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> If n — oo, then, strong law of large numbers

C’N a.s. CN.
or equivalently, in spectral norm
HéNch’ 2%00.

Random Matrix Regime

> No longer valid if N,n — co with N/n — ¢ € (0, 00),

o -ex] 4o

> For practical N,n with N ~ n, leads to dramatically wrong conclusions
> Even for N = n/100.
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Setting: x; € CN iid., 21 ~CN(0,Iy)
» assume N = N(n) such that N/n — ¢ > 1

> then, joint point-wise convergence

N 1 " a.s,
1<0gEN ‘ [CN - IN]ij =y | N e 0 0
> however, eigenvalue mismatch
0=X2(CN)=-.. = AN-n(CN) S AN-nt1(Cn) < ... < AN (CN)
T=MUN)=.. = AN_n(N) = AN_nt1(Cn) = ... = An(IN)

=> no convergence in spectral norm.

6
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The Maréenko—Pastur law
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Eigenvalues of C'

Figure: Histogram of the eigenvalues of C’N for N = 500, n = 2000, Cny = InN.
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The Maréenko—Pastur law

Definition (Empirical Spectral Density)
Empirical spectral density (e.s.d.) ux of Hermitian matrix Ay € CVX s
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Definition (Empirical Spectral Density)
Empirical spectral density (e.s.d.) ux of Hermitian matrix Ay € CVX s

| N
UN = N;(SM(AN)‘

Theorem (Mar€enko—Pastur Law [Mar€enko,Pastur’67])

XN € CNX™ with i.i.d. zero mean, unit variance entries.
As N,n — oo with N/n — ¢ € (0,00), e.s.d. un of %XNX]’Q satisfies
a.s.
KN — He

weakly, where
> p1e({0}) = max{0,1—c~'}
> on (0,00), pc has continuous density f. supported on [(1 — /c)?, (1 + +/c)?]

1

2mex

fol@) = ——/(@ = (1 = VO2)(1 + V) —2).
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The Maréenko—Pastur law
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Figure: Mar&enko-Pastur law for different limit ratios ¢ = limx_, o0 N/n.
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The Maréenko—Pastur law
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Basics of Random Matrix Theory

The Stieltjes Transform Method
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The Stieltjes transform

Definition (Stieltjes Transform)
For y real probability measure of support supp(p), Stieltjes transform m,, defined, for
z € C\ supp(p), as

mu(z) = [ ).
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The Stieltjes transform

Definition (Stieltjes Transform)
For y real probability measure of support supp(p), Stieltjes transform m,, defined, for
z € C\ supp(p), as

mu(z) = [ ).

Property (Inverse Stieltjes Transform)
For a < b continuity points of u,

1 b
1([a,b]) = lim — S[mp(x + 1€)]dx
elo ™ /o

Besides, if p has a density f at z,
"t
fz) = lim —[my (z + 2€)].

el0 T
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The Stieltjes transform

Property (Relation to e.s.d.)
If 4 e.s.d. of Hermitian A € CNXN (e, u= % Ziil dx;(A))

1
myu(z) = Ntr (A—zIy)~ !
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The Stieltjes transform

Property (Relation to e.s.d.)
If 4 e.s.d. of Hermitian A € CNXN (e, u= % Zf;l dx;(A))

1
myu(z) = Ntr (A—zIy)~ !

Proof:

N

mu(z) = [ M) _Ls~ L Ly (diag{Ai(A)} — 2l) !

t—z N

i=1

X(A)—z N

1 -1
= —tr(A—2zI .
Nf( zIN)
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The Stieltjes transform

Property (Stieltjes transform of Gram matrices)
For X € CN*" and

> pesd. of XX*

> [ esd. of X*X
Then
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The Stieltjes transform

Property (Stieltjes transform of Gram matrices)
For X € CN*" and

> pesd. of XX*

> [ esd. of X*X
Then

mu(z) = Lma(z) -

Proof:

SRR S SR I o . N
MW T N M(XX*)—2z N4~ M(X*X)—z N

i=1"" i=1
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The Stieltjes transform

Three fundamental lemmas in all proofs.

Lemma (Resolvent Identity)
For A, B € CNXN jnvertible,

ATl Bl =A"YB-A)B™ L
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The Stieltjes transform

Three fundamental lemmas in all proofs.

Lemma (Resolvent Identity)
For A, B € CNXN jnvertible,

ATl Bl =A"YB-A)B™ L

Corollary
Fort € C, z € CN, A e CN*XN with A and A + tzz* invertible,
A1z

Adtza)y lo = ——— .
(A+tz™) "z 1+tx*A- 1z
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The Stieltjes transform

Three fundamental lemmas in all proofs.

Lemma (Rank-one perturbation)

For A, B € CN*N Hermitian nonnegative definite, e.s.d. pof A, t >0, z € CcN,
z € C\ supp(u),

1 1Bl

1 1
tr B(A+txx® — 2In) "t — —tr B(A — 2In) 1] < dist(z. supn())
~ (A+tzz* — zIN) N (A—zIy)™7| < N dist(z, supp(u))
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The Stieltjes transform

Three fundamental lemmas in all proofs.

Lemma (Rank-one perturbation)

For A, B € CN*N Hermitian nonnegative definite, e.s.d. g of 4, t >0, z € CN,
z € C\ supp(u),

1 1Bl

1 1
tr B(A+txx® — 2In) "t — —tr B(A — 2In) 1] < dist(z. supn())
~ (A+tzz* — zIN) N (A—zIy)™7| < N dist(z, supp(u))

In particular, as N — oo, if limsupy || B|| < oo,

1 1
NtrB(Athxz* —2IN) = NtrB(A —zIN)"t = 0.
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The Stieltjes transform

Three fundamental lemmas in all proofs.

Lemma (Trace Lemma)
For

» x € CN with i.i.d. entries with zero mean, unit variance, finite 2p order moment,
» A c CNXN deterministic (or independent of z),
then

1

p
E [ lav*A:zr — —trA 1Al
N N

Np/2'

P
<
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The Stieltjes transform

Three fundamental lemmas in all proofs.

Lemma (Trace Lemma)

For
» x € CN with i.i.d. entries with zero mean, unit variance, finite 2p order moment,
» A c CNXN deterministic (or independent of z),

then

1

p
E [ lav*A:zv — —trA 1Al
N N

Np/2'

P
<

In particular, if limsupy ||A|| < oo, and x has entries with finite eighth-order moment,

1 1
—* Az — —trA 250
N N

(by Markov inequality and Borel Cantelli lemma).
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Proof of the Maréenko—Pastur law

Theorem (Mar&enko—Pastur Law [Mar€enko,Pastur’67])
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KN — He
weakly, where
> 1e({0}) = max{0,1 - 1}
> on (0,00), pc has continuous density f. supported on [(1 — +/c)?, (1 + +/c)?
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Proof of the Maréenko—Pastur law

Stieltjes transform approach.
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Proof of the Maréenko—Pastur law

Stieltjes transform approach.

Proof
> With uy esd. of 1 Xy X%,

1

1 -1
My N (Z) = Ntl’ (EXNXX] — ZIN)

= %Z [(:LXN)(;, — zIN)_l]

i=1 i1
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Proof of the Maréenko—Pastur law

Stieltjes transform approach.

Proof
> With uy esd. of 1 Xy X%,

1. /1 . 11 &/ § -1
mHN(z):Ntr EXNXN_ZIN :N ;XNXN—ZIN
—

T i1

> Write

*

XN:|:y :|E(CN><77,

18
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Proof of the Maréenko—Pastur law

Stieltjes transform approach.

Proof
> With uy esd. of 1 Xy X%,

1 1 ; -t
mHN(Z):ftI’ EXNXN_ZIN :N

N
N
i=

1 -1
<7XNX;\] - ZIN)
n

1 i1

> Write

*

XN — |: Yy :| c (CNXn
so that, for §[z] > 0,
-1
(ly*y -z Ly Yy )

1 Yn_1y %YNqYﬁ_l —zIN_1

n

1 -1
*
<7XNXN721N) =
n

18
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Proof of the Maréenko—Pastur law

Proof (continued)

» From block matrix inverse formula

A B\7'_ (A—BD-'C)~! —A-1B(D - CA-'B)~!
C D “\-(A-BD10)"lcA! (D-CcA™1B)~!
we have

1 -1 1
(7XNX]’§, —zIN) = .
n " —z—z%y*(%YK]ilYN,l —zIp) "y
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Proof of the Maréenko—Pastur law

Proof (continued)

» From block matrix inverse formula

A B! (A-BD"'C)"! —ATIB(D - CA~IB)7!
((J D) B (—(A—BD*IC)”CA’1 (D—-0A™iB)~! )
we have
[(1XNX1*V _ZIN)l] = 1 1 - —1y
n o Ay (YR YN — 2ln) Ty

» By Trace Lemma, as N,n — oo

1 a.s,

1 -1
7XNX* —ZIN) — — 0.
[(n N o —z—2itr (Lvy Vv — 20n) !

19/153



Proof of the Maréenko—Pastur law

Proof (continued)

> By Rank-1 Perturbation Lemma (XA Xy =Y _Yn_1 +yy*), as N,n — oo

1 -1 1 as
“XNXy — =2l - — 0.
|:(n NEN N) ]11 —z—z%tr(%X]’(,XN—zIn)—l
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Proof of the Maréenko—Pastur law

Proof (continued)

> By Rank-1 Perturbation Lemma (XA Xy =Y _Yn_1 +yy*), as N,n — oo

1 -1 1 as
—“XNXy -2l — — 0.
[(n NEN N) ]11 —z—z%tr(%X]*\,XN—zIn)—l

> Since 2tr (X5 Xy —2n) 7t = Ltr (A XN XY —2Iy) 7t - =N L

1 -t 1 as
S XNXE — zIN) - 2500,
|:(n n 17%7zfz%tr(%XNX]*\,fz1N)—1
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Proof of the Maréenko—Pastur law

Proof (continued)

> By Rank-1 Perturbation Lemma (XA Xy =Y _Yn_1 +yy*), as N,n — oo

1 -1 1 as
—XNXN — =21 - — 0.
|:(n NAN N) :|11 —z—z%tr(%X]*\,XNlen)*l

> Since 2tr (X5 Xy —2n) 7t = Ltr (A XN XY —2Iy) 7t - =N L

1 -t 1 as
S XNXE — zIN) - a8y,
|:(n n lfgfzfz%tr(%XNXﬁ,leN)—l

> Repeating for entries (2,2),..., (NN, N), and averaging, we get (for S[z] > 0)

! 250,

My (2) —
o (2) 1—%—z—z%mw\,(z)
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Proof of the Maréenko—Pastur law

Proof (continued)

> Then myy (2) 25 m(z) solution to

1

1—c—z—czm(z)

m(z) =
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Proof of the Maréenko—Pastur law

Proof (continued)
> Then m, (2) &% m(z) solution to

1

1—c—z—czm(z)

m(z) =

i.e., (with branch of \/f(z) such that m(z) — 0 as |z| — o0)

1o 1 VE-05ve) (-0 -vep)

2cz 2c 2cz
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Proof of the Maréenko—Pastur law

Proof (continued)
> Then m, (2) &% m(z) solution to

1

1—c—z—czm(z)

m(z) =

i.e., (with branch of \/f(z) such that m(z) — 0 as |z| — o0)

1o 1 VE-05ve) (-0 -vep)

2cz 2c 2cz

> Finally, by inverse Stieltjes Transform, for z > 0,

2 - _(1— 2
i Lo 20y 2 V(0O =) (o= (1= o)

el0 2mcx

And for x = 0,

S~ (1 _ —1
lslf(’)na\r[m(za)] =(1—c ) 1gesay

Hael(1-ve)2,(14v0)2]}
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Sample Covariance Matrices

Theorem (Sample Covariance Matrix Model [Silverstein,Bai'95])
Let Yy = CI%XN € CNXn  with
» Cn € CNXN nonnegative definite with e.s.d. vy — v weakly,
» Xy € CNX" has i.id. entries of zero mean and unit variance.
As N,n — 0o, N/n — c € (0,00), iy e.s.d. of%YK,YN € C" X" satisfies
fin =% f

weakly, with mj(z), (2] > 0, unique solution with I[mj(z)] > 0 of

mp(z) = <fz+c/1++mﬁ(z)u(dt)>il.
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Sample Covariance Matrices

Theorem (Sample Covariance Matrix Model [Silverstein,Bai'95])
Let Yy = CI%XN € CNXn  with

» Cn € CNXN nonnegative definite with e.s.d. vy — v weakly,

» Xy € CNX" has i.id. entries of zero mean and unit variance.
As N,n — 0o, N/n — c € (0,00), iy e.s.d. of%YK,YN € C" X" satisfies

v 230

weakly, with mj(z), (2] > 0, unique solution with I[mj(z)] > 0 of

mp(z) = <fz+ c/ Ht;mﬁ(z)y(dtoil'

Moreover, i is continuous on RT and real analytic wherever positive.

