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R. Couillet (Supélec) Random Matrix Theory for Signal Processing Applications 22/05/2011 1 / 102



Outline

1 Tools for Random Matrix Theory
Classical Random Matrix Theory
Introduction to Large Dimensional Random Matrix Theory
The Random Matrix Pioneers
The Moment Approach and Free Probability
Introduction of the Stieltjes Transform
Properties of the Asymptotic Support and Spiked Models
Summary of what we know and what is left to be done

2 Random Matrix Theory and Signal Source Sensing
Small Dimensional Analysis
Large Dimensional Random Matrix Analysis

3 Random Matrix Theory and Multi-Source Power Estimation
Optimal detector
The moment method
The Stieltjes transform method

4 Random Matrix Theory and Failure Detection in Complex Systems
Random matrix models of local failures in sensor networks
Failure detection and localization
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Tools for Random Matrix Theory Classical Random Matrix Theory

Definitions

Random Matrix

A random matrix is a matrix X ∈ CN×n with random entries Xij following a given probability
distribution.

In many problems (with symmetrical structures), interest is on:
eigenvalue distribution
eigenvector projections.

Pioneering works due to Wishart on matrices

XXH

with Xij ∼ CN (0, 1)
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Tools for Random Matrix Theory Classical Random Matrix Theory

Wishart matrices

J. Wishart, “The generalized product moment distribution in samples from a normal multivariate
population”, Biometrika, vol. 20A, pp. 32-52, 1928.

Wishart describes the distribution of Rn = XXH =
∑n

i=1 xi xH
i , xi ∈ CN ∼ CN (0,R),

PRn (B) =
πN(N−1)/2

det Rn
∏N

i=1(n − i)!
e− tr(R−1B) det Bn−N

Joint and marginal eigenvalue distributions:

P(λi )
(λ1, . . . , λN ) =

det({e−r−1
j λi }N )

∆(R−1)
∆(L)

N∏
j=1

λn−N
j

j!(n − j)!

with r1 ≥ . . . ≥ rN the eigenvalues of R and L = diag(λ1 ≥ . . . ≥ λN ) and

pλ(λ) =
1
M

N−1∑
k=0

k!

(k + n − N)!
[Ln−N

k ]2λn−Ne−λ

where Lk
n are the Laguerre polynomials

Lk
n(λ) =

eλ

k!λn

dk

dλk
(e−λλn+k ).
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Tools for Random Matrix Theory Classical Random Matrix Theory

Extension to more generic matrices

T. Ratnarajah and R. Vaillancourt and M. Alvo, “Eigenvalues and condition numbers of complex
random matrices,” SIAM Journal on Matrix Analysis and Applications, vol. 26, no. 2, pp. 441-456,
2005.

Extensions to:
correlated Gaussian involve heavy tools (Schur polynomials)
non-Gaussian is virtually impossible!

Solution is to assume increasing matrix dimensions: N, n→∞
deterministic limiting behaviour is often observed
loose assumptions on entry distributions (e.g. rotational symmetry, independent entries)
robust framework for very generic models are known:

Stieltjes transform methods (more efficient than Fourier transform)
moments/free probability methods (extension of classical probability for non-commutative variables)
physical methods for large systems (replica method)

This tutorial will introduce the major used methods but concentrates on the powerful Stieltjes
transform method.
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Tools for Random Matrix Theory Introduction to Large Dimensional Random Matrix Theory

Large dimensional data

Let w1,w2 . . . ∈ CN be independently drawn from an N-variate process of mean zero and
covariance R = E[w1wH

1 ] ∈ CN×N .

Law of large numbers

As n→∞,
1
n

n∑
i=1

wi wH
i = WWH a.s.−→ R

In reality, one cannot afford n→∞.

if n� N,

Rn =
1
n

n∑
i=1

wi wH
i

is a “good” estimate of R.

if N/n = O(1), and if both (n,N) are large, we can still say, for all (i, j),

(Rn)ij
a.s.−→ (R)ij

What about the global behaviour? What about the eigenvalue distribution?
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Tools for Random Matrix Theory Introduction to Large Dimensional Random Matrix Theory

Empirical and limit spectra of Wishart matrices
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Figure: Histogram of the eigenvalues of Rn for n = 2000, N = 500, R = IN
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Tools for Random Matrix Theory Introduction to Large Dimensional Random Matrix Theory

The Marc̆enko-Pastur Law
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Figure: Marc̆enko-Pastur law for different limit ratios c = lim N/n.
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Tools for Random Matrix Theory Introduction to Large Dimensional Random Matrix Theory

The Marc̆enko-Pastur law

Let W ∈ CN×n have i.i.d. elements, of zero mean and variance 1/n.
Eigenvalues of the matrix

n


 WH


︸ ︷︷ ︸

N


W


when N, n→∞ with N/n→ c IS NOT IDENTITY!

Remark: If the entries are Gaussian, the matrix is called a Wishart matrix with n degrees of
freedom. The exact distribution is known in the finite case.
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Tools for Random Matrix Theory Introduction to Large Dimensional Random Matrix Theory

Deriving the Marc̆enko-Pastur law

We wish to determine the density fc(λ) of the asymptotic law, defined by

fc(λ) = lim
N→∞
n→∞

N/n→c

N∑
i=1

δ (λ− λi (Rn))

With N/n→ c, the moments of this distribution are given by

MN
1 =

1
N

tr Rn =
1
N

N∑
i=1

λi (Rn)→
∫
λfc(λ)dλ = 1

MN
2 =

1
N

tr R2
n =

1
N

N∑
i=1

λi (Rn)2 →
∫
λ2fc(λ)dλ = 1 + c

MN
3 =

1
N

tr R3
n =

1
N

N∑
i=1

λi (Rn)3 →
∫
λ3fc(λ)dλ = c2 + 3c + 1

· · · = · · ·

These moments correspond to a unique distribution function (under mild assumptions), which
has density the Marc̆enko-Pastur law

f (x) = (1−
1
c

)+δ(x) +

√
(x − a)+(b − x)+

2πcx
, with a = (1−

√
c)2, b = (1 +

√
c)2.
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Tools for Random Matrix Theory The Random Matrix Pioneers

Wigner and semi-circle law

Schrödinger’s equation
HΦi = EiΦi

where Φi is the wave function,
Ei is the energy level,
H is the Hamiltonian.

Magnetic interactions between the spins of electrons
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Tools for Random Matrix Theory The Random Matrix Pioneers

The birth of large dimensional random matrix theory

Eugene Paul Wigner, 1902-1995
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Tools for Random Matrix Theory The Random Matrix Pioneers

The birth of large dimensional random matrix theory

E. Wigner, “Characteristic vectors of bordered matrices with infinite dimensions,” The annals of
mathematics, vol. 62, pp. 546-564, 1955.

XN =
1
√

N



0 +1 +1 +1 −1 −1 · · ·
+1 0 −1 +1 +1 +1 · · ·
+1 −1 0 +1 +1 +1 · · ·
+1 +1 +1 0 +1 +1 · · ·
−1 +1 +1 +1 0 −1 · · ·
−1 +1 +1 +1 −1 0 · · ·
...

...
...

...
...

...
. . .


As the matrix dimension increases, what can we say about the eigenvalues (energy levels)?
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Tools for Random Matrix Theory The Random Matrix Pioneers

Semi-circle law, Full circle law...

