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Context

Baseline scenario: x1, . . . , xn ∈ CN (or RN ) i.i.d. with E[x1] = 0, E[x1x∗1] = CN :

I If x1 ∼ N (0, CN ), ML estimator for CN is the sample covariance matrix (SCM)

ĈN =
1

n

n∑
i=1

xix
∗
i .

I If n→∞, then, strong law of large numbers

ĈN
a.s.−→ CN .

or equivalently, in spectral norm∥∥∥ĈN − CN∥∥∥ a.s.−→ 0.

Random Matrix Regime

I No longer valid if N,n→∞ with N/n→ c ∈ (0,∞),∥∥∥ĈN − CN∥∥∥ 6→ 0.

I For practical N,n with N ' n, leads to dramatically wrong conclusions

I Even for N = n/100.
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The Large Dimensional Fallacies

Setting: xi ∈ CN i.i.d., x1 ∼ CN (0, IN )

I assume N = N(n) such that N/n→ c > 1

I then, joint point-wise convergence

max
1≤i,j≤N

∣∣∣∣[ĈN − IN]ij
∣∣∣∣ = max

1≤i,j≤N

∣∣∣∣ 1nXj,·X∗i,· − δij

∣∣∣∣ a.s.−→ 0.

I however, eigenvalue mismatch

0 = λ1(ĈN ) = . . . = λN−n(ĈN ) ≤ λN−n+1(ĈN ) ≤ . . . ≤ λN (ĈN )

1 = λ1(IN ) = . . . = λN−n(IN ) = λN−n+1(ĈN ) = . . . = λN (IN )

⇒ no convergence in spectral norm.
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The Marc̆enko–Pastur law
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Figure: Histogram of the eigenvalues of ĈN for N = 500, n = 2000, CN = IN .
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The Marc̆enko–Pastur law

Definition (Empirical Spectral Density)
Empirical spectral density (e.s.d.) µN of Hermitian matrix AN ∈ CN×N is

µN =
1

N

N∑
i=1

δλi(AN ).

Theorem (Marc̆enko–Pastur Law [Marc̆enko,Pastur’67])
XN ∈ CN×n with i.i.d. zero mean, unit variance entries.
As N,n→∞ with N/n→ c ∈ (0,∞), e.s.d. µN of 1

n
XNX

∗
N satisfies

µN
a.s.−→ µc

weakly, where

I µc({0}) = max{0, 1− c−1}
I on (0,∞), µc has continuous density fc supported on [(1−

√
c)2, (1 +

√
c)2]

fc(x) =
1

2πcx

√
(x− (1−

√
c)2)((1 +

√
c)2 − x).
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The Marc̆enko–Pastur law
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Figure: Marc̆enko-Pastur law for different limit ratios c = limN→∞N/n.

9 / 153



Basics of Random Matrix Theory/Motivation: Large Sample Covariance Matrices 9/153

The Marc̆enko–Pastur law

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

x

D
en

si
ty
f
c
(x

)

c = 0.1

c = 0.2

Figure: Marc̆enko-Pastur law for different limit ratios c = limN→∞N/n.

9 / 153



Basics of Random Matrix Theory/Motivation: Large Sample Covariance Matrices 9/153

The Marc̆enko–Pastur law

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

x

D
en

si
ty
f
c
(x

)

c = 0.1

c = 0.2

c = 0.5

Figure: Marc̆enko-Pastur law for different limit ratios c = limN→∞N/n.

9 / 153



Basics of Random Matrix Theory/The Stieltjes Transform Method 10/153

Outline

Basics of Random Matrix Theory
Motivation: Large Sample Covariance Matrices
The Stieltjes Transform Method
Spiked Models
Other Common Random Matrix Models

Applications
Random Matrices and Robust Estimation
Spectral Clustering Methods and Random Matrices
Community Detection on Graphs
Kernel Spectral Clustering
Kernel Spectral Clustering: Subspace Clustering
Semi-supervised Learning
Support Vector Machines
Neural Networks: Extreme Learning Machines

Perspectives

10 / 153



Basics of Random Matrix Theory/The Stieltjes Transform Method 11/153

The Stieltjes transform

Definition (Stieltjes Transform)
For µ real probability measure of support supp(µ), Stieltjes transform mµ defined, for
z ∈ C \ supp(µ), as

mµ(z) =

∫
1

t− z
µ(dt).

Property (Inverse Stieltjes Transform)
For a < b continuity points of µ,

µ([a, b]) = lim
ε↓0

1

π

∫ b

a
=[mµ(x+ ıε)]dx

Besides, if µ has a density f at x,

f(x) = lim
ε↓0

1

π
=[mµ(x+ ıε)].
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The Stieltjes transform

Property (Relation to e.s.d.)
If µ e.s.d. of Hermitian A ∈ CN×N , (i.e., µ = 1

N

∑N
i=1 δλi(A))

mµ(z) =
1

N
tr (A− zIN )−1

Proof:

mµ(z) =

∫
µ(dt)

t− z
=

1

N

N∑
i=1

1

λi(A)− z
=

1

N
tr (diag{λi(A)} − zIN )−1

=
1

N
tr (A− zIN )−1 .
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The Stieltjes transform

Property (Stieltjes transform of Gram matrices)
For X ∈ CN×n, and

I µ e.s.d. of XX∗

I µ̃ e.s.d. of X∗X

Then

mµ(z) =
n

N
mµ̃(z)−

N − n
N

1

z
.

Proof:

mµ(z) =
1

N

N∑
i=1

1

λi(XX∗)− z
=

1

N

n∑
i=1

1

λi(X∗X)− z
+

1

N
(N − n)

1

0− z
.
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The Stieltjes transform

Three fundamental lemmas in all proofs.

Lemma (Resolvent Identity)
For A,B ∈ CN×N invertible,

A−1 −B−1 = A−1(B −A)B−1.

Corollary
For t ∈ C, x ∈ CN , A ∈ CN×N , with A and A+ txx∗ invertible,

(A+ txx∗)−1x =
A−1x

1 + tx∗A−1x
.

14 / 153
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The Stieltjes transform

Three fundamental lemmas in all proofs.

Lemma (Rank-one perturbation)
For A,B ∈ CN×N Hermitian nonnegative definite, e.s.d. µ of A, t > 0, x ∈ CN ,
z ∈ C \ supp(µ),∣∣∣∣ 1

N
trB (A+ txx∗ − zIN )−1 −

1

N
trB (A− zIN )−1

∣∣∣∣ ≤ 1

N

‖B‖
dist(z, supp(µ))

In particular, as N →∞, if lim supN ‖B‖ <∞,

1

N
trB (A+ txx∗ − zIN )−1 −

1

N
trB (A− zIN )−1 → 0.
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The Stieltjes transform

Three fundamental lemmas in all proofs.

Lemma (Trace Lemma)
For

I x ∈ CN with i.i.d. entries with zero mean, unit variance, finite 2p order moment,

I A ∈ CN×N deterministic (or independent of x),

then

E

[∣∣∣∣ 1

N
x∗Ax−

1

N
trA

∣∣∣∣p] ≤ K ‖A‖pNp/2
.

In particular, if lim supN ‖A‖ <∞, and x has entries with finite eighth-order moment,

1

N
x∗Ax−

1

N
trA

a.s.−→ 0

(by Markov inequality and Borel Cantelli lemma).
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Proof of the Marc̆enko–Pastur law

Theorem (Marc̆enko–Pastur Law [Marc̆enko,Pastur’67])
XN ∈ CN×n with i.i.d. zero mean, unit variance entries.
As N,n→∞ with N/n→ c ∈ (0,∞), e.s.d. µN of 1

n
XNX

∗
N satisfies

µN
a.s.−→ µc

weakly, where

I µc({0}) = max{0, 1− c−1}

I on (0,∞), µc has continuous density fc supported on [(1−
√
c)2, (1 +

√
c)2]

fc(x) =
1

2πcx

√
(x− (1−

√
c)2)((1 +

√
c)2 − x).
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Proof of the Marc̆enko–Pastur law

Stieltjes transform approach.

Proof

I With µN e.s.d. of 1
n
XNX

∗
N ,

mµN (z) =
1

N
tr

(
1

n
XNX

∗
N − zIN

)−1

=
1

N

N∑
i=1

[(
1

n
XNX

∗
N − zIN

)−1
]
ii

.

I Write

XN =

[
y∗

YN−1

]
∈ CN×n

so that, for =[z] > 0,(
1

n
XNX

∗
N − zIN

)−1

=

( 1
n
y∗y − z 1

n
y∗YN−1

1
n
YN−1y

1
n
YN−1Y

∗
N−1 − zIN−1

)−1

.
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Proof of the Marc̆enko–Pastur law

Proof (continued)

I From block matrix inverse formula(
A B
C D

)−1

=

(
(A−BD−1C)−1 −A−1B(D − CA−1B)−1

−(A−BD−1C)−1CA−1 (D − CA−1B)−1

)
we have[(

1

n
XNX

∗
N − zIN

)−1
]

11

=
1

−z − z 1
n
y∗( 1

n
Y ∗N−1YN−1 − zIn)−1y

.

I By Trace Lemma, as N,n→∞[(
1

n
XNX

∗
N − zIN

)−1
]

11

−
1

−z − z 1
n

tr ( 1
n
Y ∗N−1YN−1 − zIn)−1

a.s.−→ 0.
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Proof of the Marc̆enko–Pastur law

Proof (continued)

I By Rank-1 Perturbation Lemma (X∗NXN = Y ∗N−1YN−1 + yy∗), as N,n→∞[(
1

n
XNX

∗
N − zIN

)−1
]

11

−
1

−z − z 1
n

tr ( 1
n
X∗NXN − zIn)−1

a.s.−→ 0.

I Since 1
n

tr ( 1
n
X∗NXN − zIn)−1 = 1

n
tr ( 1

n
XNX

∗
N − zIN )−1 − n−N

n
1
z

,[(
1

n
XNX

∗
N − zIN

)−1
]

11

−
1

1− N
n
− z − z 1

n
tr ( 1

n
XNX

∗
N − zIN )−1

a.s.−→ 0.

I Repeating for entries (2, 2), . . . , (N,N), and averaging, we get (for =[z] > 0)

mµN (z)−
1

1− N
n
− z − zN

n
mµN (z)

a.s.−→ 0.

20 / 153



Basics of Random Matrix Theory/The Stieltjes Transform Method 20/153

Proof of the Marc̆enko–Pastur law

Proof (continued)

I By Rank-1 Perturbation Lemma (X∗NXN = Y ∗N−1YN−1 + yy∗), as N,n→∞[(
1

n
XNX

∗
N − zIN

)−1
]

11

−
1

−z − z 1
n

tr ( 1
n
X∗NXN − zIn)−1

a.s.−→ 0.

I Since 1
n

tr ( 1
n
X∗NXN − zIn)−1 = 1

n
tr ( 1

n
XNX

∗
N − zIN )−1 − n−N

n
1
z

,[(
1

n
XNX

∗
N − zIN

)−1
]

11

−
1

1− N
n
− z − z 1

n
tr ( 1

n
XNX

∗
N − zIN )−1

a.s.−→ 0.

I Repeating for entries (2, 2), . . . , (N,N), and averaging, we get (for =[z] > 0)

mµN (z)−
1

1− N
n
− z − zN

n
mµN (z)

a.s.−→ 0.

20 / 153



Basics of Random Matrix Theory/The Stieltjes Transform Method 20/153

Proof of the Marc̆enko–Pastur law

Proof (continued)

I By Rank-1 Perturbation Lemma (X∗NXN = Y ∗N−1YN−1 + yy∗), as N,n→∞[(
1

n
XNX

∗
N − zIN

)−1
]

11

−
1

−z − z 1
n

tr ( 1
n
X∗NXN − zIn)−1

a.s.−→ 0.

I Since 1
n

tr ( 1
n
X∗NXN − zIn)−1 = 1

n
tr ( 1

n
XNX

∗
N − zIN )−1 − n−N

n
1
z

,[(
1

n
XNX

∗
N − zIN

)−1
]

11

−
1

1− N
n
− z − z 1

n
tr ( 1

n
XNX

∗
N − zIN )−1

a.s.−→ 0.

I Repeating for entries (2, 2), . . . , (N,N), and averaging, we get (for =[z] > 0)

mµN (z)−
1

1− N
n
− z − zN

n
mµN (z)

a.s.−→ 0.

20 / 153



Basics of Random Matrix Theory/The Stieltjes Transform Method 21/153

Proof of the Marc̆enko–Pastur law

Proof (continued)

I Then mµN (z)
a.s.−→ m(z) solution to

m(z) =
1

1− c− z − czm(z)

i.e., (with branch of
√
f(z) such that m(z)→ 0 as |z| → ∞)

m(z) =
1− c
2cz

−
1

2c
+

√(
z − (1 +

√
c)2
) (
z − (1−

√
c)2
)

2cz
.