1 1
. . 1 _ 1 2 2
Immediate corollary: For puy esd. of ~YNY = 2> 00 CRaix;Cg,
a.s,
BUN — [

weakly, with i = cu + (1 — ¢)do.
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Sample Covariance Matrices

(0] (i)

Figure: Histogram of the eigenvalues of %YNY;,, n = 3000, N = 300, with C'x diagonal with
evenly weighted masses in (i) 1, 3, 7, (ii) 1, 3, 4.
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Further Models and Deterministic Equivalents

Theorem (Doubly-correlated i.i.d. matrices)

1 1
Let By = C’J%XNTNXJ*\,C@, with e.s.d. pn, Xy, € CNX™ with i.i.d. entries of zero
mean, variance 1/n, C Hermitian nonnegative definite, T diagonal nonnegative,
limsup y max(||Cn||, [|Tn]]) < co. Denote ¢ = N/n. Then, as N,n — co with
bounded ratio ¢, for z € C\R™,

a.s. 1 — —
muy (2) —mpy(z) =— 0, mpn(z) = Ntr (—zIn +én(2)Cn) 71
with &(z) unique solution in {z € Ct,ex(z) € CT} or {z € R™,en(2) € RT} of
1
en(z) = SN (—zIy +én(z)Cn)7t

1
en(z) = —trTy (In + cen(2)Tn) "
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Other Refined Sample Covariance Models

Side note on other models.
Similar results for multiple matrix models:
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Other Refined Sample Covariance Models

Side note on other models.
Similar results for multiple matrix models:

v

Information-plus-noise: Yy = Ay + X, Ay deterministic
» Variance profile: Yy = Py ® X (entry-wise product)

1
; . _ 02
> Per-column covariance: Yy = [y1,...,yn], yi = CF ;%

> etc.
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Outline

Basics of Random Matrix Theory

Spiked Models
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No Eigenvalue Outside the Support

Theorem (No Eigenvalue Outside the Support [Silverstein,Bai’98])
1
Let Yy = CZ XN € CVNX™, with

» Cn € CNXN nonnegative definite with e.s.d. vy — v weakly,
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» Oy € CNXN nonnegative definite with e.s.d. v — v weakly,
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No Eigenvalue Outside the Support

Theorem (No Eigenvalue Outside the Support [Silverstein,Bai’98])
Let Yy = C]%XN € CNXn, with

» Oy € CNXN nonnegative definite with e.s.d. v — v weakly,

> E[|IXn[4] < o0,

> Xn € CNX" has j.id. entries of zero mean and unit variance,

> max; dist(A\;(Cn),supp(v)) — 0.
Let fi be the limiting e.s.d. of LY} Yy as before. Let [a,b] C R* \ supp(7). Then,

{/\i (%YK,YN) }; A la,b] = 0

for all large n, almost surely.
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No Eigenvalue Outside the Support

Theorem (No Eigenvalue Outside the Support [Silverstein,Bai’98])
Let Yy = C]%XN € CNXn, with

» Oy € CNXN nonnegative definite with e.s.d. v — v weakly,

> E[[Xy[4] < oo,

> Xn € CNX" has j.id. entries of zero mean and unit variance,

> max; dist(A\;(Cn),supp(v)) — 0.
Let fi be the limiting e.s.d. of LY} Yy as before. Let [a,b] C R* \ supp(7). Then,

1 n
{/\i (*YKrYN)} ﬁ[a,b] =0
n i=1
for all large n, almost surely.

In practice: This means that eigenvalues of %Y;;YN cannot be bound at macroscopic
distance from the bulk, for N, n large.
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Spiked Models

Breaking the rules. If we break

> Rule 1: Infinitely many eigenvalues may wander away from supp(u).

T T T T
eNs 3

0.8 - " 0.8 -

0.6 - B 0.6 - B
0.4 B 0.4 B
0.2 B 0.2 B

| KoK
0 1 2 3 0 1 2 3

E[X}] < o0 BIX}] =0
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Spiked Models

If we break:
> Rule 2: C'y may create isolated eigenvalues in %YNYX,, called spikes.

T
X “ e

1+w1

1+ wy +c

Figure: Eigenvalues of %YNYX,, Cn =diag(1,...,1,2,2,3,3), N =500, n = 1500.
H/—J

N—4
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Spiked Models

Theorem (Eigenvalues [Baik,Silverstein’06])

Let Y = CJ%XN, with
» X with i.i.d. zero mean, unit variance, E[|XN|fj] < 0.
» Cny =In+ P, P=UQU¥*, where, for K fixed,

Q = diag (w1, . ..,wx) € REXE with wy > ... > wg > 0.
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» Cny =In+ P, P=UQU¥*, where, for K fixed,

Q = diag (w1, . ..,wx) € REXE with wy > ... > wg > 0.

Then, as N,n — oo, N/n — ¢ € (0, 00), denoting \; = )\i(%YNY;}),
> if wy > \ﬁy

14w
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Spiked Models

Theorem (Eigenvalues [Baik,Silverstein’06])

Let Y = CJ%XN, with
» X with i.i.d. zero mean, unit variance, E[|XN|fj] < 0.
» Cny =In+ P, P=UQU¥*, where, for K fixed,

Q = diag (w1, . ..,wx) € REXE with wy > ... > wg > 0.

Then, as N,n — oo, N/n — ¢ € (0, 00), denoting \; = )\i(%YNY;}),
> ifwm > 4/C,

14w
Tl S 1402

Wm

Arn 251 4w 4

> ifwm € (0,2,

Am == (1+V/e)?
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Spiked Models

Proof

» Two ingredients: Algebraic calculus + trace lemma
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» Find eigenvalues away from eigenvalues of %XNXX,:
1 *
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n
1 * —1
= det(CN) det —XNnXy — )\CN
n

1
= det (7XNXX, — My + 2N — C;,l))
n

1 1 -
n n
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» Find eigenvalues away from eigenvalues of %XNX;{,:
1 *
n
1 * —1
= det(CN)det —XNnXy — )\CN
n
1
= det (7XNXX, — My + Iy — C;,l))
n
1 * —1 1 * -t
= det 7XNXN_>\IN det IN—‘,-)\(]N—CN) 7XNXN_)‘IN .
n n
> Use low rank property:
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» Find eigenvalues away from eigenvalues of %XNXX,:
1 *
0 = det 7YNYN_)\IN
n
1 * —1
= det(CN)det —XNnXy — )\CN
n
1
= det (7XNXX, — My + 2N — C;,l))
n
1 * —1 1 * -t
= det 7XNXN_>\IN det IN—‘,-)\(]N—CN) 7XNXN_)‘IN .
n n
> Use low rank property:

In—Cx'=In —(IN+UQU) " =U(Ix +Q 17U, Qe ChXK,

Hence

1 1 -1
0 = det (7XNX]*\, - )JN) det <1N +AU(Ig +Q H o~ (7XNX;§] - )\IN) >
n n
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Spiked Models

Proof (2)

> Sylverster’s identity (det(! + AB) = det(I + BA)),

1 1 (1 . -1
0 = det (fXNX]*\,f)\IN> det <IK+)\(IK+Q H-1y <EXNXN7MN> U>
n
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Spiked Models

Proof (2)

> Sylverster’s identity (det(! + AB) = det(I + BA)),

1 1 -1
0 = det (fXNX}{, - A1N> det <1K T AIg +Q Y~ tur <,XNX]*V - /\IN> U)
n n

> No eigenvalue outside the support [Bai,Sil’98]: det(%XNX]*\, — M) has no
zero beyond (1 + +/c)? for all large n a.s.
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> Extension of Trace Lemma: for each z € C \ supp(u),
* 1 * -1 a.s.
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(X n being “almost-unitarily invariant”, U can be seen as formed of random
“i.i.d.-like” vectors)
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Spiked Models

Proof (2)

> Sylverster’s identity (det(! + AB) = det(I + BA)),

1 1 -1
0 = det (fXNX}{, - A1N> det <IK T AIg +Q Y~ tur <,XNX]*V - /\IN> U)
n n

> No eigenvalue outside the support [Bai,Sil’98]: det(%XNX]*\, — M) has no
zero beyond (1 + +/c)? for all large n a.s.

> Extension of Trace Lemma: for each z € C \ supp(u),
* 1 * -1 a.s.
n

(X n being “almost-unitarily invariant”, U can be seen as formed of random
“i.i.d.-like” vectors)

> As a result, for all large n a.s.,

1
0 = det (IK + A + QO H U (XN XY — AIN)’IU)
n
M k M k
)\ m )\wm m
~ 14 ——m ()\)) = (1+7m ()\))
,L[l( T+wnt ﬂl T+wm ©
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Spiked Models

Proof (3)

> Limiting solutions: zeros (with multiplicity) of

AW,

1+
1+ wm

my(A) = 0.
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Spiked Models

Proof (3)
> Limiting solutions: zeros (with multiplicity) of
AWm,
1 A) =0.
+ Tt o myu(A)

» Using Margenko—Pastur law properties (m,(2) = (1 — ¢ — z — czmu(2)) 1),

1+wm}M

Wm

/\€{1+wm+c

m=1
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Spiked Models

Theorem (Eigenvectors [Paul’07])
1
Let YNy = CI%XN: with
» XN with i.i.d. zero mean, unit variance, finite fourth order moment entries

> CN:IN—&-P,P:Z,{{:lwiuiu;‘,wl>...>wM>O.
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Spiked Models

Theorem (Eigenvectors [Paul’07])
1
Let YN = C]%XNl with
» XN with i.i.d. zero mean, unit variance, finite fourth order moment entries

» Cy=In+P, P= Z,L,lw1ulu,w1>...>wM>O.

Then, as N,n — oo, N/n — ¢ € (0,00), fora,b € CN deterministic and ii;
eigenvector of \; (%YNY;,),

—2
1—cw,; a

i * * .S,
—Fa’uju;b- ly,sye—0

In particular,
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Spiked Models

Theorem (Eigenvectors [Paul’07])
1
Let YN = C]%XNI with
> X with i.i.d. zero mean, unit variance, finite fourth order moment entries

» Cy=In+P, P= Zrlwiulu,w1>...>wM>O.

Then, as N,n — oo, N/n — ¢ € (0,00), fora,b € CN deterministic and ii;
eigenvector of \; (%YNYK,),

—2
1—cw, a.s,
a*;47b — ———ga uuib 1, o 5 =0
1 + cw;
In particular,
-2
2 as, 1 —cw;
D e S S

14 cw;

Proof: Based on Cauchy integral + similar ingredients as eigenvalue proof

1 1 -t
a*t;uib = — a* (*YNYK, - zIN> bdz
2m Je, n

for Cp, contour circling around A; only.
34 /153



Spiked Models

lafuql?

‘ ‘ Tfc/wy
2 3 4

Population spike w1

1
Figure: Simulated versus limiting |111u1|2 for Yy = C]?,XN, Cn = In +wiujuf,
N/n = 1/3, varying wy.
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Tracy—Widom Theorem

Theorem (Phase Transition [Baik,BenArous,Péché’05])
Let Yy = CJ%XN, with
> XN with i.i.d. complex Gaussian zero mean, unit variance entries,
» On=INn+P, P=XE wumul, wi>...>wrg >0 (K>0)
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Tracy—-Widom Theorem

Theorem (Phase Transition [Baik,BenArous,Péché’05])
Let Yy = CJ%XN, with
> XN with i.i.d. complex Gaussian zero mean, unit variance entries,
» On=INn+P, P=XE wumul, wi>...>wrg >0 (K>0)

Then, as N,n — oo, N/n — ¢ < 1,
> Ifwi < +/c (or K =0),

M- (1+Ve)?

N3 +—— —— T2, (complex Tracy—Widom law)
1+ volch

> Ifw > 4/c,

((le)z B (1+w1)2>%N§ [Al _ (1+wl+cl+‘”l)] L5 N(0,1).

2

c wy w1

36
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Tracy—-Widom Theorem

0.5

Figure: Distribution of Nic3 1+ \/E)_% A (2 XNXE) — (1++/2)?] versus

Tracy-Widom (T2), N = 500, n = 1500.

— — — Centered-scaled A1

0
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Other Spiked Models

Similar results for multiple matrix models:

> Additive spiked model: Yy = %XX* + P, P deterministic and low rank
1 *

~X*(I+P)X

1 *

(X +P)*(X+P)

» Yy = LTX*(I+ P)XT

> etc.

> Yn

> Yy
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Outline

Basics of Random Matrix Theory

Other Common Random Matrix Models
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The Semi-circle law

Theorem
Let X € CNXN Hermitian with e.s.d. un such that ﬁ[XN]i>j are i.i.d. with zero
mean and unit variance. Then, as N — oo,

a.s.
UN — W
with p(dt) = \/ — t2)*dt. In particular, m,, satisfies
1
my(2) =

—z—myu(z)’
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The Semi-circle law

I I
| | — — — Empirical eigenvalue distribution
0.4 |- } } Semi-circle Law R
| | T T T
| | | | |
| | | | |
| | | | |
| | | |
| | | |
0.3 |~ | | | | ]
| ) J |
| |
| |
2 | |
2 | |
o | |
o 0.2 |- | I —
| |
| |
| |
| |
| |
| |
0.1 — ! | -
| |
| i
| |
| |
| |
| |

Eigenvalues

Figure: Histogram of the eigenvalues of Wigner matrices and the semi-circle law, for N = 500
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The Circular law

Theorem
Let X € CNXN with e.s.d. uy be such that T%[XN]ij are i.i.d. entries with zero
mean and unit variance. Then, as N — oo,

UN =

with p a complex-supported measure with p(dz) = ﬁé‘ z]<1dz.
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The Circular law

Empirical eigenvalues

+

Circular Law

+7 +
A
+ i o ++++++++ £

+ ++.‘+ .u. + 4+ .ﬁ:.

|

0

= |
|

(1ed AseuiSewn) sanjeaussig

0.5

—0.5

)

Eigenvalues (real part

Figure: Eigenvalues of X x with i.i.d. standard Gaussian entries, for N = 500.
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Outline

Basics of Random Matrix Theory
Motivation: Large Sample Covariance Matrices
The Stieltjes Transform Method
Spiked Models
Other Common Random Matrix Models

Applications
Random Matrices and Robust Estimation
Spectral Clustering Methods and Random Matrices
Community Detection on Graphs
Kernel Spectral Clustering
Kernel Spectral Clustering: Subspace Clustering
Semi-supervised Learning
Support Vector Machines
Neural Networks: Extreme Learning Machines

Perspectives
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S
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> [Huber'67] If z1 ~ (1 —¢)N(0,Cn)+¢eG, G unknown, robust estimator (n > N)
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Zmax {Zl, } z;x] for some 41,02 > 0.