If XN ∈ CN×N is Hermitian with i.i.d. entries of mean 0, variance 1/N above the diagonal,
then F XN

a.s.−→ F where F has density f the semi-circle law

f (x) =
1

2π

√
(4− x2)+

Shown from the method of moments

lim
N→∞

1
N

tr X2k
N =

1
k + 1

C2k
k

which are exactly the moments of f (x)!

If XN ∈ CN×N has i.i.d. 0 mean, variance 1/N entries, then asymptotically its complex
eigenvalues distribute uniformly on the complex unit circle.

R. Couillet (Supélec) Random Matrix Theory for Signal Processing Applications 22/05/2011 18 / 102



Tools for Random Matrix Theory The Random Matrix Pioneers

Semi-circle law, Full circle law...

If XN ∈ CN×N is Hermitian with i.i.d. entries of mean 0, variance 1/N above the diagonal,
then F XN

a.s.−→ F where F has density f the semi-circle law

f (x) =
1

2π

√
(4− x2)+

Shown from the method of moments

lim
N→∞

1
N

tr X2k
N =

1
k + 1

C2k
k

which are exactly the moments of f (x)!

If XN ∈ CN×N has i.i.d. 0 mean, variance 1/N entries, then asymptotically its complex
eigenvalues distribute uniformly on the complex unit circle.
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Tools for Random Matrix Theory The Random Matrix Pioneers

Semi-circle law
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Figure: Histogram of the eigenvalues of Wigner matrices and the semi-circle law, for N = 500
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Tools for Random Matrix Theory The Random Matrix Pioneers

Circular law
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Figure: Eigenvalues of XN with i.i.d. standard Gaussian entries, for N = 500.
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Tools for Random Matrix Theory The Random Matrix Pioneers

More involved matrix models

much study has surrounded the Marc̆enko-Pastur law, the Wigner semi-circle law etc.
for practical purposes, we often need more general matrix models

products and sums of random matrices
i.i.d. models with correlation/variance profile
distribution of inverses etc.

for these models, it is often impossible to have a closed-form expression of the limiting
distribution.

sometimes we do not have a limiting convergence.

To study these models, the method of moments is not enough!
A consistent powerful mathematical framework is required.
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Tools for Random Matrix Theory The Moment Approach and Free Probability
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R. Couillet (Supélec) Random Matrix Theory for Signal Processing Applications 22/05/2011 22 / 102



Tools for Random Matrix Theory The Moment Approach and Free Probability

Eigenvalue distribution and moments

The Hermitian matrix RN ∈ CN×N has successive empirical moments MN
k , k = 1, 2, . . .,

MN
k =

1
N

N∑
i=1

λk
i

In classical probability theory, for A, B independent,

ck (A + B) = ck (A) + ck (B)

with ck (X) the cumulants of X . The cumulants ck are connected to the moments mk by,

mk =
∑

π∈P(k)

∏
V∈π

c|V |

A natural extension of classical probability for non-commutative random variables exist, called

Free Probability
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with ck (X) the cumulants of X . The cumulants ck are connected to the moments mk by,

mk =
∑

π∈P(k)

∏
V∈π

c|V |

A natural extension of classical probability for non-commutative random variables exist, called

Free Probability
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Tools for Random Matrix Theory The Moment Approach and Free Probability

Free probability

Free probability applies to asymptotically large random matrices. We denote the moments without
superscript.

To connect the moments of A + B to those of A and B, independence is not enough. A and B
must be asymptotically free,

two Gaussian matrices are free
a Gaussian matrix and any deterministic matrix are free
unitary (Haar distributed) matrices are free
a Haar matrix and a Gaussian matrix are free etc.

Similarly as in classical probability, we define free cumulants Ck ,

C1 = M1

C2 = M2 −M2
1

C3 = M3 − 3M1M2 + 2M2
1

R. Speicher, “Combinatorial theory of the free product with amalgamation and operator-valued
free probability theory,” Mem. A.M.S., vol. 627, 1998.

Combinatorial description by non-crossing partitions,

Mn =
∑

π∈NC(n)

∏
V∈π

C|V |
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Non-crossing partitions

1

2

3

4

5

6

7

8

Figure: Non-crossing partition π = {{1, 3, 4}, {2}, {5, 6, 7}, {8}} of NC(8).
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Moments of sums and products of random matrices

Combinatorial calculus of all moments

Theorem

For free random matrices A and B, we have the relationship,

Ck (A + B) = Ck (A) + Ck (B)

Mn(AB) =
∑

(π1,π2)∈NC(n)

∏
V1∈π1
V2∈π2

C|V1|(A)C|V2|(B)

in conjunction with free moment-cumulant formula, gives all moments of sum and product.

Theorem

If F is a compactly supported distribution function, then F is determined by its moments.

In the absence of support compactness, some conditions (e.g. Carleman) have to be
checked. This is in particular the case of Vandermonde matrices.
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Tools for Random Matrix Theory The Moment Approach and Free Probability

Free convolution

In classical probability theory, for independent A, B,

µA+B(x) = µA(x) ∗ µB(x)
∆
=

∫
µA(t)µB(x − t)dt

In free probability, for free A, B, we use the notations

µA+B = µA � µB, µA = µA+B � µB, µAB = µA � µB, µA = µA+B � µB

Ø. Ryan, M. Debbah, “Multiplicative free convolution and information-plus-noise type matrices,”
Arxiv preprint math.PR/0702342, 2007.

Theorem

Convolution of the information-plus-noise model Let WN ∈ CN×n have i.i.d. Gaussian entries of
mean 0 and variance 1, AN ∈ CN×n, such that µ 1

n AN AH
N
⇒ µA, as n/N → c. Then the eigenvalue

distribution of
BN =

1
n

(AN + σWN ) (AN + σWN )H

converges weakly and almost surely to µB such that

µB =
(
(µA � µc) � δσ2

)
� µc

with µc the Marc̆enko-Pastur law with ratio c.
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Similarities between classical and free probability

Classical Probability Free probability

Moments mk =

∫
xk dF (x) Mk =

∫
xk dF (x)

Cumulants mn =
∑

π∈P(n)

∏
V∈π

c|V | Mn =
∑

π∈NC(n)

∏
V∈π

C|V |

Independence classical independence freeness
Additive convolution fA+B = fA ∗ fB µA+B = µA � µB

Multiplicative convolution fAB µAB = µA � µB
Sum Rule ck (A + B) = ck (A) + ck (B) Ck (A + B) = Ck (A) + Ck (B)

Central Limit
1
√

n

n∑
i=1

xi → N (0, 1)
1
√

n

n∑
i=1

Xi ⇒ semi-circle law
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Outline

1 Tools for Random Matrix Theory
Classical Random Matrix Theory
Introduction to Large Dimensional Random Matrix Theory
The Random Matrix Pioneers
The Moment Approach and Free Probability
Introduction of the Stieltjes Transform
Properties of the Asymptotic Support and Spiked Models
Summary of what we know and what is left to be done

2 Random Matrix Theory and Signal Source Sensing
Small Dimensional Analysis
Large Dimensional Random Matrix Analysis

3 Random Matrix Theory and Multi-Source Power Estimation
Optimal detector
The moment method
The Stieltjes transform method