I Finally, by inverse Stieltjes Transform, for x > 0,

lim
ε↓0

1

π
=[m(x+ ıε)] =

√(
(1 +

√
c)2 − x

) (
x− (1−

√
c)2
)

2πcx
1{x∈[(1−

√
c)2,(1+

√
c)2]}.

And for x = 0,

lim
ε↓0

ıε=[m(ıε)] =
(
1− c−1

)
1{c>1}.
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Sample Covariance Matrices

Theorem (Sample Covariance Matrix Model [Silverstein,Bai’95])

Let YN = C
1
2
NXN ∈ CN×n, with

I CN ∈ CN×N nonnegative definite with e.s.d. νN → ν weakly,

I XN ∈ CN×n has i.i.d. entries of zero mean and unit variance.

As N,n→∞, N/n→ c ∈ (0,∞), µ̃N e.s.d. of 1
n
Y ∗NYN ∈ Cn×n satisfies

µ̃N
a.s.−→ µ̃

weakly, with mµ̃(z), =[z] > 0, unique solution with =[mµ̃(z)] > 0 of

mµ̃(z) =

(
−z + c

∫
t

1 + tmµ̃(z)
ν(dt)

)−1

.

Moreover, µ̃ is continuous on R+ and real analytic wherever positive.

Immediate corollary: For µN e.s.d. of 1
n
YNY

∗
N = 1

n

∑n
i=1 C

1
2
Nxix

∗
iC

1
2
N ,

µN
a.s.−→ µ

weakly, with µ̃ = cµ+ (1− c)δ0.
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Sample Covariance Matrices

1 3 7
0

0.2

0.4

0.6

(i)

e.s.d.

f

1 3 4
0

0.2

0.4

0.6

(ii)

e.s.d.

f

Figure: Histogram of the eigenvalues of 1
nYNY

∗
N , n = 3000, N = 300, with CN diagonal with

evenly weighted masses in (i) 1, 3, 7, (ii) 1, 3, 4.
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Further Models and Deterministic Equivalents

Theorem (Doubly-correlated i.i.d. matrices)

Let BN = C
1
2
NXNTNX

∗
NC

1
2
N , with e.s.d. µN , Xk ∈ CN×n with i.i.d. entries of zero

mean, variance 1/n, CN Hermitian nonnegative definite, TN diagonal nonnegative,
lim supN max(‖CN‖, ‖TN‖) <∞. Denote c = N/n. Then, as N,n→∞ with
bounded ratio c, for z ∈ C \ R−,

mµN (z)−mN (z)
a.s.−→ 0, mN (z) =

1

N
tr (−zIN + ēN (z)CN )−1

with ē(z) unique solution in {z ∈ C+, ēN (z) ∈ C+} or {z ∈ R−, ēN (z) ∈ R+} of

eN (z) =
1

N
trCN (−zIN + ēN (z)CN )−1

ēN (z) =
1

n
trTN (In + ceN (z)TN )−1 .

24 / 153



Basics of Random Matrix Theory/The Stieltjes Transform Method 25/153

Other Refined Sample Covariance Models

Side note on other models.
Similar results for multiple matrix models:

I Information-plus-noise: YN = AN +XN , AN deterministic

I Variance profile: YN = PN �XN (entry-wise product)

I Per-column covariance: YN = [y1, . . . , yn], yi = C
1
2
N,ixi

I etc.
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Outline
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Motivation: Large Sample Covariance Matrices
The Stieltjes Transform Method
Spiked Models
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Applications
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Kernel Spectral Clustering
Kernel Spectral Clustering: Subspace Clustering
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Perspectives

26 / 153



Basics of Random Matrix Theory/Spiked Models 27/153

No Eigenvalue Outside the Support

Theorem (No Eigenvalue Outside the Support [Silverstein,Bai’98])

Let YN = C
1
2
NXN ∈ CN×n, with

I CN ∈ CN×N nonnegative definite with e.s.d. νN → ν weakly,

I E[|XN |4ij ] <∞,

I XN ∈ CN×n has i.i.d. entries of zero mean and unit variance,

I maxi dist(λi(CN ), supp(ν))→ 0.

Let µ̃ be the limiting e.s.d. of 1
n
Y ∗NYN as before. Let [a, b] ⊂ R∗ \ supp(ν̃). Then,{

λi

(
1

n
Y ∗NYN

)}n
i=1

∩ [a, b] = ∅

for all large n, almost surely.

In practice: This means that eigenvalues of 1
n
Y ∗NYN cannot be bound at macroscopic

distance from the bulk, for N,n large.
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In practice: This means that eigenvalues of 1
n
Y ∗NYN cannot be bound at macroscopic

distance from the bulk, for N,n large.
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Spiked Models

Breaking the rules. If we break

I Rule 1: Infinitely many eigenvalues may wander away from supp(µ).

0 1 2 3
0

0.2

0.4

0.6

0.8

{λi}
n
i=1

µ

0 1 2 3
0

0.2

0.4

0.6

0.8

{λi}
n
i=1

µ

E[X4
ij ] <∞ E[X4

ij ] =∞
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Spiked Models

If we break:
I Rule 2: CN may create isolated eigenvalues in 1

n
YNY

∗
N , called spikes.

1 + ω1 + c
1+ω1
ω1

, 1 + ω2 + c
1+ω2
ω2

0

0.2

0.4

0.6

0.8

{λi}
n
i=1

µ

Figure: Eigenvalues of 1
nYNY

∗
N , CN = diag(1, . . . , 1︸ ︷︷ ︸

N−4

, 2, 2, 3, 3), N = 500, n = 1500.
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Spiked Models

Theorem (Eigenvalues [Baik,Silverstein’06])

Let YN = C
1
2
NXN , with

I XN with i.i.d. zero mean, unit variance, E[|XN |4ij ] <∞.

I CN = IN + P , P = UΩU∗, where, for K fixed,

Ω = diag (ω1, . . . , ωK) ∈ RK×K , with ω1 ≥ . . . ≥ ωK > 0.

Then, as N,n→∞, N/n→ c ∈ (0,∞), denoting λi = λi(
1
n
YNY

∗
N ),

I if ωm >
√
c,

λm
a.s.−→ 1 + ωm + c

1 + ωm

ωm
> (1 +

√
c)2

I if ωm ∈ (0,
√
c],

λm
a.s.−→ (1 +

√
c)2
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Spiked Models

Proof

I Two ingredients: Algebraic calculus + trace lemma

I Find eigenvalues away from eigenvalues of 1
n
XNX

∗
N :

0 = det

(
1

n
YNY

∗
N − λIN

)
= det(CN ) det

(
1

n
XNX

∗
N − λC

−1
N

)
= det

(
1

n
XNX

∗
N − λIN + λ(IN − C−1

N )

)
= det

(
1

n
XNX

∗
N − λIN

)
det

(
IN + λ(IN − C−1

N )

(
1

n
XNX

∗
N − λIN

)−1
)
.

I Use low rank property:

IN − C−1
N = IN − (IN + UΩU∗)−1 = U(IK + Ω−1)−1U∗, Ω ∈ CK×K .

Hence

0 = det

(
1

n
XNX

∗
N − λIN

)
det

(
IN + λU(IK + Ω−1)−1U∗

(
1

n
XNX

∗
N − λIN

)−1
)
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Spiked Models

Proof (2)

I Sylverster’s identity (det(I +AB) = det(I +BA)),

0 = det

(
1

n
XNX

∗
N − λIN

)
det

(
IK + λ(IK + Ω−1)−1U∗

(
1

n
XNX

∗
N − λIN

)−1

U

)

I No eigenvalue outside the support [Bai,Sil’98]: det( 1
n
XNX

∗
N − λIN ) has no

zero beyond (1 +
√
c)2 for all large n a.s.

I Extension of Trace Lemma: for each z ∈ C \ supp(µ),

U∗
(

1

n
XNX

∗
N − zIN

)−1

U
a.s.−→ mµ(z)IK .

(XN being “almost-unitarily invariant”, U can be seen as formed of random
“i.i.d.-like” vectors)

I As a result, for all large n a.s.,

0 = det

(
IK + λ(IK + Ω−1)−1U∗(

1

n
XNX

∗
N − λIN )−1U

)

'
M∏
m=1

(
1 +

λ

1 + ω−1
m

mµ(λ)

)km
=

M∏
m=1

(
1 +

λωm

1 + ωm
mµ(λ)

)km
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Spiked Models

Proof (3)

I Limiting solutions: zeros (with multiplicity) of

1 +
λωm

1 + ωm
mµ(λ) = 0.

I Using Marc̆enko–Pastur law properties (mµ(z) = (1− c− z − czmµ(z))−1),

λ ∈
{

1 + ωm + c
1 + ωm

ωm

}M
m=1

.
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Spiked Models

Theorem (Eigenvectors [Paul’07])

Let YN = C
1
2
NXN , with

I XN with i.i.d. zero mean, unit variance, finite fourth order moment entries

I CN = IN + P , P =
∑K
i=1 ωiuiu

∗
i , ω1 > . . . > ωM > 0.

Then, as N,n→∞, N/n→ c ∈ (0,∞), for a, b ∈ CN deterministic and ûi
eigenvector of λi(

1
n
YNY

∗
N ),

a∗ûiû
∗
i b−

1− cω−2
i

1 + cω−1
i

a∗uiu
∗
i b · 1ωi>

√
c

a.s.−→ 0

In particular,

|û∗i ui|2
a.s.−→

1− cω−2
i

1 + cω−1
i

· 1ωi>
√
c.

Proof: Based on Cauchy integral + similar ingredients as eigenvalue proof

a∗ûiû
∗
i b =

1

2πı

∮
Ci
a∗
(

1

n
YNY

∗
N − zIN

)−1

b dz

for Cm contour circling around λi only.
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eigenvector of λi(

1
n
YNY

∗
N ),

a∗ûiû
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a∗ûiû
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eigenvector of λi(

1
n
YNY

∗
N ),

a∗ûiû
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Spiked Models

0 1 2 3 4
0

0.2

0.4
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1

Population spike ω1

|û
∗ 1
u
1
|2

N = 100

N = 200

N = 400

1−c/ω2
1

1+c/ω1

Figure: Simulated versus limiting |û∗1u1|2 for YN = C
1
2
NXN , CN = IN + ω1u1u

∗
1 ,

N/n = 1/3, varying ω1.
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Tracy–Widom Theorem

Theorem (Phase Transition [Baik,BenArous,Péché’05])

Let YN = C
1
2
NXN , with

I XN with i.i.d. complex Gaussian zero mean, unit variance entries,

I CN = IN + P , P =
∑K
i=1 ωiuiu

∗
i , ω1 > . . . > ωK > 0 (K ≥ 0).

Then, as N,n→∞, N/n→ c < 1,

I If ω1 <
√
c (or K = 0),

N
2
3
λ1 − (1 +

√
c)2

(1 +
√
c)

4
3 c

1
2

L−→ T2, (complex Tracy–Widom law)

I If ω1 >
√
c,

(
(1 + ω1)2

c
−

(1 + ω1)2

ω2
1

) 1
2

N
1
2

[
λ1 −

(
1 + ω1 + c

1 + ω1

ω1

)]
L−→ N (0, 1).
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Tracy–Widom Theorem

−4 −2 0 2
0

0.1

0.2

0.3

0.4

0.5

Centered-scaled λ1

T2

Figure: Distribution of N
2
3 c−

1
2 (1 +

√
c)−

4
3
[
λ1( 1

nXNX
∗
N )− (1 +

√
c)2
]

versus
Tracy–Widom (T2), N = 500, n = 1500.
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Other Spiked Models

Similar results for multiple matrix models:

I Additive spiked model: YN = 1
n
XX∗ + P , P deterministic and low rank

I YN = 1
n
X∗(I + P )X

I YN = 1
n

(X + P )∗(X + P )

I YN = 1
n
TX∗(I + P )XT

I etc.
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Outline

Basics of Random Matrix Theory
Motivation: Large Sample Covariance Matrices
The Stieltjes Transform Method
Spiked Models
Other Common Random Matrix Models

Applications
Random Matrices and Robust Estimation
Spectral Clustering Methods and Random Matrices
Community Detection on Graphs
Kernel Spectral Clustering
Kernel Spectral Clustering: Subspace Clustering
Semi-supervised Learning
Support Vector Machines
Neural Networks: Extreme Learning Machines

Perspectives
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The Semi-circle law

Theorem
Let XN ∈ CN×N Hermitian with e.s.d. µN such that 1√

N
[XN ]i>j are i.i.d. with zero

mean and unit variance. Then, as N →∞,

µN
a.s.−→ µ

with µ(dt) = 1
2π

√
(4− t2)+dt. In particular, mµ satisfies

mµ(z) =
1

−z −mµ(z)
.
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The Semi-circle law
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Figure: Histogram of the eigenvalues of Wigner matrices and the semi-circle law, for N = 500

41 / 153



Basics of Random Matrix Theory/Other Common Random Matrix Models 42/153

The Circular law

Theorem
Let XN ∈ CN×N with e.s.d. µN be such that 1√

N
[XN ]ij are i.i.d. entries with zero

mean and unit variance. Then, as N →∞,

µN
a.s.−→ µ

with µ a complex-supported measure with µ(dz) = 1
2π
δ|z|≤1dz.
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The Circular law
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Figure: Eigenvalues of XN with i.i.d. standard Gaussian entries, for N = 500.
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Context

Baseline scenario: x1, . . . , xn ∈ CN (or RN ) i.i.d. with E[x1] = 0, E[x1x∗1] = CN :

I If x1 ∼ N (0, CN ), ML estimator for CN is sample covariance matrix (SCM)

ĈN =
1

n

n∑
i=1

xix
∗
i .

