, eigenvalue mismatch
\[
\begin{gathered}
0=\lambda_{1}\left(\hat{C}_{N}\right)=\ldots=\lambda_{N-n}\left(\hat{C}_{N}\right) \leq \lambda_{N-n+1}\left(\hat{C}_{N}\right) \leq \ldots \leq \lambda_{N}\left(\hat{C}_{N}\right) \\
1=\lambda_{1}\left(I_{N}\right)=\ldots=\lambda_{N-n}\left(I_{N}\right)=\lambda_{N-n+1}\left(\hat{C}_{N}\right)=\ldots=\lambda_{N}\left(I_{N}\right)
\end{gathered}
\]

\section*{The Large Dimensional Fallacies}

Setting: \(x_{i} \in \mathbb{C}^{N}\) i.i.d., \(x_{1} \sim \mathcal{C N}\left(0, I_{N}\right)\)
- assume \(N=N(n)\) such that \(N / n \rightarrow c>1\)
- then, joint point-wise convergence
\[
\max _{1 \leq i, j \leq N}\left|\left[\hat{C}_{N}-I_{N}\right]_{i j}\right|=\max _{1 \leq i, j \leq N}\left|\frac{1}{n} X_{j, \cdot} X_{i, \cdot}^{*}-\delta_{i j}\right| \xrightarrow{\text { a.s. }} 0 .
\]
- however, eigenvalue mismatch
\[
\begin{gathered}
0=\lambda_{1}\left(\hat{C}_{N}\right)=\ldots=\lambda_{N-n}\left(\hat{C}_{N}\right) \leq \lambda_{N-n+1}\left(\hat{C}_{N}\right) \leq \ldots \leq \lambda_{N}\left(\hat{C}_{N}\right) \\
1=\lambda_{1}\left(I_{N}\right)=\ldots=\lambda_{N-n}\left(I_{N}\right)=\lambda_{N-n+1}\left(\hat{C}_{N}\right)=\ldots=\lambda_{N}\left(I_{N}\right)
\end{gathered}
\]
\(\Rightarrow\) no convergence in spectral norm.

\section*{The Marčenko-Pastur law}


Figure: Histogram of the eigenvalues of \(\hat{C}_{N}\) for \(N=500, n=2000, C_{N}=I_{N}\).

\section*{The Marčenko-Pastur law}

\section*{Definition (Empirical Spectral Density)}

Empirical spectral density (e.s.d.) \(\mu_{N}\) of Hermitian matrix \(A_{N} \in \mathbb{C}^{N \times N}\) is
\[
\mu_{N}=\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{\delta}_{\lambda_{i}\left(A_{N}\right)}
\]

\section*{The Marčenko-Pastur law}

Definition (Empirical Spectral Density)
Empirical spectral density (e.s.d.) \(\mu_{N}\) of Hermitian matrix \(A_{N} \in \mathbb{C}^{N \times N}\) is
\[
\mu_{N}=\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{\delta}_{\lambda_{i}\left(A_{N}\right)} .
\]

Theorem (Marčenko-Pastur Law [Marčenko,Pastur'67])
\(X_{N} \in \mathbb{C}^{N \times n}\) with i.i.d. zero mean, unit variance entries.
As \(N, n \rightarrow \infty\) with \(N / n \rightarrow c \in(0, \infty)\), e.s.d. \(\mu_{N}\) of \(\frac{1}{n} X_{N} X_{N}^{*}\) satisfies
\[
\mu_{N} \xrightarrow{\text { a.s. }} \mu_{c}
\]
weakly, where
- \(\mu_{c}(\{0\})=\max \left\{0,1-c^{-1}\right\}\)

\section*{The Marčenko-Pastur law}

\section*{Definition (Empirical Spectral Density)}

Empirical spectral density (e.s.d.) \(\mu_{N}\) of Hermitian matrix \(A_{N} \in \mathbb{C}^{N \times N}\) is
\[
\mu_{N}=\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{\delta}_{\lambda_{i}\left(A_{N}\right)} .
\]

Theorem (Marčenko-Pastur Law [Marčenko,Pastur'67])
\(X_{N} \in \mathbb{C}^{N \times n}\) with i.i.d. zero mean, unit variance entries.
As \(N, n \rightarrow \infty\) with \(N / n \rightarrow c \in(0, \infty)\), e.s.d. \(\mu_{N}\) of \(\frac{1}{n} X_{N} X_{N}^{*}\) satisfies
\[
\mu_{N} \xrightarrow{\text { a.s. }} \mu_{c}
\]
weakly, where
- \(\mu_{c}(\{0\})=\max \left\{0,1-c^{-1}\right\}\)
- on \((0, \infty), \mu_{c}\) has continuous density \(f_{c}\) supported on \(\left[(1-\sqrt{c})^{2},(1+\sqrt{c})^{2}\right]\)
\[
f_{c}(x)=\frac{1}{2 \pi c x} \sqrt{\left(x-(1-\sqrt{c})^{2}\right)\left((1+\sqrt{c})^{2}-x\right)} .
\]

\section*{The Marčenko-Pastur law}


Figure: Marčenko-Pastur law for different limit ratios \(c=\lim _{N \rightarrow \infty} N / n\).

\section*{The Marčenko-Pastur law}


Figure: Marčenko-Pastur law for different limit ratios \(c=\lim _{N \rightarrow \infty} N / n\).

\section*{The Marčenko-Pastur law}


Figure: Marčenko-Pastur law for different limit ratios \(c=\lim _{N \rightarrow \infty} N / n\).

\section*{Outline}
```

Basics of Random Matrix Theory
Motivation: Large Sample Covariance Matrices
The Stieltjes Transform Method
Spiked Models
Other Common Random Matrix Models
Applications
Random Matrices and Robust Estimation
Spectral Clustering Methods and Random Matrices
Community Detection on Graphs
Kernel Spectral Clustering
Kernel Spectral Clustering: Subspace Clustering
Semi-supervised Learning
Support Vector Machines
Neural Networks: Extreme Learning Machines
Perspectives

```

\section*{The Stieltjes transform}

\section*{Definition (Stieltjes Transform)}

For \(\mu\) real probability measure of support \(\operatorname{supp}(\mu)\), Stieltjes transform \(m_{\mu}\) defined, for \(z \in \mathbb{C} \backslash \operatorname{supp}(\mu)\), as
\[
m_{\mu}(z)=\int \frac{1}{t-z} \mu(d t)
\]

\section*{The Stieltjes transform}

\section*{Definition (Stieltjes Transform)}

For \(\mu\) real probability measure of support \(\operatorname{supp}(\mu)\), Stieltjes transform \(m_{\mu}\) defined, for \(z \in \mathbb{C} \backslash \operatorname{supp}(\mu)\), as
\[
m_{\mu}(z)=\int \frac{1}{t-z} \mu(d t)
\]

Property (Inverse Stieltjes Transform)
For \(a<b\) continuity points of \(\mu\),
\[
\mu([a, b])=\lim _{\varepsilon \downarrow 0} \frac{1}{\pi} \int_{a}^{b} \Im\left[m_{\mu}(x+\imath \varepsilon)\right] d x
\]

\section*{The Stieltjes transform}

\section*{Definition (Stieltjes Transform)}

For \(\mu\) real probability measure of support \(\operatorname{supp}(\mu)\), Stieltjes transform \(m_{\mu}\) defined, for \(z \in \mathbb{C} \backslash \operatorname{supp}(\mu)\), as
\[
m_{\mu}(z)=\int \frac{1}{t-z} \mu(d t)
\]

Property (Inverse Stieltjes Transform)
For \(a<b\) continuity points of \(\mu\),
\[
\mu([a, b])=\lim _{\varepsilon \downarrow 0} \frac{1}{\pi} \int_{a}^{b} \Im\left[m_{\mu}(x+\imath \varepsilon)\right] d x
\]

Besides, if \(\mu\) has a density \(f\) at \(x\),
\[
f(x)=\lim _{\varepsilon \downarrow 0} \frac{1}{\pi} \Im\left[m_{\mu}(x+\imath \varepsilon)\right] .
\]

\section*{The Stieltjes transform}

Property (Relation to e.s.d.)
If \(\mu\) e.s.d. of Hermitian \(A \in \mathbb{C}^{N \times N}\), (i.e., \(\mu=\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{\delta}_{\lambda_{i}(A)}\) )
\[
m_{\mu}(z)=\frac{1}{N} \operatorname{tr}\left(A-z I_{N}\right)^{-1}
\]

\section*{The Stieltjes transform}

Property (Relation to e.s.d.)
If \(\mu\) e.s.d. of Hermitian \(A \in \mathbb{C}^{N \times N}\), (i.e., \(\mu=\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{\delta}_{\lambda_{i}(A)}\) )
\[
m_{\mu}(z)=\frac{1}{N} \operatorname{tr}\left(A-z I_{N}\right)^{-1}
\]

Proof:
\[
\begin{aligned}
m_{\mu}(z) & =\int \frac{\mu(d t)}{t-z}=\frac{1}{N} \sum_{i=1}^{N} \frac{1}{\lambda_{i}(A)-z}=\frac{1}{N} \operatorname{tr}\left(\operatorname{diag}\left\{\lambda_{i}(A)\right\}-z I_{N}\right)^{-1} \\
& =\frac{1}{N} \operatorname{tr}\left(A-z I_{N}\right)^{-1}
\end{aligned}
\]

\section*{The Stieltjes transform}

Property (Stieltjes transform of Gram matrices)
For \(X \in \mathbb{C}^{N \times n}\), and
- \(\mu\) e.s.d. of \(X X^{*}\)
- \(\tilde{\mu}\) e.s.d. of \(X^{*} X\)

Then
\[
m_{\mu}(z)=\frac{n}{N} m_{\tilde{\mu}}(z)-\frac{N-n}{N} \frac{1}{z}
\]

\section*{The Stieltjes transform}

Property (Stieltjes transform of Gram matrices)
For \(X \in \mathbb{C}^{N \times n}\), and
- \(\mu\) e.s.d. of \(X X^{*}\)
- \(\tilde{\mu}\) e.s.d. of \(X^{*} X\)

Then
\[
m_{\mu}(z)=\frac{n}{N} m_{\tilde{\mu}}(z)-\frac{N-n}{N} \frac{1}{z} .
\]

Proof:
\[
m_{\mu}(z)=\frac{1}{N} \sum_{i=1}^{N} \frac{1}{\lambda_{i}\left(X X^{*}\right)-z}=\frac{1}{N} \sum_{i=1}^{n} \frac{1}{\lambda_{i}\left(X^{*} X\right)-z}+\frac{1}{N}(N-n) \frac{1}{0-z} .
\]

Three fundamental lemmas in all proofs.

Lemma (Resolvent Identity)
For \(A, B \in \mathbb{C}^{N \times N}\) invertible,
\[
A^{-1}-B^{-1}=A^{-1}(B-A) B^{-1}
\]

\section*{The Stieltjes transform}

Three fundamental lemmas in all proofs.

Lemma (Resolvent Identity)
For \(A, B \in \mathbb{C}^{N \times N}\) invertible,
\[
A^{-1}-B^{-1}=A^{-1}(B-A) B^{-1}
\]

Corollary
For \(t \in \mathbb{C}, x \in \mathbb{C}^{N}, A \in \mathbb{C}^{N \times N}\), with \(A\) and \(A+t x x^{*}\) invertible,
\[
\left(A+t x x^{*}\right)^{-1} x=\frac{A^{-1} x}{1+t x^{*} A^{-1} x}
\]

\section*{The Stieltjes transform}

Three fundamental lemmas in all proofs.

Lemma (Rank-one perturbation)
For \(A, B \in \mathbb{C}^{N \times N}\) Hermitian nonnegative definite, e.s.d. \(\mu\) of \(A, t>0, x \in \mathbb{C}^{N}\), \(z \in \mathbb{C} \backslash \operatorname{supp}(\mu)\),
\[
\left|\frac{1}{N} \operatorname{tr} B\left(A+t x x^{*}-z I_{N}\right)^{-1}-\frac{1}{N} \operatorname{tr} B\left(A-z I_{N}\right)^{-1}\right| \leq \frac{1}{N} \frac{\|B\|}{\operatorname{dist}(z, \operatorname{supp}(\mu))}
\]

\section*{The Stieltjes transform}

Three fundamental lemmas in all proofs.
Lemma (Rank-one perturbation)
For \(A, B \in \mathbb{C}^{N \times N}\) Hermitian nonnegative definite, e.s.d. \(\mu\) of \(A, t>0, x \in \mathbb{C}^{N}\), \(z \in \mathbb{C} \backslash \operatorname{supp}(\mu)\),
\[
\left|\frac{1}{N} \operatorname{tr} B\left(A+t x x^{*}-z I_{N}\right)^{-1}-\frac{1}{N} \operatorname{tr} B\left(A-z I_{N}\right)^{-1}\right| \leq \frac{1}{N} \frac{\|B\|}{\operatorname{dist}(z, \operatorname{supp}(\mu))}
\]

In particular, as \(N \rightarrow \infty\), if \(\lim \sup _{N}\|B\|<\infty\),
\[
\frac{1}{N} \operatorname{tr} B\left(A+t x x^{*}-z I_{N}\right)^{-1}-\frac{1}{N} \operatorname{tr} B\left(A-z I_{N}\right)^{-1} \rightarrow 0
\]

\section*{The Stieltjes transform}

Three fundamental lemmas in all proofs.

\section*{Lemma (Trace Lemma)}

For
- \(x \in \mathbb{C}^{N}\) with i.i.d. entries with zero mean, unit variance, finite \(2 p\) order moment,
- \(A \in \mathbb{C}^{N \times N}\) deterministic (or independent of \(x\) ),
then
\[
E\left[\left|\frac{1}{N} x^{*} A x-\frac{1}{N} \operatorname{tr} A\right|^{p}\right] \leq K \frac{\|A\|^{p}}{N^{p / 2}}
\]

\section*{The Stieltjes transform}

\section*{Three fundamental lemmas in all proofs.}

\section*{Lemma (Trace Lemma)}

For
- \(x \in \mathbb{C}^{N}\) with i.i.d. entries with zero mean, unit variance, finite \(2 p\) order moment,
- \(A \in \mathbb{C}^{N \times N}\) deterministic (or independent of \(x\) ),
then
\[
E\left[\left|\frac{1}{N} x^{*} A x-\frac{1}{N} \operatorname{tr} A\right|^{p}\right] \leq K \frac{\|A\|^{p}}{N^{p / 2}}
\]

In particular, if \(\limsup _{N}\|A\|<\infty\), and \(x\) has entries with finite eighth-order moment,
\[
\frac{1}{N} x^{*} A x-\frac{1}{N} \operatorname{tr} A \xrightarrow{\text { a.s. }} 0
\]
(by Markov inequality and Borel Cantelli lemma).

\section*{Proof of the Marčenko-Pastur law}

\section*{Theorem (Marčenko-Pastur Law [Marčenko,Pastur'67])}
\(X_{N} \in \mathbb{C}^{N \times n}\) with i.i.d. zero mean, unit variance entries.
As \(N, n \rightarrow \infty\) with \(N / n \rightarrow c \in(0, \infty)\), e.s.d. \(\mu_{N}\) of \(\frac{1}{n} X_{N} X_{N}^{*}\) satisfies
\[
\mu_{N} \xrightarrow{\text { a.s. }} \mu_{c}
\]
weakly, where
- \(\mu_{c}(\{0\})=\max \left\{0,1-c^{-1}\right\}\)

\section*{Proof of the Marčenko-Pastur law}

\section*{Theorem (Marčenko-Pastur Law [Marčenko,Pastur'67])}
\(X_{N} \in \mathbb{C}^{N \times n}\) with i.i.d. zero mean, unit variance entries.
As \(N, n \rightarrow \infty\) with \(N / n \rightarrow c \in(0, \infty)\), e.s.d. \(\mu_{N}\) of \(\frac{1}{n} X_{N} X_{N}^{*}\) satisfies
\[
\mu_{N} \xrightarrow{\text { a.s. }} \mu_{c}
\]
weakly, where
- \(\mu_{c}(\{0\})=\max \left\{0,1-c^{-1}\right\}\)
- on \((0, \infty), \mu_{c}\) has continuous density \(f_{c}\) supported on \(\left[(1-\sqrt{c})^{2},(1+\sqrt{c})^{2}\right]\)
\[
f_{c}(x)=\frac{1}{2 \pi c x} \sqrt{\left(x-(1-\sqrt{c})^{2}\right)\left((1+\sqrt{c})^{2}-x\right)}
\]

\section*{Proof of the Marčenko-Pastur law}

Stieltjes transform approach.

\section*{Proof of the Marčenko-Pastur law}

Stieltjes transform approach.

Proof
- With \(\mu_{N}\) e.s.d. of \(\frac{1}{n} X_{N} X_{N}^{*}\),
\[
m_{\mu_{N}}(z)=\frac{1}{N} \operatorname{tr}\left(\frac{1}{n} X_{N} X_{N}^{*}-z I_{N}\right)^{-1}=\frac{1}{N} \sum_{i=1}^{N}\left[\left(\frac{1}{n} X_{N} X_{N}^{*}-z I_{N}\right)^{-1}\right]_{i i}
\]

\section*{Proof of the Marčenko-Pastur law}

Stieltjes transform approach.

Proof
- With \(\mu_{N}\) e.s.d. of \(\frac{1}{n} X_{N} X_{N}^{*}\),
\[
m_{\mu_{N}}(z)=\frac{1}{N} \operatorname{tr}\left(\frac{1}{n} X_{N} X_{N}^{*}-z I_{N}\right)^{-1}=\frac{1}{N} \sum_{i=1}^{N}\left[\left(\frac{1}{n} X_{N} X_{N}^{*}-z I_{N}\right)^{-1}\right]_{i i}
\]
- Write
\[
X_{N}=\left[\begin{array}{c}
y^{*} \\
Y_{N-1}
\end{array}\right] \in \mathbb{C}^{N \times n}
\]

\section*{Proof of the Marčenko-Pastur law}

Stieltjes transform approach.

\section*{Proof}
- With \(\mu_{N}\) e.s.d. of \(\frac{1}{n} X_{N} X_{N}^{*}\),
\[
m_{\mu_{N}}(z)=\frac{1}{N} \operatorname{tr}\left(\frac{1}{n} X_{N} X_{N}^{*}-z I_{N}\right)^{-1}=\frac{1}{N} \sum_{i=1}^{N}\left[\left(\frac{1}{n} X_{N} X_{N}^{*}-z I_{N}\right)^{-1}\right]_{i i}
\]
- Write
\[
X_{N}=\left[\begin{array}{c}
y^{*} \\
Y_{N-1}
\end{array}\right] \in \mathbb{C}^{N \times n}
\]
so that, for \(\Im[z]>0\),
\[
\left(\frac{1}{n} X_{N} X_{N}^{*}-z I_{N}\right)^{-1}=\left(\begin{array}{cc}
\frac{1}{n} y^{*} y-z & \frac{1}{n} y^{*} Y_{N-1} \\
\frac{1}{n} Y_{N-1} y & \frac{1}{n} Y_{N-1} Y_{N-1}^{*}-z I_{N-1}
\end{array}\right)^{-1}
\]

\section*{Proof of the Marčenko-Pastur law}

\section*{Proof (continued)}
- From block matrix inverse formula
\[
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\left(A-B D^{-1} C\right)^{-1} & -A^{-1} B\left(D-C A^{-1} B\right)^{-1} \\
-\left(A-B D^{-1} C\right)^{-1} C A^{-1} & \left(D-C A^{-1} B\right)^{-1}
\end{array}\right)
\]
we have
\[
\left[\left(\frac{1}{n} X_{N} X_{N}^{*}-z I_{N}\right)^{-1}\right]_{11}=\frac{1}{-z-z \frac{1}{n} y^{*}\left(\frac{1}{n} Y_{N-1}^{*} Y_{N-1}-z I_{n}\right)^{-1} y}
\]

\section*{Proof of the Marčenko-Pastur law}

\section*{Proof (continued)}
- From block matrix inverse formula
\[
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\left(A-B D^{-1} C\right)^{-1} & -A^{-1} B\left(D-C A^{-1} B\right)^{-1} \\
-\left(A-B D^{-1} C\right)^{-1} C A^{-1} & \left(D-C A^{-1} B\right)^{-1}
\end{array}\right)
\]
we have
\[
\left[\left(\frac{1}{n} X_{N} X_{N}^{*}-z I_{N}\right)^{-1}\right]_{11}=\frac{1}{-z-z \frac{1}{n} y^{*}\left(\frac{1}{n} Y_{N-1}^{*} Y_{N-1}-z I_{n}\right)^{-1} y}
\]
- By Trace Lemma, as \(N, n \rightarrow \infty\)
\[
\left[\left(\frac{1}{n} X_{N} X_{N}^{*}-z I_{N}\right)^{-1}\right]_{11}-\frac{1}{-z-z \frac{1}{n} \operatorname{tr}\left(\frac{1}{n} Y_{N-1}^{*} Y_{N-1}-z I_{n}\right)^{-1}} \xrightarrow{\text { a.s. }} 0
\]

\section*{Proof of the Marčenko-Pastur law}

\section*{Proof (continued)}
- By Rank-1 Perturbation Lemma \(\left(X_{N}^{*} X_{N}=Y_{N-1}^{*} Y_{N-1}+y y^{*}\right)\), as \(N, n \rightarrow \infty\)
\[
\left[\left(\frac{1}{n} X_{N} X_{N}^{*}-z I_{N}\right)^{-1}\right]_{11}-\frac{1}{-z-z \frac{1}{n} \operatorname{tr}\left(\frac{1}{n} X_{N}^{*} X_{N}-z I_{n}\right)^{-1}} \xrightarrow{\text { a.s. }} 0
\]

\section*{Proof of the Marčenko-Pastur law}

\section*{Proof (continued)}
- By Rank-1 Perturbation Lemma \(\left(X_{N}^{*} X_{N}=Y_{N-1}^{*} Y_{N-1}+y y^{*}\right)\), as \(N, n \rightarrow \infty\)
\[
\left[\left(\frac{1}{n} X_{N} X_{N}^{*}-z I_{N}\right)^{-1}\right]_{11}-\frac{1}{-z-z \frac{1}{n} \operatorname{tr}\left(\frac{1}{n} X_{N}^{*} X_{N}-z I_{n}\right)^{-1}} \xrightarrow{\text { a.s. }} 0
\]
- Since \(\frac{1}{n} \operatorname{tr}\left(\frac{1}{n} X_{N}^{*} X_{N}-z I_{n}\right)^{-1}=\frac{1}{n} \operatorname{tr}\left(\frac{1}{n} X_{N} X_{N}^{*}-z I_{N}\right)^{-1}-\frac{n-N}{n} \frac{1}{z}\),
\[
\left[\left(\frac{1}{n} X_{N} X_{N}^{*}-z I_{N}\right)^{-1}\right]_{11}-\frac{1}{1-\frac{N}{n}-z-z \frac{1}{n} \operatorname{tr}\left(\frac{1}{n} X_{N} X_{N}^{*}-z I_{N}\right)^{-1}} \xrightarrow{\text { a.s. }} 0 .
\]

\section*{Proof of the Marčenko-Pastur law}

\section*{Proof (continued)}
- By Rank-1 Perturbation Lemma \(\left(X_{N}^{*} X_{N}=Y_{N-1}^{*} Y_{N-1}+y y^{*}\right)\), as \(N, n \rightarrow \infty\)
\[
\left[\left(\frac{1}{n} X_{N} X_{N}^{*}-z I_{N}\right)^{-1}\right]_{11}-\frac{1}{-z-z \frac{1}{n} \operatorname{tr}\left(\frac{1}{n} X_{N}^{*} X_{N}-z I_{n}\right)^{-1}} \xrightarrow{\text { a.s. }} 0
\]
- Since \(\frac{1}{n} \operatorname{tr}\left(\frac{1}{n} X_{N}^{*} X_{N}-z I_{n}\right)^{-1}=\frac{1}{n} \operatorname{tr}\left(\frac{1}{n} X_{N} X_{N}^{*}-z I_{N}\right)^{-1}-\frac{n-N}{n} \frac{1}{z}\),
\[
\left[\left(\frac{1}{n} X_{N} X_{N}^{*}-z I_{N}\right)^{-1}\right]_{11}-\frac{1}{1-\frac{N}{n}-z-z \frac{1}{n} \operatorname{tr}\left(\frac{1}{n} X_{N} X_{N}^{*}-z I_{N}\right)^{-1}} \xrightarrow{\text { a.s. }} 0 .
\]
- Repeating for entries \((2,2), \ldots,(N, N)\), and averaging, we get (for \(\Im[z]>0\) )
\[
m_{\mu_{N}}(z)-\frac{1}{1-\frac{N}{n}-z-z \frac{N}{n} m_{\mu_{N}}(z)} \stackrel{\text { a.s. }}{\longrightarrow} 0 .
\]

\section*{Proof of the Marčenko-Pastur law}

Proof (continued)
- Then \(m_{\mu_{N}}(z) \xrightarrow{\text { a.s. }} m(z)\) solution to
\[
m(z)=\frac{1}{1-c-z-c z m(z)}
\]

\section*{Proof of the Marčenko-Pastur law}

Proof (continued)
- Then \(m_{\mu_{N}}(z) \xrightarrow{\text { a.s. }} m(z)\) solution to
\[
m(z)=\frac{1}{1-c-z-c z m(z)}
\]
i.e., (with branch of \(\sqrt{f(z)}\) such that \(m(z) \rightarrow 0\) as \(|z| \rightarrow \infty\) )
\[
m(z)=\frac{1-c}{2 c z}-\frac{1}{2 c}+\frac{\sqrt{\left(z-(1+\sqrt{c})^{2}\right)\left(z-(1-\sqrt{c})^{2}\right)}}{2 c z} .
\]

\section*{Proof of the Marčenko-Pastur law}

Proof (continued)
- Then \(m_{\mu_{N}}(z) \xrightarrow{\text { a.s. }} m(z)\) solution to
\[
m(z)=\frac{1}{1-c-z-\operatorname{czm(z)}}
\]
i.e., (with branch of \(\sqrt{f(z)}\) such that \(m(z) \rightarrow 0\) as \(|z| \rightarrow \infty\) )
\[
m(z)=\frac{1-c}{2 c z}-\frac{1}{2 c}+\frac{\sqrt{\left(z-(1+\sqrt{c})^{2}\right)\left(z-(1-\sqrt{c})^{2}\right)}}{2 c z} .
\]
- Finally, by inverse Stieltjes Transform, for \(x>0\),
\[
\lim _{\varepsilon \downarrow 0} \frac{1}{\pi} \Im[m(x+\imath \varepsilon)]=\frac{\sqrt{\left((1+\sqrt{c})^{2}-x\right)\left(x-(1-\sqrt{c})^{2}\right)}}{2 \pi c x} 1_{\left\{x \in\left[(1-\sqrt{c})^{2},(1+\sqrt{c})^{2}\right]\right\}} .
\]

And for \(x=0\),
\[
\lim _{\varepsilon \downarrow 0} \imath \varepsilon \Im[m(\imath \varepsilon)]=\left(1-c^{-1}\right) 1_{\{c>1\}} .
\]

\section*{Sample Covariance Matrices}

Theorem (Sample Covariance Matrix Model [Silverstein, Bai' \({ }^{\text {95 }}\) ])
Let \(Y_{N}=C_{N}^{\frac{1}{2}} X_{N} \in \mathbb{C}^{N \times n}\), with
- \(C_{N} \in \mathbb{C}^{N \times N}\) nonnegative definite with e.s.d. \(\nu_{N} \rightarrow \nu\) weakly,
- \(X_{N} \in \mathbb{C}^{N \times n}\) has i.i.d. entries of zero mean and unit variance.

As \(N, n \rightarrow \infty, N / n \rightarrow c \in(0, \infty), \tilde{\mu}_{N}\) e.s.d. of \(\frac{1}{n} Y_{N}^{*} Y_{N} \in \mathbb{C}^{n \times n}\) satisfies
\[
\tilde{\mu}_{N} \xrightarrow{\text { a.s. }} \tilde{\mu}
\]
weakly, with \(m_{\tilde{\mu}}(z), \Im[z]>0\), unique solution with \(\Im\left[m_{\tilde{\mu}}(z)\right]>0\) of
\[
m_{\tilde{\mu}}(z)=\left(-z+c \int \frac{t}{1+t m_{\tilde{\mu}}(z)} \nu(d t)\right)^{-1}
\]

\section*{Sample Covariance Matrices}

Theorem (Sample Covariance Matrix Model [Silverstein, Bai' \({ }^{\text {05 }}\) ]) Let \(Y_{N}=C_{N}^{\frac{1}{2}} X_{N} \in \mathbb{C}^{N \times n}\), with
- \(C_{N} \in \mathbb{C}^{N \times N}\) nonnegative definite with e.s.d. \(\nu_{N} \rightarrow \nu\) weakly,
- \(X_{N} \in \mathbb{C}^{N \times n}\) has i.i.d. entries of zero mean and unit variance.

As \(N, n \rightarrow \infty, N / n \rightarrow c \in(0, \infty), \tilde{\mu}_{N}\) e.s.d. of \(\frac{1}{n} Y_{N}^{*} Y_{N} \in \mathbb{C}^{n \times n}\) satisfies
\[
\tilde{\mu}_{N} \xrightarrow{\text { a.s. }} \tilde{\mu}
\]
weakly, with \(m_{\tilde{\mu}}(z), \Im[z]>0\), unique solution with \(\Im\left[m_{\tilde{\mu}}(z)\right]>0\) of
\[
m_{\tilde{\mu}}(z)=\left(-z+c \int \frac{t}{1+t m_{\tilde{\mu}}(z)} \nu(d t)\right)^{-1} .
\]

Moreover, \(\tilde{\mu}\) is continuous on \(\mathbb{R}^{+}\)and real analytic wherever positive.

\section*{Sample Covariance Matrices}

Theorem (Sample Covariance Matrix Model [Silverstein, Bai'95])
Let \(Y_{N}=C_{N}^{\frac{1}{2}} X_{N} \in \mathbb{C}^{N \times n}\), with
- \(C_{N} \in \mathbb{C}^{N \times N}\) nonnegative definite with e.s.d. \(\nu_{N} \rightarrow \nu\) weakly,
- \(X_{N} \in \mathbb{C}^{N \times n}\) has i.i.d. entries of zero mean and unit variance.

As \(N, n \rightarrow \infty, N / n \rightarrow c \in(0, \infty), \tilde{\mu}_{N}\) e.s.d. of \(\frac{1}{n} Y_{N}^{*} Y_{N} \in \mathbb{C}^{n \times n}\) satisfies
\[
\tilde{\mu}_{N} \xrightarrow{\text { a.s. }} \tilde{\mu}
\]
weakly, with \(m_{\tilde{\mu}}(z), \Im[z]>0\), unique solution with \(\Im\left[m_{\tilde{\mu}}(z)\right]>0\) of
\[
m_{\tilde{\mu}}(z)=\left(-z+c \int \frac{t}{1+t m_{\tilde{\mu}}(z)} \nu(d t)\right)^{-1}
\]

Moreover, \(\tilde{\mu}\) is continuous on \(\mathbb{R}^{+}\)and real analytic wherever positive.

Immediate corollary: For \(\mu_{N}\) e.s.d. of \(\frac{1}{n} Y_{N} Y_{N}^{*}=\frac{1}{n} \sum_{i=1}^{n} C_{N}^{\frac{1}{2}} x_{i} x_{i}^{*} C_{N}^{\frac{1}{2}}\),
\[
\mu_{N} \xrightarrow{\text { a.s. }} \mu
\]
weakly, with \(\tilde{\mu}=c \mu+(1-c) \boldsymbol{\delta}_{0}\).

\section*{Sample Covariance Matrices}


Figure: Histogram of the eigenvalues of \(\frac{1}{n} Y_{N} Y_{N}^{*}, n=3000, N=300\), with \(C_{N}\) diagonal with evenly weighted masses in (i) \(1,3,7\), (ii) \(1,3,4\).

\section*{Further Models and Deterministic Equivalents}

Theorem (Doubly-correlated i.i.d. matrices)
Let \(B_{N}=C_{N}^{\frac{1}{2}} X_{N} T_{N} X_{N}^{*} C_{N}^{\frac{1}{2}}\), with e.s.d. \(\mu_{N}, X_{k} \in \mathbb{C}^{N \times n}\) with i.i.d. entries of zero mean, variance \(1 / n, C_{N}\) Hermitian nonnegative definite, \(T_{N}\) diagonal nonnegative, \(\lim \sup _{N} \max \left(\left\|C_{N}\right\|,\left\|T_{N}\right\|\right)<\infty\). Denote \(c=N / n\). Then, as \(N, n \rightarrow \infty\) with bounded ratio \(c\), for \(z \in \mathbb{C} \backslash \mathbb{R}^{-}\),
\[
m_{\mu_{N}}(z)-m_{N}(z) \xrightarrow{\text { a.s. }} 0, \quad m_{N}(z)=\frac{1}{N} \operatorname{tr}\left(-z I_{N}+\bar{e}_{N}(z) C_{N}\right)^{-1}
\]
with \(\bar{e}(z)\) unique solution in \(\left\{z \in \mathbb{C}^{+}, \bar{e}_{N}(z) \in \mathbb{C}^{+}\right\}\)or \(\left\{z \in \mathbb{R}^{-}, \bar{e}_{N}(z) \in \mathbb{R}^{+}\right\}\)of
\[
\begin{aligned}
& e_{N}(z)=\frac{1}{N} \operatorname{tr} C_{N}\left(-z I_{N}+\bar{e}_{N}(z) C_{N}\right)^{-1} \\
& \bar{e}_{N}(z)=\frac{1}{n} \operatorname{tr} T_{N}\left(I_{n}+c e_{N}(z) T_{N}\right)^{-1}
\end{aligned}
\]

\section*{Other Refined Sample Covariance Models}

Side note on other models.
Similar results for multiple matrix models:

\section*{Other Refined Sample Covariance Models}

Side note on other models.
Similar results for multiple matrix models:
- Information-plus-noise: \(Y_{N}=A_{N}+X_{N}, A_{N}\) deterministic
- Variance profile: \(Y_{N}=P_{N} \odot X_{N}\) (entry-wise product)
- Per-column covariance: \(Y_{N}=\left[y_{1}, \ldots, y_{n}\right], y_{i}=C_{N, i}^{\frac{1}{2}} x_{i}\)
- etc.