7:1:*C'N x;
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Baseline scenario: z1,...,z, € CV (or RN) iid. with E[z1] =0, E[z12}] = Cn:
> If 21 ~ N(0,Cn), ML estimator for Cp is sample covariance matrix (SCM)

1 n
Cn = - Zmle
i=1
> [Huber'67] If z1 ~ (1 —¢)N(0,Cn)+¢eG, G unknown, robust estimator (n > N)

N 1< 14
On == Zmax {Zl, 1*?1} z;x] for some 41,02 > 0.
iz NZiCn @i

> [Maronna’76] If z; elliptical (and n > N), ML estimator for Cy given by

. 1 & 1 A . .
Cny = — g u —xfCNlmi z;x; for some non-increasing u.
n i N

> [Pascal’'l3; Chen’11] If N > n, x; elliptical or with outliers, shrinkage extensions

A 1 & T, xr
Cn(p)=(01—-p)= — +pln
n ; %x;‘kcz\fi(p)zz
Ont) = =280 gy =i T
~trB ) ni= §*iCy (p)z;
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Context

Results only known for N fixed and n — oo:

> not appropriate in settings of interest today (BigData, array processing, MIMO)

We study such Cy in the regime

N,n — oo, N/n — c € (0,00).

» Math interest:

> limiting eigenvalue distribution of C'y .
> limiting values and fluctuations of functionals f(Cn)

» Application interest:
> comparison between SCM and robust estimators
> performance of robust/non-robust estimation methods
> improvement thereof (by proper parametrization)

48
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Model Description

Definition (Maronna's Estimator)

For x1,...,xn € CN with n > N, C‘N is the solution (upon existence and
uniqueness) of

1 1
Cn = - Zu (Nm:CElzz) iy
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Model Description

Definition (Maronna's Estimator)
For x1,...,xn € CN with n > N, C‘N is the solution (upon existence and
uniqueness) of

where w : [0,00) — (0, 00) is
> non-increasing

» such that ¢(z) £ 2zu(x) increasing of supremum ¢oo with

1< ¢oo <c™ 1, c€(0,1).
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The Results in a Nutshell

For various models of the z;'s,

> First order convergence:

e - 5u] 250

for some tractable random matrices S'N.
= We only discuss this result here.

50/153



The Results in a Nutshell

For various models of the z;'s,

> First order convergence:

e - 5u] 250

for some tractable random matrices S'N.
= We only discuss this result here.

» Second order results:
N-® (a*él’i,b - a*S‘j“vb) 250

allowing transfer of CLT results.

50/153



The Results in a Nutshell

For various models of the z;'s,

> First order convergence:

e - 5u] 250

for some tractable random matrices S'N.
= We only discuss this result here.

> Second order results:
N-® (a*é]’i,b - a*S‘j“vb) 250
allowing transfer of CLT results.

> Applications:

»> improved robust covariance matrix estimation
> improved robust tests / estimators

> specific examples in statistics at large, array processing, statistical finance, etc.
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(Elliptical) scenario

Theorem (Large dimensional behavior, elliptical case)

For ©; = \/T,w;, T; impulsive (random or not), w; unitarily invariant, ||w;| =

’

with, for some v related to u (v=uog~ 1, g(z) = x(1 — cp(x)) 1),

A A 1 - 1 *Afl * A 1 =
CN:EZH N"B’icl\’ T T 72 v(TiYN )T

n

1 & v(Ti7)
T o G )
— 1+ ceyv(riv)
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Theorem (Large dimensional behavior, elliptical case)

For ©; = \/T;w;, T; impulsive (random or not), w; unitarily invariant, ||w;|| = N

’

with, for some v related to u (v=uog~ 1, g(z) = x(1 — cp(x)) 1),

n

A 1 1 * A—1 * A 1 Z
Oy &= u N%C/\r Ti | Ty, *Z V(TYN )T

- z": vo(7i7)

— 1+ eyu(miy)

Corollaries

> Spectral measure: ,LLIC\} — u‘]gVN £, 0as. (uX & %Z?:1 Ox;(x))
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For ©; = \/T;w;, T; impulsive (random or not), w; unitarily invariant, ||w;|| = N

’

for -
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(Elliptical) scenario

Theorem (Large dimensional behavior, elliptical case)

For ©; = \/T;w;, T; impulsive (random or not), w; unitarily invariant, ||w;|| = N

’

for -

with, for some v related to u (v=uog~ 1, g(z) = x(1 — cp(x)) 1),

n

A 1 1 * A—1 * A 1 Z
Oy &= u N%CN Ti | Ty, *Z V(TYN )T

- Z": vo(7i7)

— 1+ eyu(miy)
Corollaries
. Cn _ SN L X A 1xn
> Spectral measure: p N —puN = 0as. (uy = - 2 Ox,(x))
(

> Local convergence: maxj<;<n |)\i(C'N) -\ AN)‘ as.

» Norm boundedness: limsupy [|Cn| < oo

— Bounded spectrum (unlike SCM!) 1o



Large dimensional behavior

| — — — Eigenvalues of C'N |

AusuaQg

1.5

0.5

Eigenvalues

diag(I125, 31125, 101250), 7 ~ I'(.5,2) i.i.d.

Figure: n = 2500, N = 500, Cn
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Large dimensional behavior

I I I I
— — — Eigenvalues of éN

— — — Eigenvalues of S'N

Density

0 0.5 1 1.5 2

Eigenvalues

Figure: n = 2500, N = 500, CN = diag([125, 3[125, 101250), Ti ~ F(.S, 2) ii.d.
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Large dimensional behavior

T T T T
— — — Eigenvalues of éN

— — — Eigenvalues of SN

Approx. Density

Density

Eigenvalues

Figure: n = 2500, N = 500, CN = diag([125, 3[125, 101250), Ti ~ F(.S, 2) iid.
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Elements of Proof

Definition (v and )
Letting g(x) = (1 — co(x)) ™! (on Ry),

v(z) 2 (wog~ 1) (x) non-increasing

P(x) 2 zv(z) increasing and bounded by .
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Elements of Proof

Definition (v and )
Letting g(x) = (1 — co(x)) ™! (on Ry),

v(z) 2 (wog~ 1) (x) non-increasing

H>

¥(z)

Lemma (Rewriting C'y)
It holds (with Cy = Iy) that

Cy 2= va (Tids)

with (di,...,dpn) € R?} a.s. unique solution to
1 . 1
d; = Nw:-‘C(i)lwi wy ( ZTJ’U T;d;
J#i

zv(x) increasing and bounded by .

ww;

-1
]) wi, t=1,...,n.
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Elements of Proof

Remark (Quadratic Form close to Trace)

Random matrix insight: (% Do ij(’rjdj)ij;)_l “almost independent” of w;, so
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Elements of Proof

Remark (Quadratic Form close to Trace)
Random matrix insight: (% Do ij(’rjdj)ij;)_l “almost independent” of w;, so
-1 —1

1, (1 X 1 1
di = —w; [ — ijv(fjdj)ijj w; >~ —tr | — Zij(Tjdj)ij; ~ YN
i RN =~

=

for some deterministic sequence (yn){_,, irrespective of .
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Elements of Proof

Remark (Quadratic Form close to Trace)
Random matrix insight: (% 22 Tiv(Tid; )wju)])_1 “almost independent” of w;, so
-1 —1

1
ijv Tidj)wiw}; w; Ntr ZT]U Tjdj)w; w; ~ YN
it "

d; =

2»—\

for some deterministic sequence (yn){_,, irrespective of .

Lemma (Key Lemma)

a v(rid;)

Letting e; = i) with v unique solution to

< "/)(7'1’)/N
Z 1+ Cw(Tz’YN)
we have

max |e; — 1| 255 0.
1<i<n
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Proof of the Key Lemma: max; |e; — 1] 250, ¢; = ridi)
' v(TiYN)

Property (Quadratic form and vy)

-1
1, (1
Wi (n ZTj’U(Tj’}/N)’lUj’LU;> w; — YN

J#i

max 250

1<i<n
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_ v(ridi)

a.s.,
e~ 1 =20 e = 5500

Proof of the Key Lemma: max;

Property (Quadratic form and ~y)
-1
1

a.s.,
max E (TN )wjw; w; —yn| — 0.
1<i<n Y
j 1

Proof of the Property
> Uniformity easy (moments of all orders for [w;];).
» By a "quadratic form similar to trace” approach, we get
-1
— i —m(0)| —
121%)(” %:TJ’U TiYN )wjw} w; —m(0)
JF

with m(0) unique positive solution to [MarPas’67; BaiSil’95]

1 i T 0(TiYN)

; 1+ eriv(riyn)m(0) ’

i=1

> N precisely solves this equation, thus m(0) = .
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Proof of the Key Lemma: max; |e; — 1| &3 0, ¢; = (ridi)

v(TivN)
Substitution Trick (case 7; € [a,b] C (0, 00))
Up to relabelling e; < ... < ep, use
-1
1 * 1 *
v(ThyN)en = 0(Tndn) =v | Th —wj | — Zn v(Tid;)  wiw; Wn
N ni ——
=v(TiYN)ei

1
1 1
<w (TnenleZ <n Z Tiv(Ti’YN)wiwf> wn>
<n

<w (Tnegl('yN —¢en)) as., en — 0 (slow).
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Proof of the Key Lemma: max; |e; — 1| &3 0, ¢; = (ridi)

v(TiYN)
Substitution Trick (case 7; € [a,b] C (0, 00))
Up to relabelling e; < ... < ep, use
-1
1 L[ .
V(TN en = V(Tndn) =v | Ta—wh [ =D 7 v(ndi)  wiw] w
N ni ——
=v(TiYN)ei
1 1 -t
<w Tneleﬁwz <n ZTiU(Ti’YN)wiw;k> Wn,
<n

<w (Tnegl('yN —¢en)) as., en — 0 (slow).

Use properties of 1) to get

¥ (Tnyn) <9 (Tnen vn) (1 7&%1)71
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Proof of the Key Lemma: max; |e; — 1| &3 0, ¢; = lrids)

v(TiYN)
Substitution Trick (case 7; € [a,b] C (0,00))
Up to relabelling e; < ... < ep, use
-1
1 * 1 *
v(ThyN)en = 0(Tndn) =v | Th —wj | — ZTZ‘ v(Tid;)  wiw; Wn
N ni ——
=v(TiYN)ei
1 1 -
<w Tneglﬁwz <n Kznnv(n'y]v)wiw;‘> Wn

<wv (Tn(’«;l('YN —¢en)) as., en — 0 (slow).

Use properties of 1) to get

-1
¥ (ravn) <9 (raer ) (1= envy?)

Tn — 70 >0

Conclusion: If e, > 1+ £ i.0., as T, € [a,b], on subsequence { N =70 > 0

P(T0v0) < Y (IOJ;YOZ) , a contradiction.
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Outlier Data

Theorem (Outlier Rejection)

Observation set

X = [xl, Tl )y A1y asnn]

where x; ~ CN(0,Cy) and a1, ...,ac,n € CN deterministic outliers. Then,

where

(1—en)n Enm

S'Név(’yN)% Z zizy + — Z (vin) aja;

i=1

with yn and a1 n,...,Qe,n,n Unique positive solutions to

n -1
1 (1 —e)v(yn) <
YN *trCN C + — E 047, rL a;a
N <1 + cv(yw) N
-1

1 1 _ Enn
Qi = —a ( e)v(n) M ZewON) oo 2 Z
N L+ cv(yn)Tn
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Outlier Data

» Fore,n =1,

—1 n—1 —1

L

Outlier rejection relies on %ai‘C;,lal s L
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Outlier Data

» Fore,n=1,

. “1(1)\ 12 -ty o, .

. . . . 1 _x~—1
Outlier rejection relies on -ajCy

» For a; ~CN(0,Dy), en — € >0,

a1 s 1.

(1—en)n 1 Enn
SN =v(yn) — Z zizy +v(an) — Z a;a;
noa= ni=
1 (1 —&)v(7m) ev(am) >*1
n=—trC Cn + D
v N reN <1 + cv(Yn)n N 1+ cv(an)an N

1 (1 —e)v(vn) ev(an) )*1
n = —trD C D .
@ N reN (1 + cv(Yn)n N+ 1+ cv(an)an N



Outlier Data

» Fore,n=1,

R 1)\ 1 =2 -1(1) 1

. . . . 1 _x~—1
Outlier rejection relies on -ajCy

» For a; ~CN(0,Dy), en — € >0,

a1 s 1.

(1—en)n Enn
N 1
SN = n) — i ; n) — 0 ;
N=vOa) s 3wl +uan) Y el
=1 =1
1 (1 —&)v(7m) ev(am) >*1
n = —trC C D
v N reN <1 + cv(Yn)n N+ 1+ cv(an)an N
1 1 - mn n -1
an = “trDy ( (1 —g)v(yn) On + cv(an) DN) .
N 14 cv(vn)yn 1+ cv(an)an
For e, — 0,
_ (I—en)n Enn -1
5 o ()1 v, 1 (1) 1 1 .
SN:U(I—C - ; xi:ci—l—;;v Ty NtrDNCN a;a;

Outlier rejection relies on %tr DNC;]1 s L
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Outlier Data

Deterministic equivalent eigenvalue distribution

10

T I I I

—--- L (I7en)n o 0% (Clean Data) k

Eigenvalues

Figure: Limiting eigenvalue distributions. [C’N]ij = .9”7“, Dy = 1IN, e = .05.
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Outlier Data

Deterministic equivalent eigenvalue distribution

Figure: Limiting eigenvalue distributions. [Cn]i; = 9li=il DNy = 1IN, &

T T T

—--- L (ITen)n o 0% (Clean Data)

—— % X X* or per-input normalized

Eigenvalues

0.5

= .05.