I [Huber’67] If x1 ∼ (1− ε)N (0, CN ) + εG, G unknown, robust estimator (n > N)

ĈN =
1

n

n∑
i=1

max

{
`1,

`2
1
N
x∗i Ĉ

−1
N xi

}
xix
∗
i for some `1, `2 > 0.

I [Maronna’76] If x1 elliptical (and n > N), ML estimator for CN given by

ĈN =
1

n

n∑
i=1

u

(
1

N
x∗i Ĉ

−1
N xi

)
xix
∗
i for some non-increasing u.

I [Pascal’13; Chen’11] If N > n, x1 elliptical or with outliers, shrinkage extensions

ĈN (ρ) = (1− ρ)
1

n

n∑
i=1

xix
∗
i

1
N
x∗i Ĉ

−1
N (ρ)xi

+ ρIN

ČN (ρ) =
B̌N (ρ)

1
N

tr B̌N (ρ)
, B̌N (ρ) = (1− ρ)

1

n

n∑
i=1

xix
∗
i

1
N
x∗i Č

−1
N (ρ)xi

+ ρIN

47 / 153



Applications/Random Matrices and Robust Estimation 47/153

Context

Baseline scenario: x1, . . . , xn ∈ CN (or RN ) i.i.d. with E[x1] = 0, E[x1x∗1] = CN :
I If x1 ∼ N (0, CN ), ML estimator for CN is sample covariance matrix (SCM)
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−1
N xi

)
xix
∗
i for some non-increasing u.

I [Pascal’13; Chen’11] If N > n, x1 elliptical or with outliers, shrinkage extensions
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Context

Results only known for N fixed and n→∞:

I not appropriate in settings of interest today (BigData, array processing, MIMO)

We study such ĈN in the regime

N,n→∞, N/n→ c ∈ (0,∞).

I Math interest:
I limiting eigenvalue distribution of ĈN
I limiting values and fluctuations of functionals f(ĈN )

I Application interest:
I comparison between SCM and robust estimators
I performance of robust/non-robust estimation methods
I improvement thereof (by proper parametrization)
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I limiting values and fluctuations of functionals f(ĈN )
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Model Description

Definition (Maronna’s Estimator)
For x1, . . . , xn ∈ CN with n > N , ĈN is the solution (upon existence and
uniqueness) of

ĈN =
1

n

n∑
i=1

u

(
1

N
x∗i Ĉ

−1
N xi

)
xix
∗
i

where u : [0,∞)→ (0,∞) is

I non-increasing

I such that φ(x) , xu(x) increasing of supremum φ∞ with

1 < φ∞ < c−1, c ∈ (0, 1).
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The Results in a Nutshell

For various models of the xi’s,

I First order convergence: ∥∥∥ĈN − ŜN∥∥∥ a.s.−→ 0

for some tractable random matrices ŜN .
⇒ We only discuss this result here.

I Second order results:

N1−ε
(
a∗ĈkN b− a

∗ŜkN b
)

a.s.−→ 0

allowing transfer of CLT results.

I Applications:
I improved robust covariance matrix estimation
I improved robust tests / estimators
I specific examples in statistics at large, array processing, statistical finance, etc.
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⇒ We only discuss this result here.

I Second order results:

N1−ε
(
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∗ŜkN b
)

a.s.−→ 0

allowing transfer of CLT results.

I Applications:
I improved robust covariance matrix estimation
I improved robust tests / estimators
I specific examples in statistics at large, array processing, statistical finance, etc.

50 / 153



Applications/Random Matrices and Robust Estimation 51/153

(Elliptical) scenario

Theorem (Large dimensional behavior, elliptical case)
For xi =

√
τiwi, τi impulsive (random or not), wi unitarily invariant, ‖wi‖ = N ,∥∥∥ĈN − ŜN∥∥∥ a.s.−→ 0

with, for some v related to u (v = u ◦ g−1, g(x) = x(1− cφ(x))−1),

ĈN ,
1

n

n∑
i=1

u

(
1

N
x∗i Ĉ

−1
N xi

)
xix
∗
i , ŜN ,

1

n

n∑
i=1

v(τiγN )xix
∗
i

and γN unique solution of

1 =
1

n

n∑
j=1

γv(τiγ)

1 + cγv(τiγ)
.

Corollaries

I Spectral measure: µ
ĈN
N − µŜNN

L−→ 0 a.s. (µXN , 1
n

∑n
i=1 δλi(X))

I Local convergence: max1≤i≤N |λi(ĈN )− λi(ŜN )| a.s.−→ 0.

I Norm boundedness: lim supN ‖ĈN‖ <∞

−→ Bounded spectrum (unlike SCM!)
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L−→ 0 a.s. (µXN , 1
n

∑n
i=1 δλi(X))

I Local convergence: max1≤i≤N |λi(ĈN )− λi(ŜN )| a.s.−→ 0.
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L−→ 0 a.s. (µXN , 1
n

∑n
i=1 δλi(X))

I Local convergence: max1≤i≤N |λi(ĈN )− λi(ŜN )| a.s.−→ 0.
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Large dimensional behavior
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Figure: n = 2500, N = 500, CN = diag(I125, 3I125, 10I250), τi ∼ Γ(.5, 2) i.i.d.
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Elements of Proof

Definition (v and ψ)
Letting g(x) = x(1− cφ(x))−1 (on R+),

v(x) , (u ◦ g−1)(x) non-increasing

ψ(x) , xv(x) increasing and bounded by ψ∞.

Lemma (Rewriting ĈN )
It holds (with CN = IN ) that

ĈN ,
1

n

n∑
i=1

τiv (τidi)wiw
∗
i

with (d1, . . . , dn) ∈ Rn+ a.s. unique solution to

di =
1

N
w∗i Ĉ

−1
(i)
wi =

1

N
w∗i

 1

n

∑
j 6=i

τjv(τjdj)wjw
∗
j

−1

wi, i = 1, . . . , n.
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Elements of Proof

Remark (Quadratic Form close to Trace)
Random matrix insight: ( 1

n

∑
j 6=i τjv(τjdj)wjw

∗
j )−1 “almost independent” of wi, so

di =
1

N
w∗i

 1

n

∑
j 6=i

τjv(τjdj)wjw
∗
j

−1

wi '
1

N
tr

 1

n

∑
j 6=i

τjv(τjdj)wjw
∗
j

−1

' γN

for some deterministic sequence (γN )∞N=1, irrespective of i.

Lemma (Key Lemma)
Letting ei ,

v(τidi)
v(τiγN )

with γN unique solution to

1 =
1

n

n∑
k=1

ψ(τiγN )

1 + cψ(τiγN )

we have

max
1≤i≤n

|ei − 1| a.s.−→ 0.

54 / 153



Applications/Random Matrices and Robust Estimation 54/153

Elements of Proof

Remark (Quadratic Form close to Trace)
Random matrix insight: ( 1

n

∑
j 6=i τjv(τjdj)wjw

∗
j )−1 “almost independent” of wi, so

di =
1

N
w∗i

 1

n

∑
j 6=i

τjv(τjdj)wjw
∗
j

−1

wi '
1

N
tr

 1

n

∑
j 6=i

τjv(τjdj)wjw
∗
j

−1

' γN

for some deterministic sequence (γN )∞N=1, irrespective of i.

Lemma (Key Lemma)
Letting ei ,

v(τidi)
v(τiγN )

with γN unique solution to

1 =
1

n

n∑
k=1

ψ(τiγN )

1 + cψ(τiγN )

we have

max
1≤i≤n

|ei − 1| a.s.−→ 0.

54 / 153



Applications/Random Matrices and Robust Estimation 54/153

Elements of Proof

Remark (Quadratic Form close to Trace)
Random matrix insight: ( 1

n

∑
j 6=i τjv(τjdj)wjw

∗
j )−1 “almost independent” of wi, so

di =
1

N
w∗i

 1

n

∑
j 6=i

τjv(τjdj)wjw
∗
j

−1

wi '
1

N
tr

 1

n

∑
j 6=i

τjv(τjdj)wjw
∗
j

−1

' γN

for some deterministic sequence (γN )∞N=1, irrespective of i.

Lemma (Key Lemma)
Letting ei ,

v(τidi)
v(τiγN )

with γN unique solution to

1 =
1

n

n∑
k=1

ψ(τiγN )

1 + cψ(τiγN )

we have

max
1≤i≤n

|ei − 1| a.s.−→ 0.
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Proof of the Key Lemma: maxi |ei − 1| a.s.−→ 0, ei = v(τidi)
v(τiγN )

Property (Quadratic form and γN )

max
1≤i≤n

∣∣∣∣∣∣ 1

N
w∗i

 1

n

∑
j 6=i

τjv(τjγN )wjw
∗
j

−1

wi − γN

∣∣∣∣∣∣ a.s.−→ 0.

Proof of the Property

I Uniformity easy (moments of all orders for [wi]j).

I By a “quadratic form similar to trace” approach, we get

max
1≤i≤n

∣∣∣∣∣∣ 1

N
w∗i

 1

n

∑
j 6=i

τjv(τjγN )wjw
∗
j

−1

wi −m(0)

∣∣∣∣∣∣ a.s.−→ 0

with m(0) unique positive solution to [MarPas’67; BaiSil’95]

m(0) =
1

n

n∑
i=1

τiv(τiγN )

1 + cτiv(τiγN )m(0)
.

I γN precisely solves this equation, thus m(0) = γN .
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Proof of the Key Lemma: maxi |ei − 1| a.s.−→ 0, ei = v(τidi)
v(τiγN )

Substitution Trick (case τi ∈ [a, b] ⊂ (0,∞))
Up to relabelling e1 ≤ . . . ≤ en, use

v(τnγN )en = v(τndn) = v

τn 1

N
w∗n

 1

n

∑
i<n

τi v(τidi)︸ ︷︷ ︸
=v(τiγN )ei

wiw
∗
i


−1

wn


≤ v

τne−1
n

1

N
w∗n

(
1

n

∑
i<n

τiv(τiγN )wiw
∗
i

)−1

wn


≤ v

(
τne
−1
n (γN − εn)

)
a.s., εn → 0 (slow).

Use properties of ψ to get

ψ (τnγN ) ≤ ψ
(
τne
−1
n γN

) (
1− εnγ−1

N

)−1

Conclusion: If en > 1 + ` i.o., as τn ∈ [a, b], on subsequence

{
τn → τ0 > 0
γN → γ0 > 0

,

ψ(τ0γ0) ≤ ψ
(
τ0γ0

1 + `

)
, a contradiction.
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Outlier Data

Theorem (Outlier Rejection)
Observation set

X =
[
x1, . . . , x(1−εn)n, a1, . . . , aεnn

]
where xi ∼ CN (0, CN ) and a1, . . . , aεnn ∈ CN deterministic outliers. Then,∥∥∥ĈN − ŜN∥∥∥ a.s.−→ 0

where

ŜN , v (γN )
1

n

(1−εn)n∑
i=1

xix
∗
i +

1

n

εnn∑
i=1

v (αi,n) aia
∗
i

with γN and α1,n, . . . , αεnn,n unique positive solutions to

γN =
1

N
trCN

(
(1− ε)v(γN )

1 + cv(γN )γN
CN +

1

n

εnn∑
i=1

v (αi,n) aia
∗
i

)−1

αi,n =
1

N
a∗i

 (1− ε)v(γN )

1 + cv(γN )γN
CN +

1

n

εnn∑
j 6=i

v (αj,n) aja
∗
j

−1

ai, i = 1, . . . , εnn.
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Outlier Data

I For εnn = 1,

ŜN = v

(
φ−1(1)

1− c

)
1

n

n−1∑
i=1

xix
∗
i +

(
v

(
φ−1(1)

1− c
1

N
a∗1C

−1
N a1

)
+ o(1)

)
a1a
∗
1

Outlier rejection relies on 1
N
a∗1C

−1
N a1 ≶ 1.