\section*{Outline}
Basics of Random Matrix Theory
Motivation: Large Sample Covariance Matrices
```Spiked Models
```

Other Common Random Matrix Models
Applications
Random Matrices and Robust Estimation

```
 Spectral Clustering Methods and Random Matrices
 Community Detection on Graphs
 Kernel Spectral Clustering
 Kernel Spectral Clustering: Subspace Clustering
 Semi-supervised Learning
 Support Vector Machines
 Neural Networks: Extreme Learning Machines
Perspectives
```


## No Eigenvalue Outside the Support

Theorem (No Eigenvalue Outside the Support [Silverstein,Bai'98])
Let $Y_{N}=C_{N}^{\frac{1}{2}} X_{N} \in \mathbb{C}^{N \times n}$, with

- $C_{N} \in \mathbb{C}^{N \times N}$ nonnegative definite with e.s.d. $\nu_{N} \rightarrow \nu$ weakly,


## No Eigenvalue Outside the Support

Theorem (No Eigenvalue Outside the Support [Silverstein,Bai'98])
Let $Y_{N}=C_{N}^{\frac{1}{2}} X_{N} \in \mathbb{C}^{N \times n}$, with

- $C_{N} \in \mathbb{C}^{N \times N}$ nonnegative definite with e.s.d. $\nu_{N} \rightarrow \nu$ weakly,
- $E\left[\left|X_{N}\right|_{i j}^{4}\right]<\infty$,


## No Eigenvalue Outside the Support

Theorem (No Eigenvalue Outside the Support [Silverstein,Bai'98])
Let $Y_{N}=C_{N}^{\frac{1}{2}} X_{N} \in \mathbb{C}^{N \times n}$, with
$-C_{N} \in \mathbb{C}^{N \times N}$ nonnegative definite with e.s.d. $\nu_{N} \rightarrow \nu$ weakly,

- $E\left[\left|X_{N}\right|_{i j}^{4}\right]<\infty$,
- $X_{N} \in \mathbb{C}^{N \times n}$ has i.i.d. entries of zero mean and unit variance,


## No Eigenvalue Outside the Support

Theorem (No Eigenvalue Outside the Support [Silverstein,Bai'98])
Let $Y_{N}=C_{N}^{\frac{1}{2}} X_{N} \in \mathbb{C}^{N \times n}$, with

- $C_{N} \in \mathbb{C}^{N \times N}$ nonnegative definite with e.s.d. $\nu_{N} \rightarrow \nu$ weakly,
- $E\left[\left|X_{N}\right|_{i j}^{4}\right]<\infty$,
- $X_{N} \in \mathbb{C}^{N \times n}$ has i.i.d. entries of zero mean and unit variance,
- $\max _{i} \operatorname{dist}\left(\lambda_{i}\left(C_{N}\right), \operatorname{supp}(\nu)\right) \rightarrow 0$.


## No Eigenvalue Outside the Support

Theorem (No Eigenvalue Outside the Support [Silverstein,Bai'98])
Let $Y_{N}=C_{N}^{\frac{1}{2}} X_{N} \in \mathbb{C}^{N \times n}$, with

- $C_{N} \in \mathbb{C}^{N \times N}$ nonnegative definite with e.s.d. $\nu_{N} \rightarrow \nu$ weakly,
- $E\left[\left|X_{N}\right|_{i j}^{4}\right]<\infty$,
- $X_{N} \in \mathbb{C}^{N \times n}$ has i.i.d. entries of zero mean and unit variance,
- $\max _{i} \operatorname{dist}\left(\lambda_{i}\left(C_{N}\right), \operatorname{supp}(\nu)\right) \rightarrow 0$.

Let $\tilde{\mu}$ be the limiting e.s.d. of $\frac{1}{n} Y_{N}^{*} Y_{N}$ as before. Let $[a, b] \subset \mathbb{R}^{*} \backslash \operatorname{supp}(\tilde{\nu})$. Then,

$$
\left\{\lambda_{i}\left(\frac{1}{n} Y_{N}^{*} Y_{N}\right)\right\}_{i=1}^{n} \cap[a, b]=\emptyset
$$

for all large $n$, almost surely.

## No Eigenvalue Outside the Support

Theorem (No Eigenvalue Outside the Support [Silverstein,Bai'98])
Let $Y_{N}=C_{N}^{\frac{1}{2}} X_{N} \in \mathbb{C}^{N \times n}$, with

- $C_{N} \in \mathbb{C}^{N \times N}$ nonnegative definite with e.s.d. $\nu_{N} \rightarrow \nu$ weakly,
- $E\left[\left|X_{N}\right|_{i j}^{4}\right]<\infty$,
- $X_{N} \in \mathbb{C}^{N \times n}$ has i.i.d. entries of zero mean and unit variance,
- $\max _{i} \operatorname{dist}\left(\lambda_{i}\left(C_{N}\right), \operatorname{supp}(\nu)\right) \rightarrow 0$.

Let $\tilde{\mu}$ be the limiting e.s.d. of $\frac{1}{n} Y_{N}^{*} Y_{N}$ as before. Let $[a, b] \subset \mathbb{R}^{*} \backslash \operatorname{supp}(\tilde{\nu})$. Then,

$$
\left\{\lambda_{i}\left(\frac{1}{n} Y_{N}^{*} Y_{N}\right)\right\}_{i=1}^{n} \cap[a, b]=\emptyset
$$

for all large $n$, almost surely.

In practice: This means that eigenvalues of $\frac{1}{n} Y_{N}^{*} Y_{N}$ cannot be bound at macroscopic distance from the bulk, for $N, n$ large.

## Spiked Models

Breaking the rules. If we break

- Rule 1: Infinitely many eigenvalues may wander away from $\operatorname{supp}(\mu)$.




## Spiked Models

## If we break:

- Rule 2: $C_{N}$ may create isolated eigenvalues in $\frac{1}{n} Y_{N} Y_{N}^{*}$, called spikes.


Figure: Eigenvalues of $\frac{1}{n} Y_{N} Y_{N}^{*}, C_{N}=\operatorname{diag}(\underbrace{1, \ldots, 1}_{N-4}, 2,2,3,3), N=500, n=1500$.

## Spiked Models

Theorem (Eigenvalues [Baik,Silverstein'06])
Let $Y_{N}=C_{N}^{\frac{1}{2}} X_{N}$, with

- $X_{N}$ with i.i.d. zero mean, unit variance, $E\left[\left|X_{N}\right|_{i j}^{4}\right]<\infty$.
- $C_{N}=I_{N}+P, P=U \Omega U^{*}$, where, for $K$ fixed,

$$
\Omega=\operatorname{diag}\left(\omega_{1}, \ldots, \omega_{K}\right) \in \mathbb{R}^{K \times K}, \text { with } \omega_{1} \geq \ldots \geq \omega_{K}>0 .
$$

## Spiked Models

Theorem (Eigenvalues [Baik,Silverstein'06])
Let $Y_{N}=C_{N}^{\frac{1}{2}} X_{N}$, with

- $X_{N}$ with i.i.d. zero mean, unit variance, $E\left[\left|X_{N}\right|_{i j}^{4}\right]<\infty$.
- $C_{N}=I_{N}+P, P=U \Omega U^{*}$, where, for $K$ fixed,

$$
\Omega=\operatorname{diag}\left(\omega_{1}, \ldots, \omega_{K}\right) \in \mathbb{R}^{K \times K}, \text { with } \omega_{1} \geq \ldots \geq \omega_{K}>0 .
$$

Then, as $N, n \rightarrow \infty, N / n \rightarrow c \in(0, \infty)$, denoting $\lambda_{i}=\lambda_{i}\left(\frac{1}{n} Y_{N} Y_{N}^{*}\right)$,

- if $\omega_{m}>\sqrt{c}$,

$$
\lambda_{m} \xrightarrow{\text { a.s. }} 1+\omega_{m}+c \frac{1+\omega_{m}}{\omega_{m}}>(1+\sqrt{c})^{2}
$$

## Spiked Models

Theorem (Eigenvalues [Baik,Silverstein'06])
Let $Y_{N}=C_{N}^{\frac{1}{2}} X_{N}$, with

- $X_{N}$ with i.i.d. zero mean, unit variance, $E\left[\left|X_{N}\right|_{i j}^{4}\right]<\infty$.
- $C_{N}=I_{N}+P, P=U \Omega U^{*}$, where, for $K$ fixed,

$$
\Omega=\operatorname{diag}\left(\omega_{1}, \ldots, \omega_{K}\right) \in \mathbb{R}^{K \times K}, \text { with } \omega_{1} \geq \ldots \geq \omega_{K}>0 .
$$

Then, as $N, n \rightarrow \infty, N / n \rightarrow c \in(0, \infty)$, denoting $\lambda_{i}=\lambda_{i}\left(\frac{1}{n} Y_{N} Y_{N}^{*}\right)$,

- if $\omega_{m}>\sqrt{c}$,

$$
\lambda_{m} \xrightarrow{\text { a.s. }} 1+\omega_{m}+c \frac{1+\omega_{m}}{\omega_{m}}>(1+\sqrt{c})^{2}
$$

- if $\omega_{m} \in(0, \sqrt{c}]$,

$$
\lambda_{m} \xrightarrow{\text { a.s. }}(1+\sqrt{c})^{2}
$$

## Spiked Models

## Proof

- Two ingredients: Algebraic calculus + trace lemma


## Spiked Models

## Proof

- Two ingredients: Algebraic calculus + trace lemma
- Find eigenvalues away from eigenvalues of $\frac{1}{n} X_{N} X_{N}^{*}$ :

$$
\begin{aligned}
0 & =\operatorname{det}\left(\frac{1}{n} Y_{N} Y_{N}^{*}-\lambda I_{N}\right) \\
& =\operatorname{det}\left(C_{N}\right) \operatorname{det}\left(\frac{1}{n} X_{N} X_{N}^{*}-\lambda C_{N}^{-1}\right) \\
& =\operatorname{det}\left(\frac{1}{n} X_{N} X_{N}^{*}-\lambda I_{N}+\lambda\left(I_{N}-C_{N}^{-1}\right)\right) \\
& =\operatorname{det}\left(\frac{1}{n} X_{N} X_{N}^{*}-\lambda I_{N}\right) \operatorname{det}\left(I_{N}+\lambda\left(I_{N}-C_{N}^{-1}\right)\left(\frac{1}{n} X_{N} X_{N}^{*}-\lambda I_{N}\right)^{-1}\right)
\end{aligned}
$$

## Spiked Models

## Proof

- Two ingredients: Algebraic calculus + trace lemma
- Find eigenvalues away from eigenvalues of $\frac{1}{n} X_{N} X_{N}^{*}$ :

$$
\begin{aligned}
0 & =\operatorname{det}\left(\frac{1}{n} Y_{N} Y_{N}^{*}-\lambda I_{N}\right) \\
& =\operatorname{det}\left(C_{N}\right) \operatorname{det}\left(\frac{1}{n} X_{N} X_{N}^{*}-\lambda C_{N}^{-1}\right) \\
& =\operatorname{det}\left(\frac{1}{n} X_{N} X_{N}^{*}-\lambda I_{N}+\lambda\left(I_{N}-C_{N}^{-1}\right)\right) \\
& =\operatorname{det}\left(\frac{1}{n} X_{N} X_{N}^{*}-\lambda I_{N}\right) \operatorname{det}\left(I_{N}+\lambda\left(I_{N}-C_{N}^{-1}\right)\left(\frac{1}{n} X_{N} X_{N}^{*}-\lambda I_{N}\right)^{-1}\right) .
\end{aligned}
$$

- Use low rank property:

$$
I_{N}-C_{N}^{-1}=I_{N}-\left(I_{N}+U \Omega U^{*}\right)^{-1}=U\left(I_{K}+\Omega^{-1}\right)^{-1} U^{*}, \Omega \in \mathbb{C}^{K \times K}
$$

Hence

$$
0=\operatorname{det}\left(\frac{1}{n} X_{N} X_{N}^{*}-\lambda I_{N}\right) \operatorname{det}\left(I_{N}+\lambda U\left(I_{K}+\Omega^{-1}\right)^{-1} U^{*}\left(\frac{1}{n} X_{N} X_{N}^{*}-\lambda I_{N}\right)^{-1}\right)
$$

## Spiked Models

## Proof

- Two ingredients: Algebraic calculus + trace lemma
- Find eigenvalues away from eigenvalues of $\frac{1}{n} X_{N} X_{N}^{*}$ :

$$
\begin{aligned}
0 & =\operatorname{det}\left(\frac{1}{n} Y_{N} Y_{N}^{*}-\lambda I_{N}\right) \\
& =\operatorname{det}\left(C_{N}\right) \operatorname{det}\left(\frac{1}{n} X_{N} X_{N}^{*}-\lambda C_{N}^{-1}\right) \\
& =\operatorname{det}\left(\frac{1}{n} X_{N} X_{N}^{*}-\lambda I_{N}+\lambda\left(I_{N}-C_{N}^{-1}\right)\right) \\
& =\operatorname{det}\left(\frac{1}{n} X_{N} X_{N}^{*}-\lambda I_{N}\right) \operatorname{det}\left(I_{N}+\lambda\left(I_{N}-C_{N}^{-1}\right)\left(\frac{1}{n} X_{N} X_{N}^{*}-\lambda I_{N}\right)^{-1}\right) .
\end{aligned}
$$

- Use low rank property:

$$
I_{N}-C_{N}^{-1}=I_{N}-\left(I_{N}+U \Omega U^{*}\right)^{-1}=U\left(I_{K}+\Omega^{-1}\right)^{-1} U^{*}, \Omega \in \mathbb{C}^{K \times K}
$$

Hence

$$
0=\operatorname{det}\left(\frac{1}{n} X_{N} X_{N}^{*}-\lambda I_{N}\right) \operatorname{det}\left(I_{N}+\lambda U\left(I_{K}+\Omega^{-1}\right)^{-1} U^{*}\left(\frac{1}{n} X_{N} X_{N}^{*}-\lambda I_{N}\right)^{-1}\right)
$$

## Spiked Models

## Proof (2)

- Sylverster's identity $(\operatorname{det}(I+A B)=\operatorname{det}(I+B A))$,

$$
0=\operatorname{det}\left(\frac{1}{n} X_{N} X_{N}^{*}-\lambda I_{N}\right) \operatorname{det}\left(I_{K}+\lambda\left(I_{K}+\Omega^{-1}\right)^{-1} U^{*}\left(\frac{1}{n} X_{N} X_{N}^{*}-\lambda I_{N}\right)^{-1} U\right)
$$

## Spiked Models

## Proof (2)

- Sylverster's identity $(\operatorname{det}(I+A B)=\operatorname{det}(I+B A))$,

$$
0=\operatorname{det}\left(\frac{1}{n} X_{N} X_{N}^{*}-\lambda I_{N}\right) \operatorname{det}\left(I_{K}+\lambda\left(I_{K}+\Omega^{-1}\right)^{-1} U^{*}\left(\frac{1}{n} X_{N} X_{N}^{*}-\lambda I_{N}\right)^{-1} U\right)
$$

- No eigenvalue outside the support [Bai,Sil'98]: $\operatorname{det}\left(\frac{1}{n} X_{N} X_{N}^{*}-\lambda I_{N}\right)$ has no zero beyond $(1+\sqrt{c})^{2}$ for all large $n$ a.s.


## Spiked Models

## Proof (2)

- Sylverster's identity $(\operatorname{det}(I+A B)=\operatorname{det}(I+B A))$,

$$
0=\operatorname{det}\left(\frac{1}{n} X_{N} X_{N}^{*}-\lambda I_{N}\right) \operatorname{det}\left(I_{K}+\lambda\left(I_{K}+\Omega^{-1}\right)^{-1} U^{*}\left(\frac{1}{n} X_{N} X_{N}^{*}-\lambda I_{N}\right)^{-1} U\right)
$$

- No eigenvalue outside the support [Bai,Sil'98]: $\operatorname{det}\left(\frac{1}{n} X_{N} X_{N}^{*}-\lambda I_{N}\right)$ has no zero beyond $(1+\sqrt{c})^{2}$ for all large $n$ a.s.
- Extension of Trace Lemma: for each $z \in \mathbb{C} \backslash \operatorname{supp}(\mu)$,

$$
U^{*}\left(\frac{1}{n} X_{N} X_{N}^{*}-z I_{N}\right)^{-1} U \xrightarrow{\text { a.s. }} m_{\mu}(z) I_{K}
$$

( $X_{N}$ being "almost-unitarily invariant", $U$ can be seen as formed of random "i.i.d.-like" vectors)

## Spiked Models

## Proof (2)

- Sylverster's identity $(\operatorname{det}(I+A B)=\operatorname{det}(I+B A))$,

$$
0=\operatorname{det}\left(\frac{1}{n} X_{N} X_{N}^{*}-\lambda I_{N}\right) \operatorname{det}\left(I_{K}+\lambda\left(I_{K}+\Omega^{-1}\right)^{-1} U^{*}\left(\frac{1}{n} X_{N} X_{N}^{*}-\lambda I_{N}\right)^{-1} U\right)
$$

- No eigenvalue outside the support [Bai,Sil'98]: $\operatorname{det}\left(\frac{1}{n} X_{N} X_{N}^{*}-\lambda I_{N}\right)$ has no zero beyond $(1+\sqrt{c})^{2}$ for all large $n$ a.s.
- Extension of Trace Lemma: for each $z \in \mathbb{C} \backslash \operatorname{supp}(\mu)$,

$$
U^{*}\left(\frac{1}{n} X_{N} X_{N}^{*}-z I_{N}\right)^{-1} U \xrightarrow{\text { a.s. }} m_{\mu}(z) I_{K}
$$

( $X_{N}$ being "almost-unitarily invariant", $U$ can be seen as formed of random "i.i.d.-like" vectors)

- As a result, for all large $n$ a.s.,

$$
\begin{aligned}
0 & =\operatorname{det}\left(I_{K}+\lambda\left(I_{K}+\Omega^{-1}\right)^{-1} U^{*}\left(\frac{1}{n} X_{N} X_{N}^{*}-\lambda I_{N}\right)^{-1} U\right) \\
& \simeq \prod_{m=1}^{M}\left(1+\frac{\lambda}{1+\omega_{m}^{-1}} m_{\mu}(\lambda)\right)^{k_{m}}=\prod_{m=1}^{M}\left(1+\frac{\lambda \omega_{m}}{1+\omega_{m}} m_{\mu}(\lambda)\right)^{k_{m}}
\end{aligned}
$$

## Spiked Models

Proof (3)

- Limiting solutions: zeros (with multiplicity) of

$$
1+\frac{\lambda \omega_{m}}{1+\omega_{m}} m_{\mu}(\lambda)=0
$$

## Spiked Models

## Proof (3)

- Limiting solutions: zeros (with multiplicity) of

$$
1+\frac{\lambda \omega_{m}}{1+\omega_{m}} m_{\mu}(\lambda)=0
$$

- Using Marčenko-Pastur law properties $\left(m_{\mu}(z)=\left(1-c-z-c z m_{\mu}(z)\right)^{-1}\right)$,

$$
\lambda \in\left\{1+\omega_{m}+c \frac{1+\omega_{m}}{\omega_{m}}\right\}_{m=1}^{M}
$$

## Spiked Models

Theorem (Eigenvectors [Paul'07])
Let $Y_{N}=C_{N}^{\frac{1}{2}} X_{N}$, with

- $X_{N}$ with i.i.d. zero mean, unit variance, finite fourth order moment entries
- $C_{N}=I_{N}+P, P=\sum_{i=1}^{K} \omega_{i} u_{i} u_{i}^{*}, \omega_{1}>\ldots>\omega_{M}>0$.


## Spiked Models

## Theorem (Eigenvectors [Paul'07])

Let $Y_{N}=C_{N}^{\frac{1}{2}} X_{N}$, with

- $X_{N}$ with i.i.d. zero mean, unit variance, finite fourth order moment entries
- $C_{N}=I_{N}+P, P=\sum_{i=1}^{K} \omega_{i} u_{i} u_{i}^{*}, \omega_{1}>\ldots>\omega_{M}>0$.

Then, as $N, n \rightarrow \infty, N / n \rightarrow c \in(0, \infty)$, for $a, b \in \mathbb{C}^{N}$ deterministic and $\hat{u}_{i}$ eigenvector of $\lambda_{i}\left(\frac{1}{n} Y_{N} Y_{N}^{*}\right)$,

$$
a^{*} \hat{u}_{i} \hat{u}_{i}^{*} b-\frac{1-c \omega_{i}^{-2}}{1+c \omega_{i}^{-1}} a^{*} u_{i} u_{i}^{*} b \cdot 1_{\omega_{i}>\sqrt{c}} \xrightarrow{\text { a.s. }} 0
$$

In particular,

$$
\left|\hat{u}_{i}^{*} u_{i}\right|^{2} \xrightarrow{\text { a.s. }} \frac{1-c \omega_{i}^{-2}}{1+c \omega_{i}^{-1}} \cdot 1_{\omega_{i}>\sqrt{c}} .
$$

## Spiked Models

## Theorem (Eigenvectors [Paul'07])

Let $Y_{N}=C_{N}^{\frac{1}{2}} X_{N}$, with

- $X_{N}$ with i.i.d. zero mean, unit variance, finite fourth order moment entries
- $C_{N}=I_{N}+P, P=\sum_{i=1}^{K} \omega_{i} u_{i} u_{i}^{*}, \omega_{1}>\ldots>\omega_{M}>0$.

Then, as $N, n \rightarrow \infty, N / n \rightarrow c \in(0, \infty)$, for $a, b \in \mathbb{C}^{N}$ deterministic and $\hat{u}_{i}$ eigenvector of $\lambda_{i}\left(\frac{1}{n} Y_{N} Y_{N}^{*}\right)$,

$$
a^{*} \hat{u}_{i} \hat{u}_{i}^{*} b-\frac{1-c \omega_{i}^{-2}}{1+c \omega_{i}^{-1}} a^{*} u_{i} u_{i}^{*} b \cdot 1_{\omega_{i}>\sqrt{c}} \xrightarrow{\text { a.s. }} 0
$$

In particular,

$$
\left|\hat{u}_{i}^{*} u_{i}\right|^{2} \xrightarrow{\text { a.s. }} \frac{1-c \omega_{i}^{-2}}{1+c \omega_{i}^{-1}} \cdot 1_{\omega_{i}>\sqrt{c}} .
$$

Proof: Based on Cauchy integral + similar ingredients as eigenvalue proof

$$
a^{*} \hat{u}_{i} \hat{u}_{i}^{*} b=\frac{1}{2 \pi \imath} \oint_{\mathcal{C}_{i}} a^{*}\left(\frac{1}{n} Y_{N} Y_{N}^{*}-z I_{N}\right)^{-1} b d z
$$

for $\mathcal{C}_{m}$ contour circling around $\lambda_{i}$ only.

## Spiked Models



Figure: Simulated versus limiting $\left|\hat{u}_{1}^{*} u_{1}\right|^{2}$ for $Y_{N}=C_{N}^{\frac{1}{2}} X_{N}, C_{N}=I_{N}+\omega_{1} u_{1} u_{1}^{*}$, $N / n=1 / 3$, varying $\omega_{1}$.

## Tracy-Widom Theorem

Theorem (Phase Transition [Baik,BenArous,Péché'05])
Let $Y_{N}=C_{N}^{\frac{1}{2}} X_{N}$, with

- $X_{N}$ with i.i.d. complex Gaussian zero mean, unit variance entries,
- $C_{N}=I_{N}+P, P=\sum_{i=1}^{K} \omega_{i} u_{i} u_{i}^{*}, \omega_{1}>\ldots>\omega_{K}>0(K \geq 0)$.


## Tracy-Widom Theorem

Theorem (Phase Transition [Baik,BenArous,Péché'05])
Let $Y_{N}=C_{N}^{\frac{1}{2}} X_{N}$, with

- $X_{N}$ with i.i.d. complex Gaussian zero mean, unit variance entries,
- $C_{N}=I_{N}+P, P=\sum_{i=1}^{K} \omega_{i} u_{i} u_{i}^{*}, \omega_{1}>\ldots>\omega_{K}>0(K \geq 0)$.

Then, as $N, n \rightarrow \infty, N / n \rightarrow c<1$,

- If $\omega_{1}<\sqrt{c}$ (or $K=0$ ),

$$
N^{\frac{2}{3}} \frac{\lambda_{1}-(1+\sqrt{c})^{2}}{(1+\sqrt{c})^{\frac{4}{3}} c^{\frac{1}{2}}} \xrightarrow{\mathcal{L}} T_{2}, \text { (complex Tracy-Widom law) }
$$

## Tracy-Widom Theorem

Theorem (Phase Transition [Baik,BenArous,Péché’05])
Let $Y_{N}=C_{N}^{\frac{1}{2}} X_{N}$, with

- $X_{N}$ with i.i.d. complex Gaussian zero mean, unit variance entries,
- $C_{N}=I_{N}+P, P=\sum_{i=1}^{K} \omega_{i} u_{i} u_{i}^{*}, \omega_{1}>\ldots>\omega_{K}>0(K \geq 0)$.

Then, as $N, n \rightarrow \infty, N / n \rightarrow c<1$,

- If $\omega_{1}<\sqrt{c}$ (or $K=0$ ),

$$
N^{\frac{2}{3}} \frac{\lambda_{1}-(1+\sqrt{c})^{2}}{(1+\sqrt{c})^{\frac{4}{3}} c^{\frac{1}{2}}} \xrightarrow{\mathcal{L}} T_{2}, \text { (complex Tracy-Widom law) }
$$

- If $\omega_{1}>\sqrt{c}$,

$$
\left(\frac{\left(1+\omega_{1}\right)^{2}}{c}-\frac{\left(1+\omega_{1}\right)^{2}}{\omega_{1}^{2}}\right)^{\frac{1}{2}} N^{\frac{1}{2}}\left[\lambda_{1}-\left(1+\omega_{1}+c \frac{1+\omega_{1}}{\omega_{1}}\right)\right] \xrightarrow{\mathcal{L}} \mathcal{N}(0,1)
$$

## Tracy-Widom Theorem



Figure: Distribution of $N^{\frac{2}{3}} c^{-\frac{1}{2}}(1+\sqrt{c})^{-\frac{4}{3}}\left[\lambda_{1}\left(\frac{1}{n} X_{N} X_{N}^{*}\right)-(1+\sqrt{c})^{2}\right]$ versus Tracy-Widom ( $T_{2}$ ), $N=500, n=1500$.

## Other Spiked Models

Similar results for multiple matrix models:

- Additive spiked model: $Y_{N}=\frac{1}{n} X X^{*}+P, P$ deterministic and low rank
- $Y_{N}=\frac{1}{n} X^{*}(I+P) X$
- $Y_{N}=\frac{1}{n}(X+P)^{*}(X+P)$
- $Y_{N}=\frac{1}{n} T X^{*}(I+P) X T$
- etc.


## Outline

Basics of Random Matrix Theory<br>Motivation: Large Sample Covariance Matrices<br>The Stieltjes Transform Method<br>Spiked Models<br>Other Common Random Matrix Models

```
Applications
 Random Matrices and Robust Estimation
 Spectral Clustering Methods and Random Matrices
 Community Detection on Graphs
 Kernel Spectral Clustering
 Kernel Spectral Clustering: Subspace Clustering
 Semi-supervised Learning
 Support Vector Machines
 Neural Networks: Extreme Learning Machines
```

Perspectives

## The Semi-circle law

Theorem
Let $X_{N} \in \mathbb{C}^{N \times N}$ Hermitian with e.s.d. $\mu_{N}$ such that $\frac{1}{\sqrt{N}}\left[X_{N}\right]_{i>j}$ are i.i.d. with zero mean and unit variance. Then, as $N \rightarrow \infty$,

$$
\mu_{N} \xrightarrow{\text { a.s. }} \mu
$$

with $\mu(d t)=\frac{1}{2 \pi} \sqrt{\left(4-t^{2}\right)^{+}} d t$. In particular, $m_{\mu}$ satisfies

$$
m_{\mu}(z)=\frac{1}{-z-m_{\mu}(z)}
$$

## The Semi-circle law



Figure: Histogram of the eigenvalues of Wigner matrices and the semi-circle law, for $N=500$

## The Circular law

Theorem
Let $X_{N} \in \mathbb{C}^{N \times N}$ with e.s.d. $\mu_{N}$ be such that $\frac{1}{\sqrt{N}}\left[X_{N}\right]_{i j}$ are i.i.d. entries with zero mean and unit variance. Then, as $N \rightarrow \infty$,

$$
\mu_{N} \xrightarrow{\text { a.s. }} \mu
$$

with $\mu$ a complex-supported measure with $\mu(d z)=\frac{1}{2 \pi} \delta_{|z| \leq 1} d z$.

## The Circular law



Figure: Eigenvalues of $\mathbf{X}_{N}$ with i.i.d. standard Gaussian entries, for $N=500$.

## Bibliographical references: Maths Book and Tutorial References I

## From most accessible to least:

Couillet, R., \& Debbah, M. (2011). Random matrix methods for wireless communications. Cambridge University Press.

Tao, T. (2012). Topics in random matrix theory (Vol. 132). Providence, RI: American Mathematical Society.

Bai, Z., \& Silverstein, J. W. (2010). Spectral analysis of large dimensional random matrices (Vol. 20). New York: Springer.

Pastur, L. A., Shcherbina, M., \& Shcherbina, M. (2011). Eigenvalue distribution of large random matrices (Vol. 171). Providence, RI: American Mathematical Society.

Anderson, G. W., Guionnet, A., \& Zeitouni, O. (2010). An introduction to random matrices (Vol. 118). Cambridge university press.