4 Random Matrix Theory and Failure Detection in Complex Systems
Random matrix models of local failures in sensor networks
Failure detection and localization
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The Stieltjes transform

Definition

Let F be a real distribution function. The Stieltjes transform mF of F is the function defined, for
z ∈ C \ R, as

mF (z) =

∫
1

λ− z
dF (λ)

For a < b real, denoting z = x + iy , we have the inverse formula

F ′(x) = lim
y→0

1
π
=[mF (x + iy)]

Knowing the Stieltjes transform is knowing the eigenvalue distribution!
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Tools for Random Matrix Theory Introduction of the Stieltjes Transform

Remark on the Stieltjes transform

If F is the eigenvalue distribution of a Hermitian matrix XN ∈ CN×N , we might denote

mX
∆
=mF , and

mX(z) =

∫
1

λ− z
dF (λ) =

1
N

tr (XN − zIN )−1

For compactly supported eigenvalue distribution,

mF (z) = −
1
z

∫
1

1− λ
z

= −
∞∑

k=0

MN
k z−k−1

The Stieltjes transform is doubly more powerful than the moment approach!
conveys more information than any K -finite sequence M1, . . . ,MK .

is not handicapped by the support compactness constraint.

however, Stieltjes transform methods, while stronger, are more painful to work with.
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Stieltjes transform proof of the Marc̆enko-Pastur law

We wish to prove that the spectrum of XXH, X ∈ CN×n, with entries CN (0, 1/n) tends to the
MP law.
From a matrix inversion lemma[

(XXH − zIN )−1
]

11
=

1
−z − zyH(YHY− zIn)−1y

with XH =
[
y YH

]
.

From the trace lemma

yH(YHY− zIn)−1y '
1
n

tr(YHY− zIn)−1

for all large n.
From the rank-1 perturbation lemma,

1
n

tr(YHY− zIn)−1 '
1
n

tr(XHX− zIn)−1.

Since the spectrum of XXH is the same as that of XHX but for some zeros

1
n

tr(XHX− zIn)−1 =
1
n

tr(XXH − zIN )−1 +
N − n

n
1
z
.

Replacing and summing over all diagonal components,

1
N

tr
(

XXH − zIN
)−1

'
1

1− N
n − z − z N

n
1
N tr

(
XXH − zIN

)−1
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Stieltjes transform proof of the Marc̆enko-Pastur law (2)

This is a second order polynomial of the type

mF (z) =
1

1− c − z − zcmF (z)

with solution

mF (z) =
1− c
2cz

−
1
2c
−
√

(1− c − z)2 − 4cz
2cz

Using the Stieltjes inversion formula

f (x)
∆
=F ′(x) = lim

y→0

1
π
=[mF (x + iy)]

we finally obtain

f (x) = (1− c−1)+δ(x) +
1

2πcx

√
(x − a)+(b − x)+

with a = (1−
√

c)2, b = (1 +
√

c)2, of support [a, b].
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Other asymptotic results using the Stieltjes transform

J. W. Silverstein, Z. D. Bai, “On the empirical distribution of eigenvalues of a class of large
dimensional random matrices,” Journal of Multivariate Analysis, vol. 54, no. 2, pp. 175-192, 1995.

Theorem

Let BN = XNTNXH
N ∈ CN×N , XN ∈ CN×n has i.i.d. entries of mean 0 and variance 1/N,

F TN ⇒ F T , n/N → c. Then, F BN ⇒ F almost surely, F having Stieltjes transform

mF (z) =

(
c
∫

t
1 + tmF (z)

dF T (t)− z

)−1

=

[
1
N

tr TN
(
mF (z)TN + IN

)−1 − z
]−1

which has a unique solution mF (z) ∈ C+ if z ∈ C+, and mF (z) > 0 if z < 0.

in general, no explicit expression for F .

Stieltjes transform of BN = T
1
2
N XH

NXNT
1
2
N with asymptotic distribution F ,

mF = cmF + (c − 1)
1
z

Spectrum of the sample covariance matrix model BN =
∑n

i=1 xi xH
i , with XH

N = [x1, . . . , xn], xi i.i.d.
with zero mean and covariance TN = E[x1xH

1 ].
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Getting F ′ from mF

Remember that
f (x)

∆
=F ′(x) = lim

y→0

1
π
=[mF (x + iy)]

to plot the density f (x), span z = x + iy on the line {x ∈ R, y = ε} parallel but close to the
real axis, solve mF (z) for each z, and plot =[mF (z)].

Example (Sample covariance matrix)

For N multiple of 3, let dF T (x) = 1
3 δ(x − 1) + 1

3 δ(x − 3) + 1
3 δ(x − K ) and let BN = T

1
2
N XH

NXNT
1
2
N

with F BN → F , then

mF = cmF + (c − 1)
1
z

mF (z) =

(
c
∫

t
1 + tmF (z)

dF T (t)− z

)−1

We take c = 1/10 and alternatively K = 7 and K = 4.
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t
1 + tmF (z)

dF T (t)− z

)−1

We take c = 1/10 and alternatively K = 7 and K = 4.
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Figure: Histogram of the eigenvalues of BN = T
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N XN T
1
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N , N = 3000, n = 300, with TN diagonal composed of

three evenly weighted masses in (i) 1, 3 and 7 on top, (ii) 1, 3 and 4 at bottom.
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The Shannon Transform

A. M. Tulino, S. Verdù, “Random matrix theory and wireless communications,” Now Publishers Inc.,
2004.

Definition

Let F be a probability distribution, mF its Stieltjes transform, then the Shannon-transform VF of F
is defined as

VF (x)
∆
=

∫ ∞
0

log(1 + xλ)dF (λ) =

∫ ∞
x

(
1
t
−mF (−t)

)
dt

If F is the distribution function of the eigenvalues of XXH ∈ CN×N ,

VF (x) =
1
N

log det
(

IN + xXXH
)
.

Note that this last relation is fundamental to wireless communication purposes!
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R. Couillet (Supélec) Random Matrix Theory for Signal Processing Applications 22/05/2011 39 / 102



Tools for Random Matrix Theory Properties of the Asymptotic Support and Spiked Models

No eigenvalues outside the support!

Z. Bai, J. Silverstein, “No eigenvalues outside the support of the limiting spectral distribution of
large-dimensional sample covariance matrices,” Annals of Prob., vol. 26, no.1 pp. 316-345, 1998.

We showed that the eigenvalue distribution F BN of BN = XTXH, F TN ⇒ F T :
is similar to a deterministic FN
sometimes converges WEAKLY to F with Supp(F ) made of compact sets.