59

153



Outlier Data

T I I I

10 — _——_— 1 l—en)n

- 1 5 (17em)™ oo ¥ (Clean Data)
c \
0 Iy —— %XX* or per-input normalized
£ Iy N -
2 | —CnN
s L1
K 81
© 1
g 1
=
5 |
> I
S |
.20 61
)
° |
15 I
Q 1
2 !

|
= a4t
(7
° !
= |
2 |
c
£ 1
£ |
[} 2
2
j9 1
o 1

I

|

0
0

Eigenvalues

Figure: Limiting eigenvalue distributions. [C’N]ij = .9”7“, Dy = 1IN, e = .05.
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Example of application to statistical finance

> Robust matrix-optimized portfolio allocation Csr

0.065
0.06
0.055
0.05
0.045
0.04/%

0.035

Annualized standard deviation

0.03

0.025 I I I I I I I
0 50 100 150 200 250 300 350 400

t (N=45,n=300)
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Outline

Applications

Spectral Clustering Methods and Random Matrices

61/153



Reminder on Spectral Clustering Methods

Context: Two-step classification of n objects based on similarity A € R*X":
1. extraction of eigenvectors U = [u1, ..., uy] with “"dominant” eigenvalues
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Reminder on Spectral Clustering Methods
Context: Two-step classification of n objects based on similarity A € R*X":

1. extraction of eigenvectors U = [u1, ..., uy] with “"dominant” eigenvalues
2. classification of vectors Ut,., ..., Un,. € R¢ using k-means/EM.
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Reminder on Spectral Clustering Methods

Context: Two-step classification of n objects based on similarity A € R™*":
1. extraction of eigenvectors U = [u1, ..., uy] with “"dominant” eigenvalues
2. classification of vectors Ut,., ..., Un,. € R¢ using k-means/EM.

= T T ]

0 spikes
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Reminder on Spectral Clustering Methods

Context: Two-step classification of n objects based on similarity A € R*X":
1. extraction of eigenvectors U = [u1, ..., uy] with “"dominant” eigenvalues
2. classification of vectors Ut,., ..., Un,. € R¢ using k-means/EM.

0 spikes

|} Eigenvectors |
(in practice, shuffled!!)

T T T
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Reminder on Spectral Clustering Methods

Eigenv. 1

Eigenv. 2
T T
i
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Reminder on Spectral Clustering Methods

T T T

Eigenv. 1

Eigenv. 2

= | I I —

| /-dimensional representation |}
(shuffling no longer matters!)

X X
X% X
a0 %X ﬁ&‘ B
= X x;ﬁ
S Xy
© X
[
2 L % |
S X
a0 X x
in] X
L x |
x
%

Eigenvector 1
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Reminder on Spectral Clustering Methods

Eigenv. 1

Eigenv. 2

T T T

| I I —

| /-dimensional representation |}
(shuffling no longer matters!)

X X
X% X
a0 %X ﬁ&‘ B
= X x;ﬁ
S Xy
© X
[
2 L % |
S X
a0 X x
in] X
L x |
x
%

Eigenvector 1

U

EM or k-means clustering.
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The Random Matrix Approach

A two-step method:

1. If A, is not a “standard” random matrix, retrieve A,, such that

HAH—AR‘ 23

in operator norm as n — oo.
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[4n = 4] 22 0

in operator norm as n — oo.

= Transfers crucial properties from A, to Ap:
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> limiting eigenvalue distribution
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[4n = 4] 22 0

in operator norm as n — oo.

= Transfers crucial properties from A, to Ap:

> limiting eigenvalue distribution
> spikes
> eigenvectors of isolated eigenvalues.

2. From A, perform spiked model analysis:
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The Random Matrix Approach

A two-step method:

1. If A, is not a “standard” random matrix, retrieve A,, such that

[4n = 4] 22 0

in operator norm as n — oo.

= Transfers crucial properties from A, to Ap:

> limiting eigenvalue distribution
> spikes
> eigenvectors of isolated eigenvalues.

2. From A, perform spiked model analysis:

> exhibit phase transition phenomenon 5
> “read” the content of isolated eigenvectors of A,,.

64
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The Random Matrix Approach

The Spike Analysis: ~
For “noisy plateaus”-looking isolated eigenvectors uy, ..., uy of Ay, write

S
a
u; = E af + ofwy
a=1 Na

N

with j, € R™ canonical vector of class C,, w$ noise orthogonal to jg,
J i
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The Random Matrix Approach

The Spike Analysis:

For “noisy plateaus’-looking isolated eigenvectors u, ..., up of Ay, write

S
a
u; = E af + ofwy
a=1 Na

N

with ja € R™ canonical vector of class Co, w$ noise orthogonal to ja, and evaluate

1 4.
a® = u,;
i e i Ja
J
(08)% = |jui — af ==

Ve
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The Random Matrix Approach

The Spike Analysis: ~
For “noisy plateaus”-looking isolated eigenvectors uy, ..., uy of Ay, write

N

with ja € R™ canonical vector of class Co, w$ noise orthogonal to ja, and evaluate

S
a
u; = E af + ofwd
a=1 Ta

1

a% = uli

i \/7Ta i Ja
2 ju
(o) = uz‘—@iaim

= Can be done using complex analysis calculus, e.g.

1. .
(0f)? = —jquiu] ja
a
1 1 17+ -1,
= om ?JI (An - ZIn) Jadz.
Ya 'tQ
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Outline

Applications

Community Detection on Graphs
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System Setting

; e (= ‘-ﬁ\i?/c\%‘.',;! £2
A R U TS

P NS A S 2
' ] ‘ ‘&"‘/‘ intrinsi? node
° & ‘7 connectivity g;

p i

Assume n-node, m-edges undirected graph G, with
> ‘“intrinsic”’ average connectivity q1,...,qn ~ p i.i.d.
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System Setting

o inter-class C, <> Cp

o '/; connectivity Cap class Co
AT A
L\ @ "4{\‘ 4

intrinsic node
connectivity g;

S ARG
Ry

/
iy
) '§V/A % )

Assume n-node, m-edges undirected graph G, with

> ‘“intrinsic”’ average connectivity q1,...,qn ~ p i.i.d.
» k classes C1,..., Ci, independent of {g;} of (large) sizes nq,...,
preferential attachment Cy;, between C, and C,

ng, with
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System Setting

inter-class Cq > Cp

nncctiiity Cab \“ PG
St v PN ST
N

o @~/

WS % e
" VPN .‘L{‘g‘( féi N2
RANN W,

Assume n-node, m-edges undirected graph G, with
> ‘“intrinsic”’ average connectivity qi, ..., qn ~ W ii.d.
> k classes C1,...,Ck independent of {¢;} of (large) sizes ny,..., ny, with
preferential attachment Cy;, between C, and C,
> induces edge probability for node i € Cq, j € Cp,

intrinsic node
connectivity g;

P(i~j) = qiqjCap-
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System Setting

inter-class Cq > Cp

_ '/; connectivity Cap
‘A':}« e
{7

—_—
Ny

A

t= &
WA S

v Qr 7/
RS T

oy
' .'\"W"\VA‘-%V SNV
‘ ) .“&"‘/‘v intrinsi? 1.10de
“.“7 connectivity g;

Assume n-node, m-edges undirected graph G, with
> ‘“intrinsic”’ average connectivity qi, ..., qn ~ W ii.d.

> k classes C1,...,Ck independent of {¢;} of (large) sizes ny,..., ny, with

preferential attachment Cy;, between C, and C,
> induces edge probability for node i € Cq, j € Cp,

P(i~j) = qiqjCap-

> adjacency matrix A with A;; ~ Bernoulli(¢;q;Cqp).
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Objective

Study of spectral methods:

» standard methods based on adjacency A, modularity A — % normalized
adjacency D™1AD™!, etc. (adapted to dense nets)

» refined methods based on Bethe Hessian (r2 — 1)I,, — A+ D (adapted to sparse
nets!)
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Objective

Study of spectral methods:
» standard methods based on adjacency A, modularity A — % normalized
adjacency D™1AD™!, etc. (adapted to dense nets)

» refined methods based on Bethe Hessian (r2 — 1)I,, — A+ D (adapted to sparse
nets!)

Improvement to realistic graphs:

> observation of failure of standard methods above

> improvement by new methods.
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Limitations of Adjacency/Modularity Approach

(Modularity) (Bethe Hessian)
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Limitations of Adjacency/Modularity Approach

+ 1

+

t .
ME

(Modularity)

Scenario: 3 classes with p bi-modal (e.g., u =

-
— Leading eigenvectors of A (or modularity A — %) biased by ¢; distribution.

— Similar behavior for Bethe Hessian.

(Bethe Hessian)

3501+ $80.5)
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Regularized Modularity Approach

Connectivity Model: P(i ~ j) = q;qjCqp for i € Ca, j € Cp.
Dense Regime Assumptions: Non trivial regime when, as n — oo,

M,
Cap =1+ b7 Mab:O(l)'

NG
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= Community information is weak but highly REDUNDANT!
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Cap =1+ b7 Mab:O(l)'

NG

= Community information is weak but highly REDUNDANT!

Considered Matrix:
For a € [0, 1], (and with D = diag(Al,) = diag(d) the degree matrix), m = %dTl
the number of edges
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Regularized Modularity Approach

Connectivity Model: P(i ~ j) = q;qjCqp for i € Ca, j € Cp.

Dense Regime Assumptions: Non trivial regime when, as n — oo,

M,
Cap =1+ b7 Mab:O(l)'

vn
= Community information is weak but highly REDUNDANT!
Considered Matrix:

For a € [0,1], (and with D = diag(Al,) = diag(d) the degree matrix), m = %dTl
the number of edges
dd’

Lo = (2m)°‘%D“’ {A— %} D,

Our results in a nutshell:

> we find optimal aopt having best phase transition.
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Regularized Modularity Approach

Connectivity Model: P(i ~ j) = q;qjCqp for i € Ca, j € Cp.

Dense Regime Assumptions: Non trivial regime when, as n — oo,

My
Cop =1 . My, = O(1).
b Jr\/H b (1)

= Community information is weak but highly REDUNDANT!

Considered Matrix:
For a € [0, 1], (and with D = diag(Al,) = diag(d) the degree matrix), m = %dTl
the number of edges

1 dd7
Lo = (2m)*—D™® {A— —} D™,
Vn 2m

Our results in a nutshell:
> we find optimal aopt having best phase transition.
> we find consistent estimator Gopt from A alone.

> we claim optimal eigenvector regularization D 1u, u eigenvector of L.
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Asymptotic Equivalence

Theorem (Limiting Random Matrix Equivalent)
For each e € [0,1], as n — 00, ||La — La|| — 0 almost surely, where
1 dd"
Lo =(@2m)*—D > |A—- | p~@
vn 2m
~ 1
Lo =—
«@ \/ﬁ

with Dq = diag({q;}), X zero-mean random matrix,

D;“XD;* +UAUT

U= [D;*D‘ﬁ D;“Xln] , rank k+1

A= [Tk = 1ee)M (I — 1) =1y
17 0

and J = [j1,...,Jkl, ja =[0,...,0, 1;[@,0, ...,0]T € R™ canonical vector of class C,.
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Theorem (Limiting Random Matrix Equivalent)
For each e € [0,1], as n — 00, ||La — La|| — 0 almost surely, where

1 dd’
a=(2m)*—D~ —— | D~
L « D@ |A D™ ¢

vn 2m

T 1 —c - T
La= =Dy XD +UAU

with Dq = diag({q;}), X zero-mean random matrix,

U= [D},*ai D;“Xln] , rank k+1

v
(I — 1M (I —c1])  —1
A= k k
R o'
and J = [j1,...,Jkl, ja =[0,...,0, 1;[@,0, ...,0]T € R™ canonical vector of class C,.

Consequences:

> isolated eigenvalues beyond phase transition <> A(M) > “spectrum edge”
= optimal choice aopt of a from study of noise spectrum.
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Asymptotic Equivalence

Theorem (Limiting Random Matrix Equivalent)
For each e € [0,1], as n — 00, ||La — La|| — 0 almost surely, where

1 dd"
Lo =(2m)*—=D"*|A— —| D™
vn 2m
- 1, _
Lo = —2=D; *XDy“ +UAUT

with Dq = diag({q;}), X zero-mean random matrix,
U= [D},*a% D;“Xln] , rank k+1

A= [Tk = 1ee)M (I — 1) =1y
17 0

and J = [j1,...,Jkl, ja =[0,...,0, 1;[@,0, ...,0]T € R™ canonical vector of class C,.

Consequences:

> isolated eigenvalues beyond phase transition <> A(M) > “spectrum edge”
= optimal choice aopt of a from study of noise spectrum.

> eigenvectors correlated to D}~ *J
= Natural regularization by D*~11
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Eigenvalue Spectrum

I Eigenvalues of L

Limiting law

Iy S

—6 —4 -2 0 2 4 6

Figure: Eigenvalues of L;, K = 3, n = 2000, ¢; = 0.3,¢c2 = 0.3,¢c3 = 0.4,
n= %64(1) + %&1(2), q1) = 0.4, q2) = 0.9, M defined by M,;; = 12, A{ij =—4,i#j.



Phase Transition

Theorem (Phase Transition)
For o € [0, 1], isolated eigenvalue \;(Lq) if |\i(M)| > 7%, M = (D(c) — cc")M,

1
T =1 ————, phase transition threshold

im
zlS5g  ef(x)

with [S%, S¢] limiting eigenvalue support of Lo and e§ (z) (|z| > S$ ) solution of

q1—2a
& — d
ef' () /—x—q1*2°‘e‘1‘(m)+q2*2°‘eg(x)'u( q)
q2—2a
5y = dq).
5@)= [ — T Gy £ e M)

. 1 v
In this case, TS OTa) Ai(M).
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Clustering still possible when \;(M) = (ming 7o) + €.
> “Optimal” o = aopt:

Qopt = argming (o 1] {1a}.
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Phase Transition

Theorem (Phase Transition)
For o € [0, 1], isolated eigenvalue \;(Lq) if |\i(M)| > 7%, M = (D(c) — cc")M,

1
T =1 ————, phase transition threshold

im
zlS5g  ef(x)

with [S%, S¢] limiting eigenvalue support of Lo and e§ (z) (|z| > S$ ) solution of

q1—2a
Q@ — d
ef' () /—x—q1*2°‘e‘1‘(m)+q2*2°‘eg(x)'u( q)
q2—2a
5y = dq).
5@)= [ — T Gy £ e M)

. 1 v
In this case, TS OTa) Ai(M).