## Outline

Basics of Random Matrix Theory<br>Motivation: Large Sample Covariance Matrices<br>The Stieltjes Transform Method<br>Spiked Models<br>Other Common Random Matrix Models

## Applications

Random Matrices and Robust Estimation
Spectral Clustering Methods and Random Matrices
Community Detection on Graphs
Kernel Spectral Clustering
Kernel Spectral Clustering: Subspace Clustering
Semi-supervised Learning
Support Vector Machines
Neural Networks: Extreme Learning Machines

Perspectives

## Outline

```
Basics of Random Matrix Theory
 Motivation: Large Sample Covariance Matrices
 The Stieltjes Transform Method
 Spiked Models
 Other Common Random Matrix Models
```

Applications
Random Matrices and Robust Estimation
Spectral Clustering Methods and Random Matrices
Community Detection on Graphs
Kernel Spectral Clustering
Kernel Spectral Clustering: Subspace Clustering
Semi-supervised Learning
Support Vector Machines
Neural Networks: Extreme Learning Machines

Perspectives

## Context

Baseline scenario: $x_{1}, \ldots, x_{n} \in \mathbb{C}^{N}\left(\right.$ or $\left.\mathbb{R}^{N}\right)$ i.i.d. with $E\left[x_{1}\right]=0, E\left[x_{1} x_{1}^{*}\right]=C_{N}$ :

## Context

Baseline scenario: $x_{1}, \ldots, x_{n} \in \mathbb{C}^{N}\left(\right.$ or $\left.\mathbb{R}^{N}\right)$ i.i.d. with $E\left[x_{1}\right]=0, E\left[x_{1} x_{1}^{*}\right]=C_{N}$ :

- If $x_{1} \sim \mathcal{N}\left(0, C_{N}\right)$, ML estimator for $C_{N}$ is sample covariance matrix (SCM)

$$
\hat{C}_{N}=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{*} .
$$

## Context

Baseline scenario: $x_{1}, \ldots, x_{n} \in \mathbb{C}^{N}\left(\right.$ or $\left.\mathbb{R}^{N}\right)$ i.i.d. with $E\left[x_{1}\right]=0, E\left[x_{1} x_{1}^{*}\right]=C_{N}$ :

- If $x_{1} \sim \mathcal{N}\left(0, C_{N}\right)$, ML estimator for $C_{N}$ is sample covariance matrix (SCM)

$$
\hat{C}_{N}=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{*}
$$

- [Huber'67] If $x_{1} \sim(1-\varepsilon) \mathcal{N}\left(0, C_{N}\right)+\varepsilon G, G$ unknown, robust estimator $(n>N)$

$$
\hat{C}_{N}=\frac{1}{n} \sum_{i=1}^{n} \max \left\{\ell_{1}, \frac{\ell_{2}}{\frac{1}{N} x_{i}^{*} \hat{C}_{N}^{-1} x_{i}}\right\} x_{i} x_{i}^{*} \text { for some } \ell_{1}, \ell_{2}>0 .
$$

## Context

Baseline scenario: $x_{1}, \ldots, x_{n} \in \mathbb{C}^{N}\left(\right.$ or $\left.\mathbb{R}^{N}\right)$ i.i.d. with $E\left[x_{1}\right]=0, E\left[x_{1} x_{1}^{*}\right]=C_{N}$ :

- If $x_{1} \sim \mathcal{N}\left(0, C_{N}\right)$, ML estimator for $C_{N}$ is sample covariance matrix (SCM)

$$
\hat{C}_{N}=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{*}
$$

- [Huber'67] If $x_{1} \sim(1-\varepsilon) \mathcal{N}\left(0, C_{N}\right)+\varepsilon G, G$ unknown, robust estimator $(n>N)$

$$
\hat{C}_{N}=\frac{1}{n} \sum_{i=1}^{n} \max \left\{\ell_{1}, \frac{\ell_{2}}{\frac{1}{N} x_{i}^{*} \hat{C}_{N}^{-1} x_{i}}\right\} x_{i} x_{i}^{*} \text { for some } \ell_{1}, \ell_{2}>0 .
$$

- [Maronna'76] If $x_{1}$ elliptical (and $n>N$ ), ML estimator for $C_{N}$ given by

$$
\hat{C}_{N}=\frac{1}{n} \sum_{i=1}^{n} u\left(\frac{1}{N} x_{i}^{*} \hat{C}_{N}^{-1} x_{i}\right) x_{i} x_{i}^{*} \text { for some non-increasing } u .
$$

## Context

Baseline scenario: $x_{1}, \ldots, x_{n} \in \mathbb{C}^{N}\left(\right.$ or $\left.\mathbb{R}^{N}\right)$ i.i.d. with $E\left[x_{1}\right]=0, E\left[x_{1} x_{1}^{*}\right]=C_{N}$ :

- If $x_{1} \sim \mathcal{N}\left(0, C_{N}\right)$, ML estimator for $C_{N}$ is sample covariance matrix (SCM)

$$
\hat{C}_{N}=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{*}
$$

- [Huber'67] If $x_{1} \sim(1-\varepsilon) \mathcal{N}\left(0, C_{N}\right)+\varepsilon G, G$ unknown, robust estimator $(n>N)$

$$
\hat{C}_{N}=\frac{1}{n} \sum_{i=1}^{n} \max \left\{\ell_{1}, \frac{\ell_{2}}{\frac{1}{N} x_{i}^{*} \hat{C}_{N}^{-1} x_{i}}\right\} x_{i} x_{i}^{*} \text { for some } \ell_{1}, \ell_{2}>0 .
$$

- [Maronna'76] If $x_{1}$ elliptical (and $n>N$ ), ML estimator for $C_{N}$ given by

$$
\hat{C}_{N}=\frac{1}{n} \sum_{i=1}^{n} u\left(\frac{1}{N} x_{i}^{*} \hat{C}_{N}^{-1} x_{i}\right) x_{i} x_{i}^{*} \text { for some non-increasing } u .
$$

- [Pascal'13; Chen'11] If $N>n, x_{1}$ elliptical or with outliers, shrinkage extensions

$$
\begin{aligned}
& \hat{C}_{N}(\rho)=(1-\rho) \frac{1}{n} \sum_{i=1}^{n} \frac{x_{i} x_{i}^{*}}{\frac{1}{N} x_{i}^{*} \hat{C}_{N}^{-1}(\rho) x_{i}}+\rho I_{N} \\
& \check{C}_{N}(\rho)=\frac{\check{B}_{N}(\rho)}{\frac{1}{N} \operatorname{tr} \check{B}_{N}(\rho)}, \check{B}_{N}(\rho)=(1-\rho) \frac{1}{n} \sum_{i=1}^{n} \frac{x_{i} x_{i}^{*}}{\frac{1}{N} x_{i}^{*} \check{C}_{N}^{-1}(\rho) x_{i}}+\rho I_{N}
\end{aligned}
$$

## Context

Results only known for $N$ fixed and $n \rightarrow \infty$ :

- not appropriate in settings of interest today (BigData, array processing, MIMO)


## Context

Results only known for $N$ fixed and $n \rightarrow \infty$ :

- not appropriate in settings of interest today (BigData, array processing, MIMO)

We study such $\hat{C}_{N}$ in the regime

$$
N, n \rightarrow \infty, N / n \rightarrow c \in(0, \infty)
$$

## Context

Results only known for $N$ fixed and $n \rightarrow \infty$ :

- not appropriate in settings of interest today (BigData, array processing, MIMO)

We study such $\hat{C}_{N}$ in the regime

$$
N, n \rightarrow \infty, N / n \rightarrow c \in(0, \infty)
$$

- Math interest:
- limiting eigenvalue distribution of $\hat{C}_{N}$
- limiting values and fluctuations of functionals $f\left(\hat{C}_{N}\right)$


## Context

Results only known for $N$ fixed and $n \rightarrow \infty$ :

- not appropriate in settings of interest today (BigData, array processing, MIMO)

We study such $\hat{C}_{N}$ in the regime

$$
N, n \rightarrow \infty, N / n \rightarrow c \in(0, \infty)
$$

- Math interest:
- limiting eigenvalue distribution of $\hat{C}_{N}$
- limiting values and fluctuations of functionals $f\left(\hat{C}_{N}\right)$
- Application interest:
- comparison between SCM and robust estimators
- performance of robust/non-robust estimation methods
- improvement thereof (by proper parametrization)


## Model Description

Definition (Maronna's Estimator)
For $x_{1}, \ldots, x_{n} \in \mathbb{C}^{N}$ with $n>N, \hat{C}_{N}$ is the solution (upon existence and uniqueness) of

$$
\hat{C}_{N}=\frac{1}{n} \sum_{i=1}^{n} u\left(\frac{1}{N} x_{i}^{*} \hat{C}_{N}^{-1} x_{i}\right) x_{i} x_{i}^{*}
$$

## Model Description

## Definition (Maronna's Estimator)

For $x_{1}, \ldots, x_{n} \in \mathbb{C}^{N}$ with $n>N, \hat{C}_{N}$ is the solution (upon existence and uniqueness) of

$$
\hat{C}_{N}=\frac{1}{n} \sum_{i=1}^{n} u\left(\frac{1}{N} x_{i}^{*} \hat{C}_{N}^{-1} x_{i}\right) x_{i} x_{i}^{*}
$$

where $u:[0, \infty) \rightarrow(0, \infty)$ is

- non-increasing
- such that $\phi(x) \triangleq x u(x)$ increasing of supremum $\phi_{\infty}$ with

$$
1<\phi_{\infty}<c^{-1}, c \in(0,1)
$$

## The Results in a Nutshell

For various models of the $x_{i}$ 's,

- First order convergence:

$$
\left\|\hat{C}_{N}-\hat{S}_{N}\right\| \xrightarrow{\text { a.s. }} 0
$$

for some tractable random matrices $\hat{S}_{N}$.
$\Rightarrow$ We only discuss this result here.

## The Results in a Nutshell

For various models of the $x_{i}$ 's,

- First order convergence:

$$
\left\|\hat{C}_{N}-\hat{S}_{N}\right\| \xrightarrow{\text { a.s. }} 0
$$

for some tractable random matrices $\hat{S}_{N}$.
$\Rightarrow$ We only discuss this result here.

- Second order results:

$$
N^{1-\varepsilon}\left(a^{*} \hat{C}_{N}^{k} b-a^{*} \hat{S}_{N}^{k} b\right) \xrightarrow{\text { a.s. }} 0
$$

allowing transfer of CLT results.

## The Results in a Nutshell

For various models of the $x_{i}$ 's,

- First order convergence:

$$
\left\|\hat{C}_{N}-\hat{S}_{N}\right\| \xrightarrow{\text { a.s. }} 0
$$

for some tractable random matrices $\hat{S}_{N}$.
$\Rightarrow$ We only discuss this result here.

- Second order results:

$$
N^{1-\varepsilon}\left(a^{*} \hat{C}_{N}^{k} b-a^{*} \hat{S}_{N}^{k} b\right) \xrightarrow{\text { a.s. }} 0
$$

allowing transfer of CLT results.

- Applications:
- improved robust covariance matrix estimation
- improved robust tests / estimators
- specific examples in statistics at large, array processing, statistical finance, etc.


## (Elliptical) scenario

Theorem (Large dimensional behavior, elliptical case)
For $x_{i}=\sqrt{\tau_{i}} w_{i}, \tau_{i}$ impulsive (random or not), $w_{i}$ unitarily invariant, $\left\|w_{i}\right\|=N$,

$$
\left\|\hat{C}_{N}-\hat{S}_{N}\right\| \xrightarrow{\text { a.s. }} 0
$$

with, for some $v$ related to $u\left(v=u \circ g^{-1}, g(x)=x(1-c \phi(x))^{-1}\right)$,

$$
\hat{C}_{N} \triangleq \frac{1}{n} \sum_{i=1}^{n} u\left(\frac{1}{N} x_{i}^{*} \hat{C}_{N}^{-1} x_{i}\right) x_{i} x_{i}^{*}, \quad \hat{S}_{N} \triangleq \frac{1}{n} \sum_{i=1}^{n} v\left(\tau_{i} \gamma_{N}\right) x_{i} x_{i}^{*}
$$

and $\gamma_{N}$ unique solution of

$$
1=\frac{1}{n} \sum_{j=1}^{n} \frac{\gamma v\left(\tau_{i} \gamma\right)}{1+c \gamma v\left(\tau_{i} \gamma\right)}
$$

## (Elliptical) scenario

Theorem (Large dimensional behavior, elliptical case)
For $x_{i}=\sqrt{\tau_{i}} w_{i}, \tau_{i}$ impulsive (random or not), $w_{i}$ unitarily invariant, $\left\|w_{i}\right\|=N$,

$$
\left\|\hat{C}_{N}-\hat{S}_{N}\right\| \xrightarrow{\text { a.s. }} 0
$$

with, for some $v$ related to $u\left(v=u \circ g^{-1}, g(x)=x(1-c \phi(x))^{-1}\right)$,

$$
\hat{C}_{N} \triangleq \frac{1}{n} \sum_{i=1}^{n} u\left(\frac{1}{N} x_{i}^{*} \hat{C}_{N}^{-1} x_{i}\right) x_{i} x_{i}^{*}, \quad \hat{S}_{N} \triangleq \frac{1}{n} \sum_{i=1}^{n} v\left(\tau_{i} \gamma_{N}\right) x_{i} x_{i}^{*}
$$

and $\gamma_{N}$ unique solution of

$$
1=\frac{1}{n} \sum_{j=1}^{n} \frac{\gamma v\left(\tau_{i} \gamma\right)}{1+c \gamma v\left(\tau_{i} \gamma\right)} .
$$

Corollaries

- Spectral measure: $\mu_{N}^{\hat{C}_{N}}-\mu_{N}^{\hat{S}_{N}} \xrightarrow{\mathcal{L}} 0$ a.s. $\left(\mu_{N}^{X} \triangleq \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{\delta}_{\lambda_{i}(X)}\right)$


## (Elliptical) scenario

Theorem (Large dimensional behavior, elliptical case)
For $x_{i}=\sqrt{\tau_{i}} w_{i}, \tau_{i}$ impulsive (random or not), $w_{i}$ unitarily invariant, $\left\|w_{i}\right\|=N$,

$$
\left\|\hat{C}_{N}-\hat{S}_{N}\right\| \xrightarrow{\text { a.s. }} 0
$$

with, for some $v$ related to $u\left(v=u \circ g^{-1}, g(x)=x(1-c \phi(x))^{-1}\right)$,

$$
\hat{C}_{N} \triangleq \frac{1}{n} \sum_{i=1}^{n} u\left(\frac{1}{N} x_{i}^{*} \hat{C}_{N}^{-1} x_{i}\right) x_{i} x_{i}^{*}, \quad \hat{S}_{N} \triangleq \frac{1}{n} \sum_{i=1}^{n} v\left(\tau_{i} \gamma_{N}\right) x_{i} x_{i}^{*}
$$

and $\gamma_{N}$ unique solution of

$$
1=\frac{1}{n} \sum_{j=1}^{n} \frac{\gamma v\left(\tau_{i} \gamma\right)}{1+c \gamma v\left(\tau_{i} \gamma\right)} .
$$

Corollaries

- Spectral measure: $\mu_{N}^{\hat{C}_{N}}-\mu_{N}^{\hat{S}_{N}} \xrightarrow{\mathcal{L}} 0$ a.s. $\left(\mu_{N}^{X} \triangleq \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{\delta}_{\lambda_{i}(X)}\right)$
- Local convergence: $\max _{1 \leq i \leq N}\left|\lambda_{i}\left(\hat{C}_{N}\right)-\lambda_{i}\left(\hat{S}_{N}\right)\right| \xrightarrow{\text { a.s. }} 0$.


## (Elliptical) scenario

Theorem (Large dimensional behavior, elliptical case)
For $x_{i}=\sqrt{\tau_{i}} w_{i}, \tau_{i}$ impulsive (random or not), $w_{i}$ unitarily invariant, $\left\|w_{i}\right\|=N$,

$$
\left\|\hat{C}_{N}-\hat{S}_{N}\right\| \xrightarrow{\text { a.s. }} 0
$$

with, for some $v$ related to $u\left(v=u \circ g^{-1}, g(x)=x(1-c \phi(x))^{-1}\right)$,

$$
\hat{C}_{N} \triangleq \frac{1}{n} \sum_{i=1}^{n} u\left(\frac{1}{N} x_{i}^{*} \hat{C}_{N}^{-1} x_{i}\right) x_{i} x_{i}^{*}, \quad \hat{S}_{N} \triangleq \frac{1}{n} \sum_{i=1}^{n} v\left(\tau_{i} \gamma_{N}\right) x_{i} x_{i}^{*}
$$

and $\gamma_{N}$ unique solution of

$$
1=\frac{1}{n} \sum_{j=1}^{n} \frac{\gamma v\left(\tau_{i} \gamma\right)}{1+c \gamma v\left(\tau_{i} \gamma\right)} .
$$

Corollaries

- Spectral measure: $\mu_{N}^{\hat{C}_{N}}-\mu_{N}^{\hat{S}_{N}} \xrightarrow{\mathcal{L}} 0$ a.s. $\left(\mu_{N}^{X} \triangleq \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{\delta}_{\lambda_{i}(X)}\right)$
- Local convergence: $\max _{1 \leq i \leq N}\left|\lambda_{i}\left(\hat{C}_{N}\right)-\lambda_{i}\left(\hat{S}_{N}\right)\right| \xrightarrow{\text { a.s. }} 0$.
- Norm boundedness: $\lim \sup _{N}\left\|\hat{C}_{N}\right\|<\infty$
$\longrightarrow$ Bounded spectrum (unlike SCM!)


## Large dimensional behavior



Figure: $n=2500, N=500, C_{N}=\operatorname{diag}\left(I_{125}, 3 I_{125}, 10 I_{250}\right), \tau_{i} \sim \Gamma(.5,2)$ i.i.d.

## Large dimensional behavior



Figure: $n=2500, N=500, C_{N}=\operatorname{diag}\left(I_{125}, 3 I_{125}, 10 I_{250}\right), \tau_{i} \sim \Gamma(.5,2)$ i.i.d.

## Large dimensional behavior



Eigenvalues

Figure: $n=2500, N=500, C_{N}=\operatorname{diag}\left(I_{125}, 3 I_{125}, 10 I_{250}\right), \tau_{i} \sim \Gamma(.5,2)$ i.i.d.

## Elements of Proof

## Definition ( $v$ and $\psi$ )

Letting $g(x)=x(1-c \phi(x))^{-1}\left(\right.$ on $\left.\mathbb{R}_{+}\right)$,

$$
\begin{array}{ll}
v(x) \triangleq\left(u \circ g^{-1}\right)(x) & \text { non-increasing } \\
\psi(x) \triangleq x v(x) & \text { increasing and bounded by } \psi_{\infty} .
\end{array}
$$

## Elements of Proof

Definition ( $v$ and $\psi$ )
Letting $g(x)=x(1-c \phi(x))^{-1}\left(\right.$ on $\left.\mathbb{R}_{+}\right)$,

$$
\begin{array}{ll}
v(x) \triangleq\left(u \circ g^{-1}\right)(x) & \text { non-increasing } \\
\psi(x) \triangleq x v(x) & \text { increasing and bounded by } \psi_{\infty} .
\end{array}
$$

Lemma (Rewriting $\hat{C}_{N}$ )
It holds (with $C_{N}=I_{N}$ ) that

$$
\hat{C}_{N} \triangleq \frac{1}{n} \sum_{i=1}^{n} \tau_{i} v\left(\tau_{i} d_{i}\right) w_{i} w_{i}^{*}
$$

with $\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{R}_{+}^{n}$ a.s. unique solution to

$$
d_{i}=\frac{1}{N} w_{i}^{*} \hat{C}_{(i)}^{-1} w_{i}=\frac{1}{N} w_{i}^{*}\left(\frac{1}{n} \sum_{j \neq i} \tau_{j} v\left(\tau_{j} d_{j}\right) w_{j} w_{j}^{*}\right)^{-1} w_{i}, i=1, \ldots, n
$$

## Elements of Proof

Remark (Quadratic Form close to Trace)
Random matrix insight: $\left(\frac{1}{n} \sum_{j \neq i} \tau_{j} v\left(\tau_{j} d_{j}\right) w_{j} w_{j}^{*}\right)^{-1}$ "almost independent" of $w_{i}$, so

## Elements of Proof

Remark (Quadratic Form close to Trace)
Random matrix insight: $\left(\frac{1}{n} \sum_{j \neq i} \tau_{j} v\left(\tau_{j} d_{j}\right) w_{j} w_{j}^{*}\right)^{-1}$ "almost independent" of $w_{i}$, so

$$
d_{i}=\frac{1}{N} w_{i}^{*}\left(\frac{1}{n} \sum_{j \neq i} \tau_{j} v\left(\tau_{j} d_{j}\right) w_{j} w_{j}^{*}\right)^{-1} w_{i} \simeq \frac{1}{N} \operatorname{tr}\left(\frac{1}{n} \sum_{j \neq i} \tau_{j} v\left(\tau_{j} d_{j}\right) w_{j} w_{j}^{*}\right)^{-1} \simeq \gamma_{N}
$$

for some deterministic sequence $\left(\gamma_{N}\right)_{N=1}^{\infty}$, irrespective of $i$.

## Elements of Proof

Remark (Quadratic Form close to Trace)
Random matrix insight: $\left(\frac{1}{n} \sum_{j \neq i} \tau_{j} v\left(\tau_{j} d_{j}\right) w_{j} w_{j}^{*}\right)^{-1}$ "almost independent" of $w_{i}$, so

$$
d_{i}=\frac{1}{N} w_{i}^{*}\left(\frac{1}{n} \sum_{j \neq i} \tau_{j} v\left(\tau_{j} d_{j}\right) w_{j} w_{j}^{*}\right)^{-1} w_{i} \simeq \frac{1}{N} \operatorname{tr}\left(\frac{1}{n} \sum_{j \neq i} \tau_{j} v\left(\tau_{j} d_{j}\right) w_{j} w_{j}^{*}\right)^{-1} \simeq \gamma_{N}
$$

for some deterministic sequence $\left(\gamma_{N}\right)_{N=1}^{\infty}$, irrespective of $i$.

Lemma (Key Lemma)
Letting $e_{i} \triangleq \frac{v\left(\tau_{i} d_{i}\right)}{v\left(\tau_{i} \gamma_{N}\right)}$ with $\gamma_{N}$ unique solution to

$$
1=\frac{1}{n} \sum_{k=1}^{n} \frac{\psi\left(\tau_{i} \gamma_{N}\right)}{1+c \psi\left(\tau_{i} \gamma_{N}\right)}
$$

we have

$$
\max _{1 \leq i \leq n}\left|e_{i}-1\right| \xrightarrow{\text { a.s. }} 0
$$

## Proof of the Key Lemma: $\max _{i}\left|e_{i}-1\right| \xrightarrow{\text { a.s. }} 0, e_{i}=\frac{v\left(\tau_{i} d_{i}\right)}{v\left(\tau_{i} \gamma_{N}\right)}$

Property (Quadratic form and $\gamma_{N}$ )

$$
\max _{1 \leq i \leq n}\left|\frac{1}{N} w_{i}^{*}\left(\frac{1}{n} \sum_{j \neq i} \tau_{j} v\left(\tau_{j} \gamma_{N}\right) w_{j} w_{j}^{*}\right)^{-1} w_{i}-\gamma_{N}\right| \xrightarrow{\text { a.s. }} 0 .
$$

## Proof of the Key Lemma: $\max _{i}\left|e_{i}-1\right| \xrightarrow{\text { a.s. }} 0, e_{i}=\frac{v\left(\tau_{i} d_{i}\right)}{v\left(\tau_{i} \gamma_{N}\right)}$

Property (Quadratic form and $\gamma_{N}$ )

$$
\max _{1 \leq i \leq n}\left|\frac{1}{N} w_{i}^{*}\left(\frac{1}{n} \sum_{j \neq i} \tau_{j} v\left(\tau_{j} \gamma_{N}\right) w_{j} w_{j}^{*}\right)^{-1} w_{i}-\gamma_{N}\right| \xrightarrow{\text { a.s. }} 0 .
$$

## Proof of the Property

- Uniformity easy (moments of all orders for $\left[w_{i}\right]_{j}$ ).
- By a "quadratic form similar to trace" approach, we get

$$
\max _{1 \leq i \leq n}\left|\frac{1}{N} w_{i}^{*}\left(\frac{1}{n} \sum_{j \neq i} \tau_{j} v\left(\tau_{j} \gamma_{N}\right) w_{j} w_{j}^{*}\right)^{-1} w_{i}-m(0)\right| \xrightarrow{\text { a.s. }} 0
$$

with $m(0)$ unique positive solution to [MarPas'67; BaiSil'95]

$$
m(0)=\frac{1}{n} \sum_{i=1}^{n} \frac{\tau_{i} v\left(\tau_{i} \gamma_{N}\right)}{1+c \tau_{i} v\left(\tau_{i} \gamma_{N}\right) m(0)}
$$

- $\gamma_{N}$ precisely solves this equation, thus $m(0)=\gamma_{N}$.


## Proof of the Key Lemma: $\max _{i}\left|e_{i}-1\right| \xrightarrow{\text { a.s. }} 0, e_{i}=\frac{v\left(\tau_{i} d_{i}\right)}{v\left(\tau_{i} \gamma_{N}\right)}$

Substitution Trick (case $\left.\tau_{i} \in[a, b] \subset(0, \infty)\right)$
Up to relabelling $e_{1} \leq \ldots \leq e_{n}$, use

$$
\begin{aligned}
v\left(\tau_{n} \gamma_{N}\right) e_{n}=v\left(\tau_{n} d_{n}\right) & =v(\tau_{n} \frac{1}{N} w_{n}^{*}(\frac{1}{n} \sum_{i<n} \tau_{i} \underbrace{v\left(\tau_{i} d_{i}\right)}_{=v\left(\tau_{i} \gamma_{N}\right) e_{i}} w_{i} w_{i}^{*})^{-1} w_{n}) \\
& \leq v\left(\tau_{n} e_{n}^{-1} \frac{1}{N} w_{n}^{*}\left(\frac{1}{n} \sum_{i<n} \tau_{i} v\left(\tau_{i} \gamma_{N}\right) w_{i} w_{i}^{*}\right)^{-1} w_{n}\right) \\
& \leq v\left(\tau_{n} e_{n}^{-1}\left(\gamma_{N}-\varepsilon_{n}\right)\right) \text { a.s., } \varepsilon_{n} \rightarrow 0(\text { slow })
\end{aligned}
$$

## Proof of the Key Lemma: $\max _{i}\left|e_{i}-1\right| \xrightarrow{\text { a.s. }} 0, e_{i}=\frac{v\left(\tau_{i} d_{i}\right)}{v\left(\tau_{i} \gamma_{N}\right)}$

Substitution Trick (case $\left.\tau_{i} \in[a, b] \subset(0, \infty)\right)$
Up to relabelling $e_{1} \leq \ldots \leq e_{n}$, use

$$
\begin{aligned}
v\left(\tau_{n} \gamma_{N}\right) e_{n}=v\left(\tau_{n} d_{n}\right) & =v(\tau_{n} \frac{1}{N} w_{n}^{*}(\frac{1}{n} \sum_{i<n} \tau_{i} \underbrace{v\left(\tau_{i} d_{i}\right)}_{=v\left(\tau_{i} \gamma_{N}\right) e_{i}} w_{i} w_{i}^{*})^{-1} w_{n}) \\
& \leq v\left(\tau_{n} e_{n}^{-1} \frac{1}{N} w_{n}^{*}\left(\frac{1}{n} \sum_{i<n} \tau_{i} v\left(\tau_{i} \gamma_{N}\right) w_{i} w_{i}^{*}\right)^{-1} w_{n}\right) \\
& \leq v\left(\tau_{n} e_{n}^{-1}\left(\gamma_{N}-\varepsilon_{n}\right)\right) \text { a.s., } \varepsilon_{n} \rightarrow 0(\text { slow })
\end{aligned}
$$

Use properties of $\psi$ to get

$$
\psi\left(\tau_{n} \gamma_{N}\right) \leq \psi\left(\tau_{n} e_{n}^{-1} \gamma_{N}\right)\left(1-\varepsilon_{n} \gamma_{N}^{-1}\right)^{-1}
$$

## Proof of the Key Lemma: $\max _{i}\left|e_{i}-1\right| \xrightarrow{\text { a.s. }} 0, e_{i}=\frac{v\left(\tau_{i} d_{i}\right)}{v\left(\tau_{i} \gamma_{N}\right)}$

Substitution Trick (case $\left.\tau_{i} \in[a, b] \subset(0, \infty)\right)$
Up to relabelling $e_{1} \leq \ldots \leq e_{n}$, use

$$
\begin{aligned}
v\left(\tau_{n} \gamma_{N}\right) e_{n}=v\left(\tau_{n} d_{n}\right) & =v(\tau_{n} \frac{1}{N} w_{n}^{*}(\frac{1}{n} \sum_{i<n} \tau_{i} \underbrace{v\left(\tau_{i} d_{i}\right)}_{=v\left(\tau_{i} \gamma_{N}\right) e_{i}} w_{i} w_{i}^{*})^{-1} w_{n}) \\
& \leq v\left(\tau_{n} e_{n}^{-1} \frac{1}{N} w_{n}^{*}\left(\frac{1}{n} \sum_{i<n} \tau_{i} v\left(\tau_{i} \gamma_{N}\right) w_{i} w_{i}^{*}\right)^{-1} w_{n}\right) \\
& \leq v\left(\tau_{n} e_{n}^{-1}\left(\gamma_{N}-\varepsilon_{n}\right)\right) \text { a.s., } \varepsilon_{n} \rightarrow 0(\text { slow })
\end{aligned}
$$

Use properties of $\psi$ to get

$$
\psi\left(\tau_{n} \gamma_{N}\right) \leq \psi\left(\tau_{n} e_{n}^{-1} \gamma_{N}\right)\left(1-\varepsilon_{n} \gamma_{N}^{-1}\right)^{-1}
$$

Conclusion: If $e_{n}>1+\ell$ i.o., as $\tau_{n} \in[a, b]$, on subsequence $\left\{\begin{array}{l}\tau_{n} \rightarrow \tau_{0}>0 \\ \gamma_{N} \rightarrow \gamma_{0}>0\end{array}\right.$,

$$
\psi\left(\tau_{0} \gamma_{0}\right) \leq \psi\left(\frac{\tau_{0} \gamma_{0}}{1+\ell}\right), \text { a contradiction. }
$$

## Outlier Data

Theorem (Outlier Rejection)
Observation set

$$
X=\left[x_{1}, \ldots, x_{\left(1-\varepsilon_{n}\right) n}, a_{1}, \ldots, a_{\varepsilon_{n} n}\right]
$$

where $x_{i} \sim \mathcal{C N}\left(0, C_{N}\right)$ and $a_{1}, \ldots, a_{\varepsilon_{n} n} \in \mathbb{C}^{N}$ deterministic outliers. Then,

$$
\left\|\hat{C}_{N}-\hat{S}_{N}\right\| \xrightarrow{\text { a.s. }} 0
$$

where

$$
\hat{S}_{N} \triangleq v\left(\gamma_{N}\right) \frac{1}{n} \sum_{i=1}^{\left(1-\varepsilon_{n}\right) n} x_{i} x_{i}^{*}+\frac{1}{n} \sum_{i=1}^{\varepsilon_{n} n} v\left(\alpha_{i, n}\right) a_{i} a_{i}^{*}
$$

with $\gamma_{N}$ and $\alpha_{1, n}, \ldots, \alpha_{\varepsilon_{n} n, n}$ unique positive solutions to

$$
\begin{aligned}
\gamma_{N} & =\frac{1}{N} \operatorname{tr} C_{N}\left(\frac{(1-\varepsilon) v\left(\gamma_{N}\right)}{1+c v\left(\gamma_{N}\right) \gamma_{N}} C_{N}+\frac{1}{n} \sum_{i=1}^{\varepsilon_{n} n} v\left(\alpha_{i, n}\right) a_{i} a_{i}^{*}\right)^{-1} \\
\alpha_{i, n} & =\frac{1}{N} a_{i}^{*}\left(\frac{(1-\varepsilon) v\left(\gamma_{N}\right)}{1+c v\left(\gamma_{N}\right) \gamma_{N}} C_{N}+\frac{1}{n} \sum_{j \neq i}^{\varepsilon_{n} n} v\left(\alpha_{j, n}\right) a_{j} a_{j}^{*}\right)^{-1} a_{i}, i=1, \ldots, \varepsilon_{n} n .
\end{aligned}
$$

## Outlier Data

- For $\varepsilon_{n} n=1$,

$$
\hat{S}_{N}=v\left(\frac{\phi^{-1}(1)}{1-c}\right) \frac{1}{n} \sum_{i=1}^{n-1} x_{i} x_{i}^{*}+\left(v\left(\frac{\phi^{-1}(1)}{1-c} \frac{1}{N} a_{1}^{*} C_{N}^{-1} a_{1}\right)+o(1)\right) a_{1} a_{1}^{*}
$$

Outlier rejection relies on $\frac{1}{N} a_{1}^{*} C_{N}^{-1} a_{1} \lessgtr 1$.

## Outlier Data

- For $\varepsilon_{n} n=1$,

$$
\hat{S}_{N}=v\left(\frac{\phi^{-1}(1)}{1-c}\right) \frac{1}{n} \sum_{i=1}^{n-1} x_{i} x_{i}^{*}+\left(v\left(\frac{\phi^{-1}(1)}{1-c} \frac{1}{N} a_{1}^{*} C_{N}^{-1} a_{1}\right)+o(1)\right) a_{1} a_{1}^{*}
$$

Outlier rejection relies on $\frac{1}{N} a_{1}^{*} C_{N}^{-1} a_{1} \lessgtr 1$.

- For $a_{i} \sim \mathcal{C N}\left(0, D_{N}\right), \varepsilon_{n} \rightarrow \varepsilon \geq 0$,

$$
\begin{aligned}
\hat{S}_{N} & =v\left(\gamma_{n}\right) \frac{1}{n} \sum_{i=1}^{\left(1-\varepsilon_{n}\right) n} x_{i} x_{i}^{*}+v\left(\alpha_{n}\right) \frac{1}{n} \sum_{i=1}^{\varepsilon_{n} n} a_{i} a_{i}^{*} \\
\gamma_{n} & =\frac{1}{N} \operatorname{tr} C_{N}\left(\frac{(1-\varepsilon) v\left(\gamma_{n}\right)}{1+c v\left(\gamma_{n}\right) \gamma_{n}} C_{N}+\frac{\varepsilon v\left(\alpha_{n}\right)}{1+c v\left(\alpha_{n}\right) \alpha_{n}} D_{N}\right)^{-1} \\
\alpha_{n} & =\frac{1}{N} \operatorname{tr} D_{N}\left(\frac{(1-\varepsilon) v\left(\gamma_{n}\right)}{1+c v\left(\gamma_{n}\right) \gamma_{n}} C_{N}+\frac{\varepsilon v\left(\alpha_{n}\right)}{1+c v\left(\alpha_{n}\right) \alpha_{n}} D_{N}\right)^{-1} .
\end{aligned}
$$

## Outlier Data

- For $\varepsilon_{n} n=1$,

$$
\hat{S}_{N}=v\left(\frac{\phi^{-1}(1)}{1-c}\right) \frac{1}{n} \sum_{i=1}^{n-1} x_{i} x_{i}^{*}+\left(v\left(\frac{\phi^{-1}(1)}{1-c} \frac{1}{N} a_{1}^{*} C_{N}^{-1} a_{1}\right)+o(1)\right) a_{1} a_{1}^{*}
$$

Outlier rejection relies on $\frac{1}{N} a_{1}^{*} C_{N}^{-1} a_{1} \lessgtr 1$.