There is more:

0.1 1 3 10
0

0.025

0.05

0.075

0.1

Eigenvalues of XTXH

D
en

si
ty

Eigenvalues of BN = XTXH

Limiting spectrum of BN

For all N0, there is no eigenvalue of BN outside Supp(F ) ∪
⋃

N≥N0
Supp(FN ), for all large N.
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The spiked model

For T composed of finitely many eigenvalues with large multiplicities (e.g. T = IN ), no
eigenvalue of BN outside Supp(F ).
If, for r fixed, T is a rank-r perturbation of IN ,

diag( 1, . . . , 1︸ ︷︷ ︸
multiplicity (N−r)

, 1 + ω1, . . . , 1 + ωr )

then, depending on whether ωi >
√

N/n,

1 + ω1 + c
1+ω1
ω1

,1 + ω2 + c
1+ω2
ω2
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Empirical Eigenvalues
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Marc̆enko-Pastur law, c = 5/4

Empirical Eigenvalues

Figure: Eigenvalues of BN = T
1
2 XXHT

1
2 , T diagonal of 1’s but for the last four entries set to {3, 3, 2, 2}. On

top, N = 500, n = 1500. At bottom, N = 500, n = 400. Theoretical limit eigenvalues of BN are stressed.
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Limits for the spiked models

J. Baik and J. W. Silverstein, “Eigenvalues of large sample covariance matrices of spiked
population models,” Journal of Multivariate Analysis, vol. 97, no. 6, pp. 1382-1408, 2006.
D. Paul, “Asymptotics of sample eigenstructure for a large dimensional spiked covariance model,”
Statistica Sinica, vol. 17, no. 4, pp. 1617, 2007.

Assume T as above with:
ω1 > · · · > ωr > 0 the population spikes
u1, . . . , ur ∈ CN , the associated population eigenvectors
λ̂1 > . . . > λ̂r the largest eigenvalues of BN
û1, . . . , ûr the associated sample eigenvalues

Then, with lim N/n = c, we have the first order limits:

λ̂k
a.s.−→

{
1 + ωk + c 1+ωk

ωk
, ωk >

√
c

(1 +
√

c)2 , ωk ≤
√

c
.

|û∗k uk |2
a.s.−→


1−cω−2

k
1+cω−1

k
, ωk >

√
c

0 , ωk ≤
√

c
.
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Second order limits for the spiked models

I. M. Johnstone, “On the distribution of the largest eigenvalue in principal components analysis,”
Annals of Statistics, vol. 99, no. 2, pp. 295-327, 2001.
J. Baik and G. Ben Arous and S. Péché, “Phase transition of the largest eigenvalue for non-null
complex sample covariance matrices,” The Annals of Prob., vol. 33, no. 5, pp. 1643-1697, 2005.
R. Couillet and W. Hachem, “Local failure detection and identification in large sensor networks,”
submitted to IEEE Transaction on Information Theory, 2011.

As well as the second order limits in the Gaussian case:
If ωk >

√
c

√
N

 |u∗k ûk |2 −
[

1−cω−2
k

1+cω−1
k

]
λ̂k −

[
1 + ωk + c 1+ωk

ωk

]
⇒ CN

0,


c2(1+ωk )2

(c+ωk )2(ω2
k−c)

(
c (1+ωk )2

(c+ωk )2 + 1
)

(1+ωk )3c2

(ωk +c)2ωk
(1+ωk )3c2

(ωk +c)2ωk

c(1+ωk )2(ω2
k−c)

ω2
k




If ωk <
√

c

N
2
3
λ̂k − (1 +

√
c)2

(1 +
√

c)
4
3
√

c
⇒ T2

with T2 the complex Tracy-Widom distribution.
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Second order statistics, ωk <
√

c
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Figure: Distribution of N
2
3 c−

1
2 (1 +

√
c)−

4
3
[
λ̂k − (1 +

√
c)2
]

against the Tracy-Widom law for N = 500,

n = 1500, c = 1/3, T = diag(1, . . . , 1, 1.5) (0.5 <
√

c). Empirical distribution taken over 10, 000 Monte-Carlo
simulations.
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Second order statistics, ωk >
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Figure: Empirical and theoretical distribution of the fluctuations of û1 if X has i.i.d. CN (0, 1/n) entries,
N/n = 1/8, N = 64, ω1 = 1 (left) or ω1 = 0.5 (right).
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Models studied with analytic tools

Stieltjes transform: models involving i.i.d. matrices

sample covariance matrix models, XTXH and T
1
2 XHXT

1
2

doubly correlated models, R
1
2 XTXHR

1
2 . With X Gaussian, Kronecker model.

doubly correlated models with external matrix, R
1
2 XTXHR

1
2 + A.

variance profile, XXH, where X has i.i.d. entries with mean 0, variance σ2
i,j .

Ricean channels, XXH + A, where X has a variance profile.

sum of doubly correlated i.i.d. matrices,
∑K

k=1 R
1
2
k Xk Tk XH

k R
1
2
k .

information-plus-noise models (X + A)(X + A)H

frequency-selective doubly-correlated channels (
∑K

k=1 R
1
2
k Xk Tk Xk R

1
2
k )(
∑K

k=1 R
1
2
k Xk Tk Xk R

1
2
k )

sum of frequency-selective doubly-correlated channels
∑K

k=1 R
1
2
k Hk Tk HH

k R
1
2
k , where

Hk =
∑L

l=1 R′kl
1
2 Xkl T′kl X

H
kl R
′
kl

1
2 .

R- and S-transforms: models involving a column subset W of unitary matrices

doubly correlated Haar matrix R
1
2 WTWHR

1
2

sum of simply correlated Haar matrices
∑K

k=1 Wk Tk WH
k

In most cases, T and R can be taken random, but independent of X. More involved random
matrices, such as Vandermonde matrices, were not yet studied.
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Models studied with moments/free probability

asymptotic results
most of the above models with Gaussian X.
products V1VH

1 T1V2VH
2 T2... of Vandermonde and deterministic matrices

conjecture: any probability space of matrices invariant to row or column permutations.

marginal studies, not yet fully explored
rectangular free convolution: singular values of rectangular matrices
finite size models. Instead of almost sure convergence of mXN as N →∞, we can study finite size
behaviour of E[mXN ].
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Random Matrix Theory and Signal Source Sensing Small Dimensional Analysis

Problem formulation

Assume the scenario of
an hypothetical signal source

√
Px ∈ Cn of power P

a transfer channel H ∈ CN×n

a sensor network of n sensors
additive noise σw ∈ CN of variance σ2IN .

We consider the following hypothesis test

y(m) =

{
σw(m) , (H0)√

PHx(m) + σw(m) , (H1)

We wish to confront the hypotheses H0 and H1 given the data matrix
Y , [y(1), . . . , y(M)] ∈ CN×M .

We consider, in a Bayesian framework, the Neyman-Pearson test ratio

C(Y)
∆
=

PH1|Y,I(Y)

PH0|Y,I(Y)

with prior information I on H, x(m), σ, . . ..
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Random Matrix Theory and Signal Source Sensing Small Dimensional Analysis

A Bayesian framework for cognitive radios

We assume prior statistical and deterministic knowledge I on H, σ,P
Using the maximum entropy principle (MaxEnt), a prior P(H,σ,P)(H, σ,P) can be derived

PY|Hi ,I(Y) =

∫
(H,σ,P)

PY|Hi ,I,H,σ,P(Y)P(H,σ,P)(H, σ,P)d(H, σ,P)

In the following,
we derive the case P = 1, σ known and the knowledge about H conveys unitary invariance

E[tr HHH] known: this is what we assume here;
E[HHH] = Q unknown but such that E[tr Q] is known;
rank(HHH) known.

we compare alternative methods when P = 1 and σ are unknown.
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Random Matrix Theory and Signal Source Sensing Small Dimensional Analysis

Evaluation of PY|Hi ,I(Y)

by MaxEnt, X, W are standard Gaussian matrix with Xij ,Wij ∼ CN (0, 1).
Under H0:

Y = σW

PY|H0,I(Y) =
1

(πσ2)NM
e−

1
σ2 tr YYH

.