Clustering still possible when \;(M) = (ming 7o) + €.
> “Optimal” o = aopt:

Qopt = argming (o 1] {1a}.

d;

[T, — 4

» From max;

a.s. . . . ~
— 0, we obtain consistent estimator &opt of aopt.
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Simulated Performance Results (2 masses of ¢;)

¥
-

£

(Modularity)

(Bethe Hessian)
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Simulated Performance Results (2 masses of ¢;)

(Algo with o = 1)

Figure: Two dominant eigenvectors (x-y axes) for n = 2000, K = 3, u = %5‘1(1) + %5(1(2),

q<1) = 0.1, q<2) = 0.5, C1 = C2 =

1

1

c3 =

1

2

(Bethe Hessian)

M = 10013.
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Simulated Performance Results (2 masses of ¢;)

(Bethe Hessian)
T

X X
L | X5 X |
x X X %% %
% X
X
X

XOFRE x A m
| oA mﬁA b
+ + ﬁé& + 4+, T
L . | .
! ! L | ! |
Algo with a =1 Algo with aopt
P

Figure: Two dominant eigenvectors (x-y axes) for n = 2000, K = 3, u = %5‘1(1) + %5(1(2),

g1) = 0.1, g2) = 0.5, c1 = c2 = i, c3 = % M = 10013. 74 /153



Simulated Performance Results (2 masses for ¢;)

11 T T T T

1.08 — —

A 1061 —

1.04 — —

Normalized spike

1.02 — —

1

0.98 L L | ! ! !
2 4 6 8 10 12 14 16

Eigenvalue £ (£ = —1/e5 (\) beyond phase transition)
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Simulated Performance Results (2 masses for ¢;)
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Figure: Overlap performance for n = 3000, K = 3, ¢; = % n= %5(1(1) + %54(2) with
g1y = 0.1 and g2y = 0.5, M = Alj, for A € [5,50]. Here aopt = 0.07.
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Figure: Overlap performance for n = 3000, K =3, ¢; = %, p = %6(1(1) + %5(1(2) with
g1y = 0.1 and g2y = 0.5, M = Alj, for A € [5,50]. Here aopt = 0.07.
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Simulated Performance Results (2 masses for ¢;)
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Figure: Overlap performance for n = 3000, K =3, ¢; = %, p = Zéq(l) + %5(1(2) with
g1y = 0.1 and g2y = 0.5, M = Alj, for A € [5,50]. Here aopt = 0.07.
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Simulated Performance Results (2 masses for ¢;)
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Figure: Overlap performance for n = 3000, K = 3, u = %5q(1) + %6q(2) with g(1) = 0.1 and

42y €[0.1,0.9], M = 10(2I3 — 131}), ¢; = L.

77 /153



Theoretical Performance

Analysis of eigenvectors reveals:

> eigenvectors are "noisy staircase vectors

78 /153



Theoretical Performance

Analysis of eigenvectors reveals:
> eigenvectors are “noisy staircase vectors”

> conjectured Gaussian fluctuations of eigenvector entries

78 /153



Theoretical Performance

Analysis of eigenvectors reveals:

>

>

>

eigenvectors are “noisy staircase vectors”
conjectured Gaussian fluctuations of eigenvector entries
for ¢; = qo (homogeneous case), same variance for all entries

in non-homogeneous case, we can compute “average variance per class”
= Heuristic asymptotic performance upper-bound using EM.
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Theoretical Performance Results (uniform distribution for g;)
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Figure: Theoretical probability of correct recovery for n = 2000, K = 2, ¢; = 0.6, co = 0.4, p

uniformly distributed in [0.2,0.8], M = AlI,, for A € [0, 20].
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Some Takeaway messages

Main findings:

>

Bu
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Degree heterogeneity breaks community structures in eigenvectors.
= Compensation by D®~1 normalization of eigenvectors.

Classical debate over “best normalization” of adjacency (or modularity) matrix A
not trivial to solve.
= With heterogeneous degrees, we found a good on-line method.

Simulations support good performances even for “rather sparse” settings.

strong limitations:
. Ma
Key assumption: Cyp =1+ Tnb
= Everything collapses if different regime.

Simulations on small networks in fact give ridiculous arbitrary results.
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Outline

Applications

Kernel Spectral Clustering

81/153



Kernel Spectral Clustering

Problem Statement
» Dataset z1,...,x, € RP
> Objective: “cluster” data in k similarity classes S1,...,Sk.

82 /153



Kernel Spectral Clustering

Problem Statement
» Dataset z1,...,x, € RP
> Objective: “cluster” data in k similarity classes S1,...,Sk.

> Typical metric to optimize:
k
. . K(Ijv I;)
(RatioCut) argming, y...us,={1,...,n} Z Z T
i=1j€S; *
JESi

for some similarity kernel (x,y) > 0 (large if « similar to y).

82 /153



Kernel Spectral Clustering

Problem Statement
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> Objective: “cluster” data in k similarity classes S1,...,Sk.
> Typical metric to optimize:
k
. . K(Ijv I;)
(RatioCut) argming, .. .us,={1,...,n} Z Z T
i=1j€S8; *
J¢Si

for some similarity kernel (x,y) > 0 (large if « similar to y).

> Can be shown equivalent to

(RatioCut) argmin ;e aq tr MY(D - K)M
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Kernel Spectral Clustering

Problem Statement
» Dataset z1,...,x, € RP
> Objective: “cluster” data in k similarity classes S1,...,Sk.

> Typical metric to optimize:

. . “ w(z5, T3)
(RatioCut) argming, y...us,={1,...,n} Z Z s
i=1j€S; *
J¢Si

for some similarity kernel (x,y) > 0 (large if « similar to y).

> Can be shown equivalent to

(RatioCut) argmin ;e aq tr MY(D - K)M

where M C R™"*k N {M; M;; € {0, |Sj\_%}} (in particular, MTM = I) and

K = {x(zi,z;)}} Dii =

ij=1 Kij.

n
=1

J

> But integer problem! Usually NP-complete.
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Kernel Spectral Clustering

Towards kernel spectral clustering

> Kernel spectral clustering: discrete-to-continuous relaxations of such metrics
. . T
(RatioCut) argminy, prp_p, trM (D —K)M
i.e., eigenvector problem:

1. find eigenvectors of smallest eigenvalues
2. retrieve classes from eigenvector components
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Kernel Spectral Clustering

Towards kernel spectral clustering

> Kernel spectral clustering: discrete-to-continuous relaxations of such metrics
. . T
(RatioCut) argminy, prp_p, trM (D —K)M

i.e., eigenvector problem:

1. find eigenvectors of smallest eigenvalues
2. retrieve classes from eigenvector components

» Refinements:

1 1
» workingon K, D — K, I,, — DK, I, — D 2KD 2, etc.
> several steps algorithms: Ng—Jordan—Weiss, Shi—-Malik, etc.
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Kernel Spectral Clustering

1 1
Figure: Leading four eigenvectors of D™ 2 KD~ 2 for MNIST data.
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> Algorithms derived from ad-hoc procedures (e.g., relaxation).
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Methodology and objectives

Current state:
> Algorithms derived from ad-hoc procedures (e.g., relaxation).
> Little understanding of performance, even for Gaussian mixtures!

> Let alone when both p and n are large (BigData setting)

Objectives and Roadmap:
» Develop mathematical analysis framework for BigData kernel spectral clustering
(p,n — o0)
> Understand:

1. Phase transition effects (i.e., when is clustering possible?)
2. Content of each eigenvector

3. Influence of kernel function

4. Performance comparison of clustering algorithms

Methodology:
> Use statistical assumptions (Gaussian mixture)

> Benefit from doubly-infinite independence and random matrix tools

85/153



Model and Assumptions

Gaussian mixture model:

> x1,...,Tn € RP,
> k classes Cy,...,Cyg,
> 21,...,&ny €C1,. ., Tn—ny+1,---,Tn € Cg,

> C‘l = {LB ‘ €z NN(MUL-,CG,)}-
Then, for x; € Cq, with w; ~ N(0,Cq),

Ti = fla + W;.
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Model and Assumptions

Gaussian mixture model:

>

>
>
>

T1,...,Tn € RP,

k classes Cq,...,Cg,

T1,.-3Tng €C1,ev o, Tnny+1,---,%n € Cg,
Co={z|z~N(tta,Ca)}.

Then, for x; € Cq, with w; ~ N(0,Cq),

Ti = fla + W;.

Assumption (Convergence Rate)

As n — oo,

1.
2.

3.

Data scaling: £ — ¢o € (0,00),
Class scaling: 22 — ¢, € (0,1),

Mean scaling: with p° £ 3K Ra . and uS = pg — po, then

a=1 n

lltall = O(1)

. Covariance scaling: with C° £ 213:1 "T”C'a and C§ £ C, — C°, then

1
ICall =0(1), —trC2 =0(1) = trC3C5 = O)
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Model and Assumptions

Kernel Matrix:

» Kernel matrix of interest:

1 n
K = {f (};nwﬁw)} B
i,j=

for some sufficiently smooth nonnegative f.
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Model and Assumptions

Kernel Matrix:

» Kernel matrix of interest:

1 n
K = {f (};nwﬁxjnﬂ)} B
i,j=

for some sufficiently smooth nonnegative f.

» We study the normalized Laplacian:
1 1
L=nD 2KD™ 2

with d = K1,, D = diag(d).
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Difficulty: L is a very intractable random matrix
> non-linear f

> non-trivial dependence between entries of L
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Model and Assumptions

Difficulty: L is a very intractable random matrix
> non-linear f

> non-trivial dependence between entries of L

Strategy:

1. Find random equivalent L (i.e., ||L — L|| 2% 0 as n,p — o) based on:

> concentration: K;; — constant as n,p — oo (for all 4 # j)
»> Taylor expansion around limit point

2. Apply spiked random matrix approach to study:

> existence of isolated eigenvalues in L: phase transition
> eigenvector projections on canonical class-basis

88 /153



Random Matrix Equivalent

Results on K:
» Key Remark: Under our assumptions, uniformly on 4,5 € {1,...,n},
1
i = 2% 7

for some common limit 7.
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Random Matrix Equivalent

Results on K:
» Key Remark: Under our assumptions, uniformly on 4,5 € {1,...,n},
1
i = 2% 7

for some common limit 7.
> large dimensional approximation for K:

K = f(r)lal) + VA + Az
N— ~—— ~~

Ol (n) low rank, Oy (v/m)  informative terms, OH’H(U

» difficult to handle (3 orders to manipulate!)

Observation: Spectrum of L = nD’%KD*%:

1
> Dominant eigenvalue n with eigenvector D2 1,
> All other eigenvalues of order O(1).

= Naturally leads to study:
> Projected normalized Laplacian (or “modularity”-type Laplacian):

, 1 1 D%IH,IID% 1 dd’ 1
L'=nD 2KD 2 - n———=nD"2 | K— — | D" 2.

1T D1,

1
D21,

/1T D1, °

> Dominant (normalized) eigenvector

89 /153



Random Matrix Equivalent

Theorem (Random Matrix Equivalent)

a.s,

As n,p — oo, in operator norm, HL’ — L'|| =3 0, where

L'=-2

];‘,((TT )) {

and 7 = %trCo, W = [wi,...,wn] € RPX™ (z; = pog + w;), P =1, — %lnll,

1
—PWTWP + UBUT} + o)1y
p

U= {LJ,cb,w} € RnX (2k+4)
VP

T (5 _ 1)
Bu = 1e” (- p5)
B = I — Cl‘lg Ok Okx1 c R(2k+4)><(2k+4)

B 55/ (1) _ f"(r)
57 T 27 () O1xk 57D T 27

/) SN o ). p )
87 (7) 2f’(7))tt GG

(5f/(7) w> 4T

Bii=M"M+ ( 1,17 € REXE,
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Theorem (Random Matrix Equivalent)

a.s,

As n,p — 0o, in operator norm, HL’ — L'|| == 0, where

rr_ f/(T)
STey

and 7 = %trCo, W = [wi,...,wp] € RPX™ (z; = pg +w;), P=1Ip — %lnll,

1
PPWTWP + UBUT} +a(r)In
p

U= [LJ,cb,zp} € R (2k+4)
VP

T (5 _ f'(7)
Bu -t (¥ - 45)
B= I, —clf Ok xk Okx1 € R(2h+4)x (2k+4)

5£/(r) _ £"(r)
O1xk SF0 27 (0
7)

5£(r) _ f(r) ) gt M0 4 p [l
8f(r)  2f/(7) @ e 2

8f(r)  2f'(7)

<5f/(7) G )it

By =M"M+ ( 1,17 € RFXE,

ﬁ{] = [J1,---,Jk] € R™*k j. canonical vector of class C,.
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As n,p — oo, in operator norm, HL’ — L'|| =3 0, where

i) {

f(m)
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Theorem (Random Matrix Equivalent)

As n,p — 0o, in operator norm, ‘ L' — L'|| % 0, where
. ! 1
[T A {—PWTWP + UBUT} +alr)In
f(r) Lp

and T = %trCO, W = [wi,...,wn] € RP*™ (z; = po +w;), P =1, — %1n11'

U= {LJ,cb,w} € RX(2k+4)

VP
T (58 _ (7
Bu = 1ke” ()
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5f/(r) _ f(r)

57~ 270 O1xk 570 T 2P
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Random Matrix Equivalent

Some consequences:
» [/isa spiked model: UBUT seen as low rank perturbation of %PWTWP

> If f/(1) =0
> L’ asymptotically deterministic!
» only t and T' can be discriminated upon

> If f7(r) =0, (e g., f(z) =) T unused

55/(r) _
> 550

= 57 ((7_) t (seemingly) unused

Further analysis:

» Determine separability condition for eigenvalues

v

Evaluate eigenvalue positions when separable

v

Evaluate eigenvector projection to canonical basis j1,..., jk

v

Evaluate fluctuation of eigenvectors.
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Isolated eigenvalues: Gaussian inputs

T
I Eigenvalues of L/ [ Eigenvalues of L./

Figure: Eigenvalues of L’ and L/, k = 3, p = 2048, n = 512, ¢; = ¢ = 1/4, c3 = 1/2,
[alj = 4805, Ca = (1 +2(a — 1)//P)Ip, f(z) = exp(—=/2).
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Theoretical Findings versus MNIST

0.2 T T T
0.15 =
0.1 e
5.1072 -
0 an | @ an | n | | n
0 10 20 30 40 50

Figure: Eigenvalues of L’ (red) and (equivalent Gaussian model) L’ (white), MNIST data,
p =784, n=192.
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Theoretical Findings versus MNIST

0.2

Figure: Eigenvalues of L’ (red) and (equivalent Gaussian model) L’ (white), MNIST data,

p =784, n=192.