I For ai ∼ CN (0, DN ), εn → ε ≥ 0,

ŜN = v (γn)
1

n

(1−εn)n∑
i=1

xix
∗
i + v (αn)

1

n

εnn∑
i=1

aia
∗
i

γn =
1

N
trCN

(
(1− ε)v(γn)

1 + cv(γn)γn
CN +

εv(αn)

1 + cv(αn)αn
DN

)−1

αn =
1

N
trDN

(
(1− ε)v(γn)

1 + cv(γn)γn
CN +

εv(αn)

1 + cv(αn)αn
DN

)−1

.

For εn → 0,

ŜN = v

(
φ−1(1)

1− c

)
1

n

(1−εn)n∑
i=1

xix
∗
i +

1

n

εnn∑
i=1

v

(
φ−1(1)

1− c
1

N
trDNC

−1
N

)
aia
∗
i

Outlier rejection relies on 1
N

trDNC
−1
N ≶ 1.
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Outlier Data
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Figure: Limiting eigenvalue distributions. [CN ]ij = .9|i−j|, DN = IN , ε = .05.
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ĈN

Figure: Limiting eigenvalue distributions. [CN ]ij = .9|i−j|, DN = IN , ε = .05.

59 / 153



Applications/Random Matrices and Robust Estimation 60/153

Example of application to statistical finance

I Robust matrix-optimized portfolio allocation ĈST
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Outline

Basics of Random Matrix Theory
Motivation: Large Sample Covariance Matrices
The Stieltjes Transform Method
Spiked Models
Other Common Random Matrix Models

Applications
Random Matrices and Robust Estimation
Spectral Clustering Methods and Random Matrices
Community Detection on Graphs
Kernel Spectral Clustering
Kernel Spectral Clustering: Subspace Clustering
Semi-supervised Learning
Support Vector Machines
Neural Networks: Extreme Learning Machines

Perspectives
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Reminder on Spectral Clustering Methods

Context: Two-step classification of n objects based on similarity A ∈ Rn×n:
1. extraction of eigenvectors U = [u1, . . . , u`] with “dominant” eigenvalues

2. classification of vectors U1,·, . . . , Un,· ∈ R` using k-means/EM.

0 spikes

⇓ Eigenvectors ⇓
(in practice, shuffled!!)
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Reminder on Spectral Clustering Methods

E
ig

en
v.

1
E

ig
en

v.
2

⇓ `-dimensional representation ⇓
(shuffling no longer matters!)

Eigenvector 1

E
ig

en
ve

ct
or

2

⇓
EM or k-means clustering.
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The Random Matrix Approach

A two-step method:

1. If An is not a “standard” random matrix, retrieve Ãn such that∥∥∥An − Ãn∥∥∥ a.s.−→ 0

in operator norm as n→∞.

⇒ Transfers crucial properties from An to Ãn:
I limiting eigenvalue distribution
I spikes
I eigenvectors of isolated eigenvalues.

2. From Ãn, perform spiked model analysis:
I exhibit phase transition phenomenon
I “read” the content of isolated eigenvectors of Ãn.
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The Random Matrix Approach

The Spike Analysis:
For “noisy plateaus”-looking isolated eigenvectors u1, . . . , u` of Ãn, write

ui =
k∑
a=1

αai
ja√
na

+ σai w
a
i

with ja ∈ Rn canonical vector of class Ca, wai noise orthogonal to ja,

and evaluate

αai =
1
√
na
uT
i ja

(σai )2 =

∥∥∥∥ui − αai ja√
na

∥∥∥∥2

.

=⇒ Can be done using complex analysis calculus, e.g.

(αai )2 =
1

na
jT
auiu

T
i ja

=
1

2πı

∮
γa

1

na
jT
a

(
Ãn − zIn

)−1
jadz.
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k∑
a=1

αai
ja√
na

+ σai w
a
i

with ja ∈ Rn canonical vector of class Ca, wai noise orthogonal to ja, and evaluate
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1
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uT
i ja

(σai )2 =
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Outline

Basics of Random Matrix Theory
Motivation: Large Sample Covariance Matrices
The Stieltjes Transform Method
Spiked Models
Other Common Random Matrix Models

Applications
Random Matrices and Robust Estimation
Spectral Clustering Methods and Random Matrices
Community Detection on Graphs
Kernel Spectral Clustering
Kernel Spectral Clustering: Subspace Clustering
Semi-supervised Learning
Support Vector Machines
Neural Networks: Extreme Learning Machines

Perspectives
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System Setting

Assume n-node, m-edges undirected graph G, with
I “intrinsic” average connectivity q1, . . . , qn ∼ µ i.i.d.

I k classes C1, . . . , Ck independent of {qi} of (large) sizes n1, . . . , nk, with
preferential attachment Cab between Ca and Cb

I induces edge probability for node i ∈ Ca, j ∈ Cb,

P (i ∼ j) = qiqjCab.

I adjacency matrix A with Aij ∼ Bernoulli(qiqjCab).
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Objective

Study of spectral methods:

I standard methods based on adjacency A, modularity A− ddT

2m
, normalized

adjacency D−1AD−1, etc. (adapted to dense nets)

I refined methods based on Bethe Hessian (r2 − 1)In − rA+D (adapted to sparse
nets!)

Improvement to realistic graphs:

I observation of failure of standard methods above

I improvement by new methods.
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Limitations of Adjacency/Modularity Approach

(Modularity) (Bethe Hessian)

Scenario: 3 classes with µ bi-modal (e.g., µ = 3
4
δ0.1 + 1

4
δ0.5)

→ Leading eigenvectors of A (or modularity A− ddT

2m
) biased by qi distribution.

→ Similar behavior for Bethe Hessian.
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Regularized Modularity Approach

Connectivity Model: P (i ∼ j) = qiqjCab for i ∈ Ca, j ∈ Cb.

Dense Regime Assumptions: Non trivial regime when, as n→∞,

Cab = 1 +
Mab√
n
, Mab = O(1).

⇒ Community information is weak but highly REDUNDANT!

Considered Matrix:
For α ∈ [0, 1], (and with D = diag(A1n) = diag(d) the degree matrix), m = 1

2
dT1

the number of edges

Lα = (2m)α
1
√
n
D−α

[
A−

ddT

2m

]
D−α.

Our results in a nutshell:

I we find optimal αopt having best phase transition.

I we find consistent estimator α̂opt from A alone.

I we claim optimal eigenvector regularization Dα−1u, u eigenvector of Lα.
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Asymptotic Equivalence

Theorem (Limiting Random Matrix Equivalent)
For each α ∈ [0, 1], as n→∞, ‖Lα − L̃α‖ → 0 almost surely, where

Lα = (2m)α
1
√
n
D−α

[
A−

ddT

2m

]
D−α

L̃α =
1
√
n
D−αq XD−αq + UΛUT

with Dq = diag({qi}), X zero-mean random matrix,

U =
[
D1−α
q

J√
n

D−αq X1n
]
, rank k + 1

Λ =

[
(Ik − 1kc

T)M(Ik − c1T
k) −1k

1T
k 0

]
and J = [j1, . . . , jk], ja = [0, . . . , 0, 1T

na
, 0, . . . , 0]T ∈ Rn canonical vector of class Ca.

Consequences:

I isolated eigenvalues beyond phase transition ↔ λ(M) >“spectrum edge”
⇒ optimal choice αopt of α from study of noise spectrum.

I eigenvectors correlated to D1−α
q J

⇒ Natural regularization by Dα−1!
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Eigenvalue Spectrum

−6 −4 −2 0 2 4 6

−Sα Sα

Sα

spikes

Eigenvalues of L1

Limiting law

Figure: Eigenvalues of L1, K = 3, n = 2000, c1 = 0.3, c2 = 0.3, c3 = 0.4,
µ = 1

2 δq(1) + 1
2 δq(2) , q(1) = 0.4, q(2) = 0.9, M defined by Mii = 12, Mij = −4, i 6= j.

72 / 153



Applications/Community Detection on Graphs 73/153

Phase Transition

Theorem (Phase Transition)
For α ∈ [0, 1], isolated eigenvalue λi(Lα) if |λi(M̄)| > τα, M̄ = (D(c)− ccT)M ,

τα = lim
x↓Sα+

−
1

eα2 (x)
, phase transition threshold

with [Sα−, S
α
+] limiting eigenvalue support of Lα and eα2 (x) (|x| > Sα+) solution of

eα1 (x) =

∫
q1−2α

−x− q1−2αeα1 (x) + q2−2αeα2 (x)
µ(dq)

eα2 (x) =

∫
q2−2α

−x− q1−2αeα1 (x) + q2−2αeα2 (x)
µ(dq).

In this case, − 1
eα2 (λi(Lα))

= λi(M̄).

Clustering still possible when λi(M̄) = (minα τα) + ε.
I “Optimal” α = αopt:

αopt = argminα∈[0,1] {τα} .

I From maxi

∣∣∣∣ di√
dT1n

− qi
∣∣∣∣ a.s.−→ 0, we obtain consistent estimator α̂opt of αopt.
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Simulated Performance Results (2 masses of qi)

(Modularity) (Bethe Hessian)

(Algo with α = 1) (Algo with αopt)

Figure: Two dominant eigenvectors (x-y axes) for n = 2000, K = 3, µ = 3
4 δq(1) + 1

4 δq(2) ,

q(1) = 0.1, q(2) = 0.5, c1 = c2 = 1
4 , c3 = 1

2 , M = 100I3.
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Simulated Performance Results (2 masses for qi)
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Figure: Largest eigenvalue λ of Lα as a function of the largest eigenvalue ` of (D(c)− ccT)M ,
for µ = 3

4 δq(1) + 1
4 δq(2) with q(1) = 0.1 and q(2) = 0.5, for α ∈ {0, 1

4 ,
1
2 ,

3
4 , 1, αopt}

(indicated below the graph). Here, αopt = 0.07. Circles indicate phase transition. Beyond phase
transition, ` = −1/eα2 (λ).
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Simulated Performance Results (2 masses for qi)
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Figure: Overlap performance for n = 3000, K = 3, ci = 1
3 , µ = 3

4 δq(1) + 1
4 δq(2) with

q(1) = 0.1 and q(2) = 0.5, M = ∆I3, for ∆ ∈ [5, 50]. Here αopt = 0.07.
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Simulated Performance Results (2 masses for qi)
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Figure: Overlap performance for n = 3000, K = 3, µ = 3
4 δq(1) + 1

4 δq(2) with q(1) = 0.1 and

q(2) ∈ [0.1, 0.9], M = 10(2I3 − 131T
3), ci = 1

3 .
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Theoretical Performance

Analysis of eigenvectors reveals:

I eigenvectors are “noisy staircase vectors”

I conjectured Gaussian fluctuations of eigenvector entries

I for qi = q0 (homogeneous case), same variance for all entries

I in non-homogeneous case, we can compute “average variance per class”
⇒ Heuristic asymptotic performance upper-bound using EM.
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Theoretical Performance Results (uniform distribution for qi)
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Figure: Theoretical probability of correct recovery for n = 2000, K = 2, c1 = 0.6, c2 = 0.4, µ
uniformly distributed in [0.2, 0.8], M = ∆I2, for ∆ ∈ [0, 20].
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Some Takeaway messages

Main findings:

I Degree heterogeneity breaks community structures in eigenvectors.
⇒ Compensation by Dα−1 normalization of eigenvectors.

I Classical debate over “best normalization” of adjacency (or modularity) matrix A
not trivial to solve.
⇒ With heterogeneous degrees, we found a good on-line method.

I Simulations support good performances even for “rather sparse” settings.

But strong limitations:

I Key assumption: Cab = 1 + Mab√
n

.

⇒ Everything collapses if different regime.

I Simulations on small networks in fact give ridiculous arbitrary results.
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Outline

Basics of Random Matrix Theory
Motivation: Large Sample Covariance Matrices
The Stieltjes Transform Method
Spiked Models
Other Common Random Matrix Models

Applications
Random Matrices and Robust Estimation
Spectral Clustering Methods and Random Matrices
Community Detection on Graphs
Kernel Spectral Clustering
Kernel Spectral Clustering: Subspace Clustering
Semi-supervised Learning
Support Vector Machines
Neural Networks: Extreme Learning Machines

Perspectives
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Kernel Spectral Clustering

Problem Statement

I Dataset x1, . . . , xn ∈ Rp
I Objective: “cluster” data in k similarity classes S1, . . . ,Sk.

I Typical metric to optimize:

(RatioCut) argminS1∪...∪Sk={1,...,n}

k∑
i=1

∑
j∈Si
j̄ /∈Si

κ(xj , xj̄)

|Si|

for some similarity kernel κ(x, y) ≥ 0 (large if x similar to y).

I Can be shown equivalent to

(RatioCut) argminM∈M trMT(D −K)M

where M⊂ Rn×k ∩
{
M ; Mij ∈ {0, |Sj |−

1
2 }
}

(in particular, MTM = Ik) and

K = {κ(xi, xj)}ni,j=1, Dii =
n∑
j=1

Kij .