Under H1:

Y =
[√

PH σIN
] [X

W

]
PY|H1

(Y) =

∫
Σ≥0

PY|Σ,H1
(Y,Σ)PΣ(Σ)dΣ

with Σ = E[y(1)y(1)H] = HHH + σ2IN .
From unitary invariance of H, denoting Σ = UGUH, diag(G) = (g1, . . . , gn, σ2, . . . , σ2)

PY|H1
(Y) =

∫
U(N)×(σ2,∞)n

PY|UGUH,H1
(Y,U,G)PU(U)P(g1,...,gn)(g1, . . . , gn)dUdg1 . . . dgn

where
PY|UGUH,H1

is Gaussian with zero mean and variance UGUH;

PU is a constant (dU is a Haar measure);

if H is Gaussian, P
(g1−σ2,...,gn−σ2)

is the joint eigenvalue distribution of a central Wishart;
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Random Matrix Theory and Signal Source Sensing Small Dimensional Analysis

Result in the Gaussian case, n = 1

R. Couillet, M. Debbah, “A Bayesian Framework for Collaborative Multi-Source Signal Sensing”,
IEEE Transactions on Signal Processing, vol. 58, no. 10, pp. 5186-5195, 2010.

Theorem (Neyman-Pearson test)

The ratio C(Y) when the receiver knows n = 1, P = 1, E[ 1
N tr HHH] = 1 and σ2, reads

C(Y) =
1
N

N∑
l=1

σ2(N+M−1)eσ
2+

λl
σ2∏N

i=1
i 6=l

(λl − λi )
JN−M−1(σ2, λl )

with λ1, . . . , λN the eigenvalues of YYH and where

Jk (x , y) ,
∫ +∞

x
tk e−t− y

t dt .

non trivial dependency on λ1, . . . , λN

contrary to energy detector,
∑

i λi is not a sufficient statistic;

integration over σ2 (or P when P 6= 1) is difficult.
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Random Matrix Theory and Signal Source Sensing Small Dimensional Analysis

Comparison to energy detector
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Figure: ROC curve for single-source detection, K = 1, N = 4, M = 8, SNR = −3 dB, FAR range of practical
interest, with signal power P = 0 dBm, either known or unknown at the receiver.
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Random Matrix Theory and Signal Source Sensing Large Dimensional Random Matrix Analysis

Outline

1 Tools for Random Matrix Theory
Classical Random Matrix Theory
Introduction to Large Dimensional Random Matrix Theory
The Random Matrix Pioneers
The Moment Approach and Free Probability
Introduction of the Stieltjes Transform
Properties of the Asymptotic Support and Spiked Models
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Random matrix models of local failures in sensor networks
Failure detection and localization
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Random Matrix Theory and Signal Source Sensing Large Dimensional Random Matrix Analysis

Reminder: the Marc̆enko-Pastur Law

If H0, then the eigenvalues of 1
N YYH = σ2 1

N WWH asymptotically distribute as
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√
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√
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Figure: Marc̆enko-Pastur law with c = lim N/L.
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Random Matrix Theory and Signal Source Sensing Large Dimensional Random Matrix Analysis

Alternative Tests in Large Random Matrix Theory

Reminder:

Theorem

P(no eigenvalues outside [σ2(1−
√

c)2, σ2(1 +
√

c)2] for all large N) = 1

If H0,
λmax( 1

N YYH)

λmin( 1
N YYH)

a.s.−→
(1 +

√
c)2

(1−
√

c)2

independent of the SNR!
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Random Matrix Theory and Signal Source Sensing Large Dimensional Random Matrix Analysis

Conditioning Number Test

L. S. Cardoso, M. Debbah, P. Bianchi, J. Najim, “Cooperative spectrum sensing using random
matrix theory,” International Symposium on Wireless Pervasive Computing, Santorini, Greece,
2008.

Conditioning number test

Ccond(Y) =
λmax( 1

N YYH)

λmin( 1
N YYH)

if Ccond(Y) > τ , presence of a signal.

if Ccond(Y) < τ , absence of signal.

but this is ad-hoc! how good does it compare to optimal?

can we find non ad-hoc approaches?

R. Couillet (Supélec) Random Matrix Theory for Signal Processing Applications 22/05/2011 61 / 102



Random Matrix Theory and Signal Source Sensing Large Dimensional Random Matrix Analysis

Conditioning Number Test

L. S. Cardoso, M. Debbah, P. Bianchi, J. Najim, “Cooperative spectrum sensing using random
matrix theory,” International Symposium on Wireless Pervasive Computing, Santorini, Greece,
2008.

Conditioning number test

Ccond(Y) =
λmax( 1

N YYH)

λmin( 1
N YYH)

if Ccond(Y) > τ , presence of a signal.

if Ccond(Y) < τ , absence of signal.

but this is ad-hoc! how good does it compare to optimal?

can we find non ad-hoc approaches?
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Random Matrix Theory and Signal Source Sensing Large Dimensional Random Matrix Analysis

Generalized Likelihood Ratio Test

Bianchi, J. Najim, M. Maida, M. Debbah, “Performance of Some Eigen-based Hypothesis Tests for
Collaborative Sensing,” Proceedings of IEEE Statistical Signal Processing Workshop, 2009.

Generalized Likelihood Ratio Test

Alternative test to Neyman-Pearson test,

CGLRT(Y) =
supH,σ2 PH1|Y,H,σ2 (Y)

supσ2 PH0|Y,σ2 (Y)

based on ratios of maximum likelihood

clearly sub-optimal but avoid the need for priors.

GLRT test

CGLRT(Y) =

(1−
1
N

)N−1 λmax( 1
N YYH)

1
N
∑N

i=1 λi

(
1−

λmax( 1
N YYH)∑N

i=1 λi

)N−1
−L

.

Contrary to the ad-hoc conditioning number test, GLRT based on

λmax
1
N tr(YYH)
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Neyman-Pearson Test against Asymptotic Tests

1 · 10−3 5 · 10−3 1 · 10−2 2 · 10−2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

False alarm rate

C
or

re
ct

de
te

ct
io

n
ra

te

Bayesian, Jeffreys

Bayesian, uniform

Cond. number

GLRT

Figure: ROC curve for a priori unknown σ2 of the Bayesian method, conditioning number method and GLRT
method, M = 1, N = 4, L = 8, SNR = 0 dB. For the Bayesian method, both uniform and Jeffreys prior, with
exponent α = 1, are provided.
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Application Context: Coverage range in Femtocells
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Problem Statement

We now consider the model

y(m) =
K∑

k=1

√
Pk Hk x(m)

k + σw(m)

and wish to infer P1, . . . ,PK .

With Y = [y(1), . . . , y(M)], this can be rewritten

Y =
K∑

k=1

√
Pk Hk Xk + σW =

[√
P1H1 · · ·

√
PK HK

]︸ ︷︷ ︸
,HP

1
2

X1
...

XK


︸ ︷︷ ︸
,X

+σW =
[
HP

1
2 σIN

] [X
W

]
.

If H, (XT WT) are unitarily invariant, Y is unitarily invariant.