T T T T
I Eigenvalues of L/
[ Eigenvalues of L/ as if Gaussian model
Mirms (00 o e | o W \ \
0 10 20 30 40
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Theoretical Findings versus MNIST

1 1
Figure: Leading four eigenvectors of D~ 2 KD~ 2 for MNIST data (red) and theoretical findings
(blue).
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Theoretical Findings versus MNIST

1 1
Figure: Leading four eigenvectors of D~ 2 KD~ 2 for MNIST data (red) and theoretical findings

(blue).

EA'A'V'L;M"NW"“A'A:A:{ =¥ : i
EY-=7 - WAV AR \ \ \ \ \ \
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Theoretical Findings versus MNIST

Eigenvector 2/Eigenvector 1 Eigenvector 3/Eigenvector 2

0.1 —

| | | | | | |
—.09 —.08 —.07 —.06 —0.1 0 0.1

Figure: 2D representation of eigenvectors of L, for the MNIST dataset. Theoretical means and 1-
and 2-standard deviations in blue. Class 1 in red, Class 2 in black, Class 3 in green.

95 /153



Further Results and Some Takeaway messages

General surprising findings:

96 /153



Further Results and Some Takeaway messages

General surprising findings:

> "“Good kernel functions” f need not be decreasing.

96 /153



Further Results and Some Takeaway messages

General surprising findings:
> "“Good kernel functions” f need not be decreasing.

> Dominant parameters in large dimensions are first three derivatives at 7.

96 /153



Further Results and Some Takeaway messages

General surprising findings:
> "“Good kernel functions” f need not be decreasing.
> Dominant parameters in large dimensions are first three derivatives at 7.

» Clustering possible despite ||z; — ;|| — 7, i.e., no first order data difference
= Breaks original intuitions and problem layout!

96

153



Further Results and Some Takeaway messages

General surprising findings:
> "“Good kernel functions” f need not be decreasing.
> Dominant parameters in large dimensions are first three derivatives at 7.

» Clustering possible despite ||z; — ;|| — 7, i.e., no first order data difference
= Breaks original intuitions and problem layout!

Further surprises. . .:

96

153



Further Results and Some Takeaway messages

General surprising findings:
> "“Good kernel functions” f need not be decreasing.
> Dominant parameters in large dimensions are first three derivatives at 7.

» Clustering possible despite ||z; — ;|| — 7, i.e., no first order data difference
= Breaks original intuitions and problem layout!

Further surprises. . .:

> For C1 = ... = Ck = I, kernel choice is irrelevant! (as long as f'(7) # 0)

96

153



Further Results and Some Takeaway messages

General surprising findings:
> "“Good kernel functions” f need not be decreasing.
> Dominant parameters in large dimensions are first three derivatives at 7.
» Clustering possible despite ||z; — ;|| — 7, i.e., no first order data difference
= Breaks original intuitions and problem layout!

Further surprises. . .:
> For C1 = ... = Ck = I, kernel choice is irrelevant! (as long as f'(7) # 0)

» Forpi=...=puxg =0and Co = (1 +7ap’%)lp, only ONE isolated
eigenvector!

96

153



Further Results and Some Takeaway messages

General surprising findings:
> "“Good kernel functions” f need not be decreasing.
> Dominant parameters in large dimensions are first three derivatives at 7.

» Clustering possible despite ||z; — ;|| — 7, i.e., no first order data difference
= Breaks original intuitions and problem layout!

Further surprises. . .:
> For C1 = ... = Ck = I, kernel choice is irrelevant! (as long as f'(7) # 0)
» Forpi=...=puxg =0and Co = (1 +7ap’%)lp, only ONE isolated
eigenvector!

> It is possible to observe irrelevant eigenvectors! (that contain only noise)

96

153



Further Results and Some Takeaway messages

General surprising findings:
> "“Good kernel functions” f need not be decreasing.
> Dominant parameters in large dimensions are first three derivatives at 7.

» Clustering possible despite ||z; — ;|| — 7, i.e., no first order data difference
= Breaks original intuitions and problem layout!

Further surprises. . .:

> For C1 = ... = Ck = I, kernel choice is irrelevant! (as long as f'(7) # 0)

» Forpi=...=puxg =0and Co = (1 +7ap’%)lp, only ONE isolated
eigenvector!

> It is possible to observe irrelevant eigenvectors! (that contain only noise)

Validity of the Results:

96

153



Further Results and Some Takeaway messages

General surprising findings:
> "“Good kernel functions” f need not be decreasing.
> Dominant parameters in large dimensions are first three derivatives at 7.

» Clustering possible despite ||z; — ;|| — 7, i.e., no first order data difference
= Breaks original intuitions and problem layout!

Further surprises. . .:
> For C1 = ... = Ck = I, kernel choice is irrelevant! (as long as f'(7) # 0)
» Forpi=...=puxg =0and Co = (1 +7ap’%)lp, only ONE isolated
eigenvector!

> It is possible to observe irrelevant eigenvectors! (that contain only noise)

Validity of the Results:

> Needs a concentration of measure assumption: |lz; — z;||? — 7.

> Invalid for heavy-tailed distributions (where ||z;|| = ||/7:izi|| needs not converge).

96

153
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General surprising findings:
> "“Good kernel functions” f need not be decreasing.
> Dominant parameters in large dimensions are first three derivatives at 7.

» Clustering possible despite ||z; — ;|| — 7, i.e., no first order data difference
= Breaks original intuitions and problem layout!

Further surprises. . .:
> For C1 = ... = Ck = I, kernel choice is irrelevant! (as long as f'(7) # 0)
» Forpi=...=puxg =0and Co = (1 +7ap’%)lp, only ONE isolated
eigenvector!

> It is possible to observe irrelevant eigenvectors! (that contain only noise)

Validity of the Results:

> Needs a concentration of measure assumption: |lz; — z;||? — 7.

> Invalid for heavy-tailed distributions (where ||z;|| = ||/7:izi|| needs not converge).

> Suprising fit between theory and practice: are images like Gaussian vectors?

> kernels extract primarily first order properties (means, covariances)
> without image processing (rotations, scale invariance), good enough features.
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Last word: the suprising case f'(7) =0...

Reminder:

Theorem (Random Matrix Equivalent)

a.s,

== 0, where

As n,p — oo, in operator norm, HL’ — L'

i= oD oy oDy gyt 4,

S
f(r)p f(r)

and T = %trCo, W = [wi,...,wn] € RPX™ (; = pg +w;), P =1y, — %lnll,

ISP
555((:)) B ;f((:))> = LD 2 IOy

B
B =M M*( oG
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2% 0, where

As n,p — oo, in operator norm, HL’ — L'

” /
1= ol Doty p o D ypyr a(r)In

f(r)p f(r)
and T = %trCo, W = [w1,...,wn] € RPX" (x; = pg +w;), P=1Ip, — 21,17,
o[ o[
N * %
T 5f/(r) ")\, v f'(7) p f(r)a(r) . 1
Bu =T+ (0400 ) o - GO+ PR,

When f/(1) — 0,
> Means M disappears = Impossible classification from means.
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Last word: the suprising case f'(7) =0...

Reminder:

Theorem (Random Matrix Equivalent)

a.s,

== 0, where

As n,p — oo, in operator norm, HL’ — L'

i = 72]"4/(7') EPVVTW/PfZ f'(1)

f(r)p f(r)

and T = %trCo, W = [wi,...,wn] € RPX™ (; = pg +w;), P =1y, — %lnll,

U= {LJ,*}, B [311 *]

UBUT 4 a(7)In

\/ﬁ * *
e (O SO o 110 p f@aln)
Bu =T+ (0400 ) o - GO+ PR,

When f/(1) — 0,
> Means M disappears = Impossible classification from means.

» More importantly: PWW TP disappears
= Asymptotic deterministic matrix equivalent!
= Perfect asymptotic clustering in theory!
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Outline

Applications

Kernel Spectral Clustering: Subspace Clustering
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Position of the Problem

Problem: Cluster large data z1,...,x, € RP based on “spanned subspaces”.
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Problem: Cluster large data z1,...,x, € RP based on “spanned subspaces”.
Method:
> Still assume z1,...,xy, belong to k classes Cq,...,Cg.

» Zero-mean Gaussian model for the data: for z; € Cy,

x; ~ N(0,Ck).

1 1
D21,1] D2
11 D1y,

R 0 B
Iz — 75 1<ij<n z T

in the regime n,p — oco.

» Performance of L = nD*%KD*% —-n , with
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Model and Reminders

Assumption 1 [Classes]. Vectors z1,...,2n € RP i.i.d. from k-class Gaussian mixture,
with z; € Ci, < z; ~ N(0,C},) (sorted by class for simplicity).

Assumption 2a [Growth Rates]. As n — oo, for each a € {1,...,k},
1. 2 —co € (0,00)
2. e — cq € (0,00)

3. LtrCy =1 and trC3Cp = O(p), with CF = Ca — C°, C° = 5 e4,C.

Theorem (Corollary of Previous Section)
Let f smooth with f'(2) # 0. Then, under Assumptions 2a,

1 D21,1T D2

_1 _1 . _ _ _
L=nD"2KD™2 —n— , with K = {f (Ilz;: —2; 1)} ,_, (@=2/llzll)

exhibits phase transition phenomenon, i.e., leading eigenvectors of L asymptotically
contain structural information about Cy,...,Cy if and only if

1 k
T= {7tngC§}
p a,b=1

has sufficiently large eigenvalues.
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The case f/(2) =0

Assumption 2b [Growth Rates]. As n — oo, for each a € {1,...,k},
L. % —co €(0,00)
2. "7“ — ¢ca € (0,00)

3. 2trCa = 1 and +-E262—04py, with CF = Ca — C°, C° = 3¢, .
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(in this regime, previous kernels clearly fail)
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The case f/'(2) =

Assumption 2b [Growth Rates]. As n — oo, for each a € {1,...,k},
1. % — ¢o € (0,00)
2. e — cq € (0,00)
3. 2trCa = L and trC3Cp = O(/p), with CF = Ca — C°, C° = Tp_; 4 C.

(in this regime, previous kernels clearly fail)

Theorem (Random Equivalent for f/(2) = 0)
Let f be smooth with f'(2) = 0 and

@) T, SO - fo) g
o] Ca o R IS T

Then, under Assumptions 2b,

.

1 0 YO 1’"“11117 *
L =POP + %tr(CaCb) » +OH”(1)

a,b=1

where ®;; = 8;24j/D [(LUILU )2 — El(z]x)) 2]
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The case f/(2) =0

3

2 [ —

1L i
A1(L)

0 | d

-2 —1.5 —1 —0.5 0

Figure: Eigenvalues of L, p = 1000, n = 2000, k = 3, ¢1 = c2 = 1/4, ¢c3 = 1/2,
5
Ci < I, + (p/8) "4 W, W], W; € RP*(®/®) of iid. N(0,1) entries, f(t) = exp(—(t — 2)?).

= No longer a Marcenko—Pastur like bulk, but rather a semi-circle bulk!
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The case f/(2) =0

Roadmap. We now need to:
> study the spectrum of &
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The case f/(2) =0

Roadmap. We now need to:
> study the spectrum of &
> study the isolated eigenvalues of £ (and the phase transition)

> retrieve information from the eigenvectors.

Theorem (Semi-circle law for @)
Let pn, = % > dx,(c)- Then, under Assumption 2b,

Nngﬂ

with p the semi-circle distribution

p(dt)

1
= 71/ (dcow? — 2)Fdt, w = lim V2=t (C°)2.
2meow pP—0o0 p
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The case f/(2) =0

3 T I
[ Eigenvalues of L
Semi-circle law
2 -
1 -
A(L)
0 | -
—2 —1.5 —1 —0.5 0

Figure: Eigenvalues of L, p = 1000, n = 2000, k = 3, ¢c1 = c2 = 1/4, ¢c3 = 1/2,
5
Ci < I, + (p/8) "4 W, W], W; € RP*(P/®) of iid. N(0,1) entries, f(t) = exp(—(t — 2)?).
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The case f/(2) =0

Denote now

p—ro0

k
T = lim {Vc‘lc"trcgcg} .
\/ﬁ a,b=1
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The case f/(2) =0

Denote now

k
szinéo{ Vc“cbtrc;cg} .
\/ﬁ a,b=1

Theorem (Isolated Eigenvalues)
Let v1 > ... > vy eigenvalues of T. Then, if \/co|vi| > w, L has an isolated
eigenvalue \; satisfying

a.s w?
Ai == pi = covi + —.
7
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The case f/(2) =0

Theorem (Isolated Eigenvectors)
For each isolated eigenpair (\;,u;) of L corresponding to (v;,v;) of T, write

k

Ja
u; = E af + olwd
T a:1 T \/m 7 1
with jo = [0} ..., 1% ..., 0L 1T, (w®)Tja = 0, supp(wf) = supp(ja), [lwf|| = 1.