I But integer problem! Usually NP-complete.
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Kernel Spectral Clustering

Towards kernel spectral clustering

I Kernel spectral clustering: discrete-to-continuous relaxations of such metrics

(RatioCut) argminM, MTM=IK
trMT(D −K)M

i.e., eigenvector problem:
1. find eigenvectors of smallest eigenvalues
2. retrieve classes from eigenvector components

I Refinements:
I working on K, D −K, In −D−1K, In −D−

1
2KD−

1
2 , etc.

I several steps algorithms: Ng–Jordan–Weiss, Shi–Malik, etc.
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Kernel Spectral Clustering

Figure: Leading four eigenvectors of D−
1
2KD−

1
2 for MNIST data.
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Methodology and objectives

Current state:

I Algorithms derived from ad-hoc procedures (e.g., relaxation).

I Little understanding of performance, even for Gaussian mixtures!

I Let alone when both p and n are large (BigData setting)

Objectives and Roadmap:

I Develop mathematical analysis framework for BigData kernel spectral clustering
(p, n→∞)

I Understand:
1. Phase transition effects (i.e., when is clustering possible?)
2. Content of each eigenvector
3. Influence of kernel function
4. Performance comparison of clustering algorithms

Methodology:

I Use statistical assumptions (Gaussian mixture)

I Benefit from doubly-infinite independence and random matrix tools
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Model and Assumptions

Gaussian mixture model:
I x1, . . . , xn ∈ Rp,
I k classes C1, . . . , Ck,
I x1, . . . , xn1 ∈ C1, . . . , xn−nk+1, . . . , xn ∈ Ck,
I Ca = {x | x ∼ N (µa, Ca)}.

Then, for xi ∈ Ca, with wi ∼ N(0, Ca),

xi = µa + wi.

Assumption (Convergence Rate)
As n→∞,

1. Data scaling: p
n
→ c0 ∈ (0,∞),

2. Class scaling: na
n
→ ca ∈ (0, 1),

3. Mean scaling: with µ◦ ,
∑k
a=1

na
n
µa and µ◦a , µa − µ◦, then

‖µ◦a‖ = O(1)

4. Covariance scaling: with C◦ ,
∑k
a=1

na
n
Ca and C◦a , Ca − C◦, then

‖Ca‖ = O(1),
1
√
p

trC◦a = O(1)⇒ trC◦aC
◦
b = O(p)
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Model and Assumptions

Kernel Matrix:

I Kernel matrix of interest:

K =

{
f

(
1

p
‖xi − xj‖2

)}n
i,j=1

for some sufficiently smooth nonnegative f .

I We study the normalized Laplacian:

L = nD−
1
2KD−

1
2

with d = K1n, D = diag(d).
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Model and Assumptions

Difficulty: L is a very intractable random matrix

I non-linear f

I non-trivial dependence between entries of L

Strategy:

1. Find random equivalent L̂ (i.e., ‖L− L̂‖ a.s.−→ 0 as n, p→∞) based on:
I concentration: Kij → constant as n, p→∞ (for all i 6= j)
I Taylor expansion around limit point

2. Apply spiked random matrix approach to study:
I existence of isolated eigenvalues in L̂: phase transition
I eigenvector projections on canonical class-basis
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Random Matrix Equivalent

Results on K:
I Key Remark: Under our assumptions, uniformly on i, j ∈ {1, . . . , n},

1

p
‖xi − xj‖2

a.s.−→ τ

for some common limit τ .

I large dimensional approximation for K:

K = f(τ)1n1T
n︸ ︷︷ ︸

O‖·‖(n)

+
√
nA1︸ ︷︷ ︸

low rank, O‖·‖(
√
n)

+ A2︸︷︷︸
informative terms, O‖·‖(1)

I difficult to handle (3 orders to manipulate!)

Observation: Spectrum of L = nD−
1
2KD−

1
2 :

I Dominant eigenvalue n with eigenvector D
1
2 1n

I All other eigenvalues of order O(1).

⇒ Naturally leads to study:
I Projected normalized Laplacian (or “modularity”-type Laplacian):

L′ = nD−
1
2KD−

1
2 − n

D
1
2 1n1T

nD
1
2

1T
nD1n

= nD−
1
2

(
K −

ddT

1Td

)
D−

1
2 .

I Dominant (normalized) eigenvector D
1
2 1n√

1T
nD1n

.
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Random Matrix Equivalent

Theorem (Random Matrix Equivalent)
As n, p→∞, in operator norm,

∥∥∥L′ − L̂′∥∥∥ a.s.−→ 0, where

L̂′ = −2
f ′(τ)

f(τ)

[
1

p
PWTWP + UBUT

]
+ α(τ)In

and τ = 2
p

trC◦, W = [w1, . . . , wn] ∈ Rp×n (xi = µa + wi), P = In − 1
n

1n1T
n,

U =

[
1
√
p
J,Φ, ψ

]
∈ Rn×(2k+4)

B =


B11 Ik − 1kc

T
(

5f ′(τ)
8f(τ)

− f ′′(τ)
2f ′(τ)

)
t

Ik − c1T
k 0k×k 0k×1(

5f ′(τ)
8f(τ)

− f ′′(τ)
2f ′(τ)

)
tT 01×k

5f ′(τ)
8f(τ)

− f ′′(τ)
2f ′(τ)

 ∈ R(2k+4)×(2k+4)

B11 = MTM +

(
5f ′(τ)

8f(τ)
−
f ′′(τ)

2f ′(τ)

)
ttT −

f ′′(τ)

f ′(τ)
T +

p

n

f(τ)α(τ)

2f ′(τ)
1k1T

k ∈ Rk×k.
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1√
p
J = [j1, . . . , jk] ∈ Rn×k, ja canonical vector of class Ca.
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M = [µ◦1, . . . , µ
◦
k] ∈ Rn×k, µ◦a = µa −

∑k
b=1

nb
n
µb.

90 / 153



Applications/Kernel Spectral Clustering 90/153

Random Matrix Equivalent

Theorem (Random Matrix Equivalent)
As n, p→∞, in operator norm,

∥∥∥L′ − L̂′∥∥∥ a.s.−→ 0, where

L̂′ = −2
f ′(τ)

f(τ)

[
1

p
PWTWP + UBUT

]
+ α(τ)In

and τ = 2
p

trC◦, W = [w1, . . . , wn] ∈ Rp×n (xi = µa + wi), P = In − 1
n

1n1T
n,

U =

[
1
√
p
J,Φ, ψ

]
∈ Rn×(2k+4)

B =


B11 Ik − 1kc

T
(

5f ′(τ)
8f(τ)

− f ′′(τ)
2f ′(τ)

)
t

Ik − c1T
k 0k×k 0k×1(

5f ′(τ)
8f(τ)

− f ′′(τ)
2f ′(τ)

)
tT 01×k

5f ′(τ)
8f(τ)

− f ′′(τ)
2f ′(τ)

 ∈ R(2k+4)×(2k+4)

B11 = MTM +

(
5f ′(τ)

8f(τ)
−
f ′′(τ)

2f ′(τ)

)
ttT −

f ′′(τ)

f ′(τ)
T +

p

n

f(τ)α(τ)

2f ′(τ)
1k1T

k ∈ Rk×k.

t =
[

1√
p

trC◦1 , . . . ,
1√
p

trC◦k

]
∈ Rk, C◦a = Ca −

∑k
b=1

nb
n
Cb.

90 / 153



Applications/Kernel Spectral Clustering 90/153

Random Matrix Equivalent

Theorem (Random Matrix Equivalent)
As n, p→∞, in operator norm,

∥∥∥L′ − L̂′∥∥∥ a.s.−→ 0, where

L̂′ = −2
f ′(τ)

f(τ)

[
1

p
PWTWP + UBUT

]
+ α(τ)In

and τ = 2
p

trC◦, W = [w1, . . . , wn] ∈ Rp×n (xi = µa + wi), P = In − 1
n

1n1T
n,

U =

[
1
√
p
J,Φ, ψ

]
∈ Rn×(2k+4)

B =


B11 Ik − 1kc

T
(

5f ′(τ)
8f(τ)

− f ′′(τ)
2f ′(τ)

)
t

Ik − c1T
k 0k×k 0k×1(

5f ′(τ)
8f(τ)

− f ′′(τ)
2f ′(τ)

)
tT 01×k

5f ′(τ)
8f(τ)

− f ′′(τ)
2f ′(τ)

 ∈ R(2k+4)×(2k+4)

B11 = MTM +

(
5f ′(τ)

8f(τ)
−
f ′′(τ)

2f ′(τ)

)
ttT −

f ′′(τ)

f ′(τ)
T +

p

n

f(τ)α(τ)

2f ′(τ)
1k1T

k ∈ Rk×k.

T =
{

1
p

trC◦aC
◦
b

}k
a,b=1

∈ Rk×k, C◦a = Ca −
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Random Matrix Equivalent

Some consequences:

I L̂′ is a spiked model: UBUT seen as low rank perturbation of 1
p
PWTWP

I If f ′(τ) = 0,
I L′ asymptotically deterministic!
I only t and T can be discriminated upon

I If f ′′(τ) = 0, (e.g., f(x) = x) T unused

I If 5f ′(τ)
8f(τ)

=
f ′′(τ)
2f ′(τ)

, t (seemingly) unused

Further analysis:

I Determine separability condition for eigenvalues

I Evaluate eigenvalue positions when separable

I Evaluate eigenvector projection to canonical basis j1, . . . , jk
I Evaluate fluctuation of eigenvectors.
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Isolated eigenvalues: Gaussian inputs

0 1 2 3 4

Eigenvalues of L′

0 1 2 3 4

Eigenvalues of L̂′

Figure: Eigenvalues of L′ and L̂′, k = 3, p = 2048, n = 512, c1 = c2 = 1/4, c3 = 1/2,
[µa]j = 4δaj , Ca = (1 + 2(a− 1)/

√
p)Ip, f(x) = exp(−x/2).
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Theoretical Findings versus MNIST

0 10 20 30 40 50
0

5 · 10−2

0.1

0.15

0.2

Eigenvalues of L′

Figure: Eigenvalues of L′ (red) and (equivalent Gaussian model) L̂′ (white), MNIST data,
p = 784, n = 192.
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Figure: Eigenvalues of L′ (red) and (equivalent Gaussian model) L̂′ (white), MNIST data,
p = 784, n = 192.
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Theoretical Findings versus MNIST

Figure: Leading four eigenvectors of D−
1
2KD−

1
2 for MNIST data (red) and theoretical findings

(blue).
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Theoretical Findings versus MNIST

−.09 −.08 −.07 −.06

−0.1

0

0.1

Eigenvector 2/Eigenvector 1

−0.1 0 0.1

−0.1

0

0.1

0.2

Eigenvector 3/Eigenvector 2

Figure: 2D representation of eigenvectors of L, for the MNIST dataset. Theoretical means and 1-
and 2-standard deviations in blue. Class 1 in red, Class 2 in black, Class 3 in green.
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Further Results and Some Takeaway messages

General surprising findings:

I “Good kernel functions” f need not be decreasing.

I Dominant parameters in large dimensions are first three derivatives at τ .

I Clustering possible despite ‖xi − xj‖2 → τ , i.e., no first order data difference
⇒ Breaks original intuitions and problem layout!

Further surprises. . . :

I For C1 = . . . = CK = Ip, kernel choice is irrelevant! (as long as f ′(τ) 6= 0)

I For µ1 = . . . = µK = 0 and Ca = (1 + γap
− 1

2 )Ip, only ONE isolated
eigenvector!

I It is possible to observe irrelevant eigenvectors! (that contain only noise)

Validity of the Results:

I Needs a concentration of measure assumption: ‖xi − xj‖2 → τ .

I Invalid for heavy-tailed distributions (where ‖xi‖ = ‖√τizi‖ needs not converge).

I Suprising fit between theory and practice: are images like Gaussian vectors?
I kernels extract primarily first order properties (means, covariances)
I without image processing (rotations, scale invariance), good enough features.
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Last word: the suprising case f ′(τ) = 0...

Reminder:

Theorem (Random Matrix Equivalent)
As n, p→∞, in operator norm,

∥∥∥L′ − L̂′∥∥∥ a.s.−→ 0, where

L̂′ = −2
f ′(τ)

f(τ)

1

p
PWTWP−2

f ′(τ)

f(τ)
UBUT + α(τ)In

and τ = 2
p

trC◦, W = [w1, . . . , wn] ∈ Rp×n (xi = µa + wi), P = In − 1
n

1n1T
n,

U =

[
1
√
p
J, ∗
]
, B =

[
B11 ∗
∗ ∗

]
B11 = MTM +

(
5f ′(τ)

8f(τ)
−
f ′′(τ)

2f ′(τ)

)
ttT −

f ′′(τ)

f ′(τ)
T +

p

n

f(τ)α(τ)

2f ′(τ)
1k1T

k .