Most information about P1, . . . ,PK is contained in the eigenvalues of BN ,
1
M YYH.
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From small to large system analysis
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Eigenvalues of BN = 1
M YYH

The classical approach requires to evaluate PP1,...,PK |Y

assuming Gaussian parameters, this is similar to previous calculus

leads to a very involved expression

prohibitively expensive to evaluate even for small N, nk , M
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Limiting spectrum of BN

Assuming dimensions N, nk ,M grow large, large dimensional random matrix theory provides
a link between:

the “observation”: the limiting spectral distribution (l.s.d.) of BN ;
the “hidden parameters”: the powers P1, . . . ,PK , i.e. the l.s.d. of P.

consistent estimators of the hidden parameters.
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Optimal ML/MMSE estimators

R. Couillet and M. Guillaud, “Performance of Statistical Inference Methods for the Energy
Estimation of Multiple Sources,” Invited Paper, IEEE International Communications Conference,
Nice, France, 2011.

conditional probability

Theorem

Assume P1, . . . ,PK have multiplicity n1 = . . . = nK = 1. Then, denoting λ = (λ1, . . . , λN ) the
eigenvalues of BN

PY|P1,...,PK
(Y) =

C(−1)Nn+1e
Nσ2 ∑n

i=1
1
Pi

σ2(N−n)(M−n)
∏n

i=1 Pi
M−n+1∆(P)

∑
a∈SN

n

(−1)|a|sgn(a)e
M
σ2 |λ[ā]|

×
∆(diag(λ[ā]))

∆(diag(λ))

∑
b∈Sn

sgn(b)
n∏

i=1

JN−M−1

(
Nσ2

Pbi

,
NMλai

Pbi

)
.

ML/MMSE estimators

P̂
(ML)

= arg max
P1,...,PK

PY|P1,...,PK
(Y)

P̂
(MMSE)

=

∫
[0,∞)K

(P1, . . . ,PK )PP1,...,PK |Y(P1, . . . ,PK )dP1 . . . dPK
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Reminder on free deconvolution

Free probability provides tools to compute

pk =
1
K

K∑
i=1

λ(P)k =
1
K

K∑
i=1

Pk
i

as a function of

bk =
1
N

N∑
i=1

λ(
1
M

YYH)k

One can obtain all the successive sum powers of P1, . . . ,PK .
From that, we can infer on the values of each Pk !
The tools come from the relations,

cumulant to moment (and also moment to cumulant),

Mn =
∑

π∈NC(n)

∏
V∈π

C|V|

Sums of cumulants for asymptotically free A and B (of measure µA � µB ),

Ck (A + B) = Ck (A) + Ck (B)

Products of cumulants for asymptotically free A and B (of measure µA � µB ),

Mn(AB) =
∑

(π1,π2)∈NC(n)

∏
V1∈π1
V2∈π2

C|V1|(A)C|V2|(B)

Moments of information plus noise models BN = 1
n (AN + σWN ) (AN + σWN )H,

µB =
(

(µA � µc)� δ
σ2
)
� µc

with µc the Marc̆enko-Pastur law with ratio c.
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R. Couillet (Supélec) Random Matrix Theory for Signal Processing Applications 22/05/2011 71 / 102



Random Matrix Theory and Multi-Source Power Estimation The moment method

Reminder on free deconvolution

Free probability provides tools to compute

pk =
1
K

K∑
i=1

λ(P)k =
1
K

K∑
i=1

Pk
i

as a function of

bk =
1
N

N∑
i=1

λ(
1
M

YYH)k

One can obtain all the successive sum powers of P1, . . . ,PK .
From that, we can infer on the values of each Pk !
The tools come from the relations,

cumulant to moment (and also moment to cumulant),

Mn =
∑

π∈NC(n)

∏
V∈π

C|V|

Sums of cumulants for asymptotically free A and B (of measure µA � µB ),

Ck (A + B) = Ck (A) + Ck (B)

Products of cumulants for asymptotically free A and B (of measure µA � µB ),

Mn(AB) =
∑

(π1,π2)∈NC(n)

∏
V1∈π1
V2∈π2

C|V1|(A)C|V2|(B)

Moments of information plus noise models BN = 1
n (AN + σWN ) (AN + σWN )H,

µB =
(

(µA � µc)� δ
σ2
)
� µc

with µc the Marc̆enko-Pastur law with ratio c.
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Random Matrix Theory and Multi-Source Power Estimation The moment method

Free deconvolution approach

one can deconvolve YYH in three steps,

an information-plus-noise model with “deterministic matrix” HP
1
2 XXHP

1
2 HH,

YYH = (HP
1
2 X + σW)(HP

1
2 X + σW)H

from HP
1
2 XXHP

1
2 HH, up to a Gram matrix commutation, we can deconvolve the signal X,

P
1
2 HHHP

1
2 XXH

from P
1
2 HHHP

1
2 , a new matrix commutation allows one to deconvolve HHH

PHHH
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Random Matrix Theory and Multi-Source Power Estimation The moment method

Free deconvolution approach

In terms of distributions

µ∞
1
M HP

1
2 XXHP

1
2 HH

=
((
µ∞BN

� µ 1
c

)
� δσ2

)
� µ 1

c

µ∞
P

1
2 HHHP

1
2

= µ∞
1
M P

1
2 HHHP

1
2 XXH

� µ 1
cc0

µ∞P = µ∞PHHH � µ 1
c0

Numerically, with bm , 1
N E
[
tr Bm

N

]
and pm ,

∑K
k=1

nk
n Pm

k

b1 = N−1np1 + 1

b2 =
(

N−2M−1n + N−1n
)

p2 +
(

N−2n2 + N−1M−1n2) p1
2 +

(
2N−1n + 2M−1n

)
p1 +

(
1 + NM−1)

b3 =
(

3N−3M−2n + N−3n + 6N−2M−1n + N−1M−2n + N−1n
)

p3

+
(

6N−3M−1n2 + 6N−2M−2n2 + 3N−2n2 + 3N−1M−1n2) p2p1

+
(

N−3M−2n3 + N−3n3 + 3N−2M−1n3 + N−1M−2n3) p1
3

+
(

6N−2M−1n + 6N−1M−2n + 3N−1n + 3M−1n
)

p2

+
(

3N−2M−2n2 + 3N−2n2 + 9N−1M−1n2 + 3M−2n2) p1
2

+
(

3N−1M−2n + 3N−1n + 9M−1n + 3NM−2n
)

p1.
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Random Matrix Theory and Multi-Source Power Estimation The moment method

Newton-Girard inversion

Once the pm
i are obtained, in the particular case n1 = . . . = nK , Newton-Girard formulas give

P1, . . . ,PK as the solutions of

X K − Π1X K−1 + Π2X K−2 − . . .+ (−1)K ΠK = 0

with Π1, . . . ,Πn recursively computed from

(−1)K K ΠK +
K∑

i=1

(−1)K +i pi ΠK−i = 0.

fast method but with major limitations!
polynomial solutions can be purely complex
moment estimates propagate errors to higher order moments (2nd estimate 103 worse than 1st!)
modifying Newton-Girard formulas boils down to ad-hoc methods...
ML and MMSE methods are prohibitively expensive.