Then, under Assumptions 1-2b,
a.s. 1 w?
a;loa? 285 <1 - ——2> [Uivﬁ,lb

(O_(‘,,)Q a.s, Ca W
i

and the fluctuations of u;,u;, © # j, are asymptotically uncorrelated.
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The case f/(2) =0

Eigenvector 1

Eigenvector 2

| | | | | | | | |
0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000

Figure: Leading two eigenvectors of £ (or equivalently of L) versus deterministic approximations of
af o7
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Figure: Leading two eigenvectors of £ (or equivalently of L) versus deterministic approximations of
a a
ai £of.
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The case f/(2) =0

1072

o -
~
E o
1% —
v
>
<
o
.80
[im]
—6 |- ]
| | | | |
—4 —2 0 2 4
—2
Eigenvector 1 -10

Figure: Leading two eigenvectors of £ (or equivalently of L) versus deterministic approximations of
a a
aif £of.
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Outline

Applications

Semi-supervised Learning
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Problem Statement

Context: Similar to clustering:

> Classify 1,...,zn € RP in k classes, but with labelled and unlabelled data.
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Problem Statement

Context: Similar to clustering:

> Classify 1,...,zn € RP in k classes, but with labelled and unlabelled data.

> Problem statement: (d; = [K1x];)

k
F = argming cpnxk Z ZKij(Fmdtilfl _ Fjad;_xfl)z

a=1i;

such that F;, = 6{@6%}7 for all labelled x;.

» Solution: denoting F g Rruxk F() ¢ R Xk the restriction to
unlabelled/labelled data,

—1
(u) _ D« a—1 —a a—1 (1)
F = (Lo, = DS Ky Dyt Do K Diyy ' F

where we naturally decompose

K K
K = [ EKan <z,u>}
[K<u,1> K (u,u)

D 0 .
D= [ él) D(“)} = diag {K1,}.
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Problem Statement

Using F(u).

» From F(), classification algorithm:

Classify z; in Cq, & Fijq = . max {sz}
e{
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e{

Objectives: For z; ~ N (ua,Cq), and as n,p — 0o, (ny,n; — 00 Or Ny — 00,

n; = 0(1))
» Tractable approximation (in norm) for the vectors [F(")]. ,, a =1,...,k

» Joint asymptotic behavior of [F(¥)]; .
= From which classification probability is retrieved.
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Problem Statement

Using F(u).

» From F(), classification algorithm:

Classify z; in Cq, <& Fijq = b max {sz}
e{

Objectives: For z; ~ N (ua,Cq), and as n,p — 0o, (ny,n; — 00 Or Ny — 00,

ny = O(1))
» Tractable approximation (in norm) for the vectors [F(")]. ,, a =1,...,k
» Joint asymptotic behavior of [F(¥)]; .
= From which classification probability is retrieved.

» Understanding the impact of «
= Finding optimal a choice online?
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MNIST Data Example

T T T
[F(u)]*,l (Zeros)
1.2 —
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i
0.8 —
| | |
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Index

Figure: Vectors [F(“')],,a, a =1,2,3, for 3-class MNIST data (zeros, ones, twos), n = 192,
p = 784, n;/n = 1/16, Gaussian kernel.



MNIST Data Example
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Index

Figure: Vectors [F(“)],,a, a =1,2,3, for 3-class MNIST data (zeros, ones, twos), n = 192,
p = 784, n;/n = 1/16, Gaussian kernel.
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MNIST Data Example

T T I
[F(u)]*,l (Zeros)
_— [F(u)]-,Q (Ones)
[F(u)].,3 (Twos)
1.2 |- w3 H
Sl 1 |
%
0.8 —
| | |
0 50 100 150
Index

Figure: Vectors [F(“')],,a, a =1,2,3, for 3-class MNIST data (zeros, ones, twos), n = 192,
p = 784, n;/n = 1/16, Gaussian kernel.
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Comments

Not at all what we expect!:

> Intuitively, [F(*)]; , should be close to 1 if #; € C, or 0 if x; ¢ C, (from cost
function Kij(Fi,a — j’a)Q)

> Here, strong class-wise biases

» But, more surprisingly, it still works very well !

We need to understand why...

114 /153



MNIST Data Example

1072
T T T
[F(O“)]-,l (Zeros)
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~
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0 50 100 150

Index

Figure: Centered Vectors [F<°u>].,a = [Flu) — %F(u)lkl.,';].,a, a =1,2,3, for 3-class MNIST
data (zeros, ones, twos), n = 192, p = 784, n;/n = 1/16, Gaussian kernel.
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MNIST Data Example
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Figure: Centered Vectors [F(Ou)].,a = [Flu) — %F(u)lklm-,a, a =1,2,3, for 3-class MNIST
data (zeros, ones, twos), n = 192, p = 784, n;/n = 1/16, Gaussian kernel.
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MNIST Data Example

Probability of correct classification

| | |
-1 —0.5 0 0.5 1

Index

Figure: Performance as a function of «, for 3-class MNIST data (zeros, ones, twos), n = 192,
p = 784, n;/n = 1/16, Gaussian kernel.
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Theoretical Findings

Method: We assume n;/n — ¢; € (0,1) (“numerous” labelled data setting)

> Recall that we aim at characterizing
-1
_ - -1 — —1 (1
FO) = (I, = DS K Din ) PGS K DGy FO

> A priori difficulty linked to resolvent of involved random matrix!
> Painstaking product of complex matrices.
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-1
(u) _ D« a—1 —a a—1 (1)
FO = (In, = DS Ky D3yt ) DRl K DGy F

> A priori difficulty linked to resolvent of involved random matrix!
> Painstaking product of complex matrices.

» Using Taylor expansion of K as n,p — oo, we get
T 1
Ky = f(M)ln,1n, + O (n72)
1
Dy = nf(1)In, +O(n2)

and similarly for K, 1), D).
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Theoretical Findings

Method: We assume n;/n — ¢; € (0,1) (“numerous” labelled data setting)

> Recall that we aim at characterizing

—1
(u) _ —a a—1 (1)
F = (In, = DL K D8 ) Do Koy Dy ' F

> A priori difficulty linked to resolvent of involved random matrix!
> Painstaking product of complex matrices.

» Using Taylor expansion of K as n,p — oo, we get
T 1
K = (M), 1, +O)(n72)
1
Dy = nf(1)In, +O(n2)

and similarly for K, 1), D).
> So that

l'lu Ty,

—1
1 1
(Fn = DS K DEs ) = <I"u -, O 2)>

which can be easily Taylor expanded!
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Main Results

Results:

> In the first order,

a tal7l -
F(ff — e |:v+a7“’] + o™
n vn —_——

Information is here!

where v = O(1) random vector (entry-wise) and t, = iptr Ce.

7
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Main Results

Results:

> In the first order,

a tal7l -
F(’Z) — e [U+a7”’] + o™
n vn —_——

Information is here!

where v = O(1) random vector (entry-wise) and t, = %tr Ce.
> Many consequences:
» Random non-informative bias linked to v
> Strong Impact of n; 4!
= All n; o must be equal OR F() need be scaled!

> Additional per-class bias ity 1y, : no information here
= Forces the choice P

a=0+4+ —.
VP

» Relevant information hidden in smaller order terms!
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Main Results

As a consequence of the remarks above, we take

B

o= —

VP

and define

F(u) — ﬂFz(:)

na nia
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Main Results

As a consequence of the remarks above, we take

_ B
o=
VP
and define
p(u) _ (u)
F. F .
na nia
Theorem

For x; € Cp unlabelled, we have
-Gy =0, Gy ~ N(my, %)

where my, € RF, 3, € R*** given by

Y 1 P Y 10 PR T n (1)
(mu)e = ="y Mab + Ty tabo & =y T = i tele £ Ty e B
_ G (P02 () 4/ (o %ip
(Zb)ﬂllh - p (f('r)2 f(T) ) taltaz + f(T) ([M CbM]alaz + Nay Tbal)

with t, T, M as before, Xo = Xq — ZZ 1 Bid —% X3 and By, bias independent of a.

ny
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Main Results

Corollary (Asymptotic Classification Error)
For k = 2 classes and a # b,

P(F@a > Fib ‘ x; € Cb) — Q <(7nb)b_(7nb)a> — 0.

[1,—1]Z[1, —1]7
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Main Results

Corollary (Asymptotic Classification Error)
For k = 2 classes and a # b,

P(Fi@ > Fib ‘ x; € Cb) — Q <WI—> — 0.

[1,-1]3[1, -1

Some consequences:
> non obvious choices of appropriate kernels
> non obvious choice of optimal 3 (induces a possibly beneficial bias)

> importance of n; versus ny,.
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MNIST Data Example

Simulations

Probability of correct classification

| | |
-1 —0.5 0 0.5 1

Index

Figure: Performance as a function of «, for 3-class MNIST data (zeros, ones, twos), n = 192,
p = 784, n;/n = 1/16, Gaussian kernel.
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Figure: Performance as a function of «, for 3-class MNIST data (zeros, ones, twos), n = 192,

p = 784, n;/n = 1/16, Gaussian kernel.
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MNIST Data Example

1

0.8 -

0.6 —

Probability of correct classification

| | |

-1 —0.5 0 0.5

Index

Figure: Performance as a function of «, for 2-class MNIST data (zeros, ones), n = 1
p =784, n;/n = 1/16, Gaussian kernel.
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MNIST Data Example

0.8 -

Probability of correct classification

Simulations

Theory as if Gaussian

Figure: Performance as a function of «, for 2-class MNIST data (zeros, ones), n = 1568,

p = 784, n;/n = 1/16, Gaussian kernel.
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Outline

Applications

Support Vector Machines
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Problem Statement

Classical SVM

\

LS SVM

0(17), z; € Cy

\
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Problem Statement

Context: All data are labelled, we classify the next incoming one:

> Classify z1,...,xn € RP in k = 2 classes.
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Problem Statement

Context: All data are labelled, we classify the next incoming one:
> Classify 1,...,zn € RP in k = 2 classes.

> For kernel K (z,vy) = ¢(x)T¢(y), ¢(x) € RY, find hyperplane directed by (w, b) to
“isolate each class”.

. 1 ¢
(w,b) = argmin, cgq—1 ||w]|® + o Zc(mi;w,b)
i=1

for a certain cost function ¢(z; w, b).
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Context: All data are labelled, we classify the next incoming one:

> Classify z1,...,xn € RP in k = 2 classes.

> For kernel K (z,vy) = ¢(x)T¢(y), ¢(x) € RY, find hyperplane directed by (w, b) to
“isolate each class”.

. 1 ¢
(w,b) = argmin ,cpq—1 lwl?® + - Zc(mi;w,b)
i=1

for a certain cost function ¢(z; w, b).

Solutions:
» Classical SVM:

(5w, 8) = 2y, (wT (o) +0)21)
with y; = +1 depending on class.
= Solved by quadratic programming methods.

= Analysis requires joint RMT + convex optimization tools (very interesting but
left for later...).
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Problem Statement

Context: All data are labelled, we classify the next incoming one:

> Classify z1,...,xn € RP in k = 2 classes.

> For kernel K (z,vy) = ¢(x)T¢(y), ¢(x) € RY, find hyperplane directed by (w, b) to

“isolate each class”.

. 1 ¢
(w,b) = argmin ,cpq—1 lwl?® + - Zc(mi;w,b)
i=1

for a certain cost function ¢(z; w, b).

Solutions:
» Classical SVM:
c(@isw, b) = 14y, (wTg(a;)+5)>1}
with y; = +1 depending on class.

= Solved by quadratic programming methods.

= Analysis requires joint RMT + convex optimization tools (very interesting but
left for later...).

> LS SVM:
c(@iw,b) = vef =(yi — w'd(x;) — b)”.
= Explicit solution (but not sparsel!).
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LS SVM

Since w = > ; a;¢(x;), for new datum z, decision based on (sign of)
g(z) = a K(,2)+b

with K(z;,z;) = f (%Hr, — .r]-HQ) (Mercer Conditions)
and where o € R™ and b given by

.
a=Q (I, - Inln@
1Q1Ln
_ LiQy
1701,

where Q = (K + %In)*l, y = [y:]"_,, v > 0 some parameter to set.
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and where o € R™ and b given by

.
a=Q(In— In1n@
15Q1n
_ LiQy
15,Q1y,

where Q = (K + %In)*l, y = [y:]"_,, v > 0 some parameter to set.

Objectives:
» Study behavior of g(z)
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1Q1Ln
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LS SVM

Since w = > ; a;¢(x;), for new datum z, decision based on (sign of)
g(z) = a K(,2)+b

with K(z;,z;) = f (%HTI — .r]-HQ) (Mercer Conditions)
and where o € R™ and b given by

.
a=Q (I, - Inln@
1Q1Ln
_ LiQy
1701,

where Q = (K + %In)*l, y = [y:]"_,, v > 0 some parameter to set.

Objectives:
» Study behavior of g(z)
» For x € C,, determine probability of success.

> Optimize the parameter v and the kernel K.

126
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Results

As before, z; ~ N (pa,Ca), a =1,...,k, with identical growth conditions, here for
k=2.
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Results

As before, z; ~ N (pa,Ca), a =1,...,k, with identical growth conditions, here for
k=2.

Results: As n,p — oo,
> in the first order

_ 0 Gz
g(m):%+ﬁ+ ;l)
——

Relevant terms here!

» asymptotic Gaussian behavior of G(z):

Theorem
For z € Cy, G(z) — Gy — 0, Gy ~ N (my,02), where

+2c1 - c1c27D, b=2
£(r)
p

{ —2c¢g - c1c27D, b=1
my =

D= —2f"(7)llp2 — pa||* +

(f"(r)*

(tr (Ca — C1))* + ”Tf”

tr ((CQ — 01)2)

op =8+cic3 T (- O trC2 42 (F' ()2 (w2 — 1) " Cb (2 — )
N 2(f(r))? (trolc,, N trCQCb)]
n C1 c2
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Results

Consequences:

> Strong class-size bias
= Proper threshold must depend on ng — ny.
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Results

Consequences:

>

Strong class-size bias
= Proper threshold must depend on ng — ny.