- For $a_{i} \sim \mathcal{C N}\left(0, D_{N}\right), \varepsilon_{n} \rightarrow \varepsilon \geq 0$,

$$
\begin{aligned}
\hat{S}_{N} & =v\left(\gamma_{n}\right) \frac{1}{n} \sum_{i=1}^{\left(1-\varepsilon_{n}\right) n} x_{i} x_{i}^{*}+v\left(\alpha_{n}\right) \frac{1}{n} \sum_{i=1}^{\varepsilon_{n} n} a_{i} a_{i}^{*} \\
\gamma_{n} & =\frac{1}{N} \operatorname{tr} C_{N}\left(\frac{(1-\varepsilon) v\left(\gamma_{n}\right)}{1+c v\left(\gamma_{n}\right) \gamma_{n}} C_{N}+\frac{\varepsilon v\left(\alpha_{n}\right)}{1+c v\left(\alpha_{n}\right) \alpha_{n}} D_{N}\right)^{-1} \\
\alpha_{n} & =\frac{1}{N} \operatorname{tr} D_{N}\left(\frac{(1-\varepsilon) v\left(\gamma_{n}\right)}{1+c v\left(\gamma_{n}\right) \gamma_{n}} C_{N}+\frac{\varepsilon v\left(\alpha_{n}\right)}{1+c v\left(\alpha_{n}\right) \alpha_{n}} D_{N}\right)^{-1} .
\end{aligned}
$$

For $\varepsilon_{n} \rightarrow 0$,

$$
\hat{S}_{N}=v\left(\frac{\phi^{-1}(1)}{1-c}\right) \frac{1}{n} \sum_{i=1}^{\left(1-\varepsilon_{n}\right) n} x_{i} x_{i}^{*}+\frac{1}{n} \sum_{i=1}^{\varepsilon_{n} n} v\left(\frac{\phi^{-1}(1)}{1-c} \frac{1}{N} \operatorname{tr} D_{N} C_{N}^{-1}\right) a_{i} a_{i}^{*}
$$

Outlier rejection relies on $\frac{1}{N} \operatorname{tr} D_{N} C_{N}^{-1} \lessgtr 1$.

## Outlier Data



Figure: Limiting eigenvalue distributions. $\left[C_{N}\right]_{i j}=.9^{|i-j|}, D_{N}=I_{N}, \varepsilon=.05$.

## Outlier Data



Figure: Limiting eigenvalue distributions. $\left[C_{N}\right]_{i j}=.9^{|i-j|}, D_{N}=I_{N}, \varepsilon=.05$.

## Outlier Data



Figure: Limiting eigenvalue distributions. $\left[C_{N}\right]_{i j}=.9^{|i-j|}, D_{N}=I_{N}, \varepsilon=.05$.

## Example of application to statistical finance

- Robust matrix-optimized portfolio allocation $\hat{\mathrm{C}}_{\text {ST }}$



## Outline

```
Basics of Random Matrix Theory
 Motivation: Large Sample Covariance Matrices
 The Stieltjes Transform Method
 Spiked Models
 Other Common Random Matrix Models
```

Applications
Random Matrices and Robust Estimation Spectral Clustering Methods and Random Matrices
Community Detection on Graphs
Kernel Spectral Clustering
Kernel Spectral Clustering: Subspace Clustering
Semi-supervised Learning
Support Vector Machines
Neural Networks: Extreme Learning Machines

Perspectives

## Reminder on Spectral Clustering Methods

Context: Two-step classification of $n$ objects based on similarity $A \in \mathbb{R}^{n \times n}$ :

1. extraction of eigenvectors $U=\left[u_{1}, \ldots, u_{\ell}\right]$ with "dominant" eigenvalues

## Reminder on Spectral Clustering Methods

Context: Two-step classification of $n$ objects based on similarity $A \in \mathbb{R}^{n \times n}$ :

1. extraction of eigenvectors $U=\left[u_{1}, \ldots, u_{\ell}\right]$ with "dominant" eigenvalues
2. classification of vectors $U_{1, \cdot,}, \ldots, U_{n, \cdot} \in \mathbb{R}^{\ell}$ using k-means/EM.

## Reminder on Spectral Clustering Methods

Context: Two-step classification of $n$ objects based on similarity $A \in \mathbb{R}^{n \times n}$ :

1. extraction of eigenvectors $U=\left[u_{1}, \ldots, u_{\ell}\right]$ with "dominant" eigenvalues
2. classification of vectors $U_{1, \cdot,}, ., U_{n, .} \in \mathbb{R}^{\ell}$ using k-means/EM.


## Reminder on Spectral Clustering Methods

Context: Two-step classification of $n$ objects based on similarity $A \in \mathbb{R}^{n \times n}$ :

1. extraction of eigenvectors $U=\left[u_{1}, \ldots, u_{\ell}\right]$ with "dominant" eigenvalues
2. classification of vectors $U_{1, \cdot,}, \ldots, U_{n, \cdot} \in \mathbb{R}^{\ell}$ using k-means/EM.

$\Downarrow$ Eigenvectors $\Downarrow$
(in practice, shuffled!!)


## Reminder on Spectral Clustering Methods





## Reminder on Spectral Clustering Methods

$\stackrel{-}{c}$


ъ・ヘиәริ!ヨ

$\Downarrow \ell$-dimensional representation $\Downarrow$
(shuffling no longer matters!)


Eigenvector 1

## Reminder on Spectral Clustering Methods

$\xrightarrow{-1}$


ъ・ヘиәฮิ!ヨ

$\Downarrow \ell$-dimensional representation $\Downarrow$
(shuffling no longer matters!)


Eigenvector 1
$\Downarrow$
EM or k-means clustering.

## The Random Matrix Approach

## A two-step method:

1. If $A_{n}$ is not a "standard" random matrix, retrieve $\tilde{A}_{n}$ such that

$$
\left\|A_{n}-\tilde{A}_{n}\right\| \xrightarrow{\text { a.s. }} 0
$$

in operator norm as $n \rightarrow \infty$.

## The Random Matrix Approach

## A two-step method:

1. If $A_{n}$ is not a "standard" random matrix, retrieve $\tilde{A}_{n}$ such that

$$
\left\|A_{n}-\tilde{A}_{n}\right\| \xrightarrow{\text { a.s. }} 0
$$

in operator norm as $n \rightarrow \infty$.
$\Rightarrow$ Transfers crucial properties from $A_{n}$ to $\tilde{A}_{n}$ :

## The Random Matrix Approach

## A two-step method:

1. If $A_{n}$ is not a "standard" random matrix, retrieve $\tilde{A}_{n}$ such that

$$
\left\|A_{n}-\tilde{A}_{n}\right\| \xrightarrow{\text { a.s. }} 0
$$

in operator norm as $n \rightarrow \infty$.
$\Rightarrow$ Transfers crucial properties from $A_{n}$ to $\tilde{A}_{n}$ :

- limiting eigenvalue distribution


## The Random Matrix Approach

## A two-step method:

1. If $A_{n}$ is not a "standard" random matrix, retrieve $\tilde{A}_{n}$ such that

$$
\left\|A_{n}-\tilde{A}_{n}\right\| \xrightarrow{\text { a.s. }} 0
$$

in operator norm as $n \rightarrow \infty$.
$\Rightarrow$ Transfers crucial properties from $A_{n}$ to $\tilde{A}_{n}$ :

- limiting eigenvalue distribution
- spikes


## The Random Matrix Approach

## A two-step method:

1. If $A_{n}$ is not a "standard" random matrix, retrieve $\tilde{A}_{n}$ such that

$$
\left\|A_{n}-\tilde{A}_{n}\right\| \xrightarrow{\text { a.s. }} 0
$$

in operator norm as $n \rightarrow \infty$.
$\Rightarrow$ Transfers crucial properties from $A_{n}$ to $\tilde{A}_{n}$ :

- limiting eigenvalue distribution
- spikes
- eigenvectors of isolated eigenvalues.


## The Random Matrix Approach

## A two-step method:

1. If $A_{n}$ is not a "standard" random matrix, retrieve $\tilde{A}_{n}$ such that

$$
\left\|A_{n}-\tilde{A}_{n}\right\| \xrightarrow{\text { a.s. }} 0
$$

in operator norm as $n \rightarrow \infty$.
$\Rightarrow$ Transfers crucial properties from $A_{n}$ to $\tilde{A}_{n}$ :

- limiting eigenvalue distribution
- spikes
- eigenvectors of isolated eigenvalues.

2. From $\tilde{A}_{n}$, perform spiked model analysis:

## The Random Matrix Approach

## A two-step method:

1. If $A_{n}$ is not a "standard" random matrix, retrieve $\tilde{A}_{n}$ such that

$$
\left\|A_{n}-\tilde{A}_{n}\right\| \xrightarrow{\text { a.s. }} 0
$$

in operator norm as $n \rightarrow \infty$.
$\Rightarrow$ Transfers crucial properties from $A_{n}$ to $\tilde{A}_{n}$ :

- limiting eigenvalue distribution
- spikes
- eigenvectors of isolated eigenvalues.

2. From $\tilde{A}_{n}$, perform spiked model analysis:

- exhibit phase transition phenomenon


## The Random Matrix Approach

## A two-step method:

1. If $A_{n}$ is not a "standard" random matrix, retrieve $\tilde{A}_{n}$ such that

$$
\left\|A_{n}-\tilde{A}_{n}\right\| \xrightarrow{\text { a.s. }} 0
$$

in operator norm as $n \rightarrow \infty$.
$\Rightarrow$ Transfers crucial properties from $A_{n}$ to $\tilde{A}_{n}$ :

- limiting eigenvalue distribution
- spikes
- eigenvectors of isolated eigenvalues.

2. From $\tilde{A}_{n}$, perform spiked model analysis:

- exhibit phase transition phenomenon
- "read" the content of isolated eigenvectors of $\tilde{A}_{n}$.


## The Random Matrix Approach

## The Spike Analysis:

For "noisy plateaus" -looking isolated eigenvectors $u_{1}, \ldots, u_{\ell}$ of $\tilde{A}_{n}$, write

$$
u_{i}=\sum_{a=1}^{k} \alpha_{i}^{a} \frac{j_{a}}{\sqrt{n_{a}}}+\sigma_{i}^{a} w_{i}^{a}
$$

with $j_{a} \in \mathbb{R}^{n}$ canonical vector of class $\mathcal{C}_{a}, w_{i}^{a}$ noise orthogonal to $j_{a}$,

## The Random Matrix Approach

## The Spike Analysis:

For "noisy plateaus"-looking isolated eigenvectors $u_{1}, \ldots, u_{\ell}$ of $\tilde{A}_{n}$, write

$$
u_{i}=\sum_{a=1}^{k} \alpha_{i}^{a} \frac{j_{a}}{\sqrt{n_{a}}}+\sigma_{i}^{a} w_{i}^{a}
$$

with $j_{a} \in \mathbb{R}^{n}$ canonical vector of class $\mathcal{C}_{a}, w_{i}^{a}$ noise orthogonal to $j_{a}$, and evaluate

$$
\begin{aligned}
\alpha_{i}^{a} & =\frac{1}{\sqrt{n_{a}}} u_{i}^{\mathrm{T}} j_{a} \\
\left(\sigma_{i}^{a}\right)^{2} & =\left\|u_{i}-\alpha_{i}^{a} \frac{j_{a}}{\sqrt{n_{a}}}\right\|^{2} .
\end{aligned}
$$

## The Random Matrix Approach

## The Spike Analysis:

For "noisy plateaus"-looking isolated eigenvectors $u_{1}, \ldots, u_{\ell}$ of $\tilde{A}_{n}$, write

$$
u_{i}=\sum_{a=1}^{k} \alpha_{i}^{a} \frac{j_{a}}{\sqrt{n_{a}}}+\sigma_{i}^{a} w_{i}^{a}
$$

with $j_{a} \in \mathbb{R}^{n}$ canonical vector of class $\mathcal{C}_{a}, w_{i}^{a}$ noise orthogonal to $j_{a}$, and evaluate

$$
\begin{aligned}
\alpha_{i}^{a} & =\frac{1}{\sqrt{n_{a}}} u_{i}^{\top} j_{a} \\
\left(\sigma_{i}^{a}\right)^{2} & =\left\|u_{i}-\alpha_{i}^{a} \frac{j_{a}}{\sqrt{n_{a}}}\right\|^{2} .
\end{aligned}
$$

$\Longrightarrow$ Can be done using complex analysis calculus, e.g.

$$
\begin{aligned}
\left(\alpha_{i}^{a}\right)^{2} & =\frac{1}{n_{a}} j_{a}^{\top} u_{i} u_{i}^{\top} j_{a} \\
& =\frac{1}{2 \pi \imath} \oint_{\gamma_{a}} \frac{1}{n_{a}} j_{a}^{\mathrm{\top}}\left(\tilde{A}_{n}-z I_{n}\right)^{-1} j_{a} d z
\end{aligned}
$$

## Outline

```
Basics of Random Matrix Theory
 Motivation: Large Sample Covariance Matrices
 The Stieltjes Transform Method
 Spiked Models
 Other Common Random Matrix Models
```

Applications
Random Matrices and Robust Estimation
Spectral Clustering Methods and Random Matrices
Community Detection on Graphs
Kernel Spectral Clustering
Kernel Spectral Clustering: Subspace Clustering
Semi-supervised Learning
Support Vector Machines
Neural Networks: Extreme Learning Machines

Perspectives

## System Setting



Assume $n$-node, $m$-edges undirected graph $G$, with

- "intrinsic" average connectivity $q_{1}, \ldots, q_{n} \sim \mu$ i.i.d.


## System Setting



Assume $n$-node, $m$-edges undirected graph $G$, with

- "intrinsic" average connectivity $q_{1}, \ldots, q_{n} \sim \mu$ i.i.d.
- $k$ classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$ independent of $\left\{q_{i}\right\}$ of (large) sizes $n_{1}, \ldots, n_{k}$, with preferential attachment $C_{a b}$ between $\mathcal{C}_{a}$ and $\mathcal{C}_{b}$


## System Setting



Assume $n$-node, $m$-edges undirected graph $G$, with

- "intrinsic" average connectivity $q_{1}, \ldots, q_{n} \sim \mu$ i.i.d.
- $k$ classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$ independent of $\left\{q_{i}\right\}$ of (large) sizes $n_{1}, \ldots, n_{k}$, with preferential attachment $C_{a b}$ between $\mathcal{C}_{a}$ and $\mathcal{C}_{b}$
- induces edge probability for node $i \in \mathcal{C}_{a}, j \in \mathcal{C}_{b}$,

$$
P(i \sim j)=q_{i} q_{j} C_{a b}
$$

## System Setting



Assume $n$-node, $m$-edges undirected graph $G$, with

- "intrinsic" average connectivity $q_{1}, \ldots, q_{n} \sim \mu$ i.i.d.
- $k$ classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$ independent of $\left\{q_{i}\right\}$ of (large) sizes $n_{1}, \ldots, n_{k}$, with preferential attachment $C_{a b}$ between $\mathcal{C}_{a}$ and $\mathcal{C}_{b}$
- induces edge probability for node $i \in \mathcal{C}_{a}, j \in \mathcal{C}_{b}$,

$$
P(i \sim j)=q_{i} q_{j} C_{a b} .
$$

- adjacency matrix $A$ with $A_{i j} \sim \operatorname{Bernoulli}\left(q_{i} q_{j} C_{a b}\right)$.


## Objective

Study of spectral methods:

- standard methods based on adjacency $A$, modularity $A-\frac{d d^{\top}}{2 m}$, normalized adjacency $D^{-1} A D^{-1}$, etc. (adapted to dense nets)
- refined methods based on Bethe Hessian $\left(r^{2}-1\right) I_{n}-r A+D$ (adapted to sparse nets!)


## Objective

Study of spectral methods:

- standard methods based on adjacency $A$, modularity $A-\frac{d d^{\top}}{2 m}$, normalized adjacency $D^{-1} A D^{-1}$, etc. (adapted to dense nets)
- refined methods based on Bethe Hessian $\left(r^{2}-1\right) I_{n}-r A+D$ (adapted to sparse nets!)

Improvement to realistic graphs:

- observation of failure of standard methods above
- improvement by new methods.


## Limitations of Adjacency/Modularity Approach



(Bethe Hessian)

## Limitations of Adjacency/Modularity Approach



(Bethe Hessian)

Scenario: 3 classes with $\mu$ bi-modal (e.g., $\mu=\frac{3}{4} \delta_{0.1}+\frac{1}{4} \delta_{0.5}$ )
$\rightarrow$ Leading eigenvectors of $A$ (or modularity $A-\frac{d d^{\top}}{2 m}$ ) biased by $q_{i}$ distribution.
$\rightarrow$ Similar behavior for Bethe Hessian.

## Regularized Modularity Approach

Connectivity Model: $P(i \sim j)=q_{i} q_{j} C_{a b}$ for $i \in \mathcal{C}_{a}, j \in \mathcal{C}_{b}$.
Dense Regime Assumptions: Non trivial regime when, as $n \rightarrow \infty$,

$$
C_{a b}=1+\frac{M_{a b}}{\sqrt{n}}, M_{a b}=O(1) .
$$

## Regularized Modularity Approach

Connectivity Model: $P(i \sim j)=q_{i} q_{j} C_{a b}$ for $i \in \mathcal{C}_{a}, j \in \mathcal{C}_{b}$.
Dense Regime Assumptions: Non trivial regime when, as $n \rightarrow \infty$,

$$
C_{a b}=1+\frac{M_{a b}}{\sqrt{n}}, \quad M_{a b}=O(1)
$$

$\Rightarrow$ Community information is weak but highly REDUNDANT!

## Regularized Modularity Approach

Connectivity Model: $P(i \sim j)=q_{i} q_{j} C_{a b}$ for $i \in \mathcal{C}_{a}, j \in \mathcal{C}_{b}$.
Dense Regime Assumptions: Non trivial regime when, as $n \rightarrow \infty$,

$$
C_{a b}=1+\frac{M_{a b}}{\sqrt{n}}, \quad M_{a b}=O(1)
$$

$\Rightarrow$ Community information is weak but highly REDUNDANT!

## Considered Matrix:

For $\alpha \in[0,1]$, (and with $D=\operatorname{diag}\left(A 1_{n}\right)=\operatorname{diag}(d)$ the degree matrix), $m=\frac{1}{2} d^{\top} 1$ the number of edges

$$
L_{\alpha}=(2 m)^{\alpha} \frac{1}{\sqrt{n}} D^{-\alpha}\left[A-\frac{d d^{\top}}{2 m}\right] D^{-\alpha}
$$

## Regularized Modularity Approach

Connectivity Model: $P(i \sim j)=q_{i} q_{j} C_{a b}$ for $i \in \mathcal{C}_{a}, j \in \mathcal{C}_{b}$.
Dense Regime Assumptions: Non trivial regime when, as $n \rightarrow \infty$,

$$
C_{a b}=1+\frac{M_{a b}}{\sqrt{n}}, \quad M_{a b}=O(1)
$$

$\Rightarrow$ Community information is weak but highly REDUNDANT!

## Considered Matrix:

For $\alpha \in[0,1]$, (and with $D=\operatorname{diag}\left(A 1_{n}\right)=\operatorname{diag}(d)$ the degree matrix), $m=\frac{1}{2} d^{\top} 1$ the number of edges

$$
L_{\alpha}=(2 m)^{\alpha} \frac{1}{\sqrt{n}} D^{-\alpha}\left[A-\frac{d d^{\top}}{2 m}\right] D^{-\alpha} .
$$

## Our results in a nutshell:

- we find optimal $\alpha_{\mathrm{opt}}$ having best phase transition.


## Regularized Modularity Approach

Connectivity Model: $P(i \sim j)=q_{i} q_{j} C_{a b}$ for $i \in \mathcal{C}_{a}, j \in \mathcal{C}_{b}$.
Dense Regime Assumptions: Non trivial regime when, as $n \rightarrow \infty$,

$$
C_{a b}=1+\frac{M_{a b}}{\sqrt{n}}, \quad M_{a b}=O(1)
$$

$\Rightarrow$ Community information is weak but highly REDUNDANT!

## Considered Matrix:

For $\alpha \in[0,1]$, (and with $D=\operatorname{diag}\left(A 1_{n}\right)=\operatorname{diag}(d)$ the degree matrix), $m=\frac{1}{2} d^{\top} 1$ the number of edges

$$
L_{\alpha}=(2 m)^{\alpha} \frac{1}{\sqrt{n}} D^{-\alpha}\left[A-\frac{d d^{\top}}{2 m}\right] D^{-\alpha} .
$$

## Our results in a nutshell:

- we find optimal $\alpha_{\mathrm{opt}}$ having best phase transition.
- we find consistent estimator $\hat{\alpha}_{\text {opt }}$ from $A$ alone.


## Regularized Modularity Approach

Connectivity Model: $P(i \sim j)=q_{i} q_{j} C_{a b}$ for $i \in \mathcal{C}_{a}, j \in \mathcal{C}_{b}$.
Dense Regime Assumptions: Non trivial regime when, as $n \rightarrow \infty$,

$$
C_{a b}=1+\frac{M_{a b}}{\sqrt{n}}, \quad M_{a b}=O(1)
$$

$\Rightarrow$ Community information is weak but highly REDUNDANT!

## Considered Matrix:

For $\alpha \in[0,1]$, (and with $D=\operatorname{diag}\left(A 1_{n}\right)=\operatorname{diag}(d)$ the degree matrix), $m=\frac{1}{2} d^{\top} 1$ the number of edges

$$
L_{\alpha}=(2 m)^{\alpha} \frac{1}{\sqrt{n}} D^{-\alpha}\left[A-\frac{d d^{\top}}{2 m}\right] D^{-\alpha} .
$$

## Our results in a nutshell:

- we find optimal $\alpha_{\mathrm{opt}}$ having best phase transition.
- we find consistent estimator $\hat{\alpha}_{\text {opt }}$ from $A$ alone.
- we claim optimal eigenvector regularization $D^{\alpha-1} u, u$ eigenvector of $L_{\alpha}$.


## Asymptotic Equivalence

Theorem (Limiting Random Matrix Equivalent)
For each $\alpha \in[0,1]$, as $n \rightarrow \infty,\left\|L_{\alpha}-\tilde{L}_{\alpha}\right\| \rightarrow 0$ almost surely, where

$$
\begin{aligned}
& L_{\alpha}=(2 m)^{\alpha} \frac{1}{\sqrt{n}} D^{-\alpha}\left[A-\frac{d d^{\top}}{2 m}\right] D^{-\alpha} \\
& \tilde{L}_{\alpha}=\frac{1}{\sqrt{n}} D_{q}^{-\alpha} X D_{q}^{-\alpha}+U \Lambda U^{\top}
\end{aligned}
$$

with $D_{q}=\operatorname{diag}\left(\left\{q_{i}\right\}\right), X$ zero-mean random matrix,

$$
\begin{aligned}
U & =\left[\begin{array}{ll}
D_{q}^{1-\alpha} \frac{J}{\sqrt{n}} & D_{q}^{-\alpha} X 1_{n}
\end{array}\right], \\
\Lambda & =\left[\begin{array}{cc}
\left(I_{k}-1_{k} c^{\top}\right) M\left(I_{k}-c 1_{k}^{\top}\right) & -1_{k} \\
1_{k}^{\top} & 0
\end{array}\right]
\end{aligned}
$$

and $J=\left[j_{1}, \ldots, j_{k}\right], j_{a}=\left[0, \ldots, 0,1_{n_{a}}^{\top}, 0, \ldots, 0\right]^{\top} \in \mathbb{R}^{n}$ canonical vector of class $\mathcal{C}_{a}$.

## Asymptotic Equivalence

Theorem (Limiting Random Matrix Equivalent)
For each $\alpha \in[0,1]$, as $n \rightarrow \infty,\left\|L_{\alpha}-\tilde{L}_{\alpha}\right\| \rightarrow 0$ almost surely, where

$$
\begin{aligned}
& L_{\alpha}=(2 m)^{\alpha} \frac{1}{\sqrt{n}} D^{-\alpha}\left[A-\frac{d d^{\top}}{2 m}\right] D^{-\alpha} \\
& \tilde{L}_{\alpha}=\frac{1}{\sqrt{n}} D_{q}^{-\alpha} X D_{q}^{-\alpha}+U \Lambda U^{\top}
\end{aligned}
$$

with $D_{q}=\operatorname{diag}\left(\left\{q_{i}\right\}\right), X$ zero-mean random matrix,

$$
\begin{aligned}
U & =\left[\begin{array}{ll}
D_{q}^{1-\alpha} \frac{J}{\sqrt{n}} & D_{q}^{-\alpha} X 1_{n}
\end{array}\right], \\
\Lambda & =\left[\begin{array}{cc}
\left(I_{k}-1_{k} c^{\top}\right) M\left(I_{k}-c 1_{k}^{\top}\right) & -1_{k} \\
1_{k}^{\top} & 0
\end{array}\right]
\end{aligned}
$$

and $J=\left[j_{1}, \ldots, j_{k}\right], j_{a}=\left[0, \ldots, 0,1_{n_{a}}^{\top}, 0, \ldots, 0\right]^{\top} \in \mathbb{R}^{n}$ canonical vector of class $\mathcal{C}_{a}$.

## Consequences:

- isolated eigenvalues beyond phase transition $\leftrightarrow \lambda(M)>$ "spectrum edge" $\Rightarrow$ optimal choice $\alpha_{\mathrm{opt}}$ of $\alpha$ from study of noise spectrum.


## Asymptotic Equivalence

Theorem (Limiting Random Matrix Equivalent)
For each $\alpha \in[0,1]$, as $n \rightarrow \infty,\left\|L_{\alpha}-\tilde{L}_{\alpha}\right\| \rightarrow 0$ almost surely, where

$$
\begin{aligned}
& L_{\alpha}=(2 m)^{\alpha} \frac{1}{\sqrt{n}} D^{-\alpha}\left[A-\frac{d d^{\top}}{2 m}\right] D^{-\alpha} \\
& \tilde{L}_{\alpha}=\frac{1}{\sqrt{n}} D_{q}^{-\alpha} X D_{q}^{-\alpha}+U \Lambda U^{\top}
\end{aligned}
$$

with $D_{q}=\operatorname{diag}\left(\left\{q_{i}\right\}\right), X$ zero-mean random matrix,

$$
\begin{aligned}
U & =\left[\begin{array}{ll}
D_{q}^{1-\alpha} \frac{J}{\sqrt{n}} & D_{q}^{-\alpha} X 1_{n}
\end{array}\right], \quad \text { rank } k+1 \\
\Lambda & =\left[\begin{array}{cc}
\left(I_{k}-1_{k} c^{\top}\right) M\left(I_{k}-c 1_{k}^{\top}\right) & -1_{k} \\
1_{k}^{\top} & 0
\end{array}\right]
\end{aligned}
$$

and $J=\left[j_{1}, \ldots, j_{k}\right], j_{a}=\left[0, \ldots, 0,1_{n_{a}}^{\top}, 0, \ldots, 0\right]^{\top} \in \mathbb{R}^{n}$ canonical vector of class $\mathcal{C}_{a}$.

## Consequences:

- isolated eigenvalues beyond phase transition $\leftrightarrow \lambda(M)>$ "spectrum edge" $\Rightarrow$ optimal choice $\alpha_{\mathrm{opt}}$ of $\alpha$ from study of noise spectrum.
- eigenvectors correlated to $D_{q}^{1-\alpha} J$
$\Rightarrow$ Natural regularization by $D^{\alpha-1}$ !


## Eigenvalue Spectrum



Figure: Eigenvalues of $L_{1}, K=3, n=2000, c_{1}=0.3, c_{2}=0.3, c_{3}=0.4$, $\mu=\frac{1}{2} \delta_{q_{(1)}}+\frac{1}{2} \delta_{q_{(2)}}, q_{(1)}=0.4, q_{(2)}=0.9, M$ defined by $M_{i i}=12, M_{i j}=-4, i \neq j$.

## Phase Transition

Theorem (Phase Transition)
For $\alpha \in[0,1]$, isolated eigenvalue $\lambda_{i}\left(L_{\alpha}\right)$ if $\left|\lambda_{i}(\bar{M})\right|>\tau^{\alpha}, \bar{M}=\left(\mathcal{D}(c)-c c^{\boldsymbol{\top}}\right) M$,

$$
\tau^{\alpha}=\lim _{x \downarrow S_{+}^{\alpha}}-\frac{1}{e_{2}^{\alpha}(x)}, \text { phase transition threshold }
$$

with $\left[S_{-}^{\alpha}, S_{+}^{\alpha}\right]$ limiting eigenvalue support of $L_{\alpha}$ and $e_{2}^{\alpha}(x)\left(|x|>S_{+}^{\alpha}\right)$ solution of

$$
\begin{aligned}
& e_{1}^{\alpha}(x)=\int \frac{q^{1-2 \alpha}}{-x-q^{1-2 \alpha} e_{1}^{\alpha}(x)+q^{2-2 \alpha} e_{2}^{\alpha}(x)} \mu(d q) \\
& e_{2}^{\alpha}(x)=\int \frac{q^{2-2 \alpha}}{-x-q^{1-2 \alpha} e_{1}^{\alpha}(x)+q^{2-2 \alpha} e_{2}^{\alpha}(x)} \mu(d q)
\end{aligned}
$$

In this case, $-\frac{1}{e_{2}^{\alpha}\left(\lambda_{i}\left(L_{\alpha}\right)\right)}=\lambda_{i}(\bar{M})$.

## Phase Transition

Theorem (Phase Transition)
For $\alpha \in[0,1]$, isolated eigenvalue $\lambda_{i}\left(L_{\alpha}\right)$ if $\left|\lambda_{i}(\bar{M})\right|>\tau^{\alpha}, \bar{M}=\left(\mathcal{D}(c)-c c^{\boldsymbol{\top}}\right) M$,

$$
\tau^{\alpha}=\lim _{x \downarrow S_{+}^{\alpha}}-\frac{1}{e_{2}^{\alpha}(x)}, \text { phase transition threshold }
$$

with $\left[S_{-}^{\alpha}, S_{+}^{\alpha}\right]$ limiting eigenvalue support of $L_{\alpha}$ and $e_{2}^{\alpha}(x)\left(|x|>S_{+}^{\alpha}\right)$ solution of

$$
\begin{aligned}
& e_{1}^{\alpha}(x)=\int \frac{q^{1-2 \alpha}}{-x-q^{1-2 \alpha} e_{1}^{\alpha}(x)+q^{2-2 \alpha} e_{2}^{\alpha}(x)} \mu(d q) \\
& e_{2}^{\alpha}(x)=\int \frac{q^{2-2 \alpha}}{-x-q^{1-2 \alpha} e_{1}^{\alpha}(x)+q^{2-2 \alpha} e_{2}^{\alpha}(x)} \mu(d q) .
\end{aligned}
$$

In this case, $-\frac{1}{e_{2}^{\alpha}\left(\lambda_{i}\left(L_{\alpha}\right)\right)}=\lambda_{i}(\bar{M})$.
Clustering still possible when $\lambda_{i}(\bar{M})=\left(\min _{\alpha} \tau_{\alpha}\right)+\varepsilon$.

- "Optimal" $\alpha=\alpha_{\mathrm{opt}}$ :

$$
\alpha_{\mathrm{opt}}=\operatorname{argmin}_{\alpha \in[0,1]}\left\{\tau_{\alpha}\right\} .
$$

## Phase Transition

Theorem (Phase Transition)
For $\alpha \in[0,1]$, isolated eigenvalue $\lambda_{i}\left(L_{\alpha}\right)$ if $\left|\lambda_{i}(\bar{M})\right|>\tau^{\alpha}, \bar{M}=\left(\mathcal{D}(c)-c c^{\boldsymbol{\top}}\right) M$,

$$
\tau^{\alpha}=\lim _{x \downarrow S_{+}^{\alpha}}-\frac{1}{e_{2}^{\alpha}(x)}, \text { phase transition threshold }
$$

with $\left[S_{-}^{\alpha}, S_{+}^{\alpha}\right]$ limiting eigenvalue support of $L_{\alpha}$ and $e_{2}^{\alpha}(x)\left(|x|>S_{+}^{\alpha}\right)$ solution of

$$
\begin{aligned}
& e_{1}^{\alpha}(x)=\int \frac{q^{1-2 \alpha}}{-x-q^{1-2 \alpha} e_{1}^{\alpha}(x)+q^{2-2 \alpha} e_{2}^{\alpha}(x)} \mu(d q) \\
& e_{2}^{\alpha}(x)=\int \frac{q^{2-2 \alpha}}{-x-q^{1-2 \alpha} e_{1}^{\alpha}(x)+q^{2-2 \alpha} e_{2}^{\alpha}(x)} \mu(d q)
\end{aligned}
$$

In this case, $-\frac{1}{e_{2}^{\alpha}\left(\lambda_{i}\left(L_{\alpha}\right)\right)}=\lambda_{i}(\bar{M})$.
Clustering still possible when $\lambda_{i}(\bar{M})=\left(\min _{\alpha} \tau_{\alpha}\right)+\varepsilon$.

- "Optimal" $\alpha=\alpha_{\mathrm{opt}}$ :

$$
\alpha_{\mathrm{opt}}=\operatorname{argmin}_{\alpha \in[0,1]}\left\{\tau_{\alpha}\right\} .
$$

- From $\max _{i}\left|\frac{d_{i}}{\sqrt{d^{\top} 1_{n}}}-q_{i}\right| \xrightarrow{\text { a.s. }} 0$, we obtain consistent estimator $\hat{\alpha}_{\mathrm{opt}}$ of $\alpha_{\mathrm{opt}}$.