R. Couillet (Supélec) Random Matrix Theory for Signal Processing Applications 22/05/2011 74 / 102



Random Matrix Theory and Multi-Source Power Estimation The moment method

Newton-Girard inversion

Once the pm
i are obtained, in the particular case n1 = . . . = nK , Newton-Girard formulas give

P1, . . . ,PK as the solutions of

X K − Π1X K−1 + Π2X K−2 − . . .+ (−1)K ΠK = 0

with Π1, . . . ,Πn recursively computed from

(−1)K K ΠK +
K∑

i=1

(−1)K +i pi ΠK−i = 0.

fast method but with major limitations!
polynomial solutions can be purely complex
moment estimates propagate errors to higher order moments (2nd estimate 103 worse than 1st!)
modifying Newton-Girard formulas boils down to ad-hoc methods...
ML and MMSE methods are prohibitively expensive.
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Outline

1 Tools for Random Matrix Theory
Classical Random Matrix Theory
Introduction to Large Dimensional Random Matrix Theory
The Random Matrix Pioneers
The Moment Approach and Free Probability
Introduction of the Stieltjes Transform
Properties of the Asymptotic Support and Spiked Models
Summary of what we know and what is left to be done

2 Random Matrix Theory and Signal Source Sensing
Small Dimensional Analysis
Large Dimensional Random Matrix Analysis

3 Random Matrix Theory and Multi-Source Power Estimation
Optimal detector
The moment method
The Stieltjes transform method

4 Random Matrix Theory and Failure Detection in Complex Systems
Random matrix models of local failures in sensor networks
Failure detection and localization
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Limiting spectrum of the sample covariance matrix

Recall the model

Y =
[
HP

1
2 σIN

] [X
W

]
very similar to a sample covariance matrix.

for simplicity of analysis, consider the sample covariance matrix model

Y∆
=T

1
2 X ∈ CN×n, BN =

1
n

YYH ∈ CN×N , BN =
1
n

YHY ∈ Cn×n

where T ∈ CN×N has eigenvalues t1, . . . , tK , tk with multiplicity Nk and X ∈ CN×n is i.i.d. zero
mean, variance 1.

If F T ⇒ T , then mFBN (z) = mBN (z)
a.s.−→ mF (z) such that

mF (z) =

(
c
∫

t
1 + tmF (z)

dT (t)− z

)−1

⇔ mT
(
−1/mF (z)

)
= −zmF (z)mF (z)

with mF (z) = cmF (z) + (c − 1) 1
z and N/n→ c.

R. Couillet (Supélec) Random Matrix Theory for Signal Processing Applications 22/05/2011 76 / 102



Random Matrix Theory and Multi-Source Power Estimation The Stieltjes transform method

Limiting spectrum of the sample covariance matrix

Recall the model

Y =
[
HP

1
2 σIN

] [X
W

]
very similar to a sample covariance matrix.

for simplicity of analysis, consider the sample covariance matrix model

Y∆
=T

1
2 X ∈ CN×n, BN =

1
n

YYH ∈ CN×N , BN =
1
n

YHY ∈ Cn×n

where T ∈ CN×N has eigenvalues t1, . . . , tK , tk with multiplicity Nk and X ∈ CN×n is i.i.d. zero
mean, variance 1.

If F T ⇒ T , then mFBN (z) = mBN (z)
a.s.−→ mF (z) such that

mF (z) =

(
c
∫

t
1 + tmF (z)

dT (t)− z

)−1

⇔ mT
(
−1/mF (z)

)
= −zmF (z)mF (z)

with mF (z) = cmF (z) + (c − 1) 1
z and N/n→ c.
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Complex integration

From Cauchy integral formula, with Ck a contour enclosing only tk (negatively oriented),

tk =
1

2πi

∮
Ck

ω

tk − ω
dω =

1
2πi

∮
Ck

1
Nk

K∑
j=1

Nj
ω

tj − ω
dω =

N
2πiNk

∮
Ck

ωmT (ω)dω.

After the variable change ω = −1/mF (z),

tk =
N
Nk

1
2πi

∮
CF,k

zmF (z)
m′F (z)

m2
F (z)

dz,

When the system dimensions are large,

mF (z) ' mBN (z)
∆
=

1
N

N∑
k=1

1
λk − z

, with (λ1, . . . , λN ) = eig(BN ) = eig(
1
n

YYH).

Dominated convergence arguments then show

tk − t̂k
a.s.−→ 0 with t̂k =

N
Nk

1
2πi

∮
CF,k

zmBN (z)
m′BN

(z)

m2
BN

(z)
dz.
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Where does the contour go?

Intuition:
mF (z) is defined outside the support of F

on the real axis, m′F (z) =
∫ 1

(t−z)2 dF (t) > 0

it therefore has a local growing inverse outside the support of F

notice that mF (z) has a closed-form inverse

zF (m) = −
1
m

+ c
∫

t
1 + tm

dT (t)

It can be shown that zF (m), m < 0, is growing if and only if its image is outside the support of F .
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Inverse formula for the Stieltjes transform

−1 − 1
3 − 1

7
0

1

3

7

m

z F
(m

)

zF (m), m ∈ B

Support of F

Figure: zF (m), with F the l.s.d. of BN = XH
N TN XN with TN diagonal composed of three evenly weighted masses

in 1, 3 and 7. The support of F is read on the vertical axis, whenever xF (m) is not increasing.
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Playing with the asymptotes. . .

denote x−k , x+
k two points on either side of cluster k in F such that x−k = zF (m−k ) and

x+
k = zF (m+

k ).

from the asymptotes, we observe that

tk−1 < −
1

m−k
< tk < −

1
m+

k

< tk+1

we can therefore take a contour CF ,k that crosses the real line at − 1
m−k

and at − 1
m+

k
and is

outside the real line everywhere else.
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Termination

X. Mestre, “Improved estimation of eigenvalues and eigenvectors of covariance matrices using
their sample estimates,” IEEE trans. on Information Theory, vol. 54, no. 11, pp. 5113-5129, 2008.

If remains to compute the integral from residue calculus.

t̂k =
N
Nk

1
2πi

∮
CF,k

zmBN (z)
m′BN

(z)

m2
BN

(z)
dz.

From exact separation (Bai and Silverstein, 1998), CF ,k encloses exactly the “expected”
eigenvalues, almost surely for all large N.

The integral gives the estimator

t̂k =
n

Nk

∑
m∈Nk

(λm − µm)

with Nk the indexes of cluster k and µ1 ≤ . . . ≤ µN are the ordered eigenvalues of the matrix
diag(λ)− 1

n

√
λ
√
λ

T
, λ = (λ1, . . . , λN )T.
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Application to the current model

R. Couillet, J. W. Silverstein, Z. Bai, M. Debbah, “Eigen-Inference for Energy Estimation of Multiple
Sources,” IEEE Trans. on Inf. Theory, vol. 57, no. 4, pp. 2420-2439, 2011.

Extending Y with zeros, our model is a “double sample covariance matrix”

Y︸︷︷︸
(N+n)×M

=

[
HP

1
2 σIN

0 0

]
︸ ︷︷ ︸

(N+n)×(N+n)

[
X
W

]
︸︷︷︸

(N+n)×M

.