1
Natural cancellation of O(n™ 2) terms.

= Similar effect as observed in (properly normalized) kernel spectral clustering.

Choice of « asymptotically irrelevant.
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Results

Consequences:

>

Strong class-size bias
= Proper threshold must depend on ng — ny.

1
Natural cancellation of O(n™ 2) terms.

= Similar effect as observed in (properly normalized) kernel spectral clustering.

Choice of « asymptotically irrelevant.
Need to choose f/(7) < 0 and f”(7) > 0 (not the case for clustering or SSL!)
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Theory and simulations of g(x)

20 —

- - —g(z),zecCy
— — —g(z).w€Cy

Gaussian limit G 1

Gaussian limit Go

Figure: Values of g(z) for MNIST data (1's and 7's), n = 256, p = 784, standard Gaussian kernel.
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Classification performance

0.5

0.4

0.3

0.2

Classification error

0.1
[ —— Error for p = 512 I
= ©= Error for p = 1024
= Theory
0 | | W I I
—3 -2 —1 0 1 2 3

f(r)

Figure: Performance of LS-SVM, ¢o = 1/4,¢1 = c2 = 1/2,~v = 1, polynomial kernel with
f(r) =4, f'(1) =2, & € N(0,Cy), with C1 = I, [Ca];,; = 4"l
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Outline

Applications

Neural Networks: Extreme Learning Machines
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Problem Statement

General plan for the study of neural networks:
> Objective is to study performance of neural networks:
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Problem Statement

General plan for the study of neural networks:
> Objective is to study performance of neural networks:
> linear or not (linear is easy but not interesting, non-linear is hard)
from shallow to deep

recurrent or not (dynamic systems, stability considerations)
back-propagated or not (LS regression versus gradient descent approaches)

vyy

» Starting point: simple networks
> Extreme learning machines: single layer, randomly connected input, LS regressed
output.
» Echo-state networks: single interconnected layer, randomly connected input, LS
regressed output.
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Problem Statement

General plan for the study of neural networks:
> Objective is to study performance of neural networks:
> linear or not (linear is easy but not interesting, non-linear is hard)
from shallow to deep

recurrent or not (dynamic systems, stability considerations)
back-propagated or not (LS regression versus gradient descent approaches)

vvyy

» Starting point: simple networks

> Extreme learning machines: single layer, randomly connected input, LS regressed
output.

> Echo-state networks: single interconnected layer, randomly connected input, LS
regressed output.

> Deeper structures: back-propagation of error.
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Extreme Learning Machines

Context: for a learning period T'
> input vectors z1,...,x7 € RP, output scalars (or binary values) r1,...,rr € R
» n-neuron layer, randomly connected input W € R"**XP
> ridge-regressed output w € R™
» non-linear activation function o.

N neurons

O w
O
r | O
O
O
X = [z1,...,27]
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Extreme Learning Machines

Objectives: evaluate training and testing MSE performance as n,p, T — oo
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Extreme Learning Machines

Objectives: evaluate training and testing MSE performance as n,p, T — oo

> Training MSE:
1 T2
By (X,r) = Zlir = TS|

with
Y= [O'(W-Tl)a ey U(W‘ZT)]

'y 12T2+ I o
w= — — T.
7=\ 7 YT
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Extreme Learning Machines

Objectives: evaluate training and testing MSE performance as n,p, T — oo

> Training MSE:
By(X,r) = 2 lir TS|
T
with
S =[c(Wz1),...,0(Wzr)]
Lo (Ltets o B
w= T ~IT .
> Testing MSE: upon new pair (X',f') of length T',

~ N 1 ~
B (X,r; X, 7) = ?Hf —wTo(WX)|?.
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Extreme Learning Machines

Objectives: evaluate training and testing MSE performance as n,p, T — oo

> Training MSE:
1 T2
Ey(X,r) = Zlr —w' 3|

with
S =[c(Wz1),...,0(Wzr)]
Ly (Lymsyqr B
w= — — .
T T YiT
> Testing MSE: upon new pair (X',f) of length T',

~ N 1 ~
B (X,r; X, 7) = ?Hf —wTo(WX)|?.

» Optimize over ~.
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Technical Aspects

Training MSE:
> Training MSE given by

1
Ey(X,r) = ’YQTTTQgT‘

1 —1
Qy = (?ETE—O—’\/IT) )
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Technical Aspects

Training MSE:
> Training MSE given by

» Testing MSE given by

1
Ey(X,r) = ’YQTTTQgT‘

1 —1
Qy = <?2T2+~,IT) )

. 1 1 A
; = |7 = TU(WX)TEQW

2
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Technical Aspects

Training MSE:
> Training MSE given by

1
Ey(X,r) = VQ?"TQET

1 —1
= (=2 441 .
Qw (T + v T)

» Testing MSE given by

N N 1 1 N 2
Ey(X,r X, ) = = P ?U(WX)TEQ.W

» Requires first a deterministic equivalent Q«/ for Q~ with non-linear o(-).
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Technical Aspects

Training MSE:
> Training MSE given by

1
Ey(X,r) = ’YQTTTQ%“

1 —1
= (=2 441 .
Q'y (T + v T)

» Testing MSE given by

R N 1 2

. L1 N T
E,(X,mX,r)= 7 7 — ?O'(WX) Q4T

» Requires first a deterministic equivalent QA/ for Q~ with non-linear o(-).

» Then deterministic approximation of %U(WG)TEQ—yb for deterministic a, b.
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Technical Aspects

Main technical difficulty: © = c(WX) € R**7T has
> independent rows

» a highly non trivial columns dependence!
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Technical Aspects

Main technical difficulty: © = c(WX) € R**7T has
> independent rows

» a highly non trivial columns dependence!
Broken trace lemma!: for w ~ N(0,n11,), X, A deterministic of bounded norm,
T T 1 T
w XAX 'w~ —trXAX
n

BUT what about:

o(w X)Ao(XTw) ~ ?
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Technical Aspects

Updated trace lemma:

Lemma
For A deterministic and o(t) Lipschitz, w € RP with i.i.d. entries, E[w;] =0,
E[wf] = 72?2 ,
n
1 T T 1 a.s,
—o(w X)Ao(X'w) — =tr&éx A —0
T T
with

dx =F [O'(XTw)U(wTX)] .
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Technical Aspects

Updated trace lemma:

Lemma
For A deterministic and o(t) Lipschitz, w € RP with i.i.d. entries, E[w;] =0,
k1 _ m
Elw;] = nk}cz'
1 T T 1 a.s;
—o(w X)Ao(X'w) — =tr&éx A —0
T T
with

dx =F [O'(XTw)U(wTX)] .

Technique of proof:
» Use concentration of vector w

> transfer concentration by Lipschitz property through mapping w — U(wTX), ie.,
P <f (U(wTX)) —FE [f (U(wTX)>] > t) < c167°2"752

for all Lipschitz f (and beyond...), with c1,c2 > 0.
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Results

Results:

> Deterministic equivalent: as n,p, T — oo with o(t) smooth, W;; i.i.d.

E[Wi;] =0, EWE] = 5,
Qv ¢ Qy
where

1 —1
= (=22 441
Q~ (T + T)

~ n 1 -1
= I
Q~ (T1+6 X+’YT)

with § unique solution to

1
6= —trdy

-1
Oy 4T .
T (T1+6 XJ”T)
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Results

Neural Network Performances:

> Training performance:

1 32
1 _ tr(\Ifo ) _

Ey(X,r) oy =rTQy | —2——"2 Wy + Ip| Qyr.
”( ) T 71— %tr (T xQ~)2 X T v
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Results

Neural Network Performances:

> Training performance:

1 2
1 _ =tr (UxQ
By (X,7) & AYQF«TQW L”(XZ)\I/X I

= L (Ux Q)2 @

> Testing performance:

%TTQW\IJXQWT
1— 1tr(0xQ,)?

1 ¥ - ~ 1 -
X {¥tr\IIX — %tr (QW\PX,X@X,XQW) — %tl‘ (\I,X,XQ'V)\IIX,X)

N L 1. 2
E—Y(X,T;X,T‘)H% rf\I/L’XQA,rH +

where o p = 2 5@ 8, Va=Vaa, Pap=E[Lo(WA) o(WB)].
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Results

Neural Network Performances:

> Training performance:

1 32
1 _ =tr (UxQ
E,(X,r) & AYQF«TQW L”(Z)\I}X + Iy

= L (Ux Q)2 @

> Testing performance:

%TTQW\IJXQWT
1— 1tr(0xQ,)?

1 ¥ - ~ 1 -
X {¥tr\IIX — %tr (QW\PX,X@X,XQW) — %tl‘ (\I,X,XQ'V)\IIX,X)

N L 1. 2
E—Y(X,T;X,T‘)H% rf\I/L’XQA,rH +

where o p = 2 5@ 8, Va=Vaa, Pap=E[Lo(WA) o(WB)].

In the limit where n/p,n/T — oo, taking v = 2

n

T
1

E(X,r) fFQT‘T (®x +TIp) 27

. 1 2
B0 o 3t 110
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Results

Special Cases of ® 4 p:

o(t) Wij [Pa.B]ij
T T
t any ) “2a;b;
At® + Bt +C any A% 23 (2(aTb )%+ Nlas 111651 ) + M( ?)T(b?)}
+B222alb; + AB23 [(a2)7b; + o] (b2)
+ACTZ [|lag]|? + [16;11%] + C
max(t, 0) N(O, 2 oLl 11151 (zij arccos(—Zi;) + /1 — zgj)
erf(t) N(0, 1) 2 arcsin 20t
Vn+2lail12) (n+20155112)
lie>o3 N(0, %) 5 — i arccos(Z;;)
sign(t) N(O, 2 1—2 arccos(Z”)
cos(t) N(O, 2 exp (—1 [HaiHQ + [15;117]) cosh (ajbj) .

Figure: ® o p for Wj; i.i.d. zero

(@®) = [a}]}-,

_k _ aly;
20 Zi = W

mean, k-th order moments myn Ta

illl
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Test on MNIST data

100 L O O S N LALLM BRI
= N
= Erain (theory) B
f| ===~ Btest (theory) 5
| O  Birain (simulation) N
K| X Eyest (simulation)
4
i
w
(%}
= i
-
i
B
N
T A A 11 B N A I U1 A B AW WA T
1074 1073 1072 107! 100 10! 102

~

Figure: MSE performance for o(t) = t and o(t) = max(¢,0), as a function of ~, for 2-class
MNIST data (sevens, nines), n = 512, T' = 1024, p = 784.



Test on MNIST data

1 O 56! LALLM
"ﬁg‘%\s\s\ Overlapgpaip (theory)
— — — - Overlapgegt, (theory)
O Overlapg,qin (simulation)
0.98 |- X Overlapgegt (simulation)
X
o(t) = max(, 6 X x
-
s L~
§ 0.96 X « |
o < U X XX
%7 X
O ¢ .
- \
[ x T (%
0.94 /)(’ 3\ \x -
X o(t) =t N
el X
X N
’ b
’
€
0.92 T | | T I Y A I A I WU R AN NN 1] B R AR 1T
10~ 1073 1072 107! 10° 10! 102
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Figure: Overlap performance for o(t) = t and o(t) = max(t, 0), as a function of ~y, for 2-class
MNIST data (sevens, nines), n = 512, T' = 1024, p = 784.
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Next Investigations

Interpretations and Improvements:
> General formulas for ®x, ®x

» On-line optimization of v, o(), n?
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Next Investigations

Interpretations and Improvements:
» General formulas for ®x, ®x 4

» On-line optimization of v, o(), n?

Generalizations:
> Multi-layer ELM?
» Optimize layers vs. number of neurons?
» Backpropagation error analysis?
» Connection to auto-encoders?

> Introduction of non-linearity to more involved structures (ESN, deep nets?).

143 /153



Outline

Basics of Random Matrix Theory
Motivation: Large Sample Covariance Matrices
The Stieltjes Transform Method
Spiked Models
Other Common Random Matrix Models

Applications
Random Matrices and Robust Estimation
Spectral Clustering Methods and Random Matrices
Community Detection on Graphs
Kernel Spectral Clustering
Kernel Spectral Clustering: Subspace Clustering
Semi-supervised Learning
Support Vector Machines
Neural Networks: Extreme Learning Machines

Perspectives
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Summary of Results and Perspectives |

Robust statistics.
v Tyler, Maronna (and regularized) estimators
v Elliptical data setting, deterministic outlier setting
v/ Central limit theorem extensions
@ Joint mean and covariance robust estimation

Q Study of robust regression (preliminary works exist already using strikingly
different approaches)

Applications.
v Statistical finance (portfolio estimation)
v Localisation in array processing (robust GMUSIC)

v/ Detectors in space time array processing
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Kernel methods.
v/ Subspace spectral clustering
v Subspace spectral clustering for f/(7) =0
@, Spectral clustering with outer product kernel f(zTy)
v/ Semi-supervised learning, kernel approaches.
v Least square support vector machines (LS-SVM).
% Support vector machines (SVM).

Applications.
v Massive MIMO user clustering

References.

@ N. El Karoui, “The spectrum of kernel random matrices”, The Annals of Statistics, 38(1),
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Community detection.
v/ Complete study of eigenvector contents in adjacency/modularity methods.
@ Study of Bethe Hessian approach for the DCSBM model.

@ Analysis of non-necessarily spectral approaches (wavelet approaches).

References.
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Neural Networks.
v Non-linear extreme learning machines (ELM)
% Multi-layer ELM
Q Backpropagation in ELM
% Random convolutional networks for image processing
v Linear echo-state networks (ESN)
Q Non-linear ESN
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Sparse PCA
v/ Spike random matrix sparse PCA
% Sparse kernel PCA

References.

R. Couillet, M. McKay, "“Optimal block-sparse PCA for high dimensional correlated samples”,
(submitted to) Journal of Multivariate Analysis, 2016.

Signal processing on graphs, distributed optimization, etc.
Q Turning signal processing on graph methods random.

Q@ Random matrix analysis of diffusion networks performance.
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The End
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