## Simulated Performance Results (2 masses of $q_{i}$ )


(Modularity)

(Bethe Hessian)

## Simulated Performance Results (2 masses of $q_{i}$ )



Figure: Two dominant eigenvectors (x-y axes) for $n=2000, K=3, \mu=\frac{3}{4} \delta_{q_{(1)}}+\frac{1}{4} \delta_{q_{(2)}}$, $q_{(1)}=0.1, q_{(2)}=0.5, c_{1}=c_{2}=\frac{1}{4}, c_{3}=\frac{1}{2}, M=100 I_{3}$.

## Simulated Performance Results (2 masses of $q_{i}$ )



Figure: Two dominant eigenvectors ( $\mathrm{x}-\mathrm{y}$ axes) for $n=2000, K=3, \mu=\frac{3}{4} \delta_{q_{(1)}}+\frac{1}{4} \delta_{q_{(2)}}$, $q_{(1)}=0.1, q_{(2)}=0.5, c_{1}=c_{2}=\frac{1}{4}, c_{3}=\frac{1}{2}, M=100 I_{3}$.

## Simulated Performance Results (2 masses for $q_{i}$ )



Eigenvalue $\ell\left(\ell=-1 / e_{2}^{\alpha}(\lambda)\right.$ beyond phase transition $)$
Figure: Largest eigenvalue $\lambda$ of $L_{\alpha}$ as a function of the largest eigenvalue $\ell$ of $\left(\mathcal{D}(c)-c c^{\top}\right) M$, for $\mu=\frac{3}{4} \delta_{q_{(1)}}+\frac{1}{4} \delta_{q_{(2)}}$ with $q_{(1)}=0.1$ and $q_{(2)}=0.5$, for $\alpha \in\left\{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1, \alpha_{\text {opt }}\right\}$ (indicated below the graph). Here, $\alpha_{\mathrm{opt}}=0.07$. Circles indicate phase transition. Beyond phase transition, $\ell=-1 / e_{2}^{\alpha}(\lambda)$.

## Simulated Performance Results (2 masses for $q_{i}$ )



Eigenvalue $\ell\left(\ell=-1 / e_{2}^{\alpha}(\lambda)\right.$ beyond phase transition)
Figure: Largest eigenvalue $\lambda$ of $L_{\alpha}$ as a function of the largest eigenvalue $\ell$ of $\left(\mathcal{D}(c)-c c^{\top}\right) M$, for $\mu=\frac{3}{4} \delta_{q_{(1)}}+\frac{1}{4} \delta_{q_{(2)}}$ with $q_{(1)}=0.1$ and $q_{(2)}=0.5$, for $\alpha \in\left\{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1, \alpha_{\text {opt }}\right\}$ (indicated below the graph). Here, $\alpha_{\mathrm{opt}}=0.07$. Circles indicate phase transition. Beyond phase transition, $\ell=-1 / e_{2}^{\alpha}(\lambda)$.

## Simulated Performance Results (2 masses for $q_{i}$ )



Eigenvalue $\ell\left(\ell=-1 / e_{2}^{\alpha}(\lambda)\right.$ beyond phase transition $)$
Figure: Largest eigenvalue $\lambda$ of $L_{\alpha}$ as a function of the largest eigenvalue $\ell$ of $\left(\mathcal{D}(c)-c c^{\top}\right) M$, for $\mu=\frac{3}{4} \delta_{q_{(1)}}+\frac{1}{4} \delta_{q_{(2)}}$ with $q_{(1)}=0.1$ and $q_{(2)}=0.5$, for $\alpha \in\left\{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1, \alpha_{\text {opt }}\right\}$ (indicated below the graph). Here, $\alpha_{\mathrm{opt}}=0.07$. Circles indicate phase transition. Beyond phase transition, $\ell=-1 / e_{2}^{\alpha}(\lambda)$.

## Simulated Performance Results (2 masses for $q_{i}$ )



Figure: Overlap performance for $n=3000, K=3, c_{i}=\frac{1}{3}, \mu=\frac{3}{4} \delta_{q_{(1)}}+\frac{1}{4} \delta_{q_{(2)}}$ with $q_{(1)}=0.1$ and $q_{(2)}=0.5, M=\Delta I_{3}$, for $\Delta \in[5,50]$. Here $\alpha_{\mathrm{opt}}=0.07$.

## Simulated Performance Results (2 masses for $q_{i}$ )



Figure: Overlap performance for $n=3000, K=3, c_{i}=\frac{1}{3}, \mu=\frac{3}{4} \delta_{q_{(1)}}+\frac{1}{4} \delta_{q_{(2)}}$ with $q_{(1)}=0.1$ and $q_{(2)}=0.5, M=\Delta I_{3}$, for $\Delta \in[5,50]$. Here $\alpha_{\mathrm{opt}}=0.07$.

## Simulated Performance Results (2 masses for $q_{i}$ )



Figure: Overlap performance for $n=3000, K=3, c_{i}=\frac{1}{3}, \mu=\frac{3}{4} \delta_{q_{(1)}}+\frac{1}{4} \delta_{q_{(2)}}$ with $q_{(1)}=0.1$ and $q_{(2)}=0.5, M=\Delta I_{3}$, for $\Delta \in[5,50]$. Here $\alpha_{\mathrm{opt}}=0.07$.

## Simulated Performance Results (2 masses for $q_{i}$ )



Figure: Overlap performance for $n=3000, K=3, c_{i}=\frac{1}{3}, \mu=\frac{3}{4} \delta_{q_{(1)}}+\frac{1}{4} \delta_{q_{(2)}}$ with $q_{(1)}=0.1$ and $q_{(2)}=0.5, M=\Delta I_{3}$, for $\Delta \in[5,50]$. Here $\alpha_{\mathrm{opt}}=0.07$.

## Simulated Performance Results (2 masses for $q_{i}$ )



Figure: Overlap performance for $n=3000, K=3, \mu=\frac{3}{4} \delta_{q_{(1)}}+\frac{1}{4} \delta_{q_{(2)}}$ with $q_{(1)}=0.1$ and $q_{(2)} \in[0.1,0.9], M=10\left(2 I_{3}-1_{3} 1_{3}^{\top}\right), c_{i}=\frac{1}{3}$.

## Theoretical Performance

Analysis of eigenvectors reveals:

- eigenvectors are "noisy staircase vectors"


## Theoretical Performance

Analysis of eigenvectors reveals:

- eigenvectors are "noisy staircase vectors"
- conjectured Gaussian fluctuations of eigenvector entries


## Theoretical Performance

Analysis of eigenvectors reveals:

- eigenvectors are "noisy staircase vectors"
- conjectured Gaussian fluctuations of eigenvector entries
- for $q_{i}=q_{0}$ (homogeneous case), same variance for all entries
- in non-homogeneous case, we can compute "average variance per class" $\Rightarrow$ Heuristic asymptotic performance upper-bound using EM.


## Theoretical Performance Results (uniform distribution for $q_{i}$ )



Figure: Theoretical probability of correct recovery for $n=2000, K=2, c_{1}=0.6, c_{2}=0.4, \mu$ uniformly distributed in $[0.2,0.8], M=\Delta I_{2}$, for $\Delta \in[0,20]$.

## Some Takeaway messages

## Main findings:

## Some Takeaway messages

## Main findings:

- Degree heterogeneity breaks community structures in eigenvectors.
$\Rightarrow$ Compensation by $D^{\alpha-1}$ normalization of eigenvectors.


## Some Takeaway messages

## Main findings:

- Degree heterogeneity breaks community structures in eigenvectors.
$\Rightarrow$ Compensation by $D^{\alpha-1}$ normalization of eigenvectors.
- Classical debate over "best normalization" of adjacency (or modularity) matrix $A$ not trivial to solve.
$\Rightarrow$ With heterogeneous degrees, we found a good on-line method.


## Some Takeaway messages

## Main findings:

- Degree heterogeneity breaks community structures in eigenvectors.
$\Rightarrow$ Compensation by $D^{\alpha-1}$ normalization of eigenvectors.
- Classical debate over "best normalization" of adjacency (or modularity) matrix $A$ not trivial to solve.
$\Rightarrow$ With heterogeneous degrees, we found a good on-line method.
- Simulations support good performances even for "rather sparse" settings.


## Some Takeaway messages

## Main findings:

- Degree heterogeneity breaks community structures in eigenvectors.
$\Rightarrow$ Compensation by $D^{\alpha-1}$ normalization of eigenvectors.
- Classical debate over "best normalization" of adjacency (or modularity) matrix $A$ not trivial to solve.
$\Rightarrow$ With heterogeneous degrees, we found a good on-line method.
- Simulations support good performances even for "rather sparse" settings.


## But strong limitations:

## Some Takeaway messages

## Main findings:

- Degree heterogeneity breaks community structures in eigenvectors.
$\Rightarrow$ Compensation by $D^{\alpha-1}$ normalization of eigenvectors.
- Classical debate over "best normalization" of adjacency (or modularity) matrix $A$ not trivial to solve.
$\Rightarrow$ With heterogeneous degrees, we found a good on-line method.
- Simulations support good performances even for "rather sparse" settings.


## But strong limitations:

- Key assumption: $C_{a b}=1+\frac{M_{a b}}{\sqrt{n}}$.
$\Rightarrow$ Everything collapses if different regime.


## Some Takeaway messages

## Main findings:

- Degree heterogeneity breaks community structures in eigenvectors.
$\Rightarrow$ Compensation by $D^{\alpha-1}$ normalization of eigenvectors.
- Classical debate over "best normalization" of adjacency (or modularity) matrix $A$ not trivial to solve.
$\Rightarrow$ With heterogeneous degrees, we found a good on-line method.
- Simulations support good performances even for "rather sparse" settings.


## But strong limitations:

- Key assumption: $C_{a b}=1+\frac{M_{a b}}{\sqrt{n}}$.
$\Rightarrow$ Everything collapses if different regime.
- Simulations on small networks in fact give ridiculous arbitrary results.


## Outline

```
Basics of Random Matrix Theory
 Motivation: Large Sample Covariance Matrices
 The Stieltjes Transform Method
 Spiked Models
 Other Common Random Matrix Models
```

Applications
Random Matrices and Robust Estimation Spectral Clustering Methods and Random Matrices
Community Detection on Graphs
Kernel Spectral Clustering
Kernel Spectral Clustering: Subspace Clustering
Semi-supervised Learning
Support Vector Machines
Neural Networks: Extreme Learning Machines

Perspectives

## Kernel Spectral Clustering

## Problem Statement

- Dataset $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$
- Objective: "cluster" data in $k$ similarity classes $\mathcal{S}_{1}, \ldots, \mathcal{S}_{k}$.


## Kernel Spectral Clustering

## Problem Statement

- Dataset $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$
- Objective: "cluster" data in $k$ similarity classes $\mathcal{S}_{1}, \ldots, \mathcal{S}_{k}$.
- Typical metric to optimize:

$$
\text { (RatioCut) } \operatorname{argmin}_{\mathcal{S}_{1} \cup \ldots \cup \mathcal{S}_{k}=\{1, \ldots, n\}} \sum_{i=1}^{k} \sum_{\substack{j \in \mathcal{S}_{i} \\ j \notin \mathcal{S}_{i}}} \frac{\kappa\left(x_{j}, x_{\bar{j}}\right)}{\left|\mathcal{S}_{i}\right|}
$$

for some similarity kernel $\kappa(x, y) \geq 0$ (large if $x$ similar to $y$ ).

## Kernel Spectral Clustering

## Problem Statement

- Dataset $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$
- Objective: "cluster" data in $k$ similarity classes $\mathcal{S}_{1}, \ldots, \mathcal{S}_{k}$.
- Typical metric to optimize:

$$
\text { (RatioCut) } \operatorname{argmin}_{\mathcal{S}_{1} \cup \ldots \cup \mathcal{S}_{k}=\{1, \ldots, n\}} \sum_{i=1}^{k} \sum_{\substack{j \in \mathcal{S}_{i} \\ j \notin \mathcal{S}_{i}}} \frac{\kappa\left(x_{j}, x_{j}\right)}{\left|\mathcal{S}_{i}\right|}
$$

for some similarity kernel $\kappa(x, y) \geq 0$ (large if $x$ similar to $y$ ).

- Can be shown equivalent to

$$
(\text { RatioCut }) \operatorname{argmin}_{M \in \mathcal{M}} \operatorname{tr} M^{\top}(D-K) M
$$

where $\mathcal{M} \subset \mathbb{R}^{n \times k} \cap\left\{M ; M_{i j} \in\left\{0,\left|\mathcal{S}_{j}\right|^{-\frac{1}{2}}\right\}\right\}$ (in particular, $M^{\top} M=I_{k}$ ) and

$$
K=\left\{\kappa\left(x_{i}, x_{j}\right)\right\}_{i, j=1}^{n}, D_{i i}=\sum_{j=1}^{n} K_{i j}
$$

## Kernel Spectral Clustering

## Problem Statement

- Dataset $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$
- Objective: "cluster" data in $k$ similarity classes $\mathcal{S}_{1}, \ldots, \mathcal{S}_{k}$.
- Typical metric to optimize:

$$
\text { (RatioCut) } \operatorname{argmin}_{\mathcal{S}_{1} \cup \ldots \cup \mathcal{S}_{k}=\{1, \ldots, n\}} \sum_{i=1}^{k} \sum_{\substack{j \in \mathcal{S}_{i} \\ \bar{j} \notin \mathcal{S}_{i}}} \frac{\kappa\left(x_{j}, x_{\bar{j}}\right)}{\left|\mathcal{S}_{i}\right|}
$$

for some similarity kernel $\kappa(x, y) \geq 0$ (large if $x$ similar to $y$ ).

- Can be shown equivalent to

$$
(\text { RatioCut }) \operatorname{argmin}_{M \in \mathcal{M}} \operatorname{tr} M^{\top}(D-K) M
$$

where $\mathcal{M} \subset \mathbb{R}^{n \times k} \cap\left\{M ; M_{i j} \in\left\{0,\left|\mathcal{S}_{j}\right|^{-\frac{1}{2}}\right\}\right\}$ (in particular, $M^{\top} M=I_{k}$ ) and

$$
K=\left\{\kappa\left(x_{i}, x_{j}\right)\right\}_{i, j=1}^{n}, D_{i i}=\sum_{j=1}^{n} K_{i j} .
$$

- But integer problem! Usually NP-complete.


## Kernel Spectral Clustering

## Towards kernel spectral clustering

- Kernel spectral clustering: discrete-to-continuous relaxations of such metrics

$$
\text { (RatioCut) } \operatorname{argmin}_{M, M^{\top} M=I_{K}} \operatorname{tr} M^{\top}(D-K) M
$$

i.e., eigenvector problem:

1. find eigenvectors of smallest eigenvalues
2. retrieve classes from eigenvector components

## Kernel Spectral Clustering

## Towards kernel spectral clustering

- Kernel spectral clustering: discrete-to-continuous relaxations of such metrics

$$
\text { (RatioCut) } \operatorname{argmin}_{M, M^{\top} M=I_{K}} \operatorname{tr} M^{\top}(D-K) M
$$

i.e., eigenvector problem:

1. find eigenvectors of smallest eigenvalues
2. retrieve classes from eigenvector components

- Refinements:
- working on $K, D-K, I_{n}-D^{-1} K, I_{n}-D^{-\frac{1}{2}} K D^{-\frac{1}{2}}$, etc.
- several steps algorithms: Ng-Jordan-Weiss, Shi-Malik, etc.


## Kernel Spectral Clustering



## Kernel Spectral Clustering



## Kernel Spectral Clustering

$$
\begin{aligned}
& 4
\end{aligned}
$$

## Kernel Spectral Clustering



Figure: Leading four eigenvectors of $D^{-\frac{1}{2}} K D^{-\frac{1}{2}}$ for MNIST data.

## Methodology and objectives

## Current state:

- Algorithms derived from ad-hoc procedures (e.g., relaxation).
- Little understanding of performance, even for Gaussian mixtures!
- Let alone when both $p$ and $n$ are large (BigData setting)


## Methodology and objectives

## Current state:

- Algorithms derived from ad-hoc procedures (e.g., relaxation).
- Little understanding of performance, even for Gaussian mixtures!
- Let alone when both $p$ and $n$ are large (BigData setting)


## Objectives and Roadmap:

- Develop mathematical analysis framework for BigData kernel spectral clustering ( $p, n \rightarrow \infty$ )


## Methodology and objectives

## Current state:

- Algorithms derived from ad-hoc procedures (e.g., relaxation).
- Little understanding of performance, even for Gaussian mixtures!
- Let alone when both $p$ and $n$ are large (BigData setting)


## Objectives and Roadmap:

- Develop mathematical analysis framework for BigData kernel spectral clustering ( $p, n \rightarrow \infty$ )
- Understand:

1. Phase transition effects (i.e., when is clustering possible?)
2. Content of each eigenvector
3. Influence of kernel function
4. Performance comparison of clustering algorithms

## Methodology and objectives

## Current state:

- Algorithms derived from ad-hoc procedures (e.g., relaxation).
- Little understanding of performance, even for Gaussian mixtures!
- Let alone when both $p$ and $n$ are large (BigData setting)


## Objectives and Roadmap:

- Develop mathematical analysis framework for BigData kernel spectral clustering ( $p, n \rightarrow \infty$ )
- Understand:

1. Phase transition effects (i.e., when is clustering possible?)
2. Content of each eigenvector
3. Influence of kernel function
4. Performance comparison of clustering algorithms

## Methodology:

- Use statistical assumptions (Gaussian mixture)
- Benefit from doubly-infinite independence and random matrix tools


## Model and Assumptions

Gaussian mixture model:

- $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$,
- $k$ classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$,
- $x_{1}, \ldots, x_{n_{1}} \in \mathcal{C}_{1}, \ldots, x_{n-n_{k}+1}, \ldots, x_{n} \in \mathcal{C}_{k}$,
- $\mathcal{C}_{a}=\left\{x \mid x \sim \mathcal{N}\left(\mu_{a}, C_{a}\right)\right\}$.

Then, for $x_{i} \in \mathcal{C} a$, with $w_{i} \sim N\left(0, C_{a}\right)$,

$$
x_{i}=\mu_{a}+w_{i} .
$$

## Model and Assumptions

Gaussian mixture model:

- $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$,
- $k$ classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$,
- $x_{1}, \ldots, x_{n_{1}} \in \mathcal{C}_{1}, \ldots, x_{n-n_{k}+1}, \ldots, x_{n} \in \mathcal{C}_{k}$,
- $\mathcal{C}_{a}=\left\{x \mid x \sim \mathcal{N}\left(\mu_{a}, C_{a}\right)\right\}$.

Then, for $x_{i} \in \mathcal{C} a$, with $w_{i} \sim N\left(0, C_{a}\right)$,

$$
x_{i}=\mu_{a}+w_{i} .
$$

## Assumption (Convergence Rate)

As $n \rightarrow \infty$,

1. Data scaling: $\frac{p}{n} \rightarrow c_{0} \in(0, \infty)$,
2. Class scaling: $\frac{n_{a}}{n} \rightarrow c_{a} \in(0,1)$,
3. Mean scaling: with $\mu^{\circ} \triangleq \sum_{a=1}^{k} \frac{n_{a}}{n} \mu_{a}$ and $\mu_{a}^{\circ} \triangleq \mu_{a}-\mu^{\circ}$, then

$$
\left\|\mu_{a}^{\circ}\right\|=O(1)
$$

4. Covariance scaling: with $C^{\circ} \triangleq \sum_{a=1}^{k} \frac{n_{a}}{n} C_{a}$ and $C_{a}^{\circ} \triangleq C_{a}-C^{\circ}$, then

$$
\left\|C_{a}\right\|=O(1), \quad \frac{1}{\sqrt{p}} \operatorname{tr} C_{a}^{\circ}=O(1) \Rightarrow \operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}=O(p)
$$

## Model and Assumptions

## Kernel Matrix:

- Kernel matrix of interest:

$$
K=\left\{f\left(\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}\right)\right\}_{i, j=1}^{n}
$$

for some sufficiently smooth nonnegative $f$.

## Model and Assumptions

## Kernel Matrix:

- Kernel matrix of interest:

$$
K=\left\{f\left(\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}\right)\right\}_{i, j=1}^{n}
$$

for some sufficiently smooth nonnegative $f$.

- We study the normalized Laplacian:

$$
L=n D^{-\frac{1}{2}} K D^{-\frac{1}{2}}
$$

with $d=K 1_{n}, D=\operatorname{diag}(d)$.

## Model and Assumptions

Difficulty: $L$ is a very intractable random matrix

- non-linear $f$
- non-trivial dependence between entries of $L$


## Model and Assumptions

Difficulty: $L$ is a very intractable random matrix

- non-linear $f$
- non-trivial dependence between entries of $L$


## Strategy:

1. Find random equivalent $\hat{L}$ (i.e., $\|L-\hat{L}\| \xrightarrow{\text { a.s. }} 0$ as $n, p \rightarrow \infty$ ) based on:

- concentration: $K_{i j} \rightarrow$ constant as $n, p \rightarrow \infty($ for all $i \neq j)$
- Taylor expansion around limit point


## Model and Assumptions

Difficulty: $L$ is a very intractable random matrix

- non-linear $f$
- non-trivial dependence between entries of $L$


## Strategy:

1. Find random equivalent $\hat{L}$ (i.e., $\|L-\hat{L}\| \xrightarrow{\text { a.s. }} 0$ as $n, p \rightarrow \infty$ ) based on:

- concentration: $K_{i j} \rightarrow$ constant as $n, p \rightarrow \infty($ for all $i \neq j)$
- Taylor expansion around limit point

2. Apply spiked random matrix approach to study:

- existence of isolated eigenvalues in $\hat{L}$ : phase transition


## Model and Assumptions

Difficulty: $L$ is a very intractable random matrix

- non-linear $f$
- non-trivial dependence between entries of $L$


## Strategy:

1. Find random equivalent $\hat{L}$ (i.e., $\|L-\hat{L}\| \xrightarrow{\text { a.s. }} 0$ as $n, p \rightarrow \infty$ ) based on:

- concentration: $K_{i j} \rightarrow$ constant as $n, p \rightarrow \infty($ for all $i \neq j)$
- Taylor expansion around limit point

2. Apply spiked random matrix approach to study:

- existence of isolated eigenvalues in $\hat{L}$ : phase transition
- eigenvector projections on canonical class-basis


## Random Matrix Equivalent

Results on $K$ :

- Key Remark: Under our assumptions, uniformly on $i, j \in\{1, \ldots, n\}$,

$$
\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2} \xrightarrow{\text { a.s. }} \tau
$$

for some common limit $\tau$.

## Random Matrix Equivalent

Results on $K$ :

- Key Remark: Under our assumptions, uniformly on $i, j \in\{1, \ldots, n\}$,

$$
\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2} \xrightarrow{\text { a.s. }} \tau
$$

for some common limit $\tau$.

- large dimensional approximation for $K$ :

$$
K=\underbrace{f(\tau) 1_{n} 1_{n}^{\top}}_{O_{\|\cdot\|}(n)}+\underbrace{\sqrt{n} A_{1}}_{\text {low rank, } O_{\|\cdot\|}(\sqrt{n})}+\underbrace{A_{2}}_{\text {informative terms, } O_{\|\cdot\|}(1)}
$$

## Random Matrix Equivalent

Results on $K$ :

- Key Remark: Under our assumptions, uniformly on $i, j \in\{1, \ldots, n\}$,

$$
\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2} \xrightarrow{\text { a.s. }} \tau
$$

for some common limit $\tau$.

- large dimensional approximation for $K$ :

$$
K=\underbrace{f(\tau) 1_{n} 1_{n}^{\top}}_{O_{\|\cdot\|}(n)}+\underbrace{\sqrt{n} A_{1}}_{\text {low rank, } O_{\|\cdot\|}(\sqrt{n})}+\underbrace{A_{2}}_{\text {informative terms, } O_{\|\cdot\|}(1)}
$$

- difficult to handle (3 orders to manipulate!)


## Random Matrix Equivalent

Results on $K$ :

- Key Remark: Under our assumptions, uniformly on $i, j \in\{1, \ldots, n\}$,

$$
\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2} \xrightarrow{\text { a.s. }} \tau
$$

for some common limit $\tau$.

- large dimensional approximation for $K$ :

$$
K=\underbrace{f(\tau) 1_{n} 1_{n}^{\top}}_{O_{\|\cdot\|}(n)}+\underbrace{\sqrt{n} A_{1}}_{\text {low rank, } O_{\|\cdot\|}(\sqrt{n})}+\underbrace{A_{2}}_{\text {informative terms, } O_{\|\cdot\|}(1)}
$$

- difficult to handle (3 orders to manipulate!)

Observation: Spectrum of $L=n D^{-\frac{1}{2}} K D^{-\frac{1}{2}}$ :

- Dominant eigenvalue $n$ with eigenvector $D^{\frac{1}{2}} 1_{n}$
- All other eigenvalues of order $O(1)$.


## Random Matrix Equivalent

Results on $K$ :

- Key Remark: Under our assumptions, uniformly on $i, j \in\{1, \ldots, n\}$,

$$
\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2} \xrightarrow{\text { a.s. }} \tau
$$

for some common limit $\tau$.

- large dimensional approximation for $K$ :

$$
K=\underbrace{f(\tau) 1_{n} 1_{n}^{\mathrm{T}}}_{O_{\|\cdot\|}(n)}+\underbrace{\sqrt{n} A_{1}}_{\text {low rank, } O_{\|\cdot\|}(\sqrt{n})}+\underbrace{A_{2}}_{\text {informative terms, } O_{\|\cdot\|}(1)}
$$

- difficult to handle (3 orders to manipulate!)

Observation: Spectrum of $L=n D^{-\frac{1}{2}} K D^{-\frac{1}{2}}$ :

- Dominant eigenvalue $n$ with eigenvector $D^{\frac{1}{2}} 1_{n}$
- All other eigenvalues of order $O(1)$.
$\Rightarrow$ Naturally leads to study:
- Projected normalized Laplacian (or "modularity"-type Laplacian):

$$
L^{\prime}=n D^{-\frac{1}{2}} K D^{-\frac{1}{2}}-n \frac{D^{\frac{1}{2}} 1_{n} 1_{n}^{\top} D^{\frac{1}{2}}}{1_{n}^{\top} D 1_{n}}=n D^{-\frac{1}{2}}\left(K-\frac{d d^{\top}}{1^{\top} d}\right) D^{-\frac{1}{2}}
$$

- Dominant (normalized) eigenvector $\frac{D^{\frac{1}{2}} 1_{n}}{\sqrt{1_{n}^{\top} D 1_{n}}}$.


## Random Matrix Equivalent

Theorem (Random Matrix Equivalent)
As $n, p \rightarrow \infty$, in operator norm, $\left\|L^{\prime}-\hat{L}^{\prime}\right\| \xrightarrow{\text { a.s. }} 0$, where

$$
\hat{L}^{\prime}=-2 \frac{f^{\prime}(\tau)}{f(\tau)}\left[\frac{1}{p} P W^{\top} W P+U B U^{\top}\right]+\alpha(\tau) I_{n}
$$

and $\tau=\frac{2}{p} \operatorname{tr} C^{\circ}, W=\left[w_{1}, \ldots, w_{n}\right] \in \mathbb{R}^{p \times n}\left(x_{i}=\mu_{a}+w_{i}\right), P=I_{n}-\frac{1}{n} 1_{n} 1_{n}^{\top}$,

$$
\begin{aligned}
U & =\left[\frac{1}{\sqrt{p}} J, \Phi, \psi\right] \in \mathbb{R}^{n \times(2 k+4)} \\
B & =\left[\begin{array}{ccc}
B_{11} & I_{k}-1_{k} c^{\top} & \left(\frac{5 f^{\prime}(\tau)}{8 f(\tau)}-\frac{f^{\prime \prime}(\tau)}{2 f^{\prime}(\tau)}\right) t \\
I_{k}-c 1^{\top} & 0_{k \times k} & 0_{k \times 1} \\
\left(\frac{5 f^{\prime}(\tau)}{8 f(\tau)}-\frac{f^{\prime \prime}(\tau)}{2 f^{\prime}(\tau)}\right) t^{\top} & 0_{1 \times k} & \frac{5 f^{\prime}(\tau)}{8 f(\tau)}-\frac{f^{\prime \prime}(\tau)}{2 f^{\prime}(\tau)}
\end{array}\right] \in \mathbb{R}^{(2 k+4) \times(2 k+4)} \\
B_{11} & =M^{\top} M+\left(\frac{5 f^{\prime}(\tau)}{8 f(\tau)}-\frac{f^{\prime \prime}(\tau)}{2 f^{\prime}(\tau)}\right) t t^{\top}-\frac{f^{\prime \prime}(\tau)}{f^{\prime}(\tau)} T+\frac{p}{n} \frac{f(\tau) \alpha(\tau)}{2 f^{\prime}(\tau)} 1_{k} 1_{k}^{\top} \in \mathbb{R}^{k \times k} .
\end{aligned}
$$

## Random Matrix Equivalent

## Theorem (Random Matrix Equivalent)

As $n, p \rightarrow \infty$, in operator norm, $\left\|L^{\prime}-\hat{L}^{\prime}\right\| \xrightarrow{\text { a.s. }} 0$, where

$$
\hat{L}^{\prime}=-2 \frac{f^{\prime}(\tau)}{f(\tau)}\left[\frac{1}{p} P W^{\top} W P+U B U^{\top}\right]+\alpha(\tau) I_{n}
$$

and $\tau=\frac{2}{p} \operatorname{tr} C^{\circ}, W=\left[w_{1}, \ldots, w_{n}\right] \in \mathbb{R}^{p \times n}\left(x_{i}=\mu_{a}+w_{i}\right), P=I_{n}-\frac{1}{n} 1_{n} 1_{n}^{\top}$,

$$
\begin{aligned}
U & =\left[\frac{1}{\sqrt{p}} J, \Phi, \psi\right] \in \mathbb{R}^{n \times(2 k+4)} \\
B & =\left[\begin{array}{ccc}
B_{11} & I_{k}-1_{k} c^{\top} & \left(\frac{5 f^{\prime}(\tau)}{8 f(\tau)}-\frac{f^{\prime \prime}(\tau)}{2 f^{\prime}(\tau)}\right) t \\
I_{k}-c 1^{\top} & 0_{k \times k} & 0_{k \times 1} \\
\left(\frac{5 f^{\prime}(\tau)}{8 f(\tau)}-\frac{f^{\prime \prime}(\tau)}{2 f^{\prime}(\tau)}\right) t^{\top} & 0_{1 \times k} & \frac{5 f^{\prime}(\tau)}{8 f(\tau)}-\frac{f^{\prime \prime}(\tau)}{2 f^{\prime}(\tau)}
\end{array}\right] \in \mathbb{R}^{(2 k+4) \times(2 k+4)} \\
B_{11} & =M^{\top} M+\left(\frac{5 f^{\prime}(\tau)}{8 f(\tau)}-\frac{f^{\prime \prime}(\tau)}{2 f^{\prime}(\tau)}\right) t t^{\top}-\frac{f^{\prime \prime}(\tau)}{f^{\prime}(\tau)} T+\frac{p}{n} \frac{f(\tau) \alpha(\tau)}{2 f^{\prime}(\tau)} 1_{k} 1_{k}^{\top} \in \mathbb{R}^{k \times k} . \\
\frac{1}{\sqrt{p}} J & =\left[j_{1}, \ldots, j_{k}\right] \in \mathbb{R}^{n \times k}, j_{a} \text { canonical vector of class } \mathcal{C}_{a} .
\end{aligned}
$$

## Random Matrix Equivalent

Theorem (Random Matrix Equivalent)
As $n, p \rightarrow \infty$, in operator norm, $\left\|L^{\prime}-\hat{L}^{\prime}\right\| \xrightarrow{\text { a.s. }} 0$, where

$$
\hat{L}^{\prime}=-2 \frac{f^{\prime}(\tau)}{f(\tau)}\left[\frac{1}{p} P W^{\top} W P+U B U^{\top}\right]+\alpha(\tau) I_{n}
$$

and $\tau=\frac{2}{p} \operatorname{tr} C^{\circ}, W=\left[w_{1}, \ldots, w_{n}\right] \in \mathbb{R}^{p \times n}\left(x_{i}=\mu_{a}+w_{i}\right), P=I_{n}-\frac{1}{n} 1_{n} 1_{n}^{\top}$,

$$
\begin{aligned}
U & =\left[\frac{1}{\sqrt{p}} J, \Phi, \psi\right] \in \mathbb{R}^{n \times(2 k+4)} \\
B & =\left[\begin{array}{ccc}
B_{11} & I_{k}-1_{k} c^{\top} & \left(\frac{5 f^{\prime}(\tau)}{8 f(\tau)}-\frac{f^{\prime \prime}(\tau)}{2 f^{\prime}(\tau)}\right) t \\
I_{k}-c 1_{k}^{\top} & 0_{k \times k} & 0_{k \times 1} \\
\left(\frac{5 f^{\prime}(\tau)}{8 f(\tau)}-\frac{f^{\prime \prime}(\tau)}{2 f^{\prime}(\tau)}\right) t^{\top} & 0_{1 \times k} & \frac{5 f^{\prime}(\tau)}{8 f(\tau)}-\frac{f^{\prime \prime}(\tau)}{2 f^{\prime}(\tau)}
\end{array}\right] \in \mathbb{R}^{(2 k+4) \times(2 k+4)} \\
B_{11} & =M^{\top} M+\left(\frac{5 f^{\prime}(\tau)}{8 f(\tau)}-\frac{f^{\prime \prime}(\tau)}{2 f^{\prime}(\tau)}\right) t t^{\top}-\frac{f^{\prime \prime}(\tau)}{f^{\prime}(\tau)} T+\frac{p}{n} \frac{f(\tau) \alpha(\tau)}{2 f^{\prime}(\tau)} 1_{k} 1_{k}^{\top} \in \mathbb{R}^{k \times k} . \\
M & =\left[\mu_{1}^{\circ}, \ldots, \mu_{k}^{\circ}\right] \in \mathbb{R}^{n \times k}, \mu_{a}^{\circ}=\mu_{a}-\sum_{b=1}^{k} \frac{n_{b}}{n} \mu_{b} .
\end{aligned}
$$