When f ′(τ)→ 0,

I Means M disappears ⇒ Impossible classification from means.

I More importantly: PWWTP disappears
⇒ Asymptotic deterministic matrix equivalent!
⇒ Perfect asymptotic clustering in theory!
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Outline

Basics of Random Matrix Theory
Motivation: Large Sample Covariance Matrices
The Stieltjes Transform Method
Spiked Models
Other Common Random Matrix Models

Applications
Random Matrices and Robust Estimation
Spectral Clustering Methods and Random Matrices
Community Detection on Graphs
Kernel Spectral Clustering
Kernel Spectral Clustering: Subspace Clustering
Semi-supervised Learning
Support Vector Machines
Neural Networks: Extreme Learning Machines

Perspectives
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Position of the Problem

Problem: Cluster large data x1, . . . , xn ∈ Rp based on “spanned subspaces”.

Method:

I Still assume x1, . . . , xn belong to k classes C1, . . . , Ck.

I Zero-mean Gaussian model for the data: for xi ∈ Ck,

xi ∼ N (0, Ck).

I Performance of L = nD−
1
2KD−

1
2 − nD

1
2 1n1T

nD
1
2

1T
nD1n

, with

K =
{
f
(
‖x̄i − x̄j‖2

)}
1≤i,j≤n

, x̄ =
x

‖x‖

in the regime n, p→∞.
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Model and Reminders

Assumption 1 [Classes]. Vectors x1, . . . , xn ∈ Rp i.i.d. from k-class Gaussian mixture,
with xi ∈ Ck ⇔ xi ∼ N (0, Ck) (sorted by class for simplicity).

Assumption 2a [Growth Rates]. As n→∞, for each a ∈ {1, . . . , k},
1. n

p
→ c0 ∈ (0,∞)

2. na
n
→ ca ∈ (0,∞)

3. 1
p

trCa = 1 and trC◦aC
◦
b = O(p), with C◦a = Ca − C◦, C◦ =

∑k
b=1 cbCb.

Theorem (Corollary of Previous Section)
Let f smooth with f ′(2) 6= 0. Then, under Assumptions 2a,

L = nD−
1
2KD−

1
2 − n

D
1
2 1n1T

nD
1
2

1T
nD1n

, with K =
{
f
(
‖x̄i − x̄j‖2

)}n
i,j=1

(x̄ = x/‖x‖)

exhibits phase transition phenomenon, i.e., leading eigenvectors of L asymptotically
contain structural information about C1, . . . , Ck if and only if

T =

{
1

p
trC◦aC

◦
b

}k
a,b=1

has sufficiently large eigenvalues.
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The case f ′(2) = 0

Assumption 2b [Growth Rates]. As n→∞, for each a ∈ {1, . . . , k},
1. n

p
→ c0 ∈ (0,∞)

2. na
n
→ ca ∈ (0,∞)

3. 1
p

trCa = 1 and trC◦aC
◦
b = O(p), with C◦a = Ca − C◦, C◦ =

∑k
b=1 cbCb.

Theorem (Random Equivalent for f ′(2) = 0)
Let f be smooth with f ′(2) = 0 and

L ≡ √p
f(2)

2f ′′(2)

[
L−

f(0)− f(2)

f(2)
P

]
, P = In −

1

n
1n1T

n.

Then, under Assumptions 2b,

L = PΦP +

{
1
√
p

tr (C◦aC
◦
b )

1na1T
nb

p

}k
a,b=1

+ o‖·‖(1)

where Φij = δi 6=j
√
p
[
(xT
i xj)

2 − E[(xT
i xj)

2]
]
.
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The case f ′(2) = 0

−2 −1.5 −1 −0.5 0
0

1

2

3

λ1(L)

λ2(L)

Eigenvalues of L

Figure: Eigenvalues of L, p = 1000, n = 2000, k = 3, c1 = c2 = 1/4, c3 = 1/2,

Ci ∝ Ip + (p/8)−
5
4WiW

T
i , Wi ∈ Rp×(p/8) of i.i.d. N (0, 1) entries, f(t) = exp(−(t− 2)2).

⇒ No longer a Marcenko–Pastur like bulk, but rather a semi-circle bulk!
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The case f ′(2) = 0
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The case f ′(2) = 0

Roadmap. We now need to:

I study the spectrum of Φ

I study the isolated eigenvalues of L (and the phase transition)

I retrieve information from the eigenvectors.

Theorem (Semi-circle law for Φ)
Let µn = 1

n

∑n
i=1 δλi(L). Then, under Assumption 2b,

µn
a.s.−→ µ

with µ the semi-circle distribution

µ(dt) =
1

2πc0ω2

√
(4c0ω2 − t2)+dt, ω = lim

p→∞

√
2

1

p
tr (C◦)2.
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The case f ′(2) = 0

−2 −1.5 −1 −0.5 0
0

1

2

3

λ1(L)

λ2(L)

Eigenvalues of L

Semi-circle law

Figure: Eigenvalues of L, p = 1000, n = 2000, k = 3, c1 = c2 = 1/4, c3 = 1/2,

Ci ∝ Ip + (p/8)−
5
4WiW

T
i , Wi ∈ Rp×(p/8) of i.i.d. N (0, 1) entries, f(t) = exp(−(t− 2)2).
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The case f ′(2) = 0

Denote now

T ≡ lim
p→∞

{√
cacb√
p

trC◦aC
◦
b

}k
a,b=1

.
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The case f ′(2) = 0

Denote now

T ≡ lim
p→∞

{√
cacb√
p

trC◦aC
◦
b

}k
a,b=1

.

Theorem (Isolated Eigenvalues)
Let ν1 ≥ . . . ≥ νk eigenvalues of T . Then, if

√
c0|νi| > ω, L has an isolated

eigenvalue λi satisfying

λi
a.s.−→ ρi ≡ c0νi +

ω2

νi
.
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The case f ′(2) = 0

Theorem (Isolated Eigenvectors)
For each isolated eigenpair (λi, ui) of L corresponding to (νi, vi) of T , write

ui =
k∑
a=1

αai
ja√
na

+ σai w
a
i

with ja = [0T
n1
, . . . , 1T

na
, . . . , 0T

nk
]T, (wai )Tja = 0, supp(wai ) = supp(ja), ‖wai ‖ = 1.

Then, under Assumptions 1–2b,

αai α
b
i

a.s.−→
(

1−
1

c0

ω2

ν2
i

)
[viv

T
i ]ab

(σai )2 a.s.−→
ca

c0

ω2

ν2
i

and the fluctuations of ui, uj , i 6= j, are asymptotically uncorrelated.
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The case f ′(2) = 0
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Figure: Leading two eigenvectors of L (or equivalently of L) versus deterministic approximations of
αai ± σ

a
i .
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The case f ′(2) = 0
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The case f ′(2) = 0
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Outline

Basics of Random Matrix Theory
Motivation: Large Sample Covariance Matrices
The Stieltjes Transform Method
Spiked Models
Other Common Random Matrix Models

Applications
Random Matrices and Robust Estimation
Spectral Clustering Methods and Random Matrices
Community Detection on Graphs
Kernel Spectral Clustering
Kernel Spectral Clustering: Subspace Clustering
Semi-supervised Learning
Support Vector Machines
Neural Networks: Extreme Learning Machines

Perspectives
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Problem Statement

Context: Similar to clustering:

I Classify x1, . . . , xn ∈ Rp in k classes, but with labelled and unlabelled data.

I Problem statement: (di = [K1n]i)

F = argminF∈Rn×k

k∑
a=1

∑
i,j

Kij(Fiad
α−1
i − Fjadα−1

j )2

such that Fia = δ{xi∈Ca}, for all labelled xi.

I Solution: denoting F (u) ∈ Rnu×k, F (l) ∈ Rnl×k the restriction to
unlabelled/labelled data,

F (u) =
(
Inu −D

−α
(u)

K(u,u)D
α−1
(u)

)−1
D−α

(u)
K(u,l)D

α−1
(l)

F (l)

where we naturally decompose

K =

[
K(l,l) K(l,u)

K(u,l) K(u,u)

]
D =

[
D(l) 0

0 D(u)

]
= diag {K1n} .
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K(u,l) K(u,u)

]
D =

[
D(l) 0

0 D(u)

]
= diag {K1n} .
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Problem Statement

Using F (u):

I From F (u), classification algorithm:

Classify xi in Ca ⇔ Fia = max
b∈{1,...,k}

{Fib} .

Objectives: For xi ∼ N (µa, Ca), and as n, p→∞, (nu, nl →∞ or nu →∞,
nl = O(1))

I Tractable approximation (in norm) for the vectors [F (u)]·,a, a = 1, . . . , k

I Joint asymptotic behavior of [F (u)]i,·
⇒ From which classification probability is retrieved.

I Understanding the impact of α
⇒ Finding optimal α choice online?
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MNIST Data Example
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Figure: Vectors [F (u)]·,a, a = 1, 2, 3, for 3-class MNIST data (zeros, ones, twos), n = 192,
p = 784, nl/n = 1/16, Gaussian kernel.
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Comments

Not at all what we expect!:

I Intuitively, [F (u)]i,a should be close to 1 if xi ∈ Ca or 0 if xi /∈ Ca (from cost
function Kij(Fi,a − Fj,a)2)

I Here, strong class-wise biases

I But, more surprisingly, it still works very well !

We need to understand why...
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MNIST Data Example
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k]·,a, a = 1, 2, 3, for 3-class MNIST

data (zeros, ones, twos), n = 192, p = 784, nl/n = 1/16, Gaussian kernel.

115 / 153



Applications/Semi-supervised Learning 115/153

MNIST Data Example

0 50 100 150

−4

−2

0

2

4

·10−2

Index

F
(
u
)

·,
a
−

1 k

∑ k b=
1
F

(
u
)

·,
b

[F◦
(u)

]·,1 (Zeros)

[F◦
(u)

]·,2 (Ones)

Figure: Centered Vectors [F◦(u)]·,a = [F(u) − 1
kF(u)1k1T

k]·,a, a = 1, 2, 3, for 3-class MNIST

data (zeros, ones, twos), n = 192, p = 784, nl/n = 1/16, Gaussian kernel.

115 / 153



Applications/Semi-supervised Learning 115/153

MNIST Data Example

0 50 100 150

−4

−2

0

2

4

·10−2

Index

F
(
u
)

·,
a
−

1 k

∑ k b=
1
F

(
u
)

·,
b

[F◦
(u)

]·,1 (Zeros)

[F◦
(u)

]·,2 (Ones)

[F◦
(u)

]·,3 (Twos)

Figure: Centered Vectors [F◦(u)]·,a = [F(u) − 1
kF(u)1k1T

k]·,a, a = 1, 2, 3, for 3-class MNIST

data (zeros, ones, twos), n = 192, p = 784, nl/n = 1/16, Gaussian kernel.

115 / 153



Applications/Semi-supervised Learning 116/153

MNIST Data Example
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Figure: Performance as a function of α, for 3-class MNIST data (zeros, ones, twos), n = 192,
p = 784, nl/n = 1/16, Gaussian kernel.
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Theoretical Findings

Method: We assume nl/n→ cl ∈ (0, 1) (“numerous” labelled data setting)

I Recall that we aim at characterizing

F (u) =
(
Inu −D

−α
(u)

K(u,u)D
α−1
(u)

)−1
D−α

(u)
K(u,l)D

α−1
(l)

F (l)

I A priori difficulty linked to resolvent of involved random matrix!
I Painstaking product of complex matrices.

I Using Taylor expansion of K as n, p→∞, we get

K(u,u) = f(τ)1nu1T
nu

+O‖·‖(n
− 1

2 )

D(u) = nf(τ)Inu +O(n
1
2 )

and similarly for K(u,l), D(l).

I So that

(
Inu −D

−α
(u)

K(u,u)D
α−1
(u)

)−1
=

(
Inu −

1nu1T
nu

n
+O‖·‖(n

− 1
2 )

)−1

which can be easily Taylor expanded!
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Main Results

Results:

I In the first order,

F
(u)
·,a = C

nl,a

n

[
v + α

ta1nu√
n

]
+ O(n−1)︸ ︷︷ ︸

Information is here!

where v = O(1) random vector (entry-wise) and ta = 1√
p

trC◦a .

I Many consequences:
I Random non-informative bias linked to v

I Strong Impact of nl,a!

⇒ All nl,a must be equal OR F (u) need be scaled!

I Additional per-class bias αta1nu : no information here
⇒ Forces the choice

α = 0 +
β
√
p
.

I Relevant information hidden in smaller order terms!
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Main Results

As a consequence of the remarks above, we take

α =
β
√
p

and define

F̂
(u)
i,a =

np

nl,a
F

(u)
ia .

