Random Matrix Advances in Machine Learning and Neural Nets (EUSIPCO'2018, Rome, Italy)

Romain COUILLET, Zhenyu LIAO, Xiaoyi MAI

CentraleSupélec, L2S, University of ParisSaclay, France GSTATS IDEX DataScience Chair, GIPSA-lab, University Grenoble-Alpes, France.

September 3rd, 2018

CentraleSupélec

Outline

Basics of Random Matrix Theory (Romain COUILLET)
Motivation: Large Sample Covariance Matrices
The Stieltjes Transform Method
Spiked Models
Other Common Random Matrix Models
Applications

Applications to Machine Learning (Xiaoyi MAI)

Applications to Random Projections and Neural Networks (Zhenyu LIAO)
Random Projections-based Ridge Regression
Random Projections-based Spectral Clustering
Random Matrix Analysis for Learning Dynamics of Neural Networks

Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)

Outline

```
Basics of Random Matrix Theory (Romain COUILLET)
    Motivation: Large Sample Covariance Matrices
    The Stieltjes Transform Method
    Spiked Models
    Other Common Random Matrix Models
    Applications
Applications to Machine Learning (Xiaoyi MAI)
Applications to Random Projections and Neural Networks (Zhenyu LIAO)
    Random Projections-based Ridge Regression
    Random Projections-based Spectral Clustering
    Random Matrix Analysis for Learning Dynamics of Neural Networks
Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)
```


Outline

```
Basics of Random Matrix Theory (Romain COUILLET)
    Motivation: Large Sample Covariance Matrices
    The Stieltjes Transform Method
    Spiked Models
    Other Common Random Matrix Models
    Applications
Applications to Machine Learning (Xiaoyi MAI)
Applications to Random Projections and Neural Networks (Zhenyu LIAO)
    Random Projections-based Ridge Regression
    Random Projections-based Spectral Clustering
    Random Matrix Analysis for Learning Dynamics of Neural Networks
Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)
```


Context

Baseline scenario: $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}\left(\right.$ or $\left.\mathbb{C}^{p}\right)$ i.i.d. with $E\left[x_{1}\right]=0, E\left[x_{1} x_{1}^{\top}\right]=C_{p}$:

Context

Baseline scenario: $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ (or \mathbb{C}^{p}) i.i.d. with $E\left[x_{1}\right]=0, E\left[x_{1} x_{1}^{\top}\right]=C_{p}$:

- If $x_{1} \sim \mathcal{N}\left(0, C_{p}\right), \mathrm{ML}$ estimator for C_{p} is the sample covariance matrix (SCM)

$$
\hat{C}_{p}=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\top}
$$

Context

Baseline scenario: $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}\left(\right.$ or $\left.\mathbb{C}^{p}\right)$ i.i.d. with $E\left[x_{1}\right]=0, E\left[x_{1} x_{1}^{\top}\right]=C_{p}$:

- If $x_{1} \sim \mathcal{N}\left(0, C_{p}\right), \mathrm{ML}$ estimator for C_{p} is the sample covariance matrix (SCM)

$$
\hat{C}_{p}=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\top}
$$

- If $n \rightarrow \infty$, then, strong law of large numbers

$$
\hat{C}_{p} \xrightarrow{\text { a.s. }} C_{p} .
$$

or equivalently, in spectral norm

$$
\left\|\hat{C}_{p}-C_{p}\right\| \xrightarrow{\text { a.s. }} 0 .
$$

Context

Baseline scenario: $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}\left(\right.$ or $\left.\mathbb{C}^{p}\right)$ i.i.d. with $E\left[x_{1}\right]=0, E\left[x_{1} x_{1}^{\top}\right]=C_{p}$:

- If $x_{1} \sim \mathcal{N}\left(0, C_{p}\right), \mathrm{ML}$ estimator for C_{p} is the sample covariance matrix (SCM)

$$
\hat{C}_{p}=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\top}
$$

- If $n \rightarrow \infty$, then, strong law of large numbers

$$
\hat{C}_{p} \xrightarrow{\text { a.s. }} C_{p} .
$$

or equivalently, in spectral norm

$$
\left\|\hat{C}_{p}-C_{p}\right\| \xrightarrow{\text { a.s. }} 0 .
$$

Random Matrix Regime

- No longer valid if $p, n \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$,

$$
\left\|\hat{C}_{p}-C_{p}\right\| \nrightarrow 0
$$

Context

Baseline scenario: $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}\left(\right.$ or $\left.\mathbb{C}^{p}\right)$ i.i.d. with $E\left[x_{1}\right]=0, E\left[x_{1} x_{1}^{\top}\right]=C_{p}$:

- If $x_{1} \sim \mathcal{N}\left(0, C_{p}\right), \mathrm{ML}$ estimator for C_{p} is the sample covariance matrix (SCM)

$$
\hat{C}_{p}=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\top}
$$

- If $n \rightarrow \infty$, then, strong law of large numbers

$$
\hat{C}_{p} \xrightarrow{\text { a.s. }} C_{p} .
$$

or equivalently, in spectral norm

$$
\left\|\hat{C}_{p}-C_{p}\right\| \xrightarrow{\text { a.s. }} 0 .
$$

Random Matrix Regime

- No longer valid if $p, n \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$,

$$
\left\|\hat{C}_{p}-C_{p}\right\| \nrightarrow 0
$$

- For practical p, n with $p \simeq n$, leads to dramatically wrong conclusions

Context

Baseline scenario: $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}\left(\right.$ or $\left.\mathbb{C}^{p}\right)$ i.i.d. with $E\left[x_{1}\right]=0, E\left[x_{1} x_{1}^{\top}\right]=C_{p}$:

- If $x_{1} \sim \mathcal{N}\left(0, C_{p}\right), \mathrm{ML}$ estimator for C_{p} is the sample covariance matrix (SCM)

$$
\hat{C}_{p}=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\top}
$$

- If $n \rightarrow \infty$, then, strong law of large numbers

$$
\hat{C}_{p} \xrightarrow{\text { a.s. }} C_{p} .
$$

or equivalently, in spectral norm

$$
\left\|\hat{C}_{p}-C_{p}\right\| \xrightarrow{\text { a.s. }} 0 .
$$

Random Matrix Regime

- No longer valid if $p, n \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$,

$$
\left\|\hat{C}_{p}-C_{p}\right\| \nrightarrow 0
$$

- For practical p, n with $p \simeq n$, leads to dramatically wrong conclusions
- Even for $n=100 \times p$.

The Large Dimensional Fallacies

Setting: $x_{i} \in \mathbb{R}^{p}$ i.i.d., $x_{1} \sim \mathcal{C N}\left(0, I_{p}\right)$

The Large Dimensional Fallacies

Setting: $x_{i} \in \mathbb{R}^{p}$ i.i.d., $x_{1} \sim \mathcal{C N}\left(0, I_{p}\right)$

- assume $p=p(n)$ such that $p / n \rightarrow c>1$

The Large Dimensional Fallacies

Setting: $x_{i} \in \mathbb{R}^{p}$ i.i.d., $x_{1} \sim \mathcal{C N}\left(0, I_{p}\right)$

- assume $p=p(n)$ such that $p / n \rightarrow c>1$
- then, joint point-wise convergence

$$
\max _{1 \leq i, j \leq p}\left|\left[\hat{C}_{p}-I_{p}\right]_{i j}\right|=\max _{1 \leq i, j \leq p}\left|\frac{1}{n} X_{j,} X_{i, .}^{\top}-\delta_{i j}\right| \xrightarrow{\text { a.s. }} 0 .
$$

The Large Dimensional Fallacies

Setting: $x_{i} \in \mathbb{R}^{p}$ i.i.d., $x_{1} \sim \mathcal{C N}\left(0, I_{p}\right)$

- assume $p=p(n)$ such that $p / n \rightarrow c>1$
- then, joint point-wise convergence

$$
\max _{1 \leq i, j \leq p}\left|\left[\hat{C}_{p}-I_{p}\right]_{i j}\right|=\max _{1 \leq i, j \leq p}\left|\frac{1}{n} X_{j,} X_{i, .}^{\top}-\boldsymbol{\delta}_{i j}\right| \xrightarrow{\text { a.s. }} 0 .
$$

- however, eigenvalue mismatch

$$
\begin{gathered}
0=\lambda_{1}\left(\hat{C}_{p}\right)=\ldots=\lambda_{p-n}\left(\hat{C}_{p}\right) \leq \lambda_{p-n+1}\left(\hat{C}_{p}\right) \leq \ldots \leq \lambda_{p}\left(\hat{C}_{p}\right) \\
1=\lambda_{1}\left(I_{p}\right)=\ldots=\lambda_{p-n}\left(I_{p}\right)=\lambda_{p-n+1}\left(\hat{C}_{p}\right)=\ldots=\lambda_{p}\left(I_{p}\right)
\end{gathered}
$$

The Large Dimensional Fallacies

Setting: $x_{i} \in \mathbb{R}^{p}$ i.i.d., $x_{1} \sim \mathcal{C N}\left(0, I_{p}\right)$

- assume $p=p(n)$ such that $p / n \rightarrow c>1$
- then, joint point-wise convergence

$$
\max _{1 \leq i, j \leq p}\left|\left[\hat{C}_{p}-I_{p}\right]_{i j}\right|=\max _{1 \leq i, j \leq p}\left|\frac{1}{n} X_{j,} X_{i, .}^{\top}-\boldsymbol{\delta}_{i j}\right| \xrightarrow{\text { a.s. }} 0 .
$$

- however, eigenvalue mismatch

$$
\begin{gathered}
0=\lambda_{1}\left(\hat{C}_{p}\right)=\ldots=\lambda_{p-n}\left(\hat{C}_{p}\right) \leq \lambda_{p-n+1}\left(\hat{C}_{p}\right) \leq \ldots \leq \lambda_{p}\left(\hat{C}_{p}\right) \\
1=\lambda_{1}\left(I_{p}\right)=\ldots=\lambda_{p-n}\left(I_{p}\right)=\lambda_{p-n+1}\left(\hat{C}_{p}\right)=\ldots=\lambda_{p}\left(I_{p}\right)
\end{gathered}
$$

\Rightarrow no convergence in spectral norm.

The Marčenko-Pastur law

Figure: Histogram of the eigenvalues of \hat{C}_{p} for $c=1 / 4, C_{p}=I_{p}$.

The Marčenko-Pastur law

Figure: Histogram of the eigenvalues of \hat{C}_{p} for $c=1 / 4, C_{p}=I_{p}$.

The Marčenko-Pastur law

Figure: Histogram of the eigenvalues of \hat{C}_{p} for $c=1 / 4, C_{p}=I_{p}$.

The Marčenko-Pastur law

Figure: Histogram of the eigenvalues of \hat{C}_{p} for $c=1 / 4, C_{p}=I_{p}$.

The Marčenko-Pastur law

Figure: Histogram of the eigenvalues of \hat{C}_{p} for $c=1 / 4, C_{p}=I_{p}$.

The Marčenko-Pastur law

Figure: Histogram of the eigenvalues of \hat{C}_{p} for $c=1 / 4, C_{p}=I_{p}$.

The Marčenko-Pastur law

Definition (Empirical Spectral Distribution)

Empirical spectral distribution (e.s.d.) μ_{p} of Hermitian matrix $A_{p} \in \mathbb{R}^{p \times p}$ is

$$
\mu_{p}=\frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}\left(A_{p}\right)}
$$

The Marčenko-Pastur law

Definition (Empirical Spectral Distribution)

Empirical spectral distribution (e.s.d.) μ_{p} of Hermitian matrix $A_{p} \in \mathbb{R}^{p \times p}$ is

$$
\mu_{p}=\frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}\left(A_{p}\right)}
$$

Theorem (Marčenko-Pastur Law [Marčenko,Pastur'67])
$X_{p} \in \mathbb{R}^{p \times n}$ with i.i.d. zero mean, unit variance entries.
As $p, n \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$, e.s.d. μ_{p} of $\frac{1}{n} X_{p} X_{p}^{\top}$ satisfies

$$
\mu_{p} \xrightarrow{\text { a.s. }} \mu_{(c)}
$$

in distribution (i.e., $\int f(t) \mu_{p}(d t) \xrightarrow{\text { a.s. }} \int f(t) \mu_{(c)}(d t)$ for all bounded continuous f), where

- $\mu_{c}(\{0\})=\max \left\{0,1-c^{-1}\right\}$

The Marčenko-Pastur law

Definition (Empirical Spectral Distribution)

Empirical spectral distribution (e.s.d.) μ_{p} of Hermitian matrix $A_{p} \in \mathbb{R}^{p \times p}$ is

$$
\mu_{p}=\frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}\left(A_{p}\right)}
$$

Theorem (Marčenko-Pastur Law [Marčenko,Pastur'67])
$X_{p} \in \mathbb{R}^{p \times n}$ with i.i.d. zero mean, unit variance entries.
As $p, n \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$, e.s.d. μ_{p} of $\frac{1}{n} X_{p} X_{p}^{\top}$ satisfies

$$
\mu_{p} \xrightarrow{\text { a.s. }} \mu_{(c)}
$$

in distribution (i.e., $\int f(t) \mu_{p}(d t) \xrightarrow{\text { a.s. }} \int f(t) \mu_{(c)}(d t)$ for all bounded continuous f), where

- $\mu_{c}(\{0\})=\max \left\{0,1-c^{-1}\right\}$
- on $(0, \infty), \mu_{(c)}$ has continuous density f_{c} supported on $\left[(1-\sqrt{c})^{2},(1+\sqrt{c})^{2}\right]$

$$
f_{c}(x)=\frac{1}{2 \pi c x} \sqrt{\left(x-(1-\sqrt{c})^{2}\right)\left((1+\sqrt{c})^{2}-x\right)}
$$

The Marčenko-Pastur law

Figure: Marčenko-Pastur law for different limit ratios $c=\lim _{p \rightarrow \infty} p / n$.