Limiting distribution of 1
M YYH

Theorem (l.s.d. of BN )

Let BN = 1
M YYH with eigenvalues λ1, . . . , λN . Denote mBN

(z)
∆
= 1

M
∑M

k=1
1

λk−z , with λi = 0 for
i > N. Then, for M/N → c, N/nk → ck , N/n→ c0, for any z ∈ C+,

mBN
(z)

a.s.−→ mF (z)

with mF (z) the unique solution in C+ of

1
mF (z)

= −σ2 +
1

f (z)

[
c0 − 1

c0
+ mP

(
−

1
f (z)

)]
, with f (z) = (c − 1)mF (z)− czmF (z)2.
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Application to the current model (2)

R. Couillet, J. W. Silverstein, Z. Bai, M. Debbah, “Eigen-Inference for Energy Estimation of Multiple
Sources,” IEEE Trans. on Inf. Theory, vol. 57, no. 4, pp. 2420-2439, 2011.

estimator calculus

Theorem (Estimator of P1, . . . ,PK )

Let BN ∈ CN×N be defined as above and λ = (λ1, . . . , λN ), λ1 < . . . < λN . Assume that
asymptotic cluster separability condition is fulfilled for some k. Then, as N, n, M →∞,

P̂k − Pk
a.s.−→ 0,

where

P̂k =
NM

nk (M − N)

∑
i∈Nk

(ηi − µi )

with Nk the set indexing the eigenvalues in cluster k of F , η1 < . . . < ηN the eigenvalues of
diag(λ)− 1

N

√
λ
√
λ

T
and µ1 < . . . < µN the eigenvalues of diag(λ)− 1

M

√
λ
√
λ

T
.
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Remarks

solution is computationally simple, explicit, and the final formula compact.
cluster separability condition is fundamental. This requires

for all other parameters fixed, the Pk cannot be too close to one another: source separation problem.
for all other parameters fixed, σ2 must be kept low: low SNR undecidability problem.
for all other parameters fixed, M/N cannot be too low: sample deficiency issue (not such an issue
though).
for all other parameters fixed, N/n cannot be too low: diversity issue.

exact spectrum separability is an essential ingredient (known for very few models to this day).
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Stieltjes transform method vs. optimum
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Opt. MMSE 0.1239 0.1278

Stieltjes 0.1514 0.1332

Figure: Distribution function for the detection of two power sources, P1 = 1, P2 = 4, n1 = n2 = 1,M = N = 16.
Optimum against Stieltjes transform method.
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Stieltjes transform method vs. conventional method
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Figure: Histogram of the cluster-mean approach and of P̂k for k ∈ {1, 2, 3}, P1 = 1/16, P2 = 1/4, P3 = 1,
n1 = n2 = n3 = 4 antennas per user, N = 24 sensors, M = 128 samples and SNR = 20 dB.
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Performance comparison
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Figure: Normalized mean square error of largest estimated power P̂3, P1 = 1/16,P2 = 1/4,P3 = 1,
n1 = n2 = n3 = 4 ,N = 24, M = 128. Comparison between classical, moment and Stieltjes transform
approaches.
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Node failure detection in sensor networks

Consider the model
y = Hθ + σw

with H ∈ CN×p deterministic, θ ∼ CN (0, Ip), w ∼ CN (0, IN ).

In particular E[y] = 0 and E[yyH] = R∆
=HHH + σ2IN

With s = R−
1
2 y,

E[ssH] = IN .

Upon failure of sensor k , y becomes

y′ = (IN − ek eH
k )Hθ + σk ek e∗kθ

′ + σw

for some noise variance σ2
k .

Now E[y′] = 0 and

E[y′y′H] = (IN − ek eH
k )HHH(IN − ek eH

k ) + σ2
k ek eH

k + σ2IN .

With now s = R−
1
2 y′,

E[ssH] = IN + Pk

with

Pk = −R−
1
2 HHHek eH

k R−
1
2 + R−

1
2 ek

[
(eH

k HHHek + σ2
k )eH

k R−
1
2 − eH

k HHHR−
1
2

]
of rank-2 (image of Pk in Span(R−

1
2 ek ,R−

1
2 HHHek ))
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Sudden parameter change detection in sensor networks

Upon sudden change of parameter θk ,

y′ = H(Ip + αk ek e∗k )θ + µk Hek + σw

Then
E[y′y′H] = H(Ip + [µ2

k + (1 + αk )2 − 1]ek eH
k )HH + σ2IN .

With R = HHH + σ2IN and s = R−
1
2 y′,

E[ssH] = IN + Pk

with
Pk = [µ2

k + (1 + αk )2 − 1]R−
1
2 Hek eH

k HHR−
1
2 .
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Classical approach

With K the number of failure scenarios, hypothesis test between:
no failure
failure of type 1
. . .
failure of type K

Maximum-likelihood approach computationally constraining!

calculus cost ' O(N3K )

which is
calculus cost ' O(N3+m)

for m simultaneous node failures detection.

Ad-hoc approaches/PCA can reduce this amount

We propose here a “maximum-likelihood-type” method in

one SVD + O(K )
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Failure detection and identification

R. Couillet and W. Hachem, “Local failure detection and identification in large sensor networks,”
submitted to IEEE Transaction on Information Theory, 2011.

Upon reception of S = [s1, . . . , sn],
Failure detection based on hypothesis test

H0: no failure
H̄0: failure

If H̄0 is decided, multi-hypothesis test

Hk = “failure of type k ”

Detection test on largest eigenvalue λ̂1 of 1
n SSH: for a false alarm rate η,

λ̂′1
H0
≶
H̄0

(T2)−1(1− η)

with

λ̂′1 = N
2
3
λ̂1 − (1 +

√
cN )2

(1 +
√

cN )
4
3 c

1
2
N

and T2 the complex Tracy-Widom distribution.
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Failure localization

For localization, eigenvalues are poor statistics

Denote, in case of failure of type k

E[ssH] = IN + ωk uk,1uH
k,1

(rank-1 perturbation for simplicity)

We use the eigenvector û1 corresponding to λ1, and

|ûH
1 uk,1|2

a.s.−→ ξ(ωk ) > 0

for k the failure index.

With the CLT on |ûH
1 uk,1|2 − ξ(ωk ), we have the estimator

k? = arg max
1≤k≤K

f
(√

N(|ûH
1 uk,1|2 − ξ(ωk ));σ2

k

)
with f the Gaussian density.
Test can be reinforced by including

projection statistics on other vectors
statistics of eigenvalues
take the joint probability over multiple spikes.

Further generalizations are possible assuming unknown failure amplitude.
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1 uk,1|2 − ξ(ωk ));σ2

k

)
with f the Gaussian density.
Test can be reinforced by including

projection statistics on other vectors
statistics of eigenvalues
take the joint probability over multiple spikes.

Further generalizations are possible assuming unknown failure amplitude.
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R. Couillet (Supélec) Random Matrix Theory for Signal Processing Applications 22/05/2011 97 / 102



Random Matrix Theory and Failure Detection in Complex Systems Failure detection and localization

Performance results
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Figure: Correct detection (CDR) and localization (CLR) rates for different false alarm rates (FAR) and different n,
worst case node failure in a 100-node network.
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R. Couillet (Supélec) Random Matrix Theory for Signal Processing Applications 22/05/2011 100 / 102



Random Matrix Theory and Failure Detection in Complex Systems Failure detection and localization

Coming up soon...
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