## Random Matrix Equivalent

## Theorem (Random Matrix Equivalent)

As $n, p \rightarrow \infty$, in operator norm, $\left\|L^{\prime}-\hat{L}^{\prime}\right\| \xrightarrow{\text { a.s. }} 0$, where

$$
\hat{L}^{\prime}=-2 \frac{f^{\prime}(\tau)}{f(\tau)}\left[\frac{1}{p} P W^{\top} W P+U B U^{\top}\right]+\alpha(\tau) I_{n}
$$

$$
\text { and } \tau=\frac{2}{p} \operatorname{tr} C^{\circ}, W=\left[w_{1}, \ldots, w_{n}\right] \in \mathbb{R}^{p \times n}\left(x_{i}=\mu_{a}+w_{i}\right), P=I_{n}-\frac{1}{n} 1_{n} 1_{n}^{\top}
$$

$$
\begin{aligned}
U & =\left[\frac{1}{\sqrt{p}} J, \Phi, \psi\right] \in \mathbb{R}^{n \times(2 k+4)} \\
B & =\left[\begin{array}{ccc}
B_{11} & I_{k}-1_{k} c^{\top} & \left(\frac{5 f^{\prime}(\tau)}{8 f(\tau)}-\frac{f^{\prime \prime}(\tau)}{2 f^{\prime}(\tau)}\right) t \\
I_{k}-c 1_{k}^{\top} & 0_{k \times k} & 0_{k \times 1} \\
\left(\frac{5 f^{\prime}(\tau)}{8 f(\tau)}-\frac{f^{\prime \prime}(\tau)}{2 f^{\prime}(\tau)}\right) t^{\top} & 0_{1 \times k} & \frac{5 f^{\prime}(\tau)}{8 f(\tau)}-\frac{f^{\prime \prime}(\tau)}{2 f^{\prime}(\tau)}
\end{array}\right] \in \mathbb{R}^{(2 k+4) \times(2 k+4)} \\
B_{11} & =M^{\top} M+\left(\frac{5 f^{\prime}(\tau)}{8 f(\tau)}-\frac{f^{\prime \prime}(\tau)}{2 f^{\prime}(\tau)}\right) t t^{\top}-\frac{f^{\prime \prime}(\tau)}{f^{\prime}(\tau)} T+\frac{p}{n} \frac{f(\tau) \alpha(\tau)}{2 f^{\prime}(\tau)} 1_{k} 1_{k}^{\top} \in \mathbb{R}^{k \times k} . \\
t & =\left[\frac{1}{\sqrt{p}} \operatorname{tr} C_{1}^{\circ}, \ldots, \frac{1}{\sqrt{p}} \operatorname{tr} C_{k}^{\circ}\right] \in \mathbb{R}^{k}, C_{a}^{\circ}=C_{a}-\sum_{b=1}^{k} \frac{n_{b}}{n} C_{b} .
\end{aligned}
$$

## Random Matrix Equivalent

Theorem (Random Matrix Equivalent)
As $n, p \rightarrow \infty$, in operator norm, $\left\|L^{\prime}-\hat{L}^{\prime}\right\| \xrightarrow{\text { a.s. }} 0$, where

$$
\hat{L}^{\prime}=-2 \frac{f^{\prime}(\tau)}{f(\tau)}\left[\frac{1}{p} P W^{\top} W P+U B U^{\top}\right]+\alpha(\tau) I_{n}
$$

and $\tau=\frac{2}{p} \operatorname{tr} C^{\circ}, W=\left[w_{1}, \ldots, w_{n}\right] \in \mathbb{R}^{p \times n}\left(x_{i}=\mu_{a}+w_{i}\right), P=I_{n}-\frac{1}{n} 1_{n} 1_{n}^{\top}$,

$$
\begin{aligned}
U & =\left[\frac{1}{\sqrt{p}} J, \Phi, \psi\right] \in \mathbb{R}^{n \times(2 k+4)} \\
B & =\left[\begin{array}{ccc}
B_{11} & I_{k}-1_{k} c^{\top} & \left(\frac{5 f^{\prime}(\tau)}{8 f(\tau)}-\frac{f^{\prime \prime}(\tau)}{2 f^{\prime}(\tau)}\right) t \\
I_{k}-c 1^{\top} & 0_{k \times k} & 0_{k \times 1} \\
\left(\frac{5 f^{\prime}(\tau)}{8 f(\tau)}-\frac{f^{\prime \prime}(\tau)}{2 f^{\prime}(\tau)}\right) t^{\top} & 0_{1 \times k} & \frac{5 f^{\prime}(\tau)}{8 f(\tau)}-\frac{f^{\prime \prime}(\tau)}{2 f^{\prime}(\tau)}
\end{array}\right] \in \mathbb{R}^{(2 k+4) \times(2 k+4)} \\
B_{11} & =M^{\top} M+\left(\frac{5 f^{\prime}(\tau)}{8 f(\tau)}-\frac{f^{\prime \prime}(\tau)}{2 f^{\prime}(\tau)}\right) t t^{\top}-\frac{f^{\prime \prime}(\tau)}{f^{\prime}(\tau)} T+\frac{p}{n} \frac{f(\tau) \alpha(\tau)}{2 f^{\prime}(\tau)} 1_{k} 1_{k}^{\top} \in \mathbb{R}^{k \times k} . \\
T & =\left\{\frac{1}{p} \operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}\right\}_{a, b=1}^{k} \in \mathbb{R}^{k \times k}, C_{a}^{\circ}=C_{a}-\sum_{b=1}^{k} \frac{n_{b}}{n} C_{b} .
\end{aligned}
$$

## Random Matrix Equivalent

Some consequences:

- $\hat{L}^{\prime}$ is a spiked model: $U B U^{\top}$ seen as low rank perturbation of $\frac{1}{p} P W^{\top} W P$


## Random Matrix Equivalent

## Some consequences:

- $\hat{L}^{\prime}$ is a spiked model: $U B U^{\top}$ seen as low rank perturbation of $\frac{1}{p} P W^{\top} W P$
- If $f^{\prime}(\tau)=0$,
- $L^{\prime}$ asymptotically deterministic!
- only $t$ and $T$ can be discriminated upon
- If $f^{\prime \prime}(\tau)=0$, (e.g., $\left.f(x)=x\right) T$ unused
- If $\frac{5 f^{\prime}(\tau)}{8 f(\tau)}=\frac{f^{\prime \prime}(\tau)}{2 f^{\prime}(\tau)}, t$ (seemingly) unused


## Random Matrix Equivalent

Some consequences:

- $\hat{L}^{\prime}$ is a spiked model: $U B U^{\top}$ seen as low rank perturbation of $\frac{1}{p} P W^{\top} W P$
- If $f^{\prime}(\tau)=0$,
- $L^{\prime}$ asymptotically deterministic!
- only $t$ and $T$ can be discriminated upon
- If $f^{\prime \prime}(\tau)=0$, (e.g., $\left.f(x)=x\right) T$ unused
- If $\frac{5 f^{\prime}(\tau)}{8 f(\tau)}=\frac{f^{\prime \prime}(\tau)}{2 f^{\prime}(\tau)}, t$ (seemingly) unused


## Further analysis:

- Determine separability condition for eigenvalues
- Evaluate eigenvalue positions when separable
- Evaluate eigenvector projection to canonical basis $j_{1}, \ldots, j_{k}$
- Evaluate fluctuation of eigenvectors.

Isolated eigenvalues: Gaussian inputs



Figure: Eigenvalues of $L^{\prime}$ and $\hat{L}^{\prime}, k=3, p=2048, n=512, c_{1}=c_{2}=1 / 4, c_{3}=1 / 2$, $\left[\mu_{a}\right]_{j}=4 \boldsymbol{\delta}_{a j}, C_{a}=(1+2(a-1) / \sqrt{p}) I_{p}, f(x)=\exp (-x / 2)$.

## Theoretical Findings versus MNIST



Figure: Eigenvalues of $L^{\prime}$ (red) and (equivalent Gaussian model) $\hat{L}^{\prime}$ (white), MNIST data, $p=784, n=192$.

## Theoretical Findings versus MNIST



Figure: Eigenvalues of $L^{\prime}$ (red) and (equivalent Gaussian model) $\hat{L}^{\prime}$ (white), MNIST data, $p=784, n=192$.

## Theoretical Findings versus MNIST



Figure: Leading four eigenvectors of $D^{-\frac{1}{2}} K D^{-\frac{1}{2}}$ for MNIST data (red) and theoretical findings (blue).

## Theoretical Findings versus MNIST



Figure: Leading four eigenvectors of $D^{-\frac{1}{2}} K D^{-\frac{1}{2}}$ for MNIST data (red) and theoretical findings (blue).

## Theoretical Findings versus MNIST

Eigenvector 2/Eigenvector 1


Eigenvector 3/Eigenvector 2


Figure: 2D representation of eigenvectors of $L$, for the MNIST dataset. Theoretical means and 1and 2 -standard deviations in blue. Class 1 in red, Class 2 in black, Class 3 in green.

Further Results and Some Takeaway messages

General surprising findings:

## Further Results and Some Takeaway messages

## General surprising findings:

- "Good kernel functions" $f$ need not be decreasing.


## Further Results and Some Takeaway messages

## General surprising findings:

- "Good kernel functions" $f$ need not be decreasing.
- Dominant parameters in large dimensions are first three derivatives at $\tau$.


## Further Results and Some Takeaway messages

## General surprising findings:

- "Good kernel functions" $f$ need not be decreasing.
- Dominant parameters in large dimensions are first three derivatives at $\tau$.
- Clustering possible despite $\left\|x_{i}-x_{j}\right\|^{2} \rightarrow \tau$, i.e., no first order data difference $\Rightarrow$ Breaks original intuitions and problem layout!


## Further Results and Some Takeaway messages

## General surprising findings:

- "Good kernel functions" $f$ need not be decreasing.
- Dominant parameters in large dimensions are first three derivatives at $\tau$.
- Clustering possible despite $\left\|x_{i}-x_{j}\right\|^{2} \rightarrow \tau$, i.e., no first order data difference $\Rightarrow$ Breaks original intuitions and problem layout!

Further surprises. .. :

## Further Results and Some Takeaway messages

## General surprising findings:

- "Good kernel functions" $f$ need not be decreasing.
- Dominant parameters in large dimensions are first three derivatives at $\tau$.
- Clustering possible despite $\left\|x_{i}-x_{j}\right\|^{2} \rightarrow \tau$, i.e., no first order data difference $\Rightarrow$ Breaks original intuitions and problem layout!

Further surprises....

- For $C_{1}=\ldots=C_{K}=I_{p}$, kernel choice is irrelevant! (as long as $f^{\prime}(\tau) \neq 0$ )


## Further Results and Some Takeaway messages

## General surprising findings:

- "Good kernel functions" $f$ need not be decreasing.
- Dominant parameters in large dimensions are first three derivatives at $\tau$.
- Clustering possible despite $\left\|x_{i}-x_{j}\right\|^{2} \rightarrow \tau$, i.e., no first order data difference $\Rightarrow$ Breaks original intuitions and problem layout!

Further surprises... :

- For $C_{1}=\ldots=C_{K}=I_{p}$, kernel choice is irrelevant! (as long as $f^{\prime}(\tau) \neq 0$ )
- For $\mu_{1}=\ldots=\mu_{K}=0$ and $C_{a}=\left(1+\gamma_{a} p^{-\frac{1}{2}}\right) I_{p}$, only ONE isolated eigenvector!


## Further Results and Some Takeaway messages

## General surprising findings:

- "Good kernel functions" $f$ need not be decreasing.
- Dominant parameters in large dimensions are first three derivatives at $\tau$.
- Clustering possible despite $\left\|x_{i}-x_{j}\right\|^{2} \rightarrow \tau$, i.e., no first order data difference $\Rightarrow$ Breaks original intuitions and problem layout!

Further surprises... :

- For $C_{1}=\ldots=C_{K}=I_{p}$, kernel choice is irrelevant! (as long as $f^{\prime}(\tau) \neq 0$ )
- For $\mu_{1}=\ldots=\mu_{K}=0$ and $C_{a}=\left(1+\gamma_{a} p^{-\frac{1}{2}}\right) I_{p}$, only ONE isolated eigenvector!
- It is possible to observe irrelevant eigenvectors! (that contain only noise)


## Further Results and Some Takeaway messages

## General surprising findings:

- "Good kernel functions" $f$ need not be decreasing.
- Dominant parameters in large dimensions are first three derivatives at $\tau$.
- Clustering possible despite $\left\|x_{i}-x_{j}\right\|^{2} \rightarrow \tau$, i.e., no first order data difference $\Rightarrow$ Breaks original intuitions and problem layout!

Further surprises... :

- For $C_{1}=\ldots=C_{K}=I_{p}$, kernel choice is irrelevant! (as long as $f^{\prime}(\tau) \neq 0$ )
- For $\mu_{1}=\ldots=\mu_{K}=0$ and $C_{a}=\left(1+\gamma_{a} p^{-\frac{1}{2}}\right) I_{p}$, only ONE isolated eigenvector!
- It is possible to observe irrelevant eigenvectors! (that contain only noise)


## Validity of the Results:

## Further Results and Some Takeaway messages

## General surprising findings:

- "Good kernel functions" $f$ need not be decreasing.
- Dominant parameters in large dimensions are first three derivatives at $\tau$.
- Clustering possible despite $\left\|x_{i}-x_{j}\right\|^{2} \rightarrow \tau$, i.e., no first order data difference $\Rightarrow$ Breaks original intuitions and problem layout!

Further surprises....:

- For $C_{1}=\ldots=C_{K}=I_{p}$, kernel choice is irrelevant! (as long as $f^{\prime}(\tau) \neq 0$ )
- For $\mu_{1}=\ldots=\mu_{K}=0$ and $C_{a}=\left(1+\gamma_{a} p^{-\frac{1}{2}}\right) I_{p}$, only ONE isolated eigenvector!
- It is possible to observe irrelevant eigenvectors! (that contain only noise)


## Validity of the Results:

- Needs a concentration of measure assumption: $\left\|x_{i}-x_{j}\right\|^{2} \rightarrow \tau$.
- Invalid for heavy-tailed distributions (where $\left\|x_{i}\right\|=\left\|\sqrt{\tau_{i}} z_{i}\right\|$ needs not converge).


## Further Results and Some Takeaway messages

## General surprising findings:

- "Good kernel functions" $f$ need not be decreasing.
- Dominant parameters in large dimensions are first three derivatives at $\tau$.
- Clustering possible despite $\left\|x_{i}-x_{j}\right\|^{2} \rightarrow \tau$, i.e., no first order data difference $\Rightarrow$ Breaks original intuitions and problem layout!

Further surprises....

- For $C_{1}=\ldots=C_{K}=I_{p}$, kernel choice is irrelevant! (as long as $f^{\prime}(\tau) \neq 0$ )
- For $\mu_{1}=\ldots=\mu_{K}=0$ and $C_{a}=\left(1+\gamma_{a} p^{-\frac{1}{2}}\right) I_{p}$, only ONE isolated eigenvector!
- It is possible to observe irrelevant eigenvectors! (that contain only noise)


## Validity of the Results:

- Needs a concentration of measure assumption: $\left\|x_{i}-x_{j}\right\|^{2} \rightarrow \tau$.
- Invalid for heavy-tailed distributions (where $\left\|x_{i}\right\|=\left\|\sqrt{\tau_{i}} z_{i}\right\|$ needs not converge).
- Suprising fit between theory and practice: are images like Gaussian vectors?
- kernels extract primarily first order properties (means, covariances)
- without image processing (rotations, scale invariance), good enough features.

Last word: the suprising case $f^{\prime}(\tau)=0 \ldots$

## Reminder:

Theorem (Random Matrix Equivalent)
As $n, p \rightarrow \infty$, in operator norm, $\left\|L^{\prime}-\hat{L}^{\prime}\right\| \xrightarrow{\text { a.s. }} 0$, where

$$
\hat{L}^{\prime}=-2 \frac{f^{\prime}(\tau)}{f(\tau)} \frac{1}{p} P W^{\top} W P-2 \frac{f^{\prime}(\tau)}{f(\tau)} U B U^{\top}+\alpha(\tau) I_{n}
$$

$$
\text { and } \tau=\frac{2}{p} \operatorname{tr} C^{\circ}, W=\left[w_{1}, \ldots, w_{n}\right] \in \mathbb{R}^{p \times n}\left(x_{i}=\mu_{a}+w_{i}\right), P=I_{n}-\frac{1}{n} 1_{n} 1_{n}^{\top}
$$

$$
\begin{aligned}
U & =\left[\frac{1}{\sqrt{p}} J, *\right], B=\left[\begin{array}{cc}
B_{11} & * \\
* & *
\end{array}\right] \\
B_{11} & =M^{\top} M+\left(\frac{5 f^{\prime}(\tau)}{8 f(\tau)}-\frac{f^{\prime \prime}(\tau)}{2 f^{\prime}(\tau)}\right) t t^{\top}-\frac{f^{\prime \prime}(\tau)}{f^{\prime}(\tau)} T+\frac{p}{n} \frac{f(\tau) \alpha(\tau)}{2 f^{\prime}(\tau)} 1_{k} 1_{k}^{\top} .
\end{aligned}
$$

Last word: the suprising case $f^{\prime}(\tau)=0 \ldots$

## Reminder:

Theorem (Random Matrix Equivalent)
As $n, p \rightarrow \infty$, in operator norm, $\left\|L^{\prime}-\hat{L}^{\prime}\right\| \xrightarrow{\text { a.s. }} 0$, where

$$
\hat{L}^{\prime}=-2 \frac{f^{\prime}(\tau)}{f(\tau)} \frac{1}{p} P W^{\top} W P-2 \frac{f^{\prime}(\tau)}{f(\tau)} U B U^{\top}+\alpha(\tau) I_{n}
$$

and $\tau=\frac{2}{p} \operatorname{tr} C^{\circ}, W=\left[w_{1}, \ldots, w_{n}\right] \in \mathbb{R}^{p \times n}\left(x_{i}=\mu_{a}+w_{i}\right), P=I_{n}-\frac{1}{n} 1_{n} 1_{n}^{\top}$,

$$
\begin{aligned}
U & =\left[\frac{1}{\sqrt{p}} J, *\right], B=\left[\begin{array}{cc}
B_{11} & * \\
* & *
\end{array}\right] \\
B_{11} & =M^{\top} M+\left(\frac{5 f^{\prime}(\tau)}{8 f(\tau)}-\frac{f^{\prime \prime}(\tau)}{2 f^{\prime}(\tau)}\right) t t^{\top}-\frac{f^{\prime \prime}(\tau)}{f^{\prime}(\tau)} T+\frac{p}{n} \frac{f(\tau) \alpha(\tau)}{2 f^{\prime}(\tau)} 1_{k} 1_{k}^{\top} .
\end{aligned}
$$

When $f^{\prime}(\tau) \rightarrow 0$,

- Means $M$ disappears $\Rightarrow$ Impossible classification from means.

Last word: the suprising case $f^{\prime}(\tau)=0 \ldots$

## Reminder:

Theorem (Random Matrix Equivalent)
As $n, p \rightarrow \infty$, in operator norm, $\left\|L^{\prime}-\hat{L}^{\prime}\right\| \xrightarrow{\text { a.s. }} 0$, where

$$
\hat{L}^{\prime}=-2 \frac{f^{\prime}(\tau)}{f(\tau)} \frac{1}{p} P W^{\top} W P-2 \frac{f^{\prime}(\tau)}{f(\tau)} U B U^{\top}+\alpha(\tau) I_{n}
$$

and $\tau=\frac{2}{p} \operatorname{tr} C^{\circ}, W=\left[w_{1}, \ldots, w_{n}\right] \in \mathbb{R}^{p \times n}\left(x_{i}=\mu_{a}+w_{i}\right), P=I_{n}-\frac{1}{n} 1_{n} 1_{n}^{\top}$,

$$
\begin{aligned}
U & =\left[\frac{1}{\sqrt{p}} J, *\right], B=\left[\begin{array}{cc}
B_{11} & * \\
* & *
\end{array}\right] \\
B_{11} & =M^{\top} M+\left(\frac{5 f^{\prime}(\tau)}{8 f(\tau)}-\frac{f^{\prime \prime}(\tau)}{2 f^{\prime}(\tau)}\right) t t^{\top}-\frac{f^{\prime \prime}(\tau)}{f^{\prime}(\tau)} T+\frac{p}{n} \frac{f(\tau) \alpha(\tau)}{2 f^{\prime}(\tau)} 1_{k} 1_{k}^{\top}
\end{aligned}
$$

When $f^{\prime}(\tau) \rightarrow 0$,

- Means $M$ disappears $\Rightarrow$ Impossible classification from means.
- More importantly: $P W W^{\top} P$ disappears
$\Rightarrow$ Asymptotic deterministic matrix equivalent!
$\Rightarrow$ Perfect asymptotic clustering in theory!


## Outline

```
Basics of Random Matrix Theory
 Motivation: Large Sample Covariance Matrices
 The Stieltjes Transform Method
 Spiked Models
 Other Common Random Matrix Models
```

Applications
Random Matrices and Robust Estimation Spectral Clustering Methods and Random Matrices
Community Detection on Graphs
Kernel Spectral Clustering
Kernel Spectral Clustering: Subspace Clustering
Semi-supervised Learning
Support Vector Machines
Neural Networks: Extreme Learning Machines

Perspectives

## Position of the Problem

Problem: Cluster large data $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ based on "spanned subspaces".

## Position of the Problem

Problem: Cluster large data $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ based on "spanned subspaces".

## Method:

- Still assume $x_{1}, \ldots, x_{n}$ belong to $k$ classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$.
- Zero-mean Gaussian model for the data: for $x_{i} \in \mathcal{C}_{k}$,

$$
x_{i} \sim \mathcal{N}\left(0, C_{k}\right)
$$

## Position of the Problem

Problem: Cluster large data $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ based on "spanned subspaces".

## Method:

- Still assume $x_{1}, \ldots, x_{n}$ belong to $k$ classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$.
- Zero-mean Gaussian model for the data: for $x_{i} \in \mathcal{C}_{k}$,

$$
x_{i} \sim \mathcal{N}\left(0, C_{k}\right)
$$

- Performance of $L=n D^{-\frac{1}{2}} K D^{-\frac{1}{2}}-n \frac{D^{\frac{1}{2}} 1_{n} 1_{n}^{\top} D^{\frac{1}{2}}}{1_{n}^{\top} D 1_{n}}$, with

$$
K=\left\{f\left(\left\|\bar{x}_{i}-\bar{x}_{j}\right\|^{2}\right)\right\}_{1 \leq i, j \leq n}, \quad \bar{x}=\frac{x}{\|x\|}
$$

in the regime $n, p \rightarrow \infty$.

## Model and Reminders

Assumption 1 [Classes]. Vectors $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ i.i.d. from $k$-class Gaussian mixture, with $x_{i} \in \mathcal{C}_{k} \Leftrightarrow x_{i} \sim \mathcal{N}\left(0, C_{k}\right)$ (sorted by class for simplicity).

## Model and Reminders

Assumption 1 [Classes]. Vectors $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ i.i.d. from $k$-class Gaussian mixture, with $x_{i} \in \mathcal{C}_{k} \Leftrightarrow x_{i} \sim \mathcal{N}\left(0, C_{k}\right)$ (sorted by class for simplicity).

Assumption 2a [Growth Rates]. As $n \rightarrow \infty$, for each $a \in\{1, \ldots, k\}$,

1. $\frac{n}{p} \rightarrow c_{0} \in(0, \infty)$
2. $\frac{n_{a}}{n} \rightarrow c_{a} \in(0, \infty)$
3. $\frac{1}{p} \operatorname{tr} C_{a}=1$ and $\operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}=O(p)$, with $C_{a}^{\circ}=C_{a}-C^{\circ}, C^{\circ}=\sum_{b=1}^{k} c_{b} C_{b}$.

## Model and Reminders

Assumption 1 [Classes]. Vectors $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ i.i.d. from $k$-class Gaussian mixture, with $x_{i} \in \mathcal{C}_{k} \Leftrightarrow x_{i} \sim \mathcal{N}\left(0, C_{k}\right)$ (sorted by class for simplicity).

Assumption 2a [Growth Rates]. As $n \rightarrow \infty$, for each $a \in\{1, \ldots, k\}$,

1. $\frac{n}{p} \rightarrow c_{0} \in(0, \infty)$
2. $\frac{n_{a}}{n} \rightarrow c_{a} \in(0, \infty)$
3. $\frac{1}{p} \operatorname{tr} C_{a}=1$ and $\operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}=O(p)$, with $C_{a}^{\circ}=C_{a}-C^{\circ}, C^{\circ}=\sum_{b=1}^{k} c_{b} C_{b}$.

Theorem (Corollary of Previous Section)
Let $f$ smooth with $f^{\prime}(2) \neq 0$. Then, under Assumptions 2a,
$L=n D^{-\frac{1}{2}} K D^{-\frac{1}{2}}-n \frac{D^{\frac{1}{2}} 1_{n} 1_{n}^{\top} D^{\frac{1}{2}}}{1_{n}^{\top} D 1_{n}}$, with $K=\left\{f\left(\left\|\bar{x}_{i}-\bar{x}_{j}\right\|^{2}\right)\right\}_{i, j=1}^{n} \quad(\bar{x}=x /\|x\|)$
exhibits phase transition phenomenon

## Model and Reminders

Assumption 1 [Classes]. Vectors $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ i.i.d. from $k$-class Gaussian mixture, with $x_{i} \in \mathcal{C}_{k} \Leftrightarrow x_{i} \sim \mathcal{N}\left(0, C_{k}\right)$ (sorted by class for simplicity).

Assumption 2a [Growth Rates]. As $n \rightarrow \infty$, for each $a \in\{1, \ldots, k\}$,

1. $\frac{n}{p} \rightarrow c_{0} \in(0, \infty)$
2. $\frac{n_{a}}{n} \rightarrow c_{a} \in(0, \infty)$
3. $\frac{1}{p} \operatorname{tr} C_{a}=1$ and $\operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}=O(p)$, with $C_{a}^{\circ}=C_{a}-C^{\circ}, C^{\circ}=\sum_{b=1}^{k} c_{b} C_{b}$.

## Theorem (Corollary of Previous Section)

Let $f$ smooth with $f^{\prime}(2) \neq 0$. Then, under Assumptions 2a,
$L=n D^{-\frac{1}{2}} K D^{-\frac{1}{2}}-n \frac{D^{\frac{1}{2}} 1_{n} 1_{n}^{\top} D^{\frac{1}{2}}}{1_{n}^{\top} D 1_{n}}$, with $K=\left\{f\left(\left\|\bar{x}_{i}-\bar{x}_{j}\right\|^{2}\right)\right\}_{i, j=1}^{n} \quad(\bar{x}=x /\|x\|)$
exhibits phase transition phenomenon, i.e., leading eigenvectors of $L$ asymptotically contain structural information about $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$ if and only if

$$
T=\left\{\frac{1}{p} \operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}\right\}_{a, b=1}^{k}
$$

has sufficiently large eigenvalues.

## The case $f^{\prime}(2)=0$

Assumption 2b [Growth Rates]. As $n \rightarrow \infty$, for each $a \in\{1, \ldots, k\}$,

1. $\frac{n}{p} \rightarrow c_{0} \in(0, \infty)$
2. $\frac{n_{a}}{n} \rightarrow c_{a} \in(0, \infty)$
3. $\frac{1}{p} \operatorname{tr} C_{a}=1$ and $C_{a}^{\circ} G_{b}^{\circ}=\Theta(p)$, with $C_{a}^{\circ}=C_{a}-C^{\circ}, C^{\circ}=\sum_{b=1}^{k} c_{b} C_{b}$.

## The case $f^{\prime}(2)=0$

Assumption 2b [Growth Rates]. As $n \rightarrow \infty$, for each $a \in\{1, \ldots, k\}$,

1. $\frac{n}{p} \rightarrow c_{0} \in(0, \infty)$
2. $\frac{n_{a}}{n} \rightarrow c_{a} \in(0, \infty)$
3. $\frac{1}{p} \operatorname{tr} C_{a}=1$ and $\operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}=O(\sqrt{p})$, with $C_{a}^{\circ}=C_{a}-C^{\circ}, C^{\circ}=\sum_{b=1}^{k} c_{b} C_{b}$.
(in this regime, previous kernels clearly fail)

## The case $f^{\prime}(2)=0$

Assumption 2b [Growth Rates]. As $n \rightarrow \infty$, for each $a \in\{1, \ldots, k\}$,

1. $\frac{n}{p} \rightarrow c_{0} \in(0, \infty)$
2. $\frac{n_{a}}{n} \rightarrow c_{a} \in(0, \infty)$
3. $\frac{1}{p} \operatorname{tr} C_{a}=1$ and $\operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}=O(\sqrt{p})$, with $C_{a}^{\circ}=C_{a}-C^{\circ}, C^{\circ}=\sum_{b=1}^{k} c_{b} C_{b}$.
(in this regime, previous kernels clearly fail)

Theorem (Random Equivalent for $f^{\prime}(2)=0$ )
Let $f$ be smooth with $f^{\prime}(2)=0$ and

$$
\mathcal{L} \equiv \sqrt{p} \frac{f(2)}{2 f^{\prime \prime}(2)}\left[L-\frac{f(0)-f(2)}{f(2)} P\right], \quad P=I_{n}-\frac{1}{n} 1_{n} 1_{n}^{\top} .
$$

Then, under Assumptions 2b,

$$
\mathcal{L}=P \Phi P+\left\{\frac{1}{\sqrt{p}} \operatorname{tr}\left(C_{a}^{\circ} C_{b}^{\circ}\right) \frac{1_{n_{a}} 1_{n_{b}}^{\top}}{p}\right\}_{a, b=1}^{k}+o_{\|\cdot\|}(1)
$$

where $\Phi_{i j}=\boldsymbol{\delta}_{i \neq j} \sqrt{p}\left[\left(x_{i}^{\top} x_{j}\right)^{2}-E\left[\left(x_{i}^{\top} x_{j}\right)^{2}\right]\right]$.

The case $f^{\prime}(2)=0$


Figure: Eigenvalues of $L, p=1000, n=2000, k=3, c_{1}=c_{2}=1 / 4, c_{3}=1 / 2$,
$C_{i} \propto I_{p}+(p / 8)^{-\frac{5}{4}} W_{i} W_{i}^{\top}, W_{i} \in \mathbb{R}^{p \times(p / 8)}$ of i.i.d. $\mathcal{N}(0,1)$ entries, $f(t)=\exp \left(-(t-2)^{2}\right)$.
$\Rightarrow$ No longer a Marcenko-Pastur like bulk, but rather a semi-circle bulk!

The case $f^{\prime}(2)=0$


## The case $f^{\prime}(2)=0$

Roadmap. We now need to:

- study the spectrum of $\Phi$


## The case $f^{\prime}(2)=0$

Roadmap. We now need to:

- study the spectrum of $\Phi$
- study the isolated eigenvalues of $\mathcal{L}$ (and the phase transition)


## The case $f^{\prime}(2)=0$

Roadmap. We now need to:

- study the spectrum of $\Phi$
- study the isolated eigenvalues of $\mathcal{L}$ (and the phase transition)
- retrieve information from the eigenvectors.


## The case $f^{\prime}(2)=0$

Roadmap. We now need to:

- study the spectrum of $\Phi$
- study the isolated eigenvalues of $\mathcal{L}$ (and the phase transition)
- retrieve information from the eigenvectors.

Theorem (Semi-circle law for $\Phi$ )
Let $\mu_{n}=\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{\delta}_{\lambda_{i}(\mathcal{L})}$. Then, under Assumption 2b,

$$
\mu_{n} \xrightarrow{\text { a.s. }} \mu
$$

with $\mu$ the semi-circle distribution

$$
\mu(d t)=\frac{1}{2 \pi c_{0} \omega^{2}} \sqrt{\left(4 c_{0} \omega^{2}-t^{2}\right)^{+}} d t, \quad \omega=\lim _{p \rightarrow \infty} \sqrt{2} \frac{1}{p} \operatorname{tr}\left(C^{\circ}\right)^{2}
$$

The case $f^{\prime}(2)=0$


Figure: Eigenvalues of $L, p=1000, n=2000, k=3, c_{1}=c_{2}=1 / 4, c_{3}=1 / 2$, $C_{i} \propto I_{p}+(p / 8)^{-\frac{5}{4}} W_{i} W_{i}^{\top}, W_{i} \in \mathbb{R}^{p \times(p / 8)}$ of i.i.d. $\mathcal{N}(0,1)$ entries, $f(t)=\exp \left(-(t-2)^{2}\right)$.