The Marčenko-Pastur law

Figure: Marčenko-Pastur law for different limit ratios $c=\lim _{p \rightarrow \infty} p / n$.

The Marčenko-Pastur law

Figure: Marčenko-Pastur law for different limit ratios $c=\lim _{p \rightarrow \infty} p / n$.

Outline

```
Basics of Random Matrix Theory (Romain COUILLET)
    Motivation: Large Sample Covariance Matrices
    The Stieltjes Transform Method
    Spiked Models
    Other Common Random Matrix Models
    Applications
Applications to Machine Learning (Xiaoyi MAI)
Applications to Random Projections and Neural Networks (Zhenyu LIAO)
    Random Projections-based Ridge Regression
    Random Projections-based Spectral Clustering
    Random Matrix Analysis for Learning Dynamics of Neural Networks
Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)
```


The Stieltjes transform

Definition (Stieltjes Transform)

For μ real probability measure of support $\operatorname{supp}(\mu)$, Stieltjes transform m_{μ} defined, for $z \in \mathbb{C} \backslash \operatorname{supp}(\mu)$, as

$$
m_{\mu}(z)=\int \frac{1}{t-z} \mu(d t)
$$

The Stieltjes transform

Definition (Stieltjes Transform)
For μ real probability measure of support $\operatorname{supp}(\mu)$, Stieltjes transform m_{μ} defined, for $z \in \mathbb{C} \backslash \operatorname{supp}(\mu)$, as

$$
m_{\mu}(z)=\int \frac{1}{t-z} \mu(d t)
$$

Property (Inverse Stieltjes Transform)
For $a<b$ continuity points of μ,

$$
\mu([a, b])=\lim _{\varepsilon \downarrow 0} \frac{1}{\pi} \int_{a}^{b} \Im\left[m_{\mu}(x+\imath \varepsilon)\right] d x
$$

The Stieltjes transform

Definition (Stieltjes Transform)

For μ real probability measure of support $\operatorname{supp}(\mu)$, Stieltjes transform m_{μ} defined, for $z \in \mathbb{C} \backslash \operatorname{supp}(\mu)$, as

$$
m_{\mu}(z)=\int \frac{1}{t-z} \mu(d t)
$$

Property (Inverse Stieltjes Transform)

For $a<b$ continuity points of μ,

$$
\mu([a, b])=\lim _{\varepsilon \downarrow 0} \frac{1}{\pi} \int_{a}^{b} \Im\left[m_{\mu}(x+\imath \varepsilon)\right] d x
$$

Besides, if μ has a density f at x,

$$
f(x)=\lim _{\varepsilon \downarrow 0} \frac{1}{\pi} \Im\left[m_{\mu}(x+\imath \varepsilon)\right] .
$$

The Stieltjes transform

Property (Relation to e.s.d.)
If μ e.s.d. of Hermitian $A \in \mathbb{R}^{p \times p}$, (i.e., $\mu=\frac{1}{p} \sum_{i=1}^{p} \boldsymbol{\delta}_{\lambda_{i}(A)}$)

$$
m_{\mu}(z)=\frac{1}{p} \operatorname{tr}\left(A-z I_{p}\right)^{-1}
$$

The Stieltjes transform

Property (Relation to e.s.d.)
If μ e.s.d. of Hermitian $A \in \mathbb{R}^{p \times p}$, (i.e., $\mu=\frac{1}{p} \sum_{i=1}^{p} \boldsymbol{\delta}_{\lambda_{i}(A)}$)

$$
m_{\mu}(z)=\frac{1}{p} \operatorname{tr}\left(A-z I_{p}\right)^{-1}
$$

Proof:

$$
\begin{aligned}
m_{\mu}(z) & =\int \frac{\mu(d t)}{t-z}=\frac{1}{p} \sum_{i=1}^{p} \frac{1}{\lambda_{i}(A)-z}=\frac{1}{p} \operatorname{tr}\left(\operatorname{diag}\left\{\lambda_{i}(A)\right\}-z I_{p}\right)^{-1} \\
& =\frac{1}{p} \operatorname{tr}\left(A-z I_{p}\right)^{-1}
\end{aligned}
$$

The Stieltjes transform

Property (Relation to e.s.d.)
If μ e.s.d. of Hermitian $A \in \mathbb{R}^{p \times p}$, (i.e., $\mu=\frac{1}{p} \sum_{i=1}^{p} \boldsymbol{\delta}_{\lambda_{i}(A)}$)

$$
m_{\mu}(z)=\frac{1}{p} \operatorname{tr}\left(A-z I_{p}\right)^{-1}
$$

Proof:

$$
\begin{aligned}
m_{\mu}(z) & =\int \frac{\mu(d t)}{t-z}=\frac{1}{p} \sum_{i=1}^{p} \frac{1}{\lambda_{i}(A)-z}=\frac{1}{p} \operatorname{tr}\left(\operatorname{diag}\left\{\lambda_{i}(A)\right\}-z I_{p}\right)^{-1} \\
& =\frac{1}{p} \operatorname{tr}\left(A-z I_{p}\right)^{-1}
\end{aligned}
$$

Fundamental object: the resolvent of A

$$
Q_{A}(z) \equiv\left(A-z I_{p}\right)^{-1} .
$$

The Stieltjes transform

Property (Stieltjes transform of Gram matrices)
For $X \in \mathbb{C}^{p \times n}$, and

- μ e.s.d. of $X X^{\top}$
$-\tilde{\mu}$ e.s.d. of $X^{\top} X$
Then

$$
m_{\mu}(z)=\frac{n}{p} m_{\tilde{\mu}}(z)-\frac{p-n}{p} \frac{1}{z}
$$

The Stieltjes transform

Property (Stieltjes transform of Gram matrices)
For $X \in \mathbb{C}^{p \times n}$, and
$-\mu$ e.s.d. of $X X^{\top}$

- $\tilde{\mu}$ e.s.d. of $X^{\top} X$

Then

$$
m_{\mu}(z)=\frac{n}{p} m_{\tilde{\mu}}(z)-\frac{p-n}{p} \frac{1}{z}
$$

Proof:

$$
m_{\mu}(z)=\frac{1}{p} \sum_{i=1}^{p} \frac{1}{\lambda_{i}\left(X X^{\top}\right)-z}=\frac{1}{p} \sum_{i=1}^{n} \frac{1}{\lambda_{i}\left(X^{\top} X\right)-z}+\frac{1}{p}(p-n) \frac{1}{0-z}
$$

The Stieltjes transform

Three fundamental lemmas in all proofs.

Lemma (Resolvent Identity)
For $A, B \in \mathbb{R}^{p \times p}$ invertible,

$$
A^{-1}-B^{-1}=A^{-1}(B-A) B^{-1} .
$$

Proof: Simply left-multiply by A and right-multiply by B on both sides.

The Stieltjes transform

Three fundamental lemmas in all proofs.

Lemma (Resolvent Identity)
For $A, B \in \mathbb{R}^{p \times p}$ invertible,

$$
A^{-1}-B^{-1}=A^{-1}(B-A) B^{-1}
$$

Proof: Simply left-multiply by A and right-multiply by B on both sides.

Corollary
For $t \in \mathbb{C}, x \in \mathbb{R}^{p}, A \in \mathbb{R}^{p \times p}$, with A and $A+t x x^{\top}$ invertible,

$$
\left(A+t x x^{\top}\right)^{-1} x=\frac{A^{-1} x}{1+t x^{\top} A^{-1} x}
$$

Proof Intuition: Left-multiply by $\left(A+t c c^{\boldsymbol{\top}}\right)$ on both sides.

The Stieltjes transform

Three fundamental lemmas in all proofs.

Lemma (Rank-one perturbation)
For $A, B \in \mathbb{R}^{p \times p}$ Hermitian nonnegative definite, e.s.d. μ of $A, t>0, x \in \mathbb{R}^{p}$, $z \in \mathbb{C} \backslash \operatorname{supp}(\mu)$,

$$
\left|\frac{1}{p} \operatorname{tr} B\left(A+t x x^{\top}-z I_{p}\right)^{-1}-\frac{1}{p} \operatorname{tr} B\left(A-z I_{p}\right)^{-1}\right| \leq \frac{1}{p} \frac{\|B\|}{\operatorname{dist}(z, \operatorname{supp}(\mu))}
$$

The Stieltjes transform

Three fundamental lemmas in all proofs.

Lemma (Rank-one perturbation)
For $A, B \in \mathbb{R}^{p \times p}$ Hermitian nonnegative definite, e.s.d. μ of $A, t>0, x \in \mathbb{R}^{p}$, $z \in \mathbb{C} \backslash \operatorname{supp}(\mu)$,

$$
\left|\frac{1}{p} \operatorname{tr} B\left(A+t x x^{\top}-z I_{p}\right)^{-1}-\frac{1}{p} \operatorname{tr} B\left(A-z I_{p}\right)^{-1}\right| \leq \frac{1}{p} \frac{\|B\|}{\operatorname{dist}(z, \operatorname{supp}(\mu))}
$$

In particular, as $p \rightarrow \infty$, if $\lim \sup _{p}\|B\|<\infty$,

$$
\frac{1}{p} \operatorname{tr} B\left(A+t x x^{\top}-z I_{p}\right)^{-1}-\frac{1}{p} \operatorname{tr} B\left(A-z I_{p}\right)^{-1} \rightarrow 0 .
$$

The Stieltjes transform

Three fundamental lemmas in all proofs.

Lemma (Rank-one perturbation)

For $A, B \in \mathbb{R}^{p \times p}$ Hermitian nonnegative definite, e.s.d. μ of $A, t>0, x \in \mathbb{R}^{p}$, $z \in \mathbb{C} \backslash \operatorname{supp}(\mu)$,

$$
\left|\frac{1}{p} \operatorname{tr} B\left(A+t x x^{\top}-z I_{p}\right)^{-1}-\frac{1}{p} \operatorname{tr} B\left(A-z I_{p}\right)^{-1}\right| \leq \frac{1}{p} \frac{\|B\|}{\operatorname{dist}(z, \operatorname{supp}(\mu))}
$$

In particular, as $p \rightarrow \infty$, if $\lim \sup _{p}\|B\|<\infty$,

$$
\frac{1}{p} \operatorname{tr} B\left(A+t x x^{\top}-z I_{p}\right)^{-1}-\frac{1}{p} \operatorname{tr} B\left(A-z I_{p}\right)^{-1} \rightarrow 0 .
$$

Proof Intuition: Based on Weyl's interlacing identity (eigenvalues of A and $A+t x x^{\top}$ are interlaced).

The Stieltjes transform

Three fundamental lemmas in all proofs.

Lemma (Trace Lemma)
For

- $x \in \mathbb{R}^{p}$ with i.i.d. entries with zero mean, unit variance, finite $2 k$ order moment,
- $A \in \mathbb{R}^{p \times p}$ deterministic (or independent of x),
then

$$
E\left[\left|\frac{1}{p} x^{\top} A x-\frac{1}{p} \operatorname{tr} A\right|^{k}\right] \leq K \frac{\|A\|^{p}}{p^{k / 2}}
$$

The Stieltjes transform

Three fundamental lemmas in all proofs.