Theorem
For xi ∈ Cb unlabelled, we have

F̂i,· −Gb → 0, Gb ∼ N (mb,Σb)

where mb ∈ Rk, Σb ∈ Rk×k given by

(mb)a = −
2f ′(τ)

f(τ)
M̃ab +

f ′′(τ)

f(τ)
t̃a t̃b +

2f ′′(τ)

f(τ)
T̃ab −

f ′(τ)2

f(τ)2
tatb + β

n

nl

f ′(τ)

f(τ)
ta +Bb

(Σb)a1a2 =
2trC2

b

p

(
f ′(τ)2

f(τ)2
−
f ′′(τ)

f(τ)

)2

ta1 ta2 +
4f ′(τ)2

f(τ)2

(
[MTCbM ]a1a2 +

δa2a1 p

nl,a1
Tba1

)
with t, T,M as before, X̃a = Xa −

∑k
d=1

nl,d
nl

X◦d and Bb bias independent of a.
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Main Results

Corollary (Asymptotic Classification Error)
For k = 2 classes and a 6= b,

P (F̂i,a > F̂ib | xi ∈ Cb)−Q
(

(mb)b − (mb)a√
[1,−1]Σb[1,−1]T

)
→ 0.

Some consequences:

I non obvious choices of appropriate kernels

I non obvious choice of optimal β (induces a possibly beneficial bias)

I importance of nl versus nu.
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MNIST Data Example
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Figure: Performance as a function of α, for 3-class MNIST data (zeros, ones, twos), n = 192,
p = 784, nl/n = 1/16, Gaussian kernel.
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Figure: Performance as a function of α, for 2-class MNIST data (zeros, ones), n = 1568,
p = 784, nl/n = 1/16, Gaussian kernel.
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p = 784, nl/n = 1/16, Gaussian kernel.

122 / 153



Applications/Support Vector Machines 123/153

Outline

Basics of Random Matrix Theory
Motivation: Large Sample Covariance Matrices
The Stieltjes Transform Method
Spiked Models
Other Common Random Matrix Models

Applications
Random Matrices and Robust Estimation
Spectral Clustering Methods and Random Matrices
Community Detection on Graphs
Kernel Spectral Clustering
Kernel Spectral Clustering: Subspace Clustering
Semi-supervised Learning
Support Vector Machines
Neural Networks: Extreme Learning Machines

Perspectives
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Problem Statement

Context: All data are labelled, we classify the next incoming one:

I Classify x1, . . . , xn ∈ Rp in k = 2 classes.

I For kernel K(x, y) = φ(x)Tφ(y), φ(x) ∈ Rq , find hyperplane directed by (w, b) to
“isolate each class”.

(w, b) = argminw∈Rq−1 ‖w‖2 +
1

n

n∑
i=1

c(xi;w, b)

for a certain cost function c(x;w, b).

Solutions:

I Classical SVM:
c(xi;w, b) = ı{yi(wTφ(xi)+b)≥1}

with yi = ±1 depending on class.
⇒ Solved by quadratic programming methods.
⇒ Analysis requires joint RMT + convex optimization tools (very interesting but
left for later...).

I LS SVM:
c(xi;w, b) = γe2i ≡ γ(yi − wTφ(xi)− b)2.

⇒ Explicit solution (but not sparse!).
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left for later...).

I LS SVM:
c(xi;w, b) = γe2i ≡ γ(yi − wTφ(xi)− b)2.

⇒ Explicit solution (but not sparse!).
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LS SVM

Since w =
∑n
i=1 αiφ(xi), for new datum x, decision based on (sign of)

g(x) = αTK(·, x) + b

with K(xi, xj) = f
(

1
p
‖xi − xj‖2

)
(Mercer Conditions)

and where α ∈ Rn and b given by

α = Q

(
In −

1n1T
nQ

1T
nQ1n

)
y

b =
1T
nQy

1T
nQ1n

where Q = (K + n
γ
In)−1, y = [yi]

n
i=1, γ > 0 some parameter to set.

Objectives:

I Study behavior of g(x)

I For x ∈ Ca, determine probability of success.

I Optimize the parameter γ and the kernel K.
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Results

As before, xi ∼ N (µa, Ca), a = 1, . . . , k, with identical growth conditions, here for
k = 2.

Results: As n, p→∞,
I in the first order

g(x) =
n2 − n1

n
+

0
√
p

+
G(x)

p︸ ︷︷ ︸
Relevant terms here!

I asymptotic Gaussian behavior of G(x):

Theorem
For x ∈ Cb, G(x)−Gb → 0, Gb ∼ N (mb, σ

2
b ), where

mb =

{
−2c2 · c1c2γD, b = 1
+2c1 · c1c2γD, b = 2

D = −2f ′(τ)‖µ2 − µ1‖2 +
f ′′(τ)

p
(tr (C2 − C1))2 +

2f ′′(τ)

p
tr
(

(C2 − C1)2
)

σ2
b = 8γ2c21c

2
2

[
(f ′′(τ))2

p2
(tr (C2 − C1))2 trC2

b + 2
(
f ′(τ)

)2
(µ2 − µ1)T Cb (µ2 − µ1)

+
2 (f ′(τ))2

n

(
trC1Cb

c1
+

trC2Cb

c2

)]
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Results

Consequences:

I Strong class-size bias
⇒ Proper threshold must depend on n2 − n1.

I Natural cancellation of O(n−
1
2 ) terms.

⇒ Similar effect as observed in (properly normalized) kernel spectral clustering.

I Choice of γ asymptotically irrelevant.

I Need to choose f ′(τ) < 0 and f ′′(τ) > 0 (not the case for clustering or SSL!)
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Theory and simulations of g(x)
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g(x), x ∈ C1
g(x), x ∈ C2
Gaussian limit G1

Gaussian limit G2

Figure: Values of g(x) for MNIST data (1’s and 7’s), n = 256, p = 784, standard Gaussian kernel.
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Classification performance

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

f ′(τ)

C
la

ss
ifi

ca
ti

o
n

er
ro

r

Error for p = 512

Error for p = 1024

Theory

Figure: Performance of LS-SVM, c0 = 1/4, c1 = c2 = 1/2, γ = 1, polynomial kernel with

f(τ) = 4, f ′′(τ) = 2, x ∈ N (0, Ca), with C1 = Ip, [C2]i,j = .4|i−j|.

130 / 153



Applications/Neural Networks: Extreme Learning Machines 131/153

Outline

Basics of Random Matrix Theory
Motivation: Large Sample Covariance Matrices
The Stieltjes Transform Method
Spiked Models
Other Common Random Matrix Models

Applications
Random Matrices and Robust Estimation
Spectral Clustering Methods and Random Matrices
Community Detection on Graphs
Kernel Spectral Clustering
Kernel Spectral Clustering: Subspace Clustering
Semi-supervised Learning
Support Vector Machines
Neural Networks: Extreme Learning Machines

Perspectives
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Problem Statement

General plan for the study of neural networks:
I Objective is to study performance of neural networks:

I linear or not (linear is easy but not interesting, non-linear is hard)
I from shallow to deep
I recurrent or not (dynamic systems, stability considerations)
I back-propagated or not (LS regression versus gradient descent approaches)

I Starting point: simple networks
I Extreme learning machines: single layer, randomly connected input, LS regressed

output.
I Echo-state networks: single interconnected layer, randomly connected input, LS

regressed output.
I Deeper structures: back-propagation of error.

132 / 153



Applications/Neural Networks: Extreme Learning Machines 132/153

Problem Statement

General plan for the study of neural networks:
I Objective is to study performance of neural networks:

I linear or not (linear is easy but not interesting, non-linear is hard)

I from shallow to deep
I recurrent or not (dynamic systems, stability considerations)
I back-propagated or not (LS regression versus gradient descent approaches)

I Starting point: simple networks
I Extreme learning machines: single layer, randomly connected input, LS regressed

output.
I Echo-state networks: single interconnected layer, randomly connected input, LS

regressed output.
I Deeper structures: back-propagation of error.

132 / 153



Applications/Neural Networks: Extreme Learning Machines 132/153

Problem Statement

General plan for the study of neural networks:
I Objective is to study performance of neural networks:

I linear or not (linear is easy but not interesting, non-linear is hard)
I from shallow to deep

I recurrent or not (dynamic systems, stability considerations)
I back-propagated or not (LS regression versus gradient descent approaches)

I Starting point: simple networks
I Extreme learning machines: single layer, randomly connected input, LS regressed

output.
I Echo-state networks: single interconnected layer, randomly connected input, LS

regressed output.
I Deeper structures: back-propagation of error.

132 / 153



Applications/Neural Networks: Extreme Learning Machines 132/153

Problem Statement

General plan for the study of neural networks:
I Objective is to study performance of neural networks:

I linear or not (linear is easy but not interesting, non-linear is hard)
I from shallow to deep
I recurrent or not (dynamic systems, stability considerations)

I back-propagated or not (LS regression versus gradient descent approaches)

I Starting point: simple networks
I Extreme learning machines: single layer, randomly connected input, LS regressed

output.
I Echo-state networks: single interconnected layer, randomly connected input, LS

regressed output.
I Deeper structures: back-propagation of error.

132 / 153



Applications/Neural Networks: Extreme Learning Machines 132/153

Problem Statement

General plan for the study of neural networks:
I Objective is to study performance of neural networks:

I linear or not (linear is easy but not interesting, non-linear is hard)
I from shallow to deep
I recurrent or not (dynamic systems, stability considerations)
I back-propagated or not (LS regression versus gradient descent approaches)

I Starting point: simple networks
I Extreme learning machines: single layer, randomly connected input, LS regressed

output.
I Echo-state networks: single interconnected layer, randomly connected input, LS

regressed output.
I Deeper structures: back-propagation of error.

132 / 153



Applications/Neural Networks: Extreme Learning Machines 132/153

Problem Statement

General plan for the study of neural networks:
I Objective is to study performance of neural networks:

I linear or not (linear is easy but not interesting, non-linear is hard)
I from shallow to deep
I recurrent or not (dynamic systems, stability considerations)
I back-propagated or not (LS regression versus gradient descent approaches)

I Starting point: simple networks

I Extreme learning machines: single layer, randomly connected input, LS regressed
output.

I Echo-state networks: single interconnected layer, randomly connected input, LS
regressed output.

I Deeper structures: back-propagation of error.

132 / 153



Applications/Neural Networks: Extreme Learning Machines 132/153

Problem Statement

General plan for the study of neural networks:
I Objective is to study performance of neural networks:

I linear or not (linear is easy but not interesting, non-linear is hard)
I from shallow to deep
I recurrent or not (dynamic systems, stability considerations)
I back-propagated or not (LS regression versus gradient descent approaches)

I Starting point: simple networks
I Extreme learning machines: single layer, randomly connected input, LS regressed

output.

I Echo-state networks: single interconnected layer, randomly connected input, LS
regressed output.

I Deeper structures: back-propagation of error.

132 / 153



Applications/Neural Networks: Extreme Learning Machines 132/153

Problem Statement

General plan for the study of neural networks:
I Objective is to study performance of neural networks:

I linear or not (linear is easy but not interesting, non-linear is hard)
I from shallow to deep
I recurrent or not (dynamic systems, stability considerations)
I back-propagated or not (LS regression versus gradient descent approaches)

I Starting point: simple networks
I Extreme learning machines: single layer, randomly connected input, LS regressed

output.
I Echo-state networks: single interconnected layer, randomly connected input, LS

regressed output.

I Deeper structures: back-propagation of error.

132 / 153



Applications/Neural Networks: Extreme Learning Machines 132/153

Problem Statement

General plan for the study of neural networks:
I Objective is to study performance of neural networks:

I linear or not (linear is easy but not interesting, non-linear is hard)
I from shallow to deep
I recurrent or not (dynamic systems, stability considerations)
I back-propagated or not (LS regression versus gradient descent approaches)

I Starting point: simple networks
I Extreme learning machines: single layer, randomly connected input, LS regressed

output.
I Echo-state networks: single interconnected layer, randomly connected input, LS

regressed output.
I Deeper structures: back-propagation of error.

132 / 153



Applications/Neural Networks: Extreme Learning Machines 133/153

Extreme Learning Machines

Context: for a learning period T

I input vectors x1, . . . , xT ∈ Rp, output scalars (or binary values) r1, . . . , rT ∈ R
I n-neuron layer, randomly connected input W ∈ Rn×p

I ridge-regressed output ω ∈ Rn

I non-linear activation function σ.
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Extreme Learning Machines

Objectives: evaluate training and testing MSE performance as n, p, T →∞

I Training MSE:

Eγ(X, r) =
1

T
‖r − ωTΣ‖2

with

Σ = [σ(Wx1), . . . , σ(WxT )]

ω=
1

T
Σ

(
1

T
ΣTΣ + γIT

)−1

r.