## The case $f^{\prime}(2)=0$

Denote now

$$
\mathcal{T} \equiv \lim _{p \rightarrow \infty}\left\{\frac{\sqrt{c_{a} c_{b}}}{\sqrt{p}} \operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}\right\}_{a, b=1}^{k}
$$

## The case $f^{\prime}(2)=0$

Denote now

$$
\mathcal{T} \equiv \lim _{p \rightarrow \infty}\left\{\frac{\sqrt{c_{a} c_{b}}}{\sqrt{p}} \operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}\right\}_{a, b=1}^{k}
$$

Theorem (Isolated Eigenvalues)
Let $\nu_{1} \geq \ldots \geq \nu_{k}$ eigenvalues of $\mathcal{T}$. Then, if $\sqrt{c_{0}}\left|\nu_{i}\right|>\omega, \mathcal{L}$ has an isolated eigenvalue $\lambda_{i}$ satisfying

$$
\lambda_{i} \xrightarrow{\text { a.s. }} \rho_{i} \equiv c_{0} \nu_{i}+\frac{\omega^{2}}{\nu_{i}} .
$$

## The case $f^{\prime}(2)=0$

Theorem (Isolated Eigenvectors)
For each isolated eigenpair $\left(\lambda_{i}, u_{i}\right)$ of $\mathcal{L}$ corresponding to $\left(\nu_{i}, v_{i}\right)$ of $\mathcal{T}$, write

$$
u_{i}=\sum_{a=1}^{k} \alpha_{i}^{a} \frac{j_{a}}{\sqrt{n_{a}}}+\sigma_{i}^{a} w_{i}^{a}
$$

with $j_{a}=\left[0_{n_{1}}^{\top}, \ldots, 1_{n_{a}}^{\top}, \ldots, 0_{n_{k}}^{\top}\right]^{\top},\left(w_{i}^{a}\right)^{\top} j_{a}=0, \operatorname{supp}\left(w_{i}^{a}\right)=\operatorname{supp}\left(j_{a}\right),\left\|w_{i}^{a}\right\|=1$. Then, under Assumptions 1-2b,

$$
\begin{aligned}
& \alpha_{i}^{a} \alpha_{i}^{b} \xrightarrow{\text { a.s }}\left(1-\frac{1}{c_{0}} \frac{\omega^{2}}{\nu_{i}^{2}}\right)\left[v_{i} v_{i}^{\top}\right]_{a b} \\
& \left(\sigma_{i}^{a}\right)^{2} \xrightarrow{\text { a.s. }} \frac{c_{a}}{c_{0}} \frac{\omega^{2}}{\nu_{i}^{2}}
\end{aligned}
$$

and the fluctuations of $u_{i}, u_{j}, i \neq j$, are asymptotically uncorrelated.

The case $f^{\prime}(2)=0$


Figure: Leading two eigenvectors of $\mathcal{L}$ (or equivalently of $L$ ) versus deterministic approximations of $\alpha_{i}^{a} \pm \sigma_{i}^{a}$.

The case $f^{\prime}(2)=0$


Figure: Leading two eigenvectors of $\mathcal{L}$ (or equivalently of $L$ ) versus deterministic approximations of $\alpha_{i}^{a} \pm \sigma_{i}^{a}$.

The case $f^{\prime}(2)=0$


Figure: Leading two eigenvectors of $\mathcal{L}$ (or equivalently of $L$ ) versus deterministic approximations of $\alpha_{i}^{a} \pm \sigma_{i}^{a}$.

## Outline

```
Basics of Random Matrix Theory
 Motivation: Large Sample Covariance Matrices
 The Stieltjes Transform Method
 Spiked Models
 Other Common Random Matrix Models
```

Applications
Random Matrices and Robust Estimation
Spectral Clustering Methods and Random Matrices
Community Detection on Graphs
Kernel Spectral Clustering
Kernel Spectral Clustering: Subspace Clustering
Semi-supervised Learning
Support Vector Machines
Neural Networks: Extreme Learning Machines
Perspectives

## Problem Statement

Context: Similar to clustering:

- Classify $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ in $k$ classes, but with labelled and unlabelled data.


## Problem Statement

Context: Similar to clustering:

- Classify $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ in $k$ classes, but with labelled and unlabelled data.
- Problem statement: $\left(d_{i}=\left[K 1_{n}\right]_{i}\right)$

$$
F=\operatorname{argmin}_{F \in \mathbb{R}^{n \times k}} \sum_{a=1}^{k} \sum_{i, j} K_{i j}\left(F_{i a} d_{i}^{\alpha-1}-F_{j a} d_{j}^{\alpha-1}\right)^{2}
$$

such that $F_{i a}=\delta_{\left\{x_{i} \in \mathcal{C}_{a}\right\}}$, for all labelled $x_{i}$.

## Problem Statement

Context: Similar to clustering:

- Classify $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ in $k$ classes, but with labelled and unlabelled data.
- Problem statement: $\left(d_{i}=\left[K 1_{n}\right]_{i}\right)$

$$
F=\operatorname{argmin}_{F \in \mathbb{R}^{n \times k}} \sum_{a=1}^{k} \sum_{i, j} K_{i j}\left(F_{i a} d_{i}^{\alpha-1}-F_{j a} d_{j}^{\alpha-1}\right)^{2}
$$

such that $F_{i a}=\delta_{\left\{x_{i} \in \mathcal{C}_{a}\right\}}$, for all labelled $x_{i}$.

- Solution: denoting $F^{(u)} \in \mathbb{R}^{n_{u} \times k}, F^{(l)} \in \mathbb{R}^{n_{l} \times k}$ the restriction to unlabelled/labelled data,

$$
F^{(u)}=\left(I_{n_{u}}-D_{(u)}^{-\alpha} K_{(u, u)} D_{(u)}^{\alpha-1}\right)^{-1} D_{(u)}^{-\alpha} K_{(u, l)} D_{(l)}^{\alpha-1} F^{(l)}
$$

where we naturally decompose

$$
\begin{aligned}
K & =\left[\begin{array}{ll}
K_{(l, l)} & K_{(l, u)} \\
K_{(u, l)} & K_{(u, u)}
\end{array}\right] \\
D & =\left[\begin{array}{cc}
D_{(l)} & 0 \\
0 & D^{(u)}
\end{array}\right]=\operatorname{diag}\left\{K 1_{n}\right\} .
\end{aligned}
$$

## Problem Statement

Using $F^{(u)}$ :

- From $F^{(u)}$, classification algorithm:

$$
\text { Classify } x_{i} \text { in } \mathcal{C}_{a} \Leftrightarrow F_{i a}=\max _{b \in\{1, \ldots, k\}}\left\{F_{i b}\right\} .
$$

## Problem Statement

Using $F^{(u)}$ :

- From $F^{(u)}$, classification algorithm:

$$
\text { Classify } x_{i} \text { in } \mathcal{C}_{a} \Leftrightarrow F_{i a}=\max _{b \in\{1, \ldots, k\}}\left\{F_{i b}\right\}
$$

Objectives: For $x_{i} \sim \mathcal{N}\left(\mu_{a}, C_{a}\right)$, and as $n, p \rightarrow \infty,\left(n_{u}, n_{l} \rightarrow \infty\right.$ or $n_{u} \rightarrow \infty$, $\left.n_{l}=O(1)\right)$

## Problem Statement

Using $F^{(u)}$ :

- From $F^{(u)}$, classification algorithm:

$$
\text { Classify } x_{i} \text { in } \mathcal{C}_{a} \Leftrightarrow F_{i a}=\max _{b \in\{1, \ldots, k\}}\left\{F_{i b}\right\}
$$

Objectives: For $x_{i} \sim \mathcal{N}\left(\mu_{a}, C_{a}\right)$, and as $n, p \rightarrow \infty,\left(n_{u}, n_{l} \rightarrow \infty\right.$ or $n_{u} \rightarrow \infty$, $\left.n_{l}=O(1)\right)$

- Tractable approximation (in norm) for the vectors $\left[F^{(u)}\right]_{\cdot, a}, a=1, \ldots, k$
- Joint asymptotic behavior of $\left[F^{(u)}\right]_{i,}$. $\Rightarrow$ From which classification probability is retrieved.


## Problem Statement

Using $F^{(u)}$ :

- From $F^{(u)}$, classification algorithm:

$$
\text { Classify } x_{i} \text { in } \mathcal{C}_{a} \Leftrightarrow F_{i a}=\max _{b \in\{1, \ldots, k\}}\left\{F_{i b}\right\}
$$

Objectives: For $x_{i} \sim \mathcal{N}\left(\mu_{a}, C_{a}\right)$, and as $n, p \rightarrow \infty,\left(n_{u}, n_{l} \rightarrow \infty\right.$ or $n_{u} \rightarrow \infty$, $\left.n_{l}=O(1)\right)$

- Tractable approximation (in norm) for the vectors $\left[F^{(u)}\right]_{\cdot, a}, a=1, \ldots, k$
- Joint asymptotic behavior of $\left[F^{(u)}\right]_{i,}$. $\Rightarrow$ From which classification probability is retrieved.
- Understanding the impact of $\alpha$ $\Rightarrow$ Finding optimal $\alpha$ choice online?


## MNIST Data Example



Figure: Vectors $\left[F^{(u)}\right]_{, ~}, a, a=1,2,3$, for 3-class MNIST data (zeros, ones, twos), $n=192$, $p=784, n_{l} / n=1 / 16$, Gaussian kernel.

## MNIST Data Example



Figure: Vectors $\left[F^{(u)}\right]_{, ~}, a, a=1,2,3$, for 3-class MNIST data (zeros, ones, twos), $n=192$, $p=784, n_{l} / n=1 / 16$, Gaussian kernel.

## MNIST Data Example



Figure: Vectors $\left[F^{(u)}\right]_{, a}, a=1,2,3$, for 3-class MNIST data (zeros, ones, twos), $n=192$, $p=784, n_{l} / n=1 / 16$, Gaussian kernel.

## Comments

Not at all what we expect!:

## Comments

Not at all what we expect!:

- Intuitively, $\left[F^{(u)}\right]_{i, a}$ should be close to 1 if $x_{i} \in \mathcal{C}_{a}$ or 0 if $x_{i} \notin \mathcal{C}_{a}$ (from cost function $\left.K_{i j}\left(F_{i, a}-F_{j, a}\right)^{2}\right)$


## Comments

Not at all what we expect!:

- Intuitively, $\left[F^{(u)}\right]_{i, a}$ should be close to 1 if $x_{i} \in \mathcal{C}_{a}$ or 0 if $x_{i} \notin \mathcal{C}_{a}$ (from cost function $\left.K_{i j}\left(F_{i, a}-F_{j, a}\right)^{2}\right)$
- Here, strong class-wise biases


## Comments

Not at all what we expect!:

- Intuitively, $\left[F^{(u)}\right]_{i, a}$ should be close to 1 if $x_{i} \in \mathcal{C}_{a}$ or 0 if $x_{i} \notin \mathcal{C}_{a}$ (from cost function $\left.K_{i j}\left(F_{i, a}-F_{j, a}\right)^{2}\right)$
- Here, strong class-wise biases
- But, more surprisingly, it still works very well !


## Comments

Not at all what we expect!:

- Intuitively, $\left[F^{(u)}\right]_{i, a}$ should be close to 1 if $x_{i} \in \mathcal{C}_{a}$ or 0 if $x_{i} \notin \mathcal{C}_{a}$ (from cost function $\left.K_{i j}\left(F_{i, a}-F_{j, a}\right)^{2}\right)$
- Here, strong class-wise biases
- But, more surprisingly, it still works very well !

We need to understand why...

## MNIST Data Example



Figure: Centered Vectors $\left[F_{(u)}^{\circ}\right]_{\cdot, a}=\left[F_{(u)}-\frac{1}{k} F_{(u)} 1_{k} 1_{k}^{\top}\right]_{\cdot, a}, a=1,2,3$, for 3-class MNIST data (zeros, ones, twos), $n=192, p=784, n_{l} / n=1 / 16$, Gaussian kernel.

## MNIST Data Example



Figure: Centered Vectors $\left[F_{(u)}^{\circ}\right]_{\cdot, a}=\left[F_{(u)}-\frac{1}{k} F_{(u)} 1_{k} 1_{k}^{\top}\right]_{., a}, a=1,2,3$, for 3-class MNIST data (zeros, ones, twos), $n=192, p=784, n_{l} / n=1 / 16$, Gaussian kernel.

## MNIST Data Example



Figure: Centered Vectors $\left[F_{(u)}^{\circ}\right]_{\cdot, a}=\left[F_{(u)}-\frac{1}{k} F_{(u)} 1_{k} 1_{k}^{\top}\right]_{., a}, a=1,2,3$, for 3-class MNIST data (zeros, ones, twos), $n=192, p=784, n_{l} / n=1 / 16$, Gaussian kernel.

## MNIST Data Example



Figure: Performance as a function of $\alpha$, for 3-class MNIST data (zeros, ones, twos), $n=192$, $p=784, n_{l} / n=1 / 16$, Gaussian kernel.

## Theoretical Findings

Method: We assume $n_{l} / n \rightarrow c_{l} \in(0,1)$ ("numerous" labelled data setting)

- Recall that we aim at characterizing

$$
F^{(u)}=\left(I_{n_{u}}-D_{(u)}^{-\alpha} K_{(u, u)} D_{(u)}^{\alpha-1}\right)^{-1} D_{(u)}^{-\alpha} K_{(u, l)} D_{(l)}^{\alpha-1} F^{(l)}
$$

- A priori difficulty linked to resolvent of involved random matrix!
- Painstaking product of complex matrices.


## Theoretical Findings

Method: We assume $n_{l} / n \rightarrow c_{l} \in(0,1)$ ("numerous" labelled data setting)

- Recall that we aim at characterizing

$$
F^{(u)}=\left(I_{n_{u}}-D_{(u)}^{-\alpha} K_{(u, u)} D_{(u)}^{\alpha-1}\right)^{-1} D_{(u)}^{-\alpha} K_{(u, l)} D_{(l)}^{\alpha-1} F^{(l)}
$$

- A priori difficulty linked to resolvent of involved random matrix!
- Painstaking product of complex matrices.
- Using Taylor expansion of $K$ as $n, p \rightarrow \infty$, we get

$$
\begin{aligned}
K_{(u, u)} & =f(\tau) 1_{n_{u}} 1_{n_{u}}^{\top}+O_{\|\cdot\|}\left(n^{-\frac{1}{2}}\right) \\
D_{(u)} & =n f(\tau) I_{n_{u}}+O\left(n^{\frac{1}{2}}\right)
\end{aligned}
$$

and similarly for $K_{(u, l)}, D_{(l)}$.

## Theoretical Findings

Method: We assume $n_{l} / n \rightarrow c_{l} \in(0,1)$ ("numerous" labelled data setting)

- Recall that we aim at characterizing

$$
F^{(u)}=\left(I_{n_{u}}-D_{(u)}^{-\alpha} K_{(u, u)} D_{(u)}^{\alpha-1}\right)^{-1} D_{(u)}^{-\alpha} K_{(u, l)} D_{(l)}^{\alpha-1} F^{(l)}
$$

- A priori difficulty linked to resolvent of involved random matrix!
- Painstaking product of complex matrices.
- Using Taylor expansion of $K$ as $n, p \rightarrow \infty$, we get

$$
\begin{aligned}
K_{(u, u)} & =f(\tau) 1_{n_{u}} 1_{n_{u}}^{\top}+O_{\|\cdot\|}\left(n^{-\frac{1}{2}}\right) \\
D_{(u)} & =n f(\tau) I_{n_{u}}+O\left(n^{\frac{1}{2}}\right)
\end{aligned}
$$

and similarly for $K_{(u, l)}, D_{(l)}$.

- So that

$$
\left(I_{n_{u}}-D_{(u)}^{-\alpha} K_{(u, u)} D_{(u)}^{\alpha-1}\right)^{-1}=\left(I_{n_{u}}-\frac{1_{n_{u}} 1_{n_{u}}^{\top}}{n}+O_{\|\cdot\|}\left(n^{-\frac{1}{2}}\right)\right)^{-1}
$$

which can be easily Taylor expanded!

## Main Results

## Results:

- In the first order,

$$
F_{\cdot, a}^{(u)}=C \frac{n_{l, a}}{n}\left[v+\alpha \frac{t_{a} 1_{n_{u}}}{\sqrt{n}}\right]+\underbrace{O\left(n^{-1}\right)}_{\text {Information is here! }}
$$

where $v=O(1)$ random vector (entry-wise) and $t_{a}=\frac{1}{\sqrt{p}} \operatorname{tr} C_{a}^{\circ}$.

## Main Results

## Results:

- In the first order,

$$
F_{\cdot, a}^{(u)}=C \frac{n_{l, a}}{n}\left[v+\alpha \frac{t_{a} 1_{n_{u}}}{\sqrt{n}}\right]+\underbrace{O\left(n^{-1}\right)}_{\text {Information is here! }}
$$

where $v=O(1)$ random vector (entry-wise) and $t_{a}=\frac{1}{\sqrt{p}} \operatorname{tr} C_{a}^{\circ}$.

- Many consequences:


## Main Results

## Results:

- In the first order,

$$
F_{\cdot, a}^{(u)}=C \frac{n_{l, a}}{n}\left[v+\alpha \frac{t_{a} 1_{n_{u}}}{\sqrt{n}}\right]+\underbrace{O\left(n^{-1}\right)}_{\text {Information is here! }}
$$

where $v=O(1)$ random vector (entry-wise) and $t_{a}=\frac{1}{\sqrt{p}} \operatorname{tr} C_{a}^{\circ}$.

- Many consequences:
- Random non-informative bias linked to $v$


## Main Results

## Results:

- In the first order,

$$
F_{\cdot, a}^{(u)}=C \frac{n_{l, a}}{n}\left[v+\alpha \frac{t_{a} 1_{n_{u}}}{\sqrt{n}}\right]+\underbrace{O\left(n^{-1}\right)}_{\text {Information is here! }}
$$

where $v=O(1)$ random vector (entry-wise) and $t_{a}=\frac{1}{\sqrt{p}} \operatorname{tr} C_{a}^{\circ}$.

- Many consequences:
- Random non-informative bias linked to $v$
- Strong Impact of $n_{l, a}$ ! $\Rightarrow$ All $n_{l, a}$ must be equal OR $F^{(u)}$ need be scaled!


## Main Results

## Results:

- In the first order,

$$
F_{\cdot, a}^{(u)}=C \frac{n_{l, a}}{n}\left[v+\alpha \frac{t_{a} 1_{n_{u}}}{\sqrt{n}}\right]+\underbrace{O\left(n^{-1}\right)}_{\text {Information is here! }}
$$

where $v=O(1)$ random vector (entry-wise) and $t_{a}=\frac{1}{\sqrt{p}} \operatorname{tr} C_{a}^{\circ}$.

- Many consequences:
- Random non-informative bias linked to $v$
- Strong Impact of $n_{l, a}$ ! $\Rightarrow$ All $n_{l, a}$ must be equal OR $F^{(u)}$ need be scaled!
- Additional per-class bias $\alpha t_{a} 1_{n_{u}}$ : no information here $\Rightarrow$ Forces the choice

$$
\alpha=0+\frac{\beta}{\sqrt{p}}
$$

## Main Results

## Results:

- In the first order,

$$
F_{\cdot, a}^{(u)}=C \frac{n_{l, a}}{n}\left[v+\alpha \frac{t_{a} 1_{n_{u}}}{\sqrt{n}}\right]+\underbrace{O\left(n^{-1}\right)}_{\text {Information is here! }}
$$

where $v=O(1)$ random vector (entry-wise) and $t_{a}=\frac{1}{\sqrt{p}} \operatorname{tr} C_{a}^{\circ}$.

- Many consequences:
- Random non-informative bias linked to $v$
- Strong Impact of $n_{l, a}$ ! $\Rightarrow$ All $n_{l, a}$ must be equal OR $F^{(u)}$ need be scaled!
- Additional per-class bias $\alpha t_{a} 1_{n_{u}}$ : no information here $\Rightarrow$ Forces the choice

$$
\alpha=0+\frac{\beta}{\sqrt{p}}
$$

- Relevant information hidden in smaller order terms!


## Main Results

As a consequence of the remarks above, we take

$$
\alpha=\frac{\beta}{\sqrt{p}}
$$

and define

$$
\hat{F}_{i, a}^{(u)}=\frac{n p}{n_{l, a}} F_{i a}^{(u)}
$$

## Main Results

As a consequence of the remarks above, we take

$$
\alpha=\frac{\beta}{\sqrt{p}}
$$

and define

$$
\hat{F}_{i, a}^{(u)}=\frac{n p}{n_{l, a}} F_{i a}^{(u)} .
$$

Theorem
For $x_{i} \in \mathcal{C}_{b}$ unlabelled, we have

$$
\hat{F}_{i, \cdot}-G_{b} \rightarrow 0, G_{b} \sim \mathcal{N}\left(m_{b}, \Sigma_{b}\right)
$$

where $m_{b} \in \mathbb{R}^{k}, \Sigma_{b} \in \mathbb{R}^{k \times k}$ given by

$$
\begin{aligned}
\left(m_{b}\right)_{a} & =-\frac{2 f^{\prime}(\tau)}{f(\tau)} \tilde{M}_{a b}+\frac{f^{\prime \prime}(\tau)}{f(\tau)} \tilde{t}_{a} \tilde{t}_{b}+\frac{2 f^{\prime \prime}(\tau)}{f(\tau)} \tilde{T}_{a b}-\frac{f^{\prime}(\tau)^{2}}{f(\tau)^{2}} t_{a} t_{b}+\beta \frac{n}{n_{l}} \frac{f^{\prime}(\tau)}{f(\tau)} t_{a}+B_{b} \\
\left(\Sigma_{b}\right)_{a_{1} a_{2}} & =\frac{2 t r C_{b}^{2}}{p}\left(\frac{f^{\prime}(\tau)^{2}}{f(\tau)^{2}}-\frac{f^{\prime \prime}(\tau)}{f(\tau)}\right)^{2} t_{a_{1}} t_{a_{2}}+\frac{4 f^{\prime}(\tau)^{2}}{f(\tau)^{2}}\left(\left[M^{\top} C_{b} M\right]_{a_{1} a_{2}}+\frac{\delta_{a_{1}}^{a_{2}} p}{n_{l, a_{1}}} T_{b a_{1}}\right)
\end{aligned}
$$

with $t, T, M$ as before, $\tilde{X}_{a}=X_{a}-\sum_{d=1}^{k} \frac{n_{l, d}}{n_{l}} X_{d}^{\circ}$ and $B_{b}$ bias independent of $a$.

## Main Results

Corollary (Asymptotic Classification Error)
For $k=2$ classes and $a \neq b$,

$$
P\left(\hat{F}_{i, a}>\hat{F}_{i b} \mid x_{i} \in \mathcal{C}_{b}\right)-Q\left(\frac{\left(m_{b}\right)_{b}-\left(m_{b}\right)_{a}}{\sqrt{[1,-1] \Sigma_{b}[1,-1]^{\top}}}\right) \rightarrow 0 .
$$

## Main Results

## Corollary (Asymptotic Classification Error)

For $k=2$ classes and $a \neq b$,

$$
P\left(\hat{F}_{i, a}>\hat{F}_{i b} \mid x_{i} \in \mathcal{C}_{b}\right)-Q\left(\frac{\left(m_{b}\right)_{b}-\left(m_{b}\right)_{a}}{\sqrt{[1,-1] \Sigma_{b}[1,-1]^{\top}}}\right) \rightarrow 0
$$

## Some consequences:

- non obvious choices of appropriate kernels
- non obvious choice of optimal $\beta$ (induces a possibly beneficial bias)
- importance of $n_{l}$ versus $n_{u}$.


## MNIST Data Example



Figure: Performance as a function of $\alpha$, for 3-class MNIST data (zeros, ones, twos), $n=192$, $p=784, n_{l} / n=1 / 16$, Gaussian kernel.

## MNIST Data Example



Figure: Performance as a function of $\alpha$, for 3-class MNIST data (zeros, ones, twos), $n=192$, $p=784, n_{l} / n=1 / 16$, Gaussian kernel.

## MNIST Data Example



Figure: Performance as a function of $\alpha$, for 2-class MNIST data (zeros, ones), $n=1568$, $p=784, n_{l} / n=1 / 16$, Gaussian kernel.

## MNIST Data Example



Figure: Performance as a function of $\alpha$, for 2-class MNIST data (zeros, ones), $n=1568$, $p=784, n_{l} / n=1 / 16$, Gaussian kernel.

## Outline

```
Basics of Random Matrix Theory
 Motivation: Large Sample Covariance Matrices
 The Stieltjes Transform Method
 Spiked Models
 Other Common Random Matrix Models
```

Applications
Random Matrices and Robust Estimation
Spectral Clustering Methods and Random Matrices
Community Detection on Graphs
Kernel Spectral Clustering
Kernel Spectral Clustering: Subspace Clustering
Semi-supervised Learning
Support Vector Machines
Neural Networks: Extreme Learning Machines
Perspectives

## Problem Statement

Classical SVM


LS SVM


## Problem Statement

Context: All data are labelled, we classify the next incoming one:

- Classify $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ in $k=2$ classes.


## Problem Statement

Context: All data are labelled, we classify the next incoming one:

- Classify $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ in $k=2$ classes.
- For kernel $K(x, y)=\phi(x)^{\top} \phi(y), \phi(x) \in \mathbb{R}^{q}$, find hyperplane directed by $(w, b)$ to "isolate each class".

$$
(w, b)=\operatorname{argmin}_{w \in \mathbb{R}^{q-1}}\|w\|^{2}+\frac{1}{n} \sum_{i=1}^{n} c\left(x_{i} ; w, b\right)
$$

for a certain cost function $c(x ; w, b)$.

## Problem Statement

Context: All data are labelled, we classify the next incoming one:

- Classify $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ in $k=2$ classes.
- For kernel $K(x, y)=\phi(x)^{\top} \phi(y), \phi(x) \in \mathbb{R}^{q}$, find hyperplane directed by $(w, b)$ to "isolate each class".

$$
(w, b)=\operatorname{argmin}_{w \in \mathbb{R}^{q-1}}\|w\|^{2}+\frac{1}{n} \sum_{i=1}^{n} c\left(x_{i} ; w, b\right)
$$

for a certain cost function $c(x ; w, b)$.

## Solutions:

- Classical SVM:

$$
c\left(x_{i} ; w, b\right)=\imath_{\left\{y_{i}\left(w^{\top} \phi\left(x_{i}\right)+b\right) \geq 1\right\}}
$$

with $y_{i}= \pm 1$ depending on class.
$\Rightarrow$ Solved by quadratic programming methods.
$\Rightarrow$ Analysis requires joint RMT + convex optimization tools (very interesting but left for later...).

## Problem Statement

Context: All data are labelled, we classify the next incoming one:

- Classify $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ in $k=2$ classes.
- For kernel $K(x, y)=\phi(x)^{\top} \phi(y), \phi(x) \in \mathbb{R}^{q}$, find hyperplane directed by $(w, b)$ to "isolate each class".

$$
(w, b)=\operatorname{argmin}_{w \in \mathbb{R}^{q-1}}\|w\|^{2}+\frac{1}{n} \sum_{i=1}^{n} c\left(x_{i} ; w, b\right)
$$

for a certain cost function $c(x ; w, b)$.

## Solutions:

- Classical SVM:

$$
c\left(x_{i} ; w, b\right)=\imath_{\left\{y_{i}\left(w^{\top} \phi\left(x_{i}\right)+b\right) \geq 1\right\}}
$$

with $y_{i}= \pm 1$ depending on class.
$\Rightarrow$ Solved by quadratic programming methods.
$\Rightarrow$ Analysis requires joint RMT + convex optimization tools (very interesting but left for later...).

- LS SVM:

$$
c\left(x_{i} ; w, b\right)=\gamma e_{i}^{2} \equiv \gamma\left(y_{i}-w^{\top} \phi\left(x_{i}\right)-b\right)^{2} .
$$

$\Rightarrow$ Explicit solution (but not sparse!).

## LS SVM

Since $w=\sum_{i=1}^{n} \alpha_{i} \phi\left(x_{i}\right)$, for new datum $x$, decision based on (sign of)

$$
g(x)=\alpha^{\top} K(\cdot, x)+b
$$

with $K\left(x_{i}, x_{j}\right)=f\left(\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}\right)$ (Mercer Conditions) and where $\alpha \in \mathbb{R}^{n}$ and $b$ given by

$$
\begin{aligned}
\alpha & =Q\left(I_{n}-\frac{1_{n} 1_{n}^{\top} Q}{1_{n}^{\top} Q 1_{n}}\right) y \\
b & =\frac{1_{n}^{\top} Q y}{1_{n}^{\top} Q 1_{n}}
\end{aligned}
$$

where $Q=\left(K+\frac{n}{\gamma} I_{n}\right)^{-1}, y=\left[y_{i}\right]_{i=1}^{n}, \gamma>0$ some parameter to set.

## LS SVM

Since $w=\sum_{i=1}^{n} \alpha_{i} \phi\left(x_{i}\right)$, for new datum $x$, decision based on (sign of)

$$
g(x)=\alpha^{\top} K(\cdot, x)+b
$$

with $K\left(x_{i}, x_{j}\right)=f\left(\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}\right)$ (Mercer Conditions) and where $\alpha \in \mathbb{R}^{n}$ and $b$ given by

$$
\begin{aligned}
\alpha & =Q\left(I_{n}-\frac{1_{n} 1_{n}^{\top} Q}{1_{n}^{\top} Q 1_{n}}\right) y \\
b & =\frac{1_{n}^{\top} Q y}{1_{n}^{\top} Q 1_{n}}
\end{aligned}
$$

where $Q=\left(K+\frac{n}{\gamma} I_{n}\right)^{-1}, y=\left[y_{i}\right]_{i=1}^{n}, \gamma>0$ some parameter to set.

## Objectives:

- Study behavior of $g(x)$


## LS SVM

Since $w=\sum_{i=1}^{n} \alpha_{i} \phi\left(x_{i}\right)$, for new datum $x$, decision based on (sign of)

$$
g(x)=\alpha^{\top} K(\cdot, x)+b
$$

with $K\left(x_{i}, x_{j}\right)=f\left(\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}\right)$ (Mercer Conditions) and where $\alpha \in \mathbb{R}^{n}$ and $b$ given by

$$
\begin{aligned}
\alpha & =Q\left(I_{n}-\frac{1_{n} 1_{n}^{\top} Q}{1_{n}^{\top} Q 1_{n}}\right) y \\
b & =\frac{1_{n}^{\top} Q y}{1_{n}^{\top} Q 1_{n}}
\end{aligned}
$$

where $Q=\left(K+\frac{n}{\gamma} I_{n}\right)^{-1}, y=\left[y_{i}\right]_{i=1}^{n}, \gamma>0$ some parameter to set.

## Objectives:

- Study behavior of $g(x)$
- For $x \in \mathcal{C}_{a}$, determine probability of success.


## LS SVM

Since $w=\sum_{i=1}^{n} \alpha_{i} \phi\left(x_{i}\right)$, for new datum $x$, decision based on (sign of)

$$
g(x)=\alpha^{\top} K(\cdot, x)+b
$$

with $K\left(x_{i}, x_{j}\right)=f\left(\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}\right)$ (Mercer Conditions) and where $\alpha \in \mathbb{R}^{n}$ and $b$ given by

$$
\begin{aligned}
\alpha & =Q\left(I_{n}-\frac{1_{n} 1_{n}^{\top} Q}{1_{n}^{\top} Q 1_{n}}\right) y \\
b & =\frac{1_{n}^{\top} Q y}{1_{n}^{\top} Q 1_{n}}
\end{aligned}
$$

where $Q=\left(K+\frac{n}{\gamma} I_{n}\right)^{-1}, y=\left[y_{i}\right]_{i=1}^{n}, \gamma>0$ some parameter to set.

## Objectives:

- Study behavior of $g(x)$
- For $x \in \mathcal{C}_{a}$, determine probability of success.
- Optimize the parameter $\gamma$ and the kernel $K$.


## Results

As before, $x_{i} \sim \mathcal{N}\left(\mu_{a}, C_{a}\right), a=1, \ldots, k$, with identical growth conditions, here for $k=2$.

## Results

As before, $x_{i} \sim \mathcal{N}\left(\mu_{a}, C_{a}\right), a=1, \ldots, k$, with identical growth conditions, here for $k=2$.

Results: As $n, p \rightarrow \infty$,

- in the first order

$$
g(x)=\frac{n_{2}-n_{1}}{n}+\frac{0}{\sqrt{p}}+\underbrace{\frac{G(x)}{p}}_{\text {Relevant terms here! }}
$$

## Results

As before, $x_{i} \sim \mathcal{N}\left(\mu_{a}, C_{a}\right), a=1, \ldots, k$, with identical growth conditions, here for $k=2$.

Results: As $n, p \rightarrow \infty$,

- in the first order

$$
g(x)=\frac{n_{2}-n_{1}}{n}+\frac{0}{\sqrt{p}}+\underbrace{\frac{G(x)}{p}}_{\text {Relevant terms }}
$$

- asymptotic Gaussian behavior of $G(x)$ :

Theorem
For $x \in \mathcal{C}_{b}, G(x)-G_{b} \rightarrow 0, G_{b} \sim \mathcal{N}\left(m_{b}, \sigma_{b}^{2}\right)$, where

$$
m_{b}= \begin{cases}-2 c_{2} \cdot c_{1} c_{2} \gamma \mathcal{D}, & b=1 \\ +2 c_{1} \cdot c_{1} c_{2} \gamma \mathcal{D}, & b=2\end{cases}
$$

$$
\mathcal{D}=-2 f^{\prime}(\tau)\left\|\mu_{2}-\mu_{1}\right\|^{2}+\frac{f^{\prime \prime}(\tau)}{p}\left(\operatorname{tr}\left(C_{2}-C_{1}\right)\right)^{2}+\frac{2 f^{\prime \prime}(\tau)}{p} \operatorname{tr}\left(\left(C_{2}-C_{1}\right)^{2}\right)
$$

$$
\sigma_{b}^{2}=8 \gamma^{2} c_{1}^{2} c_{2}^{2}\left[\frac{\left(f^{\prime \prime}(\tau)\right)^{2}}{p^{2}}\left(\operatorname{tr}\left(C_{2}-C_{1}\right)\right)^{2} \operatorname{tr} C_{b}^{2}+2\left(f^{\prime}(\tau)\right)^{2}\left(\mu_{2}-\mu_{1}\right)^{\top} C_{b}\left(\mu_{2}-\mu_{1}\right)\right.
$$

$$
\left.+\frac{2\left(f^{\prime}(\tau)\right)^{2}}{n}\left(\frac{\operatorname{tr} C_{1} C_{b}}{c_{1}}+\frac{\operatorname{tr} C_{2} C_{b}}{c_{2}}\right)\right]
$$

## Results

## Consequences:

- Strong class-size bias
$\Rightarrow$ Proper threshold must depend on $n_{2}-n_{1}$.


## Results

## Consequences:

- Strong class-size bias
$\Rightarrow$ Proper threshold must depend on $n_{2}-n_{1}$.
- Natural cancellation of $O\left(n^{-\frac{1}{2}}\right)$ terms.
$\Rightarrow$ Similar effect as observed in (properly normalized) kernel spectral clustering.
- Choice of $\gamma$ asymptotically irrelevant.


## Results

## Consequences:

- Strong class-size bias
$\Rightarrow$ Proper threshold must depend on $n_{2}-n_{1}$.
- Natural cancellation of $O\left(n^{-\frac{1}{2}}\right)$ terms.
$\Rightarrow$ Similar effect as observed in (properly normalized) kernel spectral clustering.
- Choice of $\gamma$ asymptotically irrelevant.
- Need to choose $f^{\prime}(\tau)<0$ and $f^{\prime \prime}(\tau)>0$ (not the case for clustering or SSL!)


## Theory and simulations of $g(x)$



Figure: Values of $g(x)$ for MNIST data (1's and 7's), $n=256, p=784$, standard Gaussian kernel.

## Classification performance



Figure: Performance of LS-SVM, $c_{0}=1 / 4, c_{1}=c_{2}=1 / 2, \gamma=1$, polynomial kernel with $f(\tau)=4, f^{\prime \prime}(\tau)=2, x \in \mathcal{N}\left(0, C_{a}\right)$, with $C_{1}=I_{p},\left[C_{2}\right]_{i, j}=.4^{|i-j|}$.

## Outline

```
Basics of Random Matrix Theory
 Motivation: Large Sample Covariance Matrices
 The Stieltjes Transform Method
 Spiked Models
 Other Common Random Matrix Models
```

Applications
Random Matrices and Robust Estimation
Spectral Clustering Methods and Random Matrices
Community Detection on Graphs
Kernel Spectral Clustering
Kernel Spectral Clustering: Subspace Clustering
Semi-supervised Learning
Support Vector Machines

Neural Networks: Extreme Learning Machines

Perspectives

## Problem Statement

General plan for the study of neural networks:

- Objective is to study performance of neural networks:


## Problem Statement

General plan for the study of neural networks:

- Objective is to study performance of neural networks:
- linear or not (linear is easy but not interesting, non-linear is hard)


## Problem Statement

General plan for the study of neural networks:

- Objective is to study performance of neural networks:
- linear or not (linear is easy but not interesting, non-linear is hard)
- from shallow to deep


## Problem Statement

## General plan for the study of neural networks:

- Objective is to study performance of neural networks:
- linear or not (linear is easy but not interesting, non-linear is hard)
- from shallow to deep
- recurrent or not (dynamic systems, stability considerations)


## Problem Statement

## General plan for the study of neural networks:

- Objective is to study performance of neural networks:
- linear or not (linear is easy but not interesting, non-linear is hard)
- from shallow to deep
- recurrent or not (dynamic systems, stability considerations)
- back-propagated or not (LS regression versus gradient descent approaches)


## Problem Statement

## General plan for the study of neural networks:

- Objective is to study performance of neural networks:
- linear or not (linear is easy but not interesting, non-linear is hard)
- from shallow to deep
- recurrent or not (dynamic systems, stability considerations)
- back-propagated or not (LS regression versus gradient descent approaches)
- Starting point: simple networks


## Problem Statement

## General plan for the study of neural networks:

- Objective is to study performance of neural networks:
- linear or not (linear is easy but not interesting, non-linear is hard)
- from shallow to deep
- recurrent or not (dynamic systems, stability considerations)
- back-propagated or not (LS regression versus gradient descent approaches)
- Starting point: simple networks
- Extreme learning machines: single layer, randomly connected input, LS regressed output.


## Problem Statement

## General plan for the study of neural networks:

- Objective is to study performance of neural networks:
- linear or not (linear is easy but not interesting, non-linear is hard)
- from shallow to deep
- recurrent or not (dynamic systems, stability considerations)
- back-propagated or not (LS regression versus gradient descent approaches)
- Starting point: simple networks
- Extreme learning machines: single layer, randomly connected input, LS regressed output.
- Echo-state networks: single interconnected layer, randomly connected input, LS regressed output.


## Problem Statement

## General plan for the study of neural networks:

- Objective is to study performance of neural networks:
- linear or not (linear is easy but not interesting, non-linear is hard)
- from shallow to deep
- recurrent or not (dynamic systems, stability considerations)
- back-propagated or not (LS regression versus gradient descent approaches)
- Starting point: simple networks
- Extreme learning machines: single layer, randomly connected input, LS regressed output.
- Echo-state networks: single interconnected layer, randomly connected input, LS regressed output.
- Deeper structures: back-propagation of error.


## Extreme Learning Machines

Context: for a learning period $T$

- input vectors $x_{1}, \ldots, x_{T} \in \mathbb{R}^{p}$, output scalars (or binary values) $r_{1}, \ldots, r_{T} \in \mathbb{R}$
- $n$-neuron layer, randomly connected input $W \in \mathbb{R}^{n \times p}$
- ridge-regressed output $\omega \in \mathbb{R}^{n}$
- non-linear activation function $\sigma$.



## Extreme Learning Machines

Objectives: evaluate training and testing MSE performance as $n, p, T \rightarrow \infty$

## Extreme Learning Machines

Objectives: evaluate training and testing MSE performance as $n, p, T \rightarrow \infty$

- Training MSE:

$$
E_{\gamma}(X, r)=\frac{1}{T}\left\|r-\omega^{\top} \Sigma\right\|^{2}
$$

with

$$
\begin{aligned}
\Sigma & =\left[\sigma\left(W x_{1}\right), \ldots, \sigma\left(W x_{T}\right)\right] \\
\omega & =\frac{1}{T} \Sigma\left(\frac{1}{T} \Sigma^{\top} \Sigma+\gamma I_{T}\right)^{-1} r .
\end{aligned}
$$

## Extreme Learning Machines

Objectives: evaluate training and testing MSE performance as $n, p, T \rightarrow \infty$

- Training MSE:

$$
E_{\gamma}(X, r)=\frac{1}{T}\left\|r-\omega^{\top} \Sigma\right\|^{2}
$$

with

$$
\begin{aligned}
\Sigma & =\left[\sigma\left(W x_{1}\right), \ldots, \sigma\left(W x_{T}\right)\right] \\
\omega & =\frac{1}{T} \Sigma\left(\frac{1}{T} \Sigma^{\top} \Sigma+\gamma I_{T}\right)^{-1} r .
\end{aligned}
$$

- Testing MSE: upon new pair $(\hat{X}, \hat{r})$ of length $\hat{T}$,

$$
\hat{E}_{\gamma}(X, r ; \hat{X}, \hat{r})=\frac{1}{\hat{T}}\left\|\hat{r}-\omega^{\top} \sigma(W \hat{X})\right\|^{2}
$$

## Extreme Learning Machines

Objectives: evaluate training and testing MSE performance as $n, p, T \rightarrow \infty$

- Training MSE:

$$
E_{\gamma}(X, r)=\frac{1}{T}\left\|r-\omega^{\top} \Sigma\right\|^{2}
$$

with

$$
\begin{aligned}
\Sigma & =\left[\sigma\left(W x_{1}\right), \ldots, \sigma\left(W x_{T}\right)\right] \\
\omega & =\frac{1}{T} \Sigma\left(\frac{1}{T} \Sigma^{\top} \Sigma+\gamma I_{T}\right)^{-1} r .
\end{aligned}
$$

- Testing MSE: upon new pair $(\hat{X}, \hat{r})$ of length $\hat{T}$,

$$
\hat{E}_{\gamma}(X, r ; \hat{X}, \hat{r})=\frac{1}{\hat{T}}\left\|\hat{r}-\omega^{\top} \sigma(W \hat{X})\right\|^{2} .
$$

- Optimize over $\gamma$.


## Technical Aspects

## Training MSE:

- Training MSE given by

$$
\begin{aligned}
E_{\gamma}(X, r) & =\gamma^{2} \frac{1}{T} r^{\top} Q_{\gamma}^{2} r \\
Q_{\gamma} & =\left(\frac{1}{T} \Sigma^{\top} \Sigma+\gamma I_{T}\right)^{-1}
\end{aligned}
$$

## Technical Aspects

## Training MSE:

- Training MSE given by

$$
\begin{aligned}
E_{\gamma}(X, r) & =\gamma^{2} \frac{1}{T} r^{\top} Q_{\gamma}^{2} r \\
Q_{\gamma} & =\left(\frac{1}{T} \Sigma^{\top} \Sigma+\gamma I_{T}\right)^{-1}
\end{aligned}
$$

- Testing MSE given by

$$
\hat{E}_{\gamma}(X, r ; \hat{X}, \hat{r})=\frac{1}{\hat{T}}\left\|\hat{r}-\frac{1}{T} \sigma(W \hat{X})^{\top} \Sigma Q_{\gamma} r\right\|^{2}
$$

## Technical Aspects

## Training MSE:

- Training MSE given by

$$
\begin{aligned}
E_{\gamma}(X, r) & =\gamma^{2} \frac{1}{T} r^{\top} Q_{\gamma}^{2} r \\
Q_{\gamma} & =\left(\frac{1}{T} \Sigma^{\top} \Sigma+\gamma I_{T}\right)^{-1}
\end{aligned}
$$

- Testing MSE given by

$$
\hat{E}_{\gamma}(X, r ; \hat{X}, \hat{r})=\frac{1}{\hat{T}}\left\|\hat{r}-\frac{1}{T} \sigma(W \hat{X})^{\top} \Sigma Q_{\gamma} r\right\|^{2}
$$

- Requires first a deterministic equivalent $\bar{Q}_{\gamma}$ for $Q_{\gamma}$ with non-linear $\sigma(\cdot)$.


## Technical Aspects

## Training MSE:

- Training MSE given by

$$
\begin{aligned}
E_{\gamma}(X, r) & =\gamma^{2} \frac{1}{T} r^{\top} Q_{\gamma}^{2} r \\
Q_{\gamma} & =\left(\frac{1}{T} \Sigma^{\top} \Sigma+\gamma I_{T}\right)^{-1}
\end{aligned}
$$

- Testing MSE given by

$$
\hat{E}_{\gamma}(X, r ; \hat{X}, \hat{r})=\frac{1}{\hat{T}}\left\|\hat{r}-\frac{1}{T} \sigma(W \hat{X})^{\top} \Sigma Q_{\gamma} r\right\|^{2}
$$

- Requires first a deterministic equivalent $\bar{Q}_{\gamma}$ for $Q_{\gamma}$ with non-linear $\sigma(\cdot)$.
- Then deterministic approximation of $\frac{1}{T} \sigma(W a)^{\top} \Sigma Q_{\gamma} b$ for deterministic $a, b$.


## Technical Aspects

Main technical difficulty: $\Sigma=\sigma(W X) \in \mathbb{R}^{n \times T}$ has

- independent rows
- a highly non trivial columns dependence!


## Technical Aspects

Main technical difficulty: $\Sigma=\sigma(W X) \in \mathbb{R}^{n \times T}$ has

- independent rows
- a highly non trivial columns dependence!

Broken trace lemma!: for $w \sim \mathcal{N}\left(0, n^{-1} I_{n}\right), X, A$ deterministic of bounded norm,

$$
w^{\top} X A X^{\top} w \simeq \frac{1}{n} \operatorname{tr} X A X^{\top}
$$

## Technical Aspects

Main technical difficulty: $\Sigma=\sigma(W X) \in \mathbb{R}^{n \times T}$ has

- independent rows
- a highly non trivial columns dependence!

Broken trace lemma!: for $w \sim \mathcal{N}\left(0, n^{-1} I_{n}\right), X, A$ deterministic of bounded norm,

$$
w^{\top} X A X^{\top} w \simeq \frac{1}{n} \operatorname{tr} X A X^{\top}
$$

BUT what about:

$$
\sigma\left(w^{\top} X\right) A \sigma\left(X^{\top} w\right) \simeq ?
$$

## Technical Aspects

## Updated trace lemma:

## Lemma

For $A$ deterministic and $\sigma(t)$ Lipschitz, $w \in \mathbb{R}^{p}$ with i.i.d. entries, $E\left[w_{i}\right]=0$, $E\left[w_{i}^{k}\right]=\frac{m_{k}}{n^{k / 2}}$,

$$
\frac{1}{T} \sigma\left(w^{\top} X\right) A \sigma\left(X^{\top} w\right)-\frac{1}{T} \operatorname{tr} \Phi_{X} A \xrightarrow{\text { a.s. }} 0
$$

with

$$
\Phi_{X}=E\left[\sigma\left(X^{\top} w\right) \sigma\left(w^{\top} X\right)\right] .
$$

## Technical Aspects

## Updated trace lemma:

Lemma
For $A$ deterministic and $\sigma(t)$ Lipschitz, $w \in \mathbb{R}^{p}$ with i.i.d. entries, $E\left[w_{i}\right]=0$, $E\left[w_{i}^{k}\right]=\frac{m_{k}}{n^{k / 2}}$,

$$
\frac{1}{T} \sigma\left(w^{\top} X\right) A \sigma\left(X^{\top} w\right)-\frac{1}{T} \operatorname{tr} \Phi_{X} A \xrightarrow{\text { a.s. }} 0
$$

with

$$
\Phi_{X}=E\left[\sigma\left(X^{\top} w\right) \sigma\left(w^{\top} X\right)\right] .
$$

## Technique of proof:

- Use concentration of vector $w$
- transfer concentration by Lipschitz property through mapping $w \mapsto \sigma\left(w^{\top} X\right)$, i.e.,

$$
P\left(f\left(\sigma\left(w^{\top} X\right)\right)-E\left[f\left(\sigma\left(w^{\top} X\right)\right)\right]>t\right) \leq c_{1} e^{-c_{2} n t^{2}}
$$

for all Lipschitz $f$ (and beyond...), with $c_{1}, c_{2}>0$.

## Results

## Results:

- Deterministic equivalent: as $n, p, T \rightarrow \infty$ with $\sigma(t)$ smooth, $W_{i j}$ i.i.d. $E\left[W_{i j}\right]=0, E\left[W_{i j}^{k}\right]=\frac{m_{k}}{n^{k / 2}}$,

$$
Q_{\gamma} \leftrightarrow \bar{Q}_{\gamma}
$$

where

$$
\begin{aligned}
Q_{\gamma} & =\left(\frac{1}{T} \Sigma \Sigma^{\top}+\gamma I_{T}\right)^{-1} \\
\bar{Q}_{\gamma} & =\left(\frac{n}{T} \frac{1}{1+\delta} \Phi_{X}+\gamma I_{T}\right)^{-1}
\end{aligned}
$$

with $\delta$ unique solution to

$$
\delta=\frac{1}{T} \operatorname{tr} \Phi_{X}\left(\frac{n}{T} \frac{1}{1+\delta} \Phi_{X}+\gamma I_{T}\right)^{-1} .
$$

## Results

## Neural Network Performances:

- Training performance:

$$
E_{\gamma}(X, r) \leftrightarrow \gamma^{2} \frac{1}{T} r^{\top} \bar{Q}_{\gamma}\left[\frac{\frac{1}{n} \operatorname{tr}\left(\Psi_{X} \bar{Q}_{\gamma}^{2}\right)}{1-\frac{1}{n} \operatorname{tr}\left(\Psi_{X} \bar{Q}_{\gamma}\right)^{2}} \Psi_{X}+I_{T}\right] \bar{Q}_{\gamma} r
$$

## Results

## Neural Network Performances:

- Training performance:

$$
E_{\gamma}(X, r) \leftrightarrow \gamma^{2} \frac{1}{T} r^{\top} \bar{Q}_{\gamma}\left[\frac{\frac{1}{n} \operatorname{tr}\left(\Psi_{X} \bar{Q}_{\gamma}^{2}\right)}{1-\frac{1}{n} \operatorname{tr}\left(\Psi_{X} \bar{Q}_{\gamma}\right)^{2}} \Psi_{X}+I_{T}\right] \bar{Q}_{\gamma} r
$$

- Testing performance:

$$
\begin{aligned}
\hat{E}_{\gamma}(X, r ; \hat{X}, \hat{r}) & \leftrightarrow \frac{1}{\hat{T}}\left\|\hat{r}-\Psi_{X, \hat{X}}^{\top} \bar{Q}_{\gamma} r\right\|^{2}+\frac{\frac{1}{n} r^{\top} \bar{Q}_{\gamma} \Psi_{X} \bar{Q}_{\gamma} r}{1-\frac{1}{n} \operatorname{tr}\left(\Psi_{X} \bar{Q}_{\gamma}\right)^{2}} \\
& \left.\times\left[\frac{1}{\hat{T}} \operatorname{tr} \Psi_{\hat{X}}-\frac{\gamma}{\hat{T}} \operatorname{tr}\left(\bar{Q}_{\gamma} \Psi_{X, \hat{X}} \Psi_{\hat{X}, X} \bar{Q}_{\gamma}\right)-\frac{1}{\hat{T}} \operatorname{tr}\left(\Psi_{\hat{X}, X} \bar{Q}_{\gamma}\right) \Psi_{X, \hat{X}}\right)\right] .
\end{aligned}
$$

where $\Psi_{A, B}=\frac{n}{T} \frac{1}{1+\delta} \Phi_{A, B}, \Psi_{A}=\Psi_{A, A}, \Phi_{A, B}=E\left[\frac{1}{n} \sigma(W A)^{\top} \sigma(W B)\right]$.

## Results

## Neural Network Performances:

- Training performance:

$$
E_{\gamma}(X, r) \leftrightarrow \gamma^{2} \frac{1}{T} r^{\top} \bar{Q}_{\gamma}\left[\frac{\frac{1}{n} \operatorname{tr}\left(\Psi_{X} \bar{Q}_{\gamma}^{2}\right)}{1-\frac{1}{n} \operatorname{tr}\left(\Psi_{X} \bar{Q}_{\gamma}\right)^{2}} \Psi_{X}+I_{T}\right] \bar{Q}_{\gamma} r
$$

- Testing performance:

$$
\begin{aligned}
\hat{E}_{\gamma}(X, r ; \hat{X}, \hat{r}) & \leftrightarrow \frac{1}{\hat{T}}\left\|\hat{r}-\Psi_{X, \hat{X}}^{\top} \bar{Q}_{\gamma} r\right\|^{2}+\frac{\frac{1}{n} r^{\top} \bar{Q}_{\gamma} \Psi_{X} \bar{Q}_{\gamma} r}{1-\frac{1}{n} \operatorname{tr}\left(\Psi_{X} \bar{Q}_{\gamma}\right)^{2}} \\
& \left.\times\left[\frac{1}{\hat{T}} \operatorname{tr} \Psi_{\hat{X}}-\frac{\gamma}{\hat{T}} \operatorname{tr}\left(\bar{Q}_{\gamma} \Psi_{X, \hat{X}} \Psi_{\hat{X}, X} \bar{Q}_{\gamma}\right)-\frac{1}{\hat{T}} \operatorname{tr}\left(\Psi_{\hat{X}, X} \bar{Q}_{\gamma}\right) \Psi_{X, \hat{X}}\right)\right] .
\end{aligned}
$$

where $\Psi_{A, B}=\frac{n}{T} \frac{1}{1+\delta} \Phi_{A, B}, \Psi_{A}=\Psi_{A, A}, \Phi_{A, B}=E\left[\frac{1}{n} \sigma(W A)^{\top} \sigma(W B)\right]$.
In the limit where $n / p, n / T \rightarrow \infty$, taking $\gamma=\frac{n}{T} \Gamma$ :

$$
\begin{aligned}
& E_{\gamma}(X, r) \leftrightarrow \frac{1}{T} \Gamma^{2} r^{\top}\left(\Phi_{X}+\Gamma I_{T}\right)^{-2} r \\
& \hat{E}_{\gamma}(X, r) \leftrightarrow \frac{1}{\hat{T}}\left\|\hat{r}-\Phi_{\hat{X}, X}\left(\Phi_{X}+\Gamma I_{T}\right)^{-1} r\right\|^{2}
\end{aligned}
$$

## Results

Special Cases of $\Phi_{A, B}$ :

$\sigma(t)$	$W_{i j}$	$\left[\Phi_{A, B}\right]_{i j}$				
$t$	any	$\frac{m_{2}}{n} a_{i}^{\top} b_{j}$				
$A t^{2}+B t+C$	any	$A^{2}\left[\frac{m_{2}^{2}}{n^{2}}\left(2\left(a_{i}^{\top} b_{j}\right)^{2}+\left\\|a_{i}\right\\|^{2}\left\\|b_{j}\right\\|^{2}\right)+\frac{m_{4}-3 m_{2}^{2}}{n^{2}}\left(a_{i}^{2}\right)^{\top}\left(b_{j}^{2}\right)\right]$				
		$+B^{2} \frac{m_{2}}{n} a_{i}^{\top} b_{j}+A B \frac{m_{3}}{n^{3 / 2}}\left[\left(a_{i}^{2}\right)^{\top} b_{j}+a_{i}^{\top}\left(b_{j}^{2}\right)\right]$				
$\max (t, 0)$	$\mathcal{N}\left(0, \frac{1}{n}\right)$	$+A C \frac{m_{2}}{n}\left[\left\\|a_{i}\right\\|^{2}+\left\\|b_{j}\right\\|^{2}\right]+C^{2}$				
$\operatorname{erf}(t)$	$\mathcal{N}\left(0, \frac{1}{n}\right)$	$\frac{1}{2 \pi n}\left\\|a_{i}\right\\|\left\\|b_{j}\right\\|\left(Z_{i j} \arccos \left(-Z_{i j}\right)+\sqrt{1-Z_{i j}^{2}}\right)$				
$1_{\{t>0\}}$	$\mathcal{N}\left(0, \frac{1}{n}\right)$	$\frac{2}{\pi} \arcsin \left(\frac{2 a_{i}^{\top} b_{j}}{\sqrt{\left(n+2\left\\|a_{i}\right\\|^{2}\right)\left(n+2\left\\|b_{j}\right\\|^{2}\right)}}\right)$				
$\operatorname{sign}(t)$	$\mathcal{N}\left(0, \frac{1}{n}\right)$	$\frac{1}{2}-\frac{1}{2 \pi} \arccos \left(Z_{i j}\right)$				
$\cos (t)$	$\mathcal{N}\left(0, \frac{1}{n}\right)$	$1-\frac{2}{\pi} \arccos \left(Z_{i j}\right)$				
	$\exp \left(-\frac{1}{2}\left[\left\\|a_{i}\right\\|^{2}+\left\\|b_{j}\right\\|^{2}\right]\right) \cosh \left(a_{i}^{\top} b_{j}\right)$.					

Figure: $\Phi_{A, B}$ for $W_{i j}$ i.i.d. zero mean, $k$-th order moments $m_{k} n^{-\frac{k}{2}}, Z_{i j} \equiv \frac{a_{i}^{\top} b_{j}}{\left\|a_{i}\right\|\left\|b_{j}\right\|}$, $\left(a^{2}\right)=\left[a_{i}^{2}\right]_{i=1}^{n}$.

## Test on MNIST data



Figure: MSE performance for $\sigma(t)=t$ and $\sigma(t)=\max (t, 0)$, as a function of $\gamma$, for 2-class MNIST data (sevens, nines), $n=512, T=1024, p=784$.

## Test on MNIST data



Figure: Overlap performance for $\sigma(t)=t$ and $\sigma(t)=\max (t, 0)$, as a function of $\gamma$, for 2-class MNIST data (sevens, nines), $n=512, T=1024, p=784$.

## Next Investigations

Interpretations and Improvements:

- General formulas for $\Phi_{X}, \Phi_{X, \hat{x}}$
- On-line optimization of $\gamma, \sigma(\cdot), n$ ?


## Next Investigations

## Interpretations and Improvements:

- General formulas for $\Phi_{X}, \Phi_{X, \hat{x}}$
- On-line optimization of $\gamma, \sigma(\cdot), n$ ?


## Generalizations:

- Multi-layer ELM?
- Optimize layers vs. number of neurons?
- Backpropagation error analysis?
- Connection to auto-encoders?
- Introduction of non-linearity to more involved structures (ESN, deep nets?).


## Outline

Basics of Random Matrix Theory<br>Motivation: Large Sample Covariance Matrices<br>The Stieltjes Transform Method<br>Spiked Models<br>Other Common Random Matrix Models<br>Applications<br>Random Matrices and Robust Estimation<br>Spectral Clustering Methods and Random Matrices<br>Community Detection on Graphs<br>Kernel Spectral Clustering<br>Kernel Spectral Clustering: Subspace Clustering<br>Semi-supervised Learning<br>Support Vector Machines<br>Neural Networks: Extreme Learning Machines

Perspectives

## Summary of Results and Perspectives I

## Robust statistics.

$\checkmark$ Tyler, Maronna (and regularized) estimators
$\checkmark$ Elliptical data setting, deterministic outlier setting
$\checkmark$ Central limit theorem extensions
8 Joint mean and covariance robust estimation
\& Study of robust regression (preliminary works exist already using strikingly different approaches)

## Applications.

$\checkmark$ Statistical finance (portfolio estimation)
$\checkmark$ Localisation in array processing (robust GMUSIC)
$\checkmark$ Detectors in space time array processing

## References.

R. Couillet, F. Pascal, J. W. Silverstein, "Robust Estimates of Covariance Matrices in the Large Dimensional Regime", IEEE Transactions on Information Theory, vol. 60, no. 11, pp. 7269-7278, 2014.
R. Couillet, F. Pascal, J. W. Silverstein, "The Random Matrix Regime of Maronna's M-estimator with elliptically distributed samples", Elsevier Journal of Multivariate Analysis, vol. 139, pp. 56-78, 2015.

## Summary of Results and Perspectives II

T. Zhang, X. Cheng, A. Singer, "Marchenko-Pastur Law for Tyler's and Maronna's M-estimators", arXiv:1401.3424, 2014.
R. Couillet, M. McKay, "Large Dimensional Analysis and Optimization of Robust Shrinkage Covariance Matrix Estimators", Elsevier Journal of Multivariate Analysis, vol. 131, pp. 99-120, 2014.
D. Morales-Jimenez, R. Couillet, M. McKay, "Large Dimensional Analysis of Robust M-Estimators of Covariance with Outliers", IEEE Transactions on Signal Processing, vol. 63, no. 21, pp. 5784-5797, 2015.
L. Yang, R. Couillet, M. McKay, "A Robust Statistics Approach to Minimum Variance Portfolio Optimization", IEEE Transactions on Signal Processing, vol. 63, no. 24, pp. 6684-6697, 2015.
R. Couillet, "Robust spiked random matrices and a robust G-MUSIC estimator", Elsevier Journal of Multivariate Analysis, vol. 140, pp. 139-161, 2015.

A. Kammoun, R. Couillet, F. Pascal, M.-S. Alouini, "Optimal Design of the Adaptive Normalized Matched Filter Detector", (submitted to) IEEE Transactions on Information Theory, 2016, arXiv Preprint 1504.01252.

R. Couillet, A. Kammoun, F. Pascal, "Second order statistics of robust estimators of scatter. Application to GLRT detection for elliptical signals", Elsevier Journal of Multivariate Analysis, vol. 143, pp. 249-274, 2016.

## Summary of Results and Perspectives III

D. Donoho, A. Montanari, "High dimensional robust m-estimation: Asymptotic variance via approximate message passing", Probability Theory and Related Fields, 1-35, 2013.
N. El Karoui, "Asymptotic behavior of unregularized and ridge-regularized high-dimensional robust regression estimators: rigorous results." arXiv preprint arXiv:1311.2445, 2013.

## Summary of Results and Perspectives I

## Kernel methods.

$\checkmark$ Subspace spectral clustering
$\checkmark$ Subspace spectral clustering for $f^{\prime}(\tau)=0$

* Spectral clustering with outer product kernel $f\left(x^{\top} y\right)$
$\checkmark$ Semi-supervised learning, kernel approaches.
$\checkmark$ Least square support vector machines (LS-SVM).
Q Support vector machines (SVM).


## Applications.

$\checkmark$ Massive MIMO user clustering

## References.

N. El Karoui, "The spectrum of kernel random matrices", The Annals of Statistics, 38(1), 1-50, 2010.

R. Couillet, F. Benaych-Georges, "Kernel Spectral Clustering of Large Dimensional Data", Electronic Journal of Statistics, vol. 10, no. 1, pp. 1393-1454, 2016.R. Couillet, A. Kammoun, "Random Matrix Improved Subspace Clustering", Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 2016.

## Summary of Results and Perspectives II

Z. Liao, R. Couillet, "Random matrices meet machine learning: a large dimensional analysis of LS-SVM", (submitted to) IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'17), New Orleans, USA, 2017.X. Mai, R. Couillet, "The counterintuitive mechanism of graph-based semi-supervised learning in the big data regime", (submitted to) IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'17), New Orleans, USA, 2017.

## Summary of Results and Perspectives I

## Community detection.

$\checkmark$ Complete study of eigenvector contents in adjacency/modularity methods.
8 Study of Bethe Hessian approach for the DCSBM model.
8 Analysis of non-necessarily spectral approaches (wavelet approaches).

## References.

H. Tiomoko Ali, R. Couillet, "Spectral community detection in heterogeneous large networks", (submitted to) Journal of Multivariate Analysis, 2016.

F. Krzakala, C. Moore, E. Mossel, J. Neeman, A. Sly, L. Zdeborová, P. Zhang, "Spectral redemption in clustering sparse networks. Proceedings of the National Academy of Sciences", 110(52), 20935-20940, 2013.
$\square$ C. Bordenave, M. Lelarge, L. Massoulié, "Non-backtracking spectrum of random graphs: community detection and non-regular Ramanujan graphs", Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on, pp. 1347-1357, 2015
A. Saade, F. Krzakala, L. Zdeborová, "Spectral clustering of graphs with the Bethe Hessian", In Advances in Neural Information Processing Systems, pp. 406-414, 2014.

## Summary of Results and Perspectives I

## Neural Networks.

$\checkmark$ Non-linear extreme learning machines (ELM)
Q Multi-layer ELM
8 Backpropagation in ELM
Q Random convolutional networks for image processing
$\checkmark$ Linear echo-state networks (ESN)
8 Non-linear ESN

## References.

C. Williams, "Computation with infinite neural networks", Neural Computation, 10(5), 1203-1216, 1998.

N. El Karoui, "Concentration of measure and spectra of random matrices: applications to correlation matrices, elliptical distributions and beyond", The Annals of Applied Probability, 19(6), 2362-2405, 2009.

C. Louart, R. Couillet, "Harnessing neural networks: a random matrix approach", (submitted to) IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'17), New Orleans, USA, 2017.
茙
R. Couillet, G. Wainrib, H. Sevi, H. Tiomoko Ali, "The asymptotic performance of linear echo state neural networks", Journal of Machine Learning Research, vol. 17, no. 178, pp. 1-35, 2016.

## Summary of Results and Perspectives I

## Sparse PCA

$\checkmark$ Spike random matrix sparse PCA
\& Sparse kernel PCA

## References.

R R. Couillet, M. McKay, "Optimal block-sparse PCA for high dimensional correlated samples", (submitted to) Journal of Multivariate Analysis, 2016.

Signal processing on graphs, distributed optimization, etc.
8 Turning signal processing on graph methods random.
8 Random matrix analysis of diffusion networks performance.

The End

Thank you.