Lemma (Trace Lemma)
For

- $x \in \mathbb{R}^{p}$ with i.i.d. entries with zero mean, unit variance, finite $2 k$ order moment,
- $A \in \mathbb{R}^{p \times p}$ deterministic (or independent of x),
then

$$
E\left[\left|\frac{1}{p} x^{\top} A x-\frac{1}{p} \operatorname{tr} A\right|^{k}\right] \leq K \frac{\|A\|^{p}}{p^{k / 2}}
$$

In particular, if $\limsup _{p}\|A\|<\infty$, and x has entries with finite eighth-order moment,

$$
\frac{1}{p} x^{\top} A x-\frac{1}{p} \operatorname{tr} A \xrightarrow{\text { a.s. }} 0
$$

(by Markov inequality and Borel Cantelli lemma).

Proof of the Marčenko-Pastur law

Theorem (Marčenko-Pastur Law [Marčenko,Pastur'67])
$X_{p} \in \mathbb{R}^{p \times n}$ with i.i.d. zero mean, unit variance entries. As $p, n \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$, e.s.d. μ_{p} of $\frac{1}{n} X_{p} X_{p}^{\top}$ satisfies

$$
\mu_{p} \xrightarrow{\text { a.s. }} \mu_{(c)}
$$

weakly, where
$-\mu_{(c)}(\{0\})=\max \left\{0,1-c^{-1}\right\}$

Proof of the Marčenko-Pastur law

Theorem (Marčenko-Pastur Law [Marčenko,Pastur'67])
$X_{p} \in \mathbb{R}^{p \times n}$ with i.i.d. zero mean, unit variance entries. As $p, n \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$, e.s.d. μ_{p} of $\frac{1}{n} X_{p} X_{p}^{\top}$ satisfies

$$
\mu_{p} \xrightarrow{\text { a.s. }} \mu_{(c)}
$$

weakly, where

- $\mu_{(c)}(\{0\})=\max \left\{0,1-c^{-1}\right\}$
- on $(0, \infty), \mu_{(c)}$ has continuous density f_{c} supported on $\left[(1-\sqrt{c})^{2},(1+\sqrt{c})^{2}\right]$

$$
f_{c}(x)=\frac{1}{2 \pi c x} \sqrt{\left(x-(1-\sqrt{c})^{2}\right)\left((1+\sqrt{c})^{2}-x\right)}
$$

Proof of the Marčenko-Pastur law

Stieltjes transform approach.

Proof of the Marčenko-Pastur law

Stieltjes transform approach.

Proof

\Rightarrow With μ_{p} e.s.d. of $\frac{1}{n} X_{p} X_{p}^{\top}$,

$$
m_{\mu_{p}}(z)=\frac{1}{p} \operatorname{tr}\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1}=\frac{1}{p} \sum_{i=1}^{p}\left[\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1}\right]_{i i}
$$

Proof of the Marčenko-Pastur law

Stieltjes transform approach.

Proof

- With μ_{p} e.s.d. of $\frac{1}{n} X_{p} X_{p}^{\top}$,

$$
m_{\mu_{p}}(z)=\frac{1}{p} \operatorname{tr}\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1}=\frac{1}{p} \sum_{i=1}^{p}\left[\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1}\right]_{i i}
$$

- Write

$$
X_{p}=\left[\begin{array}{c}
y^{\top} \\
Y_{p-1}
\end{array}\right] \in \mathbb{R}^{p \times n}
$$

Proof of the Marčenko-Pastur law

Stieltjes transform approach.

Proof

- With μ_{p} e.s.d. of $\frac{1}{n} X_{p} X_{p}^{\top}$,

$$
m_{\mu_{p}}(z)=\frac{1}{p} \operatorname{tr}\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1}=\frac{1}{p} \sum_{i=1}^{p}\left[\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1}\right]_{i i}
$$

- Write

$$
X_{p}=\left[\begin{array}{c}
y^{\top} \\
Y_{p-1}
\end{array}\right] \in \mathbb{R}^{p \times n}
$$

so that, for $\Im[z]>0$,

$$
\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1}=\left(\begin{array}{cc}
\frac{1}{n} y^{\top} y-z & \frac{1}{n} y^{\top} Y_{p-1} \\
\frac{1}{n} Y_{p-1} y & \frac{1}{n} Y_{p-1} Y_{p-1}^{\top}-z I_{p-1}
\end{array}\right)^{-1} .
$$

Proof of the Marčenko-Pastur law

Proof (continued)

- From block matrix inverse formula

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\left(A-B D^{-1} C\right)^{-1} & -A^{-1} B\left(D-C A^{-1} B\right)^{-1} \\
-\left(A-B D^{-1} C\right)^{-1} C A^{-1} & \left(D-C A^{-1} B\right)^{-1}
\end{array}\right)
$$

we have

$$
\left[\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1}\right]_{11}=\frac{1}{-z-z \frac{1}{n} y^{\top}\left(\frac{1}{n} Y_{p-1}^{\top} Y_{p-1}-z I_{n}\right)^{-1} y}
$$

Proof of the Marčenko-Pastur law

Proof (continued)

- From block matrix inverse formula

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\left(A-B D^{-1} C\right)^{-1} & -A^{-1} B\left(D-C A^{-1} B\right)^{-1} \\
-\left(A-B D^{-1} C\right)^{-1} C A^{-1} & \left(D-C A^{-1} B\right)^{-1}
\end{array}\right)
$$

we have

$$
\left[\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1}\right]_{11}=\frac{1}{-z-z \frac{1}{n} y^{\top}\left(\frac{1}{n} Y_{p-1}^{\top} Y_{p-1}-z I_{n}\right)^{-1} y}
$$

- By Trace Lemma, as $p, n \rightarrow \infty$

$$
\left[\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1}\right]_{11}-\frac{1}{-z-z \frac{1}{n} \operatorname{tr}\left(\frac{1}{n} Y_{p-1}^{\top} Y_{p-1}-z I_{n}\right)^{-1}} \xrightarrow{\text { a.s. }} 0
$$

Proof of the Marčenko-Pastur law

Proof (continued)

- By Rank-1 Perturbation Lemma ($X_{p}^{\top} X_{p}=Y_{p-1}^{\top} Y_{p-1}+y y^{\top}$), as $p, n \rightarrow \infty$

$$
\left[\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1}\right]_{11}-\frac{1}{-z-z \frac{1}{n} \operatorname{tr}\left(\frac{1}{n} X_{p}^{\top} X_{p}-z I_{n}\right)^{-1}} \xrightarrow{\text { a.s. }} 0 .
$$

Proof of the Marčenko-Pastur law

Proof (continued)

- By Rank-1 Perturbation Lemma ($X_{p}^{\top} X_{p}=Y_{p-1}^{\top} Y_{p-1}+y y^{\top}$), as $p, n \rightarrow \infty$

$$
\left[\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1}\right]_{11}-\frac{1}{-z-z \frac{1}{n} \operatorname{tr}\left(\frac{1}{n} X_{p}^{\top} X_{p}-z I_{n}\right)^{-1}} \xrightarrow{\text { a.s. }} 0 .
$$

- Since $\frac{1}{n} \operatorname{tr}\left(\frac{1}{n} X_{p}^{\top} X_{p}-z I_{n}\right)^{-1}=\frac{1}{n} \operatorname{tr}\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1}-\frac{n-p}{n} \frac{1}{z}$,

$$
\left[\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1}\right]_{11}-\frac{1}{1-\frac{p}{n}-z-z \frac{1}{n} \operatorname{tr}\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1}} \xrightarrow{\text { a.s. }} 0 .
$$

Proof of the Marčenko-Pastur law

Proof (continued)

- By Rank-1 Perturbation Lemma ($X_{p}^{\top} X_{p}=Y_{p-1}^{\top} Y_{p-1}+y y^{\top}$), as $p, n \rightarrow \infty$

$$
\left[\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1}\right]_{11}-\frac{1}{-z-z \frac{1}{n} \operatorname{tr}\left(\frac{1}{n} X_{p}^{\top} X_{p}-z I_{n}\right)^{-1}} \xrightarrow{\text { a.s. }} 0 .
$$

- Since $\frac{1}{n} \operatorname{tr}\left(\frac{1}{n} X_{p}^{\top} X_{p}-z I_{n}\right)^{-1}=\frac{1}{n} \operatorname{tr}\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1}-\frac{n-p}{n} \frac{1}{z}$,

$$
\left[\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1}\right]_{11}-\frac{1}{1-\frac{p}{n}-z-z \frac{1}{n} \operatorname{tr}\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1}} \xrightarrow{\text { a.s. }} 0 .
$$

- Repeating for entries $(2,2), \ldots,(p, p)$, and averaging, we get (for $\Im[z]>0$)

$$
m_{\mu_{p}}(z)-\frac{1}{1-\frac{p}{n}-z-z \frac{p}{n} m_{\mu_{p}}(z)} \stackrel{\text { a.s. }}{\longrightarrow} 0 .
$$

Proof of the Marčenko-Pastur law

Proof (continued)

- Then $m_{\mu_{p}}(z) \xrightarrow{\text { a.s. }} m(z)$ solution to

$$
m(z)=\frac{1}{1-c-z-c z m(z)}
$$

Proof of the Marčenko-Pastur law

Proof (continued)

- Then $m_{\mu_{p}}(z) \xrightarrow{\text { a.s. }} m(z)$ solution to

$$
m(z)=\frac{1}{1-c-z-c z m(z)}
$$

i.e., (with branch of $\sqrt{f(z)}$ such that $m(z) \rightarrow 0$ as $|z| \rightarrow \infty$)

$$
m(z)=\frac{1-c}{2 c z}-\frac{1}{2 c}+\frac{\sqrt{\left(z-(1+\sqrt{c})^{2}\right)\left(z-(1-\sqrt{c})^{2}\right)}}{2 c z}
$$

Proof of the Marčenko-Pastur law

Proof (continued)

- Then $m_{\mu_{p}}(z) \xrightarrow{\text { a.s. }} m(z)$ solution to

$$
m(z)=\frac{1}{1-c-z-c z m(z)}
$$

i.e., (with branch of $\sqrt{f(z)}$ such that $m(z) \rightarrow 0$ as $|z| \rightarrow \infty$)

$$
m(z)=\frac{1-c}{2 c z}-\frac{1}{2 c}+\frac{\sqrt{\left(z-(1+\sqrt{c})^{2}\right)\left(z-(1-\sqrt{c})^{2}\right)}}{2 c z}
$$

- Finally, by inverse Stieltjes Transform, for $x>0$,

$$
\lim _{\varepsilon \downarrow 0} \frac{1}{\pi} \Im[m(x+\imath \varepsilon)]=\frac{\sqrt{\left((1+\sqrt{c})^{2}-x\right)\left(x-(1-\sqrt{c})^{2}\right)}}{2 \pi c x} 1_{\left\{x \in\left[(1-\sqrt{c})^{2},(1+\sqrt{c})^{2}\right]\right\}} .
$$

And for $x=0$,

$$
\lim _{\varepsilon \downarrow 0} \imath \varepsilon \Im[m(\imath \varepsilon)]=\left(1-c^{-1}\right) 1_{\{c>1\}} .
$$

Sample Covariance Matrices

Theorem (Sample Covariance Matrix Model [Silverstein,Bai'95]) Let $Y_{p}=C_{p}^{\frac{1}{2}} X_{p} \in \mathbb{R}^{p \times n}$, with

- $C_{p} \in \mathbb{C}^{p \times p}$ nonnegative definite with e.s.d. $\nu_{p} \rightarrow \nu$ weakly,
- $X_{p} \in \mathbb{C}^{p \times n}$ has i.i.d. entries of zero mean and unit variance.

As $p, n \rightarrow \infty, p / n \rightarrow c \in(0, \infty)$, $\tilde{\mu}_{p}$ e.s.d. of $\frac{1}{n} Y_{p}^{\top} Y_{p} \in \mathbb{R}^{n \times n}$ satisfies

$$
\tilde{\mu}_{p} \xrightarrow{\text { a.s. }} \tilde{\mu}
$$

weakly, with $m_{\tilde{\mu}}(z), \Im[z]>0$, unique solution with $\Im\left[m_{\tilde{\mu}}(z)\right]>0$ of

$$
m_{\tilde{\mu}}(z)=\left(-z+c \int \frac{t}{1+m_{\tilde{\mu}}(z)} \nu(d t)\right)^{-1}
$$

Sample Covariance Matrices

Theorem (Sample Covariance Matrix Model [Silverstein,Bai'95]) Let $Y_{p}=C_{p}^{\frac{1}{2}} X_{p} \in \mathbb{R}^{p \times n}$, with

- $C_{p} \in \mathbb{C}^{p \times p}$ nonnegative definite with e.s.d. $\nu_{p} \rightarrow \nu$ weakly,
- $X_{p} \in \mathbb{C}^{p \times n}$ has i.i.d. entries of zero mean and unit variance.

As $p, n \rightarrow \infty, p / n \rightarrow c \in(0, \infty)$, $\tilde{\mu}_{p}$ e.s.d. of $\frac{1}{n} Y_{p}^{\top} Y_{p} \in \mathbb{R}^{n \times n}$ satisfies

$$
\tilde{\mu}_{p} \xrightarrow{\text { a.s. }} \tilde{\mu}
$$

weakly, with $m_{\tilde{\mu}}(z), \Im[z]>0$, unique solution with $\Im\left[m_{\tilde{\mu}}(z)\right]>0$ of

$$
m_{\tilde{\mu}}(z)=\left(-z+c \int \frac{t}{1+t m_{\tilde{\mu}}(z)} \nu(d t)\right)^{-1}
$$

Moreover, $\tilde{\mu}$ is continuous on \mathbb{R}^{+}and real analytic wherever positive.

Sample Covariance Matrices

Theorem (Sample Covariance Matrix Model [Silverstein,Bai'95])
Let $Y_{p}=C_{p}^{\frac{1}{2}} X_{p} \in \mathbb{R}^{p \times n}$, with

- $C_{p} \in \mathbb{C}^{p \times p}$ nonnegative definite with e.s.d. $\nu_{p} \rightarrow \nu$ weakly,
- $X_{p} \in \mathbb{C}^{p \times n}$ has i.i.d. entries of zero mean and unit variance.

As $p, n \rightarrow \infty, p / n \rightarrow c \in(0, \infty)$, $\tilde{\mu}_{p}$ e.s.d. of $\frac{1}{n} Y_{p}^{\top} Y_{p} \in \mathbb{R}^{n \times n}$ satisfies

$$
\tilde{\mu}_{p} \xrightarrow{\text { a.s. }} \tilde{\mu}
$$

weakly, with $m_{\tilde{\mu}}(z), \Im[z]>0$, unique solution with $\Im\left[m_{\tilde{\mu}}(z)\right]>0$ of

$$
m_{\tilde{\mu}}(z)=\left(-z+c \int \frac{t}{1+t m_{\tilde{\mu}}(z)} \nu(d t)\right)^{-1}
$$

Moreover, $\tilde{\mu}$ is continuous on \mathbb{R}^{+}and real analytic wherever positive.

Immediate corollary: For μ_{p} e.s.d. of $\frac{1}{n} Y_{p} Y_{p}^{\top}=\frac{1}{n} \sum_{i=1}^{n} C_{p}^{\frac{1}{2}} x_{i} x_{i}^{\top} C_{p}^{\frac{1}{2}}$,

$$
\mu_{p} \xrightarrow{\text { a.s. }} \mu
$$

weakly, with $\tilde{\mu}=c \mu+(1-c) \boldsymbol{\delta}_{0}$.

Sample Covariance Matrices

Figure: Histogram of the eigenvalues of $\frac{1}{n} Y_{p} Y_{p}^{\top}, n=3000, p=300$, with C_{p} diagonal with evenly weighted masses in (i) $1,3,7$, (ii) $1,3,4$.

Further Models and Deterministic Equivalents

Sometimes, μ_{p} does not converge!

Further Models and Deterministic Equivalents

Sometimes, μ_{p} does not converge!

- if ν_{p} does not converge

Further Models and Deterministic Equivalents

Sometimes, μ_{p} does not converge!

- if ν_{p} does not converge
- if p / n does not converge

Further Models and Deterministic Equivalents

Sometimes, μ_{p} does not converge!

- if ν_{p} does not converge
- if p / n does not converge
- if eigenvectors of deterministic matrices play a role!

Further Models and Deterministic Equivalents

Sometimes, μ_{p} does not converge!

- if ν_{p} does not converge
- if p / n does not converge
- if eigenvectors of deterministic matrices play a role!

Deterministic equivalents: sequence $\bar{\mu}_{p}$ of deterministic measures, with

$$
\mu_{p}-\bar{\mu}_{p} \xrightarrow{\text { a.s. }} 0
$$

Further Models and Deterministic Equivalents

Sometimes, μ_{p} does not converge!

- if ν_{p} does not converge
- if p / n does not converge
- if eigenvectors of deterministic matrices play a role!

Deterministic equivalents: sequence $\bar{\mu}_{p}$ of deterministic measures, with

$$
\mu_{p}-\bar{\mu}_{p} \xrightarrow{\text { a.s. }} 0
$$

or equivalently, deterministic sequence of m_{p} with

$$
m_{\mu_{p}}-m_{p} \xrightarrow{\text { a.s. }} 0 .
$$

Further Models and Deterministic Equivalents

Theorem (Doubly-correlated i.i.d. matrices)
Let $B_{p}=C_{p}^{\frac{1}{2}} X_{p} T_{p} X_{p}^{\top} C_{p}^{\frac{1}{2}}$, with e.s.d. $\mu_{p}, X_{p} \in \mathbb{R}^{p \times n}$ with i.i.d. entries of zero mean, variance $1 / n, C_{p}$ Hermitian nonnegative definite, T_{p} diagonal nonnegative, $\limsup _{p} \max \left(\left\|C_{p}\right\|,\left\|T_{p}\right\|\right)<\infty$. Denote $c=p / n$.
Then, as $p, n \rightarrow \infty$ with bounded ratio c, for $z \in \mathbb{C} \backslash \mathbb{R}^{-}$,

$$
m_{\mu_{p}}(z)-m_{p}(z) \xrightarrow{\text { a.s. }} 0, \quad m_{p}(z)=\frac{1}{p} \operatorname{tr}\left(-z I_{p}+\bar{e}_{p}(z) C_{p}\right)^{-1}
$$

with $\bar{e}(z)$ unique solution in $\left\{z \in \mathbb{C}^{+}, \bar{e}_{p}(z) \in \mathbb{C}^{+}\right\}$or $\left\{z \in \mathbb{R}^{-}, \bar{e}_{p}(z) \in \mathbb{R}^{+}\right\}$of

$$
\begin{aligned}
e_{p}(z) & =\frac{1}{p} \operatorname{tr} C_{p}\left(-z I_{p}+\bar{e}_{p}(z) C_{p}\right)^{-1} \\
\bar{e}_{p}(z) & =\frac{1}{n} \operatorname{tr} T_{p}\left(I_{n}+c e_{p}(z) T_{p}\right)^{-1}
\end{aligned}
$$

Other Refined Sample Covariance Models

Side note on other models.
Similar results for multiple matrix models:

Other Refined Sample Covariance Models

Side note on other models.
Similar results for multiple matrix models:

- Information-plus-noise: $Y_{p}=A_{p}+X_{p}, A_{p}$ deterministic
- Variance profile: $Y_{p}=P_{p} \odot X_{p}$ (entry-wise product)
- Per-column covariance: $Y_{p}=\left[y_{1}, \ldots, y_{n}\right], y_{i}=C_{p, i}^{\frac{1}{2}} x_{i}$
- etc.

Outline

```
Basics of Random Matrix Theory (Romain COUILLET)
    Motivation: Large Sample Covariance Matrices
    The Stieltjes Transform Method
    Spiked Models
    Other Common Random Matrix Models
    Applications
Applications to Machine Learning (Xiaoyi MAI)
Applications to Random Projections and Neural Networks (Zhenyu LIAO)
    Random Projections-based Ridge Regression
    Random Projections-based Spectral Clustering
    Random Matrix Analysis for Learning Dynamics of Neural Networks
Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)
```


No Eigenvalue Outside the Support

Theorem (No Eigenvalue Outside the Support [Silverstein,Bai'98])
Let $Y_{p}=C_{p}^{\frac{1}{2}} X_{p} \in \mathbb{R}^{p \times n}$, with

- $C_{p} \in \mathbb{R}^{p \times p}$ nonnegative definite with e.s.d. $\nu_{p} \rightarrow \nu$ weakly,

No Eigenvalue Outside the Support

Theorem (No Eigenvalue Outside the Support [Silverstein,Bai'98])
Let $Y_{p}=C_{p}^{\frac{1}{2}} X_{p} \in \mathbb{R}^{p \times n}$, with

- $C_{p} \in \mathbb{R}^{p \times p}$ nonnegative definite with e.s.d. $\nu_{p} \rightarrow \nu$ weakly,
- $X_{p} \in \mathbb{R}^{p \times n}$ has i.i.d. entries of zero mean and unit variance,

No Eigenvalue Outside the Support

Theorem (No Eigenvalue Outside the Support [Silverstein,Bai'98])
Let $Y_{p}=C_{p}^{\frac{1}{2}} X_{p} \in \mathbb{R}^{p \times n}$, with

- $C_{p} \in \mathbb{R}^{p \times p}$ nonnegative definite with e.s.d. $\nu_{p} \rightarrow \nu$ weakly,
- $X_{p} \in \mathbb{R}^{p \times n}$ has i.i.d. entries of zero mean and unit variance,
- $E\left[\left|X_{p}\right|_{i j}^{4}\right]<\infty$,

No Eigenvalue Outside the Support

Theorem (No Eigenvalue Outside the Support [Silverstein,Bai'98])
Let $Y_{p}=C_{p}^{\frac{1}{2}} X_{p} \in \mathbb{R}^{p \times n}$, with

- $C_{p} \in \mathbb{R}^{p \times p}$ nonnegative definite with e.s.d. $\nu_{p} \rightarrow \nu$ weakly,
- $X_{p} \in \mathbb{R}^{p \times n}$ has i.i.d. entries of zero mean and unit variance,
- $E\left[\left|X_{p}\right|_{i j}^{4}\right]<\infty$,
- $\max _{i} \operatorname{dist}\left(\lambda_{i}\left(C_{p}\right), \operatorname{supp}(\nu)\right) \rightarrow 0$.

No Eigenvalue Outside the Support

Theorem (No Eigenvalue Outside the Support [Silverstein,Bai'98])
Let $Y_{p}=C_{p}^{\frac{1}{2}} X_{p} \in \mathbb{R}^{p \times n}$, with

- $C_{p} \in \mathbb{R}^{p \times p}$ nonnegative definite with e.s.d. $\nu_{p} \rightarrow \nu$ weakly,
- $X_{p} \in \mathbb{R}^{p \times n}$ has i.i.d. entries of zero mean and unit variance,
- $E\left[\left|X_{p}\right|_{i j}^{4}\right]<\infty$,
- $\max _{i} \operatorname{dist}\left(\lambda_{i}\left(C_{p}\right), \operatorname{supp}(\nu)\right) \rightarrow 0$.

Let $\tilde{\mu}$ be the limiting e.s.d. of $\frac{1}{n} Y_{p}^{\top} Y_{p}$ as before. Let $[a, b] \subset \mathbb{R}^{\top} \backslash \operatorname{supp}(\tilde{\nu})$. Then,

$$
\left\{\lambda_{i}\left(\frac{1}{n} Y_{p}^{\top} Y_{p}\right)\right\}_{i=1}^{n} \cap[a, b]=\emptyset
$$

for all large n, almost surely.

No Eigenvalue Outside the Support

Theorem (No Eigenvalue Outside the Support [Silverstein,Bai'98])
Let $Y_{p}=C_{p}^{\frac{1}{2}} X_{p} \in \mathbb{R}^{p \times n}$, with

- $C_{p} \in \mathbb{R}^{p \times p}$ nonnegative definite with e.s.d. $\nu_{p} \rightarrow \nu$ weakly,
- $X_{p} \in \mathbb{R}^{p \times n}$ has i.i.d. entries of zero mean and unit variance,
- $E\left[\left|X_{p}\right|_{i j}^{4}\right]<\infty$,
- $\max _{i} \operatorname{dist}\left(\lambda_{i}\left(C_{p}\right), \operatorname{supp}(\nu)\right) \rightarrow 0$.

Let $\tilde{\mu}$ be the limiting e.s.d. of $\frac{1}{n} Y_{p}^{\top} Y_{p}$ as before. Let $[a, b] \subset \mathbb{R}^{\top} \backslash \operatorname{supp}(\tilde{\nu})$. Then,

$$
\left\{\lambda_{i}\left(\frac{1}{n} Y_{p}^{\boldsymbol{\top}} Y_{p}\right)\right\}_{i=1}^{n} \cap[a, b]=\emptyset
$$

for all large n, almost surely.

In practice: This means that eigenvalues of $\frac{1}{n} Y_{p}^{\top} Y_{p}$ cannot be bound at macroscopic distance from the bulk, for p, n large.

Spiked Models

Breaking the rules. If we break

- Rule 1: Infinitely many eigenvalues may wander away from $\operatorname{supp}(\mu)$.

Spiked Models

If we break:

- Rule 2: C_{p} may create isolated eigenvalues in $\frac{1}{n} Y_{p} Y_{p}^{\top}$, called spikes.

Figure: Eigenvalues of $\frac{1}{n} Y_{p} Y_{p}^{\top}, C_{p}=\operatorname{diag}(\underbrace{1, \ldots, 1}_{p-4}, 2,3,4,5), p=500, n=2000$.

Spiked Models: The phase transition phenomenon

Figure: Eigenvalues of $\frac{1}{n} Y_{p} Y_{p}^{\top}, C_{p}=\operatorname{diag}(\underbrace{1, \ldots, 1}_{p-4}, 2,3,4,5)$.

Spiked Models: The phase transition phenomenon

Figure: Eigenvalues of $\frac{1}{n} Y_{p} Y_{p}^{\top}, C_{p}=\operatorname{diag}(\underbrace{1, \ldots, 1}_{p-4}, 2,3,4,5)$.

Spiked Models: The phase transition phenomenon

Figure: Eigenvalues of $\frac{1}{n} Y_{p} Y_{p}^{\top}, C_{p}=\operatorname{diag}(\underbrace{1, \ldots, 1}_{p-4}, 2,3,4,5)$.

Spiked Models: The phase transition phenomenon

Figure: Eigenvalues of $\frac{1}{n} Y_{p} Y_{p}^{\top}, C_{p}=\operatorname{diag}(\underbrace{1, \ldots, 1}_{p-4}, 2,3,4,5)$.

Spiked Models

Theorem (Eigenvalues [Baik,Silverstein'06])
Let $Y_{p}=C_{p}^{\frac{1}{2}} X_{p}$, with

- X_{p} with i.i.d. zero mean, unit variance, $E\left[\left|X_{p}\right|_{i j}^{4}\right]<\infty$.
- $C_{p}=I_{p}+P, P=U \Omega U^{\top}$, where, for K fixed,

$$
\Omega=\operatorname{diag}\left(\omega_{1}, \ldots, \omega_{K}\right) \in \mathbb{R}^{K \times K} \text {, with } \omega_{1} \geq \ldots \geq \omega_{K}>0 \text {. }
$$

Spiked Models

Theorem (Eigenvalues [Baik,Silverstein'06])

Let $Y_{p}=C_{p}^{\frac{1}{2}} X_{p}$, with

- X_{p} with i.i.d. zero mean, unit variance, $E\left[\left|X_{p}\right|_{i j}^{4}\right]<\infty$.
- $C_{p}=I_{p}+P, P=U \Omega U^{\top}$, where, for K fixed,

$$
\Omega=\operatorname{diag}\left(\omega_{1}, \ldots, \omega_{K}\right) \in \mathbb{R}^{K \times K}, \text { with } \omega_{1} \geq \ldots \geq \omega_{K}>0 .
$$

Then, as $p, n \rightarrow \infty, p / n \rightarrow c \in(0, \infty)$, denoting $\lambda_{i}=\lambda_{i}\left(\frac{1}{n} Y_{p} Y_{p}^{\boldsymbol{\top}}\right)$,

- if $\omega_{m}>\sqrt{c}$,

$$
\lambda_{m} \xrightarrow{\text { a.s. }} 1+\omega_{m}+c \frac{1+\omega_{m}}{\omega_{m}}>(1+\sqrt{c})^{2}
$$

Spiked Models

Theorem (Eigenvalues [Baik,Silverstein'06])

Let $Y_{p}=C_{p}^{\frac{1}{2}} X_{p}$, with

- X_{p} with i.i.d. zero mean, unit variance, $E\left[\left|X_{p}\right|_{i j}^{4}\right]<\infty$.
- $C_{p}=I_{p}+P, P=U \Omega U^{\top}$, where, for K fixed,

$$
\Omega=\operatorname{diag}\left(\omega_{1}, \ldots, \omega_{K}\right) \in \mathbb{R}^{K \times K}, \text { with } \omega_{1} \geq \ldots \geq \omega_{K}>0
$$

Then, as $p, n \rightarrow \infty, p / n \rightarrow c \in(0, \infty)$, denoting $\lambda_{i}=\lambda_{i}\left(\frac{1}{n} Y_{p} Y_{p}^{\boldsymbol{\top}}\right)$,

- if $\omega_{m}>\sqrt{c}$,

$$
\lambda_{m} \xrightarrow{\text { a.s. }} 1+\omega_{m}+c \frac{1+\omega_{m}}{\omega_{m}}>(1+\sqrt{c})^{2}
$$

- if $\omega_{m} \in(0, \sqrt{c}]$,

$$
\lambda_{m} \xrightarrow{\text { a.s. }}(1+\sqrt{c})^{2}
$$

Spiked Models

Figure: Eigenvalues of $\frac{1}{n} Y_{p} Y_{p}^{\top}, C_{p}=\operatorname{diag}(\underbrace{1, \ldots, 1}_{p-2}, 2,3), p=500, n=1500$.

Spiked Models

Proof

- Two ingredients: Algebraic calculus + trace lemma

Spiked Models

Proof

- Two ingredients: Algebraic calculus + trace lemma
- Find eigenvalues away from eigenvalues of $\frac{1}{n} X_{p} X_{p}^{\top}$:

$$
\begin{aligned}
0 & =\operatorname{det}\left(\frac{1}{n} Y_{p} Y_{p}^{\top}-\lambda I_{p}\right), \quad Y_{p}=C_{p}^{\frac{1}{2}} X_{p} \\
& =\operatorname{det}\left(C_{p}\right) \operatorname{det}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda C_{p}^{-1}\right) \\
& =\operatorname{det}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}+\lambda\left(I_{p}-C_{p}^{-1}\right)\right) \\
& =\operatorname{det}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right) \operatorname{det}\left(I_{p}+\lambda\left(I_{p}-C_{p}^{-1}\right)\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right)^{-1}\right) .
\end{aligned}
$$

Spiked Models

Proof

- Two ingredients: Algebraic calculus + trace lemma
- Find eigenvalues away from eigenvalues of $\frac{1}{n} X_{p} X_{p}^{\top}$:

$$
\begin{aligned}
0 & =\operatorname{det}\left(\frac{1}{n} Y_{p} Y_{p}^{\top}-\lambda I_{p}\right), \quad Y_{p}=C_{p}^{\frac{1}{2}} X_{p} \\
& =\operatorname{det}\left(C_{p}\right) \operatorname{det}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda C_{p}^{-1}\right) \\
& =\operatorname{det}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}+\lambda\left(I_{p}-C_{p}^{-1}\right)\right) \\
& =\operatorname{det}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right) \operatorname{det}\left(I_{p}+\lambda\left(I_{p}-C_{p}^{-1}\right)\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right)^{-1}\right) .
\end{aligned}
$$

- Use low rank property: $\left(C_{p}=I_{p}+P=I_{p}+U \Omega U^{\top}\right)$

$$
I_{p}-C_{p}^{-1}=I_{p}-\left(I_{p}+U \Omega U^{\top}\right)^{-1}=U\left(I_{K}+\Omega^{-1}\right)^{-1} U^{\top}, \Omega \in \mathbb{C}^{K \times K}
$$

Hence

$$
0=\operatorname{det}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right) \operatorname{det}\left(I_{p}+\lambda U\left(I_{K}+\Omega^{-1}\right)^{-1} U^{\top}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right)^{-1}\right)
$$

Spiked Models

Proof

- Two ingredients: Algebraic calculus + trace lemma
- Find eigenvalues away from eigenvalues of $\frac{1}{n} X_{p} X_{p}^{\top}$:

$$
\begin{aligned}
0 & =\operatorname{det}\left(\frac{1}{n} Y_{p} Y_{p}^{\top}-\lambda I_{p}\right), \quad Y_{p}=C_{p}^{\frac{1}{2}} X_{p} \\
& =\operatorname{det}\left(C_{p}\right) \operatorname{det}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda C_{p}^{-1}\right) \\
& =\operatorname{det}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}+\lambda\left(I_{p}-C_{p}^{-1}\right)\right) \\
& =\operatorname{det}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right) \operatorname{det}\left(I_{p}+\lambda\left(I_{p}-C_{p}^{-1}\right)\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right)^{-1}\right) .
\end{aligned}
$$

- Use low rank property: $\left(C_{p}=I_{p}+P=I_{p}+U \Omega U^{\top}\right)$

$$
I_{p}-C_{p}^{-1}=I_{p}-\left(I_{p}+U \Omega U^{\top}\right)^{-1}=U\left(I_{K}+\Omega^{-1}\right)^{-1} U^{\top}, \Omega \in \mathbb{C}^{K \times K}
$$

Hence
$0=\operatorname{det}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right) \operatorname{det}\left(I_{p}+\lambda U\left(I_{K}+\Omega^{-1}\right)^{-1} U^{\top}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right)^{-1}\right)$.

Spiked Models

Proof (2)

- Sylverster's identity $(\operatorname{det}(I+A B)=\operatorname{det}(I+B A))$,

$$
0=\operatorname{det}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right) \operatorname{det}\left(I_{K}+\lambda\left(I_{K}+\Omega^{-1}\right)^{-1} U^{\top}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right)^{-1} U\right)
$$

Spiked Models

Proof (2)

- Sylverster's identity $(\operatorname{det}(I+A B)=\operatorname{det}(I+B A))$,

$$
0=\operatorname{det}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right) \operatorname{det}\left(I_{K}+\lambda\left(I_{K}+\Omega^{-1}\right)^{-1} U^{\top}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right)^{-1} U\right)
$$

- No eigenvalue outside the support [Bai,Sil'98]: $\operatorname{det}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right)$ has no zero beyond $(1+\sqrt{c})^{2}$ for all large n a.s.

Spiked Models

Proof (2)

- Sylverster's identity $(\operatorname{det}(I+A B)=\operatorname{det}(I+B A))$,
$0=\operatorname{det}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right) \operatorname{det}\left(I_{K}+\lambda\left(I_{K}+\Omega^{-1}\right)^{-1} U^{\top}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right)^{-1} U\right)$
- No eigenvalue outside the support [Bai,Sil'98]: $\operatorname{det}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right)$ has no zero beyond $(1+\sqrt{c})^{2}$ for all large n a.s.
- Extension of Trace Lemma: for each $z \in \mathbb{C} \backslash \operatorname{supp}(\mu)$,

$$
U^{\top}\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1} U \xrightarrow{\text { a.s. }} m_{\mu}(z) I_{K} .
$$

(X_{p} being "almost-unitarily invariant", U made of "i.i.d.-like" random vectors)

Spiked Models

Proof (2)

- Sylverster's identity $(\operatorname{det}(I+A B)=\operatorname{det}(I+B A))$,

$$
0=\operatorname{det}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right) \operatorname{det}\left(I_{K}+\lambda\left(I_{K}+\Omega^{-1}\right)^{-1} U^{\top}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right)^{-1} U\right)
$$

- No eigenvalue outside the support [Bai,Sil'98]: $\operatorname{det}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right)$ has no zero beyond $(1+\sqrt{c})^{2}$ for all large n a.s.
- Extension of Trace Lemma: for each $z \in \mathbb{C} \backslash \operatorname{supp}(\mu)$,

$$
U^{\top}\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1} U \xrightarrow{\text { a.s. }} m_{\mu}(z) I_{K} .
$$

(X_{p} being "almost-unitarily invariant", U made of "i.i.d.-like" random vectors)

- As a result, for all large n a.s.,

$$
\begin{aligned}
0 & =\operatorname{det}\left(I_{K}+\lambda\left(I_{K}+\Omega^{-1}\right)^{-1} U^{\top}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right)^{-1} U\right) \\
& \simeq \prod_{k=1}^{K}\left(1+\frac{\lambda}{1+\omega_{k}^{-1}} m_{\mu}(\lambda)\right)=\prod_{k=1}^{K}\left(1+\frac{\omega_{k}}{1+\omega_{k}} \lambda m_{\mu}(\lambda)\right)
\end{aligned}
$$

Spiked Models

Proof (3)

- Limiting solutions: zeros of

$$
\lambda m_{\mu}(\lambda)=-\frac{1+\omega_{m}}{\omega_{m}}
$$

Spiked Models

Proof (3)

- Limiting solutions: zeros of

$$
\lambda m_{\mu}(\lambda)=-\frac{1+\omega_{m}}{\omega_{m}} .
$$

- Marčenko-Pastur law properties $\left(m_{\mu}(z)=\left(1-c-z-c z m_{\mu}(z)\right)^{-1}\right)$:
$>\lambda \mapsto \lambda m_{\mu}(\lambda)=\int \frac{\lambda}{t-\lambda} \mu(d t)$ maps $\left((1+\sqrt{c})^{2}, \infty\right)$ onto $\left(-\frac{1+\sqrt{c}}{\sqrt{c}}, 0^{-}\right)$
\rightarrow Solution only when $\omega_{m}>\sqrt{c}$:

$$
\lambda=1+\omega_{m}+c \frac{1+\omega_{m}}{\omega_{m}}
$$

Spiked Models

Theorem (Eigenvectors [Paul'07])
Let $Y_{p}=C_{p}^{\frac{1}{2}} X_{p}$, with

- X_{p} with i.i.d. zero mean, unit variance, finite fourth order moment entries
- $C_{p}=I_{p}+P, P=\sum_{i=1}^{K} \omega_{i} u_{i} u_{i}^{\top}, \omega_{1}>\ldots>\omega_{M}>0$.

Spiked Models

Theorem (Eigenvectors [Paul'07])

Let $Y_{p}=C_{p}^{\frac{1}{2}} X_{p}$, with

- X_{p} with i.i.d. zero mean, unit variance, finite fourth order moment entries
- $C_{p}=I_{p}+P, P=\sum_{i=1}^{K} \omega_{i} u_{i} u_{i}^{\top}, \omega_{1}>\ldots>\omega_{M}>0$.

Then, as $p, n \rightarrow \infty, p / n \rightarrow c \in(0, \infty)$, for $a, b \in \mathbb{R}^{p}$ deterministic and \hat{u}_{i} eigenvector of $\lambda_{i}\left(\frac{1}{n} Y_{p} Y_{p}^{\mathrm{T}}\right)$,

$$
a^{\top} \hat{u}_{i} \hat{u}_{i}^{\top} b-\frac{1-c \omega_{i}^{-2}}{1+c \omega_{i}^{-1}} a^{\top} u_{i} u_{i}^{\top} b \cdot 1_{\omega_{i}>\sqrt{c}} \xrightarrow{\text { a.s. }} 0
$$

In particular,

$$
\left|\hat{u}_{i}^{\top} u_{i}\right|^{2} \xrightarrow{\text { a.s. }} \frac{1-c \omega_{i}^{-2}}{1+c \omega_{i}^{-1}} \cdot 1_{\omega_{i}>\sqrt{c}} .
$$

Spiked Models

Theorem (Eigenvectors [Paul'07])

Let $Y_{p}=C_{p}^{\frac{1}{2}} X_{p}$, with

- X_{p} with i.i.d. zero mean, unit variance, finite fourth order moment entries
- $C_{p}=I_{p}+P, P=\sum_{i=1}^{K} \omega_{i} u_{i} u_{i}^{\top}, \omega_{1}>\ldots>\omega_{M}>0$.

Then, as $p, n \rightarrow \infty, p / n \rightarrow c \in(0, \infty)$, for $a, b \in \mathbb{R}^{p}$ deterministic and \hat{u}_{i} eigenvector of $\lambda_{i}\left(\frac{1}{n} Y_{p} Y_{p}^{\mathrm{T}}\right)$,

$$
a^{\top} \hat{u}_{i} \hat{u}_{i}^{\top} b-\frac{1-c \omega_{i}^{-2}}{1+c \omega_{i}^{-1}} a^{\top} u_{i} u_{i}^{\top} b \cdot 1_{\omega_{i}>\sqrt{c}} \xrightarrow{\text { a.s. }} 0
$$

In particular,

$$
\left|\hat{u}_{i}^{\top} u_{i}\right|^{2} \xrightarrow{\text { a.s. }} \frac{1-c \omega_{i}^{-2}}{1+c \omega_{i}^{-1}} \cdot 1_{\omega_{i}>\sqrt{c}} .
$$

Proof: Based on Cauchy integral + similar ingredients as eigenvalue proof

$$
a^{\top} \hat{u}_{i} \hat{u}_{i}^{\top} b=\frac{1}{2 \pi \imath} \oint_{\mathcal{C}_{i}} a^{\top}\left(\frac{1}{n} Y_{p} Y_{p}^{\top}-z I_{p}\right)^{-1} b d z
$$

for \mathcal{C}_{m} contour circling around λ_{i} only.

Spiked Models

Figure: Simulated versus limiting $\left|\hat{u}_{1}^{\top} u_{1}\right|^{2}$ for $Y_{p}=C_{p}^{\frac{1}{2}} X_{p}, C_{p}=I_{p}+\omega_{1} u_{1} u_{1}^{\top}, p / n=1 / 3$, varying ω_{1}.

Spiked Models

Figure: Simulated versus limiting $\left|\hat{u}_{1}^{\top} u_{1}\right|^{2}$ for $Y_{p}=C_{p}^{\frac{1}{2}} X_{p}, C_{p}=I_{p}+\omega_{1} u_{1} u_{1}^{\top}, p / n=1 / 3$, varying ω_{1}.

Spiked Models

Figure: Simulated versus limiting $\left|\hat{u}_{1}^{\top} u_{1}\right|^{2}$ for $Y_{p}=C_{p}^{\frac{1}{2}} X_{p}, C_{p}=I_{p}+\omega_{1} u_{1} u_{1}^{\top}, p / n=1 / 3$, varying ω_{1}.

Spiked Models

Figure: Simulated versus limiting $\left|\hat{u}_{1}^{\top} u_{1}\right|^{2}$ for $Y_{p}=C_{p}^{\frac{1}{2}} X_{p}, C_{p}=I_{p}+\omega_{1} u_{1} u_{1}^{\top}, p / n=1 / 3$, varying ω_{1}.

Tracy-Widom Theorem

Theorem (Fluctuations of Eigenvalues [Baik,BenArous,Péché'05])
Let $Y_{p}=C_{p}^{\frac{1}{2}} X_{p}$, with

- X_{p} with i.i.d. real or complex Gaussian zero mean, unit variance entries,
- $C_{p}=I_{p}+P, P=\sum_{i=1}^{K} \omega_{i} u_{i} u_{i}^{\top}, \omega_{1}>\ldots>\omega_{K}>0(K \geq 0)$.

Tracy-Widom Theorem

Theorem (Fluctuations of Eigenvalues [Baik,BenArous,Péché’05])
Let $Y_{p}=C_{p}^{\frac{1}{2}} X_{p}$, with

- X_{p} with i.i.d. real or complex Gaussian zero mean, unit variance entries,
- $C_{p}=I_{p}+P, P=\sum_{i=1}^{K} \omega_{i} u_{i} u_{i}^{\top}, \omega_{1}>\ldots>\omega_{K}>0(K \geq 0)$.

Then, as $p, n \rightarrow \infty, p / n \rightarrow c<1$,

- If $\omega_{1}<\sqrt{c}$ (or $K=0$),

$$
p^{\frac{2}{3}} \frac{\lambda_{1}-(1+\sqrt{c})^{2}}{(1+\sqrt{c})^{\frac{4}{3}} c^{\frac{1}{2}}} \xrightarrow{\mathcal{L}} T,(\text { real or complex Tracy-Widom law) }
$$

Tracy-Widom Theorem

Theorem (Fluctuations of Eigenvalues [Baik,BenArous,Péché’05])
Let $Y_{p}=C_{p}^{\frac{1}{2}} X_{p}$, with

- X_{p} with i.i.d. real or complex Gaussian zero mean, unit variance entries,
- $C_{p}=I_{p}+P, P=\sum_{i=1}^{K} \omega_{i} u_{i} u_{i}^{\top}, \omega_{1}>\ldots>\omega_{K}>0(K \geq 0)$.

Then, as $p, n \rightarrow \infty, p / n \rightarrow c<1$,

- If $\omega_{1}<\sqrt{c}$ (or $K=0$),

$$
p^{\frac{2}{3}} \frac{\lambda_{1}-(1+\sqrt{c})^{2}}{(1+\sqrt{c})^{\frac{4}{3}} c^{\frac{1}{2}}} \xrightarrow{\mathcal{L}} T,(\text { real or complex Tracy-Widom law) }
$$

- If $\omega_{1}>\sqrt{c}$,

$$
\left(\frac{\left(1+\omega_{1}\right)^{2}}{c}-\frac{\left(1+\omega_{1}\right)^{2}}{\omega_{1}^{2}}\right)^{\frac{1}{2}} p^{\frac{1}{2}}\left[\lambda_{1}-\left(1+\omega_{1}+c \frac{1+\omega_{1}}{\omega_{1}}\right)\right] \xrightarrow{\mathcal{L}} \mathcal{N}(0,1)
$$

Tracy-Widom Theorem

Figure: Distribution of $p^{\frac{2}{3}} c^{-\frac{1}{2}}(1+\sqrt{c})^{-\frac{4}{3}}\left[\lambda_{1}\left(\frac{1}{n} X_{p} X_{p}^{\top}\right)-(1+\sqrt{c})^{2}\right]$ versus real Tracy-Widom (T), $p=500, n=1500$.

Other Spiked Models

Similar results for multiple matrix models:

- $Y_{p}=\frac{1}{n} X X^{\top}+P, P$ deterministic and low rank
- $Y_{p}=\frac{1}{n} X^{\top}(I+P) X$
- $Y_{p}=\frac{1}{n}(X+P)^{\top}(X+P)$
- $Y_{p}=\frac{1}{n} T X^{\top}(I+P) X T$
- etc.

Outline

```
Basics of Random Matrix Theory (Romain COUILLET)
    Motivation: Large Sample Covariance Matrices
    The Stieltjes Transform Method
    Spiked Models
    Other Common Random Matrix Models
    Applications
Applications to Machine Learning (Xiaoyi MAI)
Applications to Random Projections and Neural Networks (Zhenyu LIAO)
    Random Projections-based Ridge Regression
    Random Projections-based Spectral Clustering
    Random Matrix Analysis for Learning Dynamics of Neural Networks
Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)
```


The Semi-circle law

Theorem
Let $X_{n} \in \mathbb{R}^{n \times n}$ Hermitian with e.s.d. μ_{n} such that $\frac{1}{\sqrt{n}}\left[X_{n}\right]_{i>j}$ are i.i.d. with zero mean and unit variance. Then, as $n \rightarrow \infty$,

$$
\mu_{n} \xrightarrow{\text { a.s. }} \mu
$$

with $\mu(d t)=\frac{1}{2 \pi} \sqrt{\left(4-t^{2}\right)^{+}} d t$. In particular, m_{μ} satisfies

$$
m_{\mu}(z)=\frac{1}{-z-m_{\mu}(z)}
$$

The Semi-circle law

Figure: Histogram of the eigenvalues of Wigner matrices and the semi-circle law, for $n=500$

The Circular law

Theorem
Let $X_{n} \in \mathbb{C}^{n \times n}$ with e.s.d. μ_{n} be such that $\frac{1}{\sqrt{n}}\left[X_{n}\right]_{i j}$ are i.i.d. entries with zero mean and unit variance. Then, as $n \rightarrow \infty$,

$$
\mu_{n} \xrightarrow{\text { a.s. }} \mu
$$

with μ a complex-supported measure with $\mu(d z)=\frac{1}{2 \pi} \delta_{|z| \leq 1} d z$.

The Circular law

Figure: Eigenvalues of X_{n} with i.i.d. standard Gaussian entries, for $n=500$.

Bibliographical references: Maths Book and Tutorial References I

From most accessible to least:

Couillet, R., \& Debbah, M. (2011). Random matrix methods for wireless communications. Cambridge University Press.

Tao, T. (2012). Topics in random matrix theory (Vol. 132). Providence, RI: American Mathematical Society.

Bai, Z., \& Silverstein, J. W. (2010). Spectral analysis of large dimensional random matrices (Vol. 20). New York: Springer.

Pastur, L. A., Shcherbina, M., \& Shcherbina, M. (2011). Eigenvalue distribution of large random matrices (Vol. 171). Providence, RI: American Mathematical Society.

Anderson, G. W., Guionnet, A., \& Zeitouni, O. (2010). An introduction to random matrices (Vol. 118). Cambridge university press.

Outline

```
Basics of Random Matrix Theory (Romain COUILLET)
    Motivation: Large Sample Covariance Matrices
    The Stieltjes Transform Method
    Spiked Models
    Other Common Random Matrix Models
    Applications
Applications to Machine Learning (Xiaoyi MAI)
Applications to Random Projections and Neural Networks (Zhenyu LIAO)
    Random Projections-based Ridge Regression
    Random Projections-based Spectral Clustering
    Random Matrix Analysis for Learning Dynamics of Neural Networks
Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)
```


From classical applications...

Large range of applications:

From classical applications...

Large range of applications:

- Wireless communications: capacity of large communication channels $H \in \mathbb{C}^{p \times n}$, optimal precoding in mu-MIMO, power allocation in large networks, sensing in cognitive radios, etc.

From classical applications...

Large range of applications:

- Wireless communications: capacity of large communication channels $H \in \mathbb{C}^{p \times n}$, optimal precoding in mu-MIMO, power allocation in large networks, sensing in cognitive radios, etc.
- Array processing: improved MUSIC methods for large arrays ($p \sim n$), optimal beamforming (MVDR), detection filters (ANMF), etc.

From classical applications...

Large range of applications:

- Wireless communications: capacity of large communication channels $H \in \mathbb{C}^{p \times n}$, optimal precoding in mu-MIMO, power allocation in large networks, sensing in cognitive radios, etc.
- Array processing: improved MUSIC methods for large arrays ($p \sim n$), optimal beamforming (MVDR), detection filters (ANMF), etc.
- Statistical finance: portfolio optimization (Markowitz, GMVP) for large portfolios and short time windows.

From classical applications...

Large range of applications:

- Wireless communications: capacity of large communication channels $H \in \mathbb{C}^{p \times n}$, optimal precoding in mu-MIMO, power allocation in large networks, sensing in cognitive radios, etc.
- Array processing: improved MUSIC methods for large arrays ($p \sim n$), optimal beamforming (MVDR), detection filters (ANMF), etc.
- Statistical finance: portfolio optimization (Markowitz, GMVP) for large portfolios and short time windows.
- Brain signal processing: EEG covariance estimation on short windows.

From classical applications...

Large range of applications:

- Wireless communications: capacity of large communication channels $H \in \mathbb{C}^{p \times n}$, optimal precoding in mu-MIMO, power allocation in large networks, sensing in cognitive radios, etc.
- Array processing: improved MUSIC methods for large arrays ($p \sim n$), optimal beamforming (MVDR), detection filters (ANMF), etc.
- Statistical finance: portfolio optimization (Markowitz, GMVP) for large portfolios and short time windows.
- Brain signal processing: EEG covariance estimation on short windows.

```
    Any application where p~n "rather large"
(convergence speed in up to O(n) and not O(\sqrt{}{n})\mathrm{ as usual!)}
```


From classical applications...

Large range of applications:

- Wireless communications: capacity of large communication channels $H \in \mathbb{C}^{p \times n}$, optimal precoding in mu-MIMO, power allocation in large networks, sensing in cognitive radios, etc.
- Array processing: improved MUSIC methods for large arrays ($p \sim n$), optimal beamforming (MVDR), detection filters (ANMF), etc.
- Statistical finance: portfolio optimization (Markowitz, GMVP) for large portfolios and short time windows.
- Brain signal processing: EEG covariance estimation on short windows.

$$
\begin{aligned}
& \text { Any application where } p \sim n \text { "rather large" } \\
& \text { (convergence speed in up to } O(n) \text { and not } O(\sqrt{n}) \text { as usual!) }
\end{aligned}
$$

BUT mostly linear settings...

Specificities in statistical and machine learning:

- Matrix of non-linear entries: kernel matrices $K=\left\{\kappa\left(x_{i}, x_{j}\right)\right\}_{i, j=1}^{n}$, activation functions in neural nets $x_{l+1}=\sigma\left(W x_{l}\right)$, non-linear features, etc.

Specificities in statistical and machine learning:

- Matrix of non-linear entries: kernel matrices $K=\left\{\kappa\left(x_{i}, x_{j}\right)\right\}_{i, j=1}^{n}$, activation functions in neural nets $x_{l+1}=\sigma\left(W x_{l}\right)$, non-linear features, etc.
- Often non-explicit solutions: robust statistics (fixed-point matrices), SVM margin constraints, logistic regression, etc.

Specificities in statistical and machine learning:

- Matrix of non-linear entries: kernel matrices $K=\left\{\kappa\left(x_{i}, x_{j}\right)\right\}_{i, j=1}^{n}$, activation functions in neural nets $x_{l+1}=\sigma\left(W x_{l}\right)$, non-linear features, etc.
- Often non-explicit solutions: robust statistics (fixed-point matrices), SVM margin constraints, logistic regression, etc.

CENTRAL ISSUE: Given that basic sample covariance matrices are not consistent for large n, p, what happens to machine learning methods?

Specificities in statistical and machine learning:

- Matrix of non-linear entries: kernel matrices $K=\left\{\kappa\left(x_{i}, x_{j}\right)\right\}_{i, j=1}^{n}$, activation functions in neural nets $x_{l+1}=\sigma\left(W x_{l}\right)$, non-linear features, etc.
- Often non-explicit solutions: robust statistics (fixed-point matrices), SVM margin constraints, logistic regression, etc.

CENTRAL ISSUE: Given that basic sample covariance matrices are not consistent for large n, p, what happens to machine learning methods?

- we will see that small-dimensional intuitions dramatically fail

Specificities in statistical and machine learning:

- Matrix of non-linear entries: kernel matrices $K=\left\{\kappa\left(x_{i}, x_{j}\right)\right\}_{i, j=1}^{n}$, activation functions in neural nets $x_{l+1}=\sigma\left(W x_{l}\right)$, non-linear features, etc.
- Often non-explicit solutions: robust statistics (fixed-point matrices), SVM margin constraints, logistic regression, etc.

CENTRAL ISSUE: Given that basic sample covariance matrices are not consistent for large n, p, what happens to machine learning methods?

- we will see that small-dimensional intuitions dramatically fail
- some classical and widely-used algorithms become ineffective

Specificities in statistical and machine learning:

- Matrix of non-linear entries: kernel matrices $K=\left\{\kappa\left(x_{i}, x_{j}\right)\right\}_{i, j=1}^{n}$, activation functions in neural nets $x_{l+1}=\sigma\left(W x_{l}\right)$, non-linear features, etc.
- Often non-explicit solutions: robust statistics (fixed-point matrices), SVM margin constraints, logistic regression, etc.

CENTRAL ISSUE: Given that basic sample covariance matrices are not consistent for large n, p, what happens to machine learning methods?

- we will see that small-dimensional intuitions dramatically fail
- some classical and widely-used algorithms become ineffective
- BUT random matrix theory provides a renewed understanding.

Specificities in statistical and machine learning:

- Matrix of non-linear entries: kernel matrices $K=\left\{\kappa\left(x_{i}, x_{j}\right)\right\}_{i, j=1}^{n}$, activation functions in neural nets $x_{l+1}=\sigma\left(W x_{l}\right)$, non-linear features, etc.
- Often non-explicit solutions: robust statistics (fixed-point matrices), SVM margin constraints, logistic regression, etc.

CENTRAL ISSUE: Given that basic sample covariance matrices are not consistent for large n, p, what happens to machine learning methods?

- we will see that small-dimensional intuitions dramatically fail
- some classical and widely-used algorithms become ineffective
- BUT random matrix theory provides a renewed understanding.

TUTORIAL: first answers to

Specificities in statistical and machine learning:

- Matrix of non-linear entries: kernel matrices $K=\left\{\kappa\left(x_{i}, x_{j}\right)\right\}_{i, j=1}^{n}$, activation functions in neural nets $x_{l+1}=\sigma\left(W x_{l}\right)$, non-linear features, etc.
- Often non-explicit solutions: robust statistics (fixed-point matrices), SVM margin constraints, logistic regression, etc.

CENTRAL ISSUE: Given that basic sample covariance matrices are not consistent for large n, p, what happens to machine learning methods?

- we will see that small-dimensional intuitions dramatically fail
- some classical and widely-used algorithms become ineffective
- BUT random matrix theory provides a renewed understanding.

TUTORIAL: first answers to understand,

Specificities in statistical and machine learning:

- Matrix of non-linear entries: kernel matrices $K=\left\{\kappa\left(x_{i}, x_{j}\right)\right\}_{i, j=1}^{n}$, activation functions in neural nets $x_{l+1}=\sigma\left(W x_{l}\right)$, non-linear features, etc.
- Often non-explicit solutions: robust statistics (fixed-point matrices), SVM margin constraints, logistic regression, etc.

CENTRAL ISSUE: Given that basic sample covariance matrices are not consistent for large n, p, what happens to machine learning methods?

- we will see that small-dimensional intuitions dramatically fail
- some classical and widely-used algorithms become ineffective
- BUT random matrix theory provides a renewed understanding.

TUTORIAL: first answers to understand, improve, and

Specificities in statistical and machine learning:

- Matrix of non-linear entries: kernel matrices $K=\left\{\kappa\left(x_{i}, x_{j}\right)\right\}_{i, j=1}^{n}$, activation functions in neural nets $x_{l+1}=\sigma\left(W x_{l}\right)$, non-linear features, etc.
- Often non-explicit solutions: robust statistics (fixed-point matrices), SVM margin constraints, logistic regression, etc.

CENTRAL ISSUE: Given that basic sample covariance matrices are not consistent for large n, p, what happens to machine learning methods?

- we will see that small-dimensional intuitions dramatically fail
- some classical and widely-used algorithms become ineffective
- BUT random matrix theory provides a renewed understanding.

TUTORIAL: first answers to understand, improve, and change paradigm.

Outline

```
Basics of Random Matrix Theory (Romain COUILLET)
    Motivation: Large Sample Covariance Matrices
    The Stieltjes Transform Method
    Spiked Models
    Other Common Random Matrix Models
    Applications
```

Applications to Machine Learning (Xiaoyi MAI)

```
Applications to Random Projections and Neural Networks (Zhenyu LIAO)
    Random Projections-based Ridge Regression
    Random Projections-based Spectral Clustering
    Random Matrix Analysis for Learning Dynamics of Neural Networks
```

Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)

Outline

```
Basics of Random Matrix Theory (Romain COUILLET)
    Motivation: Large Sample Covariance Matrices
    The Stieltjes Transform Method
    Spiked Models
    Other Common Random Matrix Models
    Applications
```

Applications to Machine Learning (Xiaoyi MAI)

```
Applications to Random Projections and Neural Networks (Zhenyu LIAO)
    Random Projections-based Ridge Regression
    Random Projections-based Spectral Clustering
    Random Matrix Analysis for Learning Dynamics of Neural Networks
```

Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)

Reminder on Spectral Clustering Methods

Context: Two-step classification of n objects based on similarity $A \in \mathbb{R}^{n \times n}$:

Reminder on Spectral Clustering Methods

Context: Two-step classification of n objects based on similarity $A \in \mathbb{R}^{n \times n}$:

\Downarrow Eigenvectors \Downarrow
(in practice, shuffled)

Reminder on Spectral Clustering Methods

N
$\stackrel{\rightharpoonup}{\omega}$
$\stackrel{\rightharpoonup}{\omega}$
$i \pm$

Reminder on Spectral Clustering Methods

$\stackrel{-}{c}$

ъ ^^иәริ!ヨ

$\Downarrow \ell$-dimensional representation \Downarrow (shuffling no longer matters)

Eigenvector 1

Reminder on Spectral Clustering Methods

$\xrightarrow{-1}$

ъ・ヘиәฮิ!ヨ

$\Downarrow \ell$-dimensional representation \Downarrow (shuffling no longer matters)

Eigenvector 1
\Downarrow
EM or k-means clustering.

Outline

```
Basics of Random Matrix Theory (Romain COUILLET)
    Motivation: Large Sample Covariance Matrices
    The Stieltjes Transform Method
    Spiked Models
    Other Common Random Matrix Models
    Applications
```

Applications to Machine Learning (Xiaoyi MAI)

```
Applications to Random Projections and Neural Networks (Zhenyu LIAO)
    Random Projections-based Ridge Regression
    Random Projections-based Spectral Clustering
    Random Matrix Analysis for Learning Dynamics of Neural Networks
```

Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)

Kernel Spectral Clustering

Problem Statement

- Dataset $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$
- Objective: "cluster" data in k similarity classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$.

Kernel Spectral Clustering

Problem Statement

- Dataset $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$
- Objective: "cluster" data in k similarity classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$.
- Kernel spectral clustering based on kernel matrix

$$
K=\left\{\kappa\left(x_{i}, x_{j}\right)\right\}_{i, j=1}^{n}
$$

Kernel Spectral Clustering

Problem Statement

- Dataset $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$
- Objective: "cluster" data in k similarity classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$.
- Kernel spectral clustering based on kernel matrix

$$
K=\left\{\kappa\left(x_{i}, x_{j}\right)\right\}_{i, j=1}^{n}
$$

- Usually, $\kappa(x, y)=f\left(x^{\top} y\right)$ or $\kappa(x, y)=f\left(\|x-y\|^{2}\right)$

Kernel Spectral Clustering

Problem Statement

- Dataset $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$
- Objective: "cluster" data in k similarity classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$.
- Kernel spectral clustering based on kernel matrix

$$
K=\left\{\kappa\left(x_{i}, x_{j}\right)\right\}_{i, j=1}^{n}
$$

- Usually, $\kappa(x, y)=f\left(x^{\top} y\right)$ or $\kappa(x, y)=f\left(\|x-y\|^{2}\right)$
- Refinements:
- instead of K, use $D-K, I_{n}-D^{-1} K, I_{n}-D^{-\frac{1}{2}} K D^{-\frac{1}{2}}$, etc.
- several steps algorithms: Ng-Jordan-Weiss, Shi-Malik, etc.

Kernel Spectral Clustering

Problem Statement

- Dataset $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$
- Objective: "cluster" data in k similarity classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$.
- Kernel spectral clustering based on kernel matrix

$$
K=\left\{\kappa\left(x_{i}, x_{j}\right)\right\}_{i, j=1}^{n}
$$

- Usually, $\kappa(x, y)=f\left(x^{\top} y\right)$ or $\kappa(x, y)=f\left(\|x-y\|^{2}\right)$
- Refinements:
- instead of K, use $D-K, I_{n}-D^{-1} K, I_{n}-D^{-\frac{1}{2}} K D^{-\frac{1}{2}}$, etc.
- several steps algorithms: Ng-Jordan-Weiss, Shi-Malik, etc.

Intuition (from small dimensions)

- K essentially low rank with class structure in eigenvectors.

Kernel Spectral Clustering

Problem Statement

- Dataset $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$
- Objective: "cluster" data in k similarity classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$.
- Kernel spectral clustering based on kernel matrix

$$
K=\left\{\kappa\left(x_{i}, x_{j}\right)\right\}_{i, j=1}^{n}
$$

- Usually, $\kappa(x, y)=f\left(x^{\top} y\right)$ or $\kappa(x, y)=f\left(\|x-y\|^{2}\right)$
- Refinements:
- instead of K, use $D-K, I_{n}-D^{-1} K, I_{n}-D^{-\frac{1}{2}} K D^{-\frac{1}{2}}$, etc.
- several steps algorithms: Ng-Jordan-Weiss, Shi-Malik, etc.

Intuition (from small dimensions)

- K essentially low rank with class structure in eigenvectors.
- Ng-Weiss-Jordan key remark: $D^{-\frac{1}{2}} K D^{-\frac{1}{2}}\left(D^{\frac{1}{2}} j_{a}\right) \simeq D^{\frac{1}{2}} j_{a}\left(j_{a}\right.$ canonical vector of \mathcal{C}_{a})

Kernel Spectral Clustering

Kernel Spectral Clustering

Kernel Spectral Clustering

Kernel Spectral Clustering

Figure: Leading four eigenvectors of $D^{-\frac{1}{2}} K D^{-\frac{1}{2}}$ for MNIST data, RBF kernel $\left(f(t)=\exp \left(-t^{2} / 2\right)\right)$.

Kernel Spectral Clustering

Figure: Leading four eigenvectors of $D^{-\frac{1}{2}} K D^{-\frac{1}{2}}$ for MNIST data, RBF kernel $\left(f(t)=\exp \left(-t^{2} / 2\right)\right)$.

- Important Remark: eigenvectors informative BUT far from $D^{\frac{1}{2}} j_{a}$!

Model and Assumptions

Gaussian mixture model:

- $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$,
- k classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$,
- $x_{1}, \ldots, x_{n_{1}} \in \mathcal{C}_{1}, \ldots, x_{n-n_{k}+1}, \ldots, x_{n} \in \mathcal{C}_{k}$,
- $x_{i} \sim \mathcal{N}\left(\mu_{g_{i}}, C_{g_{i}}\right)$.

Model and Assumptions

Gaussian mixture model:

- $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$,
- k classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$,
- $x_{1}, \ldots, x_{n_{1}} \in \mathcal{C}_{1}, \ldots, x_{n-n_{k}+1}, \ldots, x_{n} \in \mathcal{C}_{k}$,
- $x_{i} \sim \mathcal{N}\left(\mu_{g_{i}}, C_{g_{i}}\right)$.

Assumption (Growth Rate)

As $n \rightarrow \infty$,

1. Data scaling: $\frac{p}{n} \rightarrow c_{0} \in(0, \infty), \frac{n_{a}}{n} \rightarrow c_{a} \in(0,1)$,
2. Mean scaling: with $\mu^{\circ} \triangleq \sum_{a=1}^{k} \frac{n_{a}}{n} \mu_{a}$ and $\mu_{a}^{\circ} \triangleq \mu_{a}-\mu^{\circ}$, then $\left\|\mu_{a}^{\circ}\right\|=O(1)$
3. Covariance scaling: with $C^{\circ} \triangleq \sum_{a=1}^{k} \frac{n_{a}}{n} C_{a}$ and $C_{a}^{\circ} \triangleq C_{a}-C^{\circ}$, then

$$
\left\|C_{a}\right\|=O(1), \quad \operatorname{tr} C_{a}^{\circ}=O(\sqrt{p}), \quad \operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}=O(p)
$$

Model and Assumptions

Gaussian mixture model:

- $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$,
- k classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$,
- $x_{1}, \ldots, x_{n_{1}} \in \mathcal{C}_{1}, \ldots, x_{n-n_{k}+1}, \ldots, x_{n} \in \mathcal{C}_{k}$,
- $x_{i} \sim \mathcal{N}\left(\mu_{g_{i}}, C_{g_{i}}\right)$.

Assumption (Growth Rate)

As $n \rightarrow \infty$,

1. Data scaling: $\frac{p}{n} \rightarrow c_{0} \in(0, \infty), \frac{n_{a}}{n} \rightarrow c_{a} \in(0,1)$,
2. Mean scaling: with $\mu^{\circ} \triangleq \sum_{a=1}^{k} \frac{n_{a}}{n} \mu_{a}$ and $\mu_{a}^{\circ} \triangleq \mu_{a}-\mu^{\circ}$, then $\left\|\mu_{a}^{\circ}\right\|=O(1)$
3. Covariance scaling: with $C^{\circ} \triangleq \sum_{a=1}^{k} \frac{n_{a}}{n} C_{a}$ and $C_{a}^{\circ} \triangleq C_{a}-C^{\circ}$, then

$$
\left\|C_{a}\right\|=O(1), \quad \operatorname{tr} C_{a}^{\circ}=O(\sqrt{p}), \quad \operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}=O(p)
$$

For 2 classes, this is
$\left\|\mu_{1}-\mu_{2}\right\|=O(1), \quad \operatorname{tr}\left(C_{1}-C_{2}\right)=O(\sqrt{p}), \quad\left\|C_{i}\right\|=O(1), \quad \operatorname{tr}\left(\left[C_{1}-C_{2}\right]^{2}\right)=O(p)$.

Model and Assumptions

Gaussian mixture model:

- $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$,
- k classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$,
- $x_{1}, \ldots, x_{n_{1}} \in \mathcal{C}_{1}, \ldots, x_{n-n_{k}+1}, \ldots, x_{n} \in \mathcal{C}_{k}$,
- $x_{i} \sim \mathcal{N}\left(\mu_{g_{i}}, C_{g_{i}}\right)$.

Assumption (Growth Rate)

As $n \rightarrow \infty$,

1. Data scaling: $\frac{p}{n} \rightarrow c_{0} \in(0, \infty), \frac{n_{a}}{n} \rightarrow c_{a} \in(0,1)$,
2. Mean scaling: with $\mu^{\circ} \triangleq \sum_{a=1}^{k} \frac{n_{a}}{n} \mu_{a}$ and $\mu_{a}^{\circ} \triangleq \mu_{a}-\mu^{\circ}$, then $\left\|\mu_{a}^{\circ}\right\|=O(1)$
3. Covariance scaling: with $C^{\circ} \triangleq \sum_{a=1}^{k} \frac{n_{a}}{n} C_{a}$ and $C_{a}^{\circ} \triangleq C_{a}-C^{\circ}$, then

$$
\left\|C_{a}\right\|=O(1), \quad \operatorname{tr} C_{a}^{\circ}=O(\sqrt{p}), \quad \operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}=O(p)
$$

For 2 classes, this is
$\left\|\mu_{1}-\mu_{2}\right\|=O(1), \quad \operatorname{tr}\left(C_{1}-C_{2}\right)=O(\sqrt{p}), \quad\left\|C_{i}\right\|=O(1), \quad \operatorname{tr}\left(\left[C_{1}-C_{2}\right]^{2}\right)=O(p)$.

Remark: [Neyman-Pearson optimality]

- $x \sim \mathcal{N}\left(\pm \mu, I_{p}\right)$ (known μ) decidable iif $\|\mu\| \geq O(1)$.
- $x \sim \mathcal{N}\left(0,(1 \pm \varepsilon) I_{p}\right)$ (known ε) decidable iif $\|\epsilon\| \geq O\left(p^{-\frac{1}{2}}\right)$.

Model and Assumptions

Kernel Matrix:

- Kernel matrix of interest:

$$
K=\left\{f\left(\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}\right)\right\}_{i, j=1}^{n}
$$

for some sufficiently smooth nonnegative $f\left(f\left(\frac{1}{p} x_{i}^{\top} x_{j}\right)\right.$ simpler $)$.

Model and Assumptions

Kernel Matrix:

- Kernel matrix of interest:

$$
K=\left\{f\left(\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}\right)\right\}_{i, j=1}^{n}
$$

for some sufficiently smooth nonnegative $f\left(f\left(\frac{1}{p} x_{i}^{\top} x_{j}\right)\right.$ simpler $)$.

- We study the normalized Laplacian:

$$
L=n D^{-\frac{1}{2}}\left(K-\frac{d d^{\top}}{d^{\top} 1_{n}}\right) D^{-\frac{1}{2}}
$$

with $d=K 1_{n}, D=\operatorname{diag}(d)$.
(more stable both theoretically and in practice)

Random Matrix Equivalent

- Key Remark: Under growth rate assumptions,

$$
\max _{1 \leq i \neq j \leq n}\left\{\left|\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}-\tau\right|\right\} \xrightarrow{\text { a.s. }} 0
$$

where $\tau=\frac{1}{p} \operatorname{tr} C^{\circ}$.

Random Matrix Equivalent

- Key Remark: Under growth rate assumptions,

$$
\max _{1 \leq i \neq j \leq n}\left\{\left|\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}-\tau\right|\right\} \xrightarrow{\text { a.s. }} 0
$$

where $\tau=\frac{1}{p} \operatorname{tr} C^{\circ}$.
\Rightarrow Suggests that (up to diagonal) $K \simeq f(\tau) 1_{n} 1_{n}^{\top}$!

Random Matrix Equivalent

- Key Remark: Under growth rate assumptions,

$$
\max _{1 \leq i \neq j \leq n}\left\{\left|\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}-\tau\right|\right\} \xrightarrow{\text { a.s. }} 0
$$

where $\tau=\frac{1}{p} \operatorname{tr} C^{\circ}$.
\Rightarrow Suggests that (up to diagonal) $K \simeq f(\tau) 1_{n} 1_{n}^{\top}$!

- In fact, information hidden in low order fluctuations! from "matrix-wise" Taylor expansion of K :

$$
K=\underbrace{f(\tau) 1_{n} 1_{n}^{\top}}_{O_{\|\cdot\|}(n)}+\underbrace{\sqrt{n} K_{1}}_{\text {low rank, } O_{\|\cdot\|}(\sqrt{n})}+\underbrace{K_{2}}_{\text {informative terms, } O_{\|\cdot\|}(1)}
$$

Random Matrix Equivalent

- Key Remark: Under growth rate assumptions,

$$
\max _{1 \leq i \neq j \leq n}\left\{\left|\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}-\tau\right|\right\} \xrightarrow{\text { a.s. }} 0
$$

where $\tau=\frac{1}{p} \operatorname{tr} C^{\circ}$.
\Rightarrow Suggests that (up to diagonal) $K \simeq f(\tau) 1_{n} 1_{n}^{\top}$!

- In fact, information hidden in low order fluctuations! from "matrix-wise" Taylor expansion of K :

$$
K=\underbrace{f(\tau) 1_{n} 1_{n}^{\top}}_{O_{\|\cdot\|}(n)}+\underbrace{\sqrt{n} K_{1}}_{\text {low rank, } O_{\|\cdot\|}(\sqrt{n})}+\underbrace{K_{2}}_{\text {informative terms, } O_{\|\cdot\|}(1)}
$$

Clearly not the (small dimension) expected behavior.

Random Matrix Equivalent

$$
\begin{aligned}
& \text { Theorem (Random Matrix Equivalent [Couillet, Benaych'2015]) } \\
& \text { As } n, p \rightarrow \infty,\|L-\hat{L}\| \xrightarrow{\text { a.s. }} 0 \text {, where } \\
& \qquad L=n D^{-\frac{1}{2}}\left(K-\frac{d d^{\top}}{d^{\top} 1_{n}}\right) D^{-\frac{1}{2}}, \text { avec } K_{i j}=f\left(\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}\right) \\
& \qquad \hat{L}=-2 \frac{f^{\prime}(