I Testing MSE: upon new pair (X̂, r̂) of length T̂ ,

Êγ(X, r; X̂, r̂) =
1

T̂
‖r̂ − ωTσ(WX̂)‖2.

I Optimize over γ.
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Technical Aspects

Training MSE:

I Training MSE given by

Eγ(X, r) = γ2 1

T
rTQ2

γr

Qγ =

(
1

T
ΣTΣ + γIT

)−1

.

I Testing MSE given by

Êγ(X, r; X̂, r̂) =
1

T̂

∥∥∥∥r̂ − 1

T
σ(WX̂)TΣQγr

∥∥∥∥2

I Requires first a deterministic equivalent Q̄γ for Qγ with non-linear σ(·).

I Then deterministic approximation of 1
T
σ(Wa)TΣQγb for deterministic a, b.
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Technical Aspects

Main technical difficulty: Σ = σ(WX) ∈ Rn×T has

I independent rows

I a highly non trivial columns dependence!

Broken trace lemma!: for w ∼ N (0, n−1In), X,A deterministic of bounded norm,

wTXAXTw '
1

n
trXAXT

BUT what about:

σ(wTX)Aσ(XTw) ' ?
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Technical Aspects

Updated trace lemma:

Lemma
For A deterministic and σ(t) Lipschitz, w ∈ Rp with i.i.d. entries, E[wi] = 0,
E[wki ] = mk

nk/2
,

1

T
σ(wTX)Aσ(XTw)−

1

T
tr ΦXA

a.s.−→ 0

with

ΦX = E
[
σ(XTw)σ(wTX)

]
.

Technique of proof:

I Use concentration of vector w

I transfer concentration by Lipschitz property through mapping w 7→ σ(wTX), i.e.,

P
(
f
(
σ(wTX)

)
− E

[
f
(
σ(wTX)

)]
> t
)
≤ c1e−c2nt

2

for all Lipschitz f (and beyond...), with c1, c2 > 0.
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Results

Results:

I Deterministic equivalent: as n, p, T →∞ with σ(t) smooth, Wij i.i.d.
E[Wij ] = 0, E[Wk

ij ] = mk
nk/2

,

Qγ ↔ Q̄γ

where

Qγ =

(
1

T
ΣΣT + γIT

)−1

Q̄γ =

(
n

T

1

1 + δ
ΦX + γIT

)−1

with δ unique solution to

δ =
1

T
tr ΦX

(
n

T

1

1 + δ
ΦX + γIT

)−1

.
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Results

Neural Network Performances:

I Training performance:

Eγ(X, r)↔ γ2 1

T
rTQ̄γ

[
1
n

tr (ΨXQ̄
2
γ)

1− 1
n

tr (ΨXQ̄γ)2
ΨX + IT

]
Q̄γr.

I Testing performance:

Êγ(X, r; X̂, r̂)↔
1

T̂

∥∥∥r̂ −ΨT
X,X̂

Q̄γr
∥∥∥2

+
1
n
rTQ̄γΨXQ̄γr

1− 1
n

tr (ΨXQ̄γ)2

×
[

1

T̂
tr ΨX̂ −

γ

T̂
tr (Q̄γΨX,X̂ΨX̂,XQ̄γ)−

1

T̂
tr (ΨX̂,XQ̄γ)ΨX,X̂)

]
.

where ΨA,B = n
T

1
1+δ

ΦA,B , ΨA = ΨA,A, ΦA,B = E[ 1
n
σ(WA)Tσ(WB)].

In the limit where n/p, n/T →∞, taking γ = n
T

Γ:

Eγ(X, r)↔
1

T
Γ2rT (ΦX + ΓIT )−2 r

Êγ(X, r)↔
1

T̂

∥∥∥r̂ − ΦX̂,X (ΦX + ΓIT )−1 r
∥∥∥2
.
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Results

Special Cases of ΦA,B :

σ(t) Wij [ΦA,B ]ij
t any

m2
n aT

i bj

At2 + Bt+ C any A2

[
m2

2
n2

(
2(aT

i bj)
2 + ‖ai‖2‖bj‖2

)
+
m4−3m2

2
n2 (a2i )

T(b2j )

]
+B2m2

n aT
i bj + AB

m3

n3/2

[
(a2i )

Tbj + aT
i (b2j )

]
+AC

m2
n

[
‖ai‖2 + ‖bj‖2

]
+ C2

max(t, 0) N (0, 1
n ) 1

2πn‖ai‖‖bj‖
(
Zij arccos(−Zij) +

√
1− Z2

ij

)
erf(t) N (0, 1

n ) 2
π arcsin

(
2aT
i bj√

(n+2‖ai‖2)(n+2‖bj‖2)

)
1{t>0} N (0, 1

n ) 1
2 −

1
2π arccos(Zij)

sign(t) N (0, 1
n ) 1− 2

π arccos(Zij)

cos(t) N (0, 1
n ) exp

(
− 1

2

[
‖ai‖2 + ‖bj‖2

])
cosh

(
aT
i bj
)
.

Figure: ΦA,B for Wij i.i.d. zero mean, k-th order moments mkn
− k

2 , Zij ≡
aT
i bj

‖ai‖‖bj‖
,

(a2) = [a2i ]
n
i=1.
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Test on MNIST data
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σ(t) = max(t, 0)
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γ
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Etrain (theory)

Etest (theory)

Etrain (simulation)

Etest (simulation)

Figure: MSE performance for σ(t) = t and σ(t) = max(t, 0), as a function of γ, for 2-class
MNIST data (sevens, nines), n = 512, T = 1024, p = 784.
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Test on MNIST data
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Figure: Overlap performance for σ(t) = t and σ(t) = max(t, 0), as a function of γ, for 2-class
MNIST data (sevens, nines), n = 512, T = 1024, p = 784.
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Next Investigations

Interpretations and Improvements:

I General formulas for ΦX , ΦX,x̂
I On-line optimization of γ, σ(·), n?

Generalizations:

I Multi-layer ELM?

I Optimize layers vs. number of neurons?

I Backpropagation error analysis?

I Connection to auto-encoders?

I Introduction of non-linearity to more involved structures (ESN, deep nets?).
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Summary of Results and Perspectives I

Robust statistics.

4 Tyler, Maronna (and regularized) estimators

4 Elliptical data setting, deterministic outlier setting

4 Central limit theorem extensions

­ Joint mean and covariance robust estimation

­ Study of robust regression (preliminary works exist already using strikingly
different approaches)

Applications.

4 Statistical finance (portfolio estimation)

4 Localisation in array processing (robust GMUSIC)

4 Detectors in space time array processing

References.

R. Couillet, F. Pascal, J. W. Silverstein, “Robust Estimates of Covariance Matrices in the

Large Dimensional Regime”, IEEE Transactions on Information Theory, vol. 60, no. 11, pp.
7269-7278, 2014.

R. Couillet, F. Pascal, J. W. Silverstein, “The Random Matrix Regime of Maronna’s

M-estimator with elliptically distributed samples”, Elsevier Journal of Multivariate Analysis,
vol. 139, pp. 56-78, 2015.
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Summary of Results and Perspectives II

T. Zhang, X. Cheng, A. Singer, “Marchenko-Pastur Law for Tyler’s and Maronna’s

M-estimators”, arXiv:1401.3424, 2014.

R. Couillet, M. McKay, “Large Dimensional Analysis and Optimization of Robust Shrinkage

Covariance Matrix Estimators”, Elsevier Journal of Multivariate Analysis, vol. 131, pp.
99-120, 2014.

D. Morales-Jimenez, R. Couillet, M. McKay, “Large Dimensional Analysis of Robust

M-Estimators of Covariance with Outliers”, IEEE Transactions on Signal Processing, vol. 63,
no. 21, pp. 5784-5797, 2015.

L. Yang, R. Couillet, M. McKay, “A Robust Statistics Approach to Minimum Variance

Portfolio Optimization”, IEEE Transactions on Signal Processing, vol. 63, no. 24, pp.
6684–6697, 2015.

R. Couillet, “Robust spiked random matrices and a robust G-MUSIC estimator”, Elsevier

Journal of Multivariate Analysis, vol. 140, pp. 139-161, 2015.

A. Kammoun, R. Couillet, F. Pascal, M.-S. Alouini, “Optimal Design of the Adaptive

Normalized Matched Filter Detector”, (submitted to) IEEE Transactions on Information
Theory, 2016, arXiv Preprint 1504.01252.

R. Couillet, A. Kammoun, F. Pascal, “Second order statistics of robust estimators of scatter.

Application to GLRT detection for elliptical signals”, Elsevier Journal of Multivariate
Analysis, vol. 143, pp. 249-274, 2016.
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Summary of Results and Perspectives III

D. Donoho, A. Montanari, “High dimensional robust m-estimation: Asymptotic variance via

approximate message passing”, Probability Theory and Related Fields, 1-35, 2013.

N. El Karoui, “Asymptotic behavior of unregularized and ridge-regularized high-dimensional

robust regression estimators: rigorous results.” arXiv preprint arXiv:1311.2445, 2013.
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Summary of Results and Perspectives I

Kernel methods.

4 Subspace spectral clustering

4 Subspace spectral clustering for f ′(τ) = 0

. Spectral clustering with outer product kernel f(xTy)

4 Semi-supervised learning, kernel approaches.

4 Least square support vector machines (LS-SVM).

. Support vector machines (SVM).

Applications.

4 Massive MIMO user clustering

References.

N. El Karoui, “The spectrum of kernel random matrices”, The Annals of Statistics, 38(1),

1-50, 2010.

R. Couillet, F. Benaych-Georges, “Kernel Spectral Clustering of Large Dimensional Data”,

Electronic Journal of Statistics, vol. 10, no. 1, pp. 1393-1454, 2016.

R. Couillet, A. Kammoun, “Random Matrix Improved Subspace Clustering”, Asilomar

Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 2016.
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Summary of Results and Perspectives II

Z. Liao, R. Couillet, “Random matrices meet machine learning: a large dimensional analysis

of LS-SVM”, (submitted to) IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP’17), New Orleans, USA, 2017.

X. Mai, R. Couillet, “The counterintuitive mechanism of graph-based semi-supervised

learning in the big data regime”, (submitted to) IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP’17), New Orleans, USA, 2017.
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Summary of Results and Perspectives I

Community detection.

4 Complete study of eigenvector contents in adjacency/modularity methods.

­ Study of Bethe Hessian approach for the DCSBM model.

­ Analysis of non-necessarily spectral approaches (wavelet approaches).

References.

H. Tiomoko Ali, R. Couillet, “Spectral community detection in heterogeneous large

networks”, (submitted to) Journal of Multivariate Analysis, 2016.

F. Krzakala, C. Moore, E. Mossel, J. Neeman, A. Sly, L. Zdeborová, P. Zhang, “Spectral

redemption in clustering sparse networks. Proceedings of the National Academy of Sciences”,
110(52), 20935-20940, 2013.

C. Bordenave, M. Lelarge, L. Massoulié, “Non-backtracking spectrum of random graphs:

community detection and non-regular Ramanujan graphs”, Foundations of Computer Science
(FOCS), 2015 IEEE 56th Annual Symposium on, pp. 1347-1357, 2015

A. Saade, F. Krzakala, L. Zdeborová, “Spectral clustering of graphs with the Bethe

Hessian”, In Advances in Neural Information Processing Systems, pp. 406-414, 2014.
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Summary of Results and Perspectives I

Neural Networks.

4 Non-linear extreme learning machines (ELM)

. Multi-layer ELM

­ Backpropagation in ELM

. Random convolutional networks for image processing

4 Linear echo-state networks (ESN)

­ Non-linear ESN

References.

C. Williams, “Computation with infinite neural networks”, Neural Computation, 10(5),

1203-1216, 1998.

N. El Karoui, “Concentration of measure and spectra of random matrices: applications to

correlation matrices, elliptical distributions and beyond”, The Annals of Applied Probability,
19(6), 2362-2405, 2009.

C. Louart, R. Couillet, “Harnessing neural networks: a random matrix approach”, (submitted

to) IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’17),
New Orleans, USA, 2017.

R. Couillet, G. Wainrib, H. Sevi, H. Tiomoko Ali, “The asymptotic performance of linear

echo state neural networks”, Journal of Machine Learning Research, vol. 17, no. 178, pp.
1-35, 2016.

151 / 153



Perspectives/ 152/153

Summary of Results and Perspectives I

Sparse PCA

4 Spike random matrix sparse PCA

. Sparse kernel PCA

References.

R. Couillet, M. McKay, “Optimal block-sparse PCA for high dimensional correlated samples”,

(submitted to) Journal of Multivariate Analysis, 2016.

Signal processing on graphs, distributed optimization, etc.

­ Turning signal processing on graph methods random.

­ Random matrix analysis of diffusion networks performance.
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The End

Thank you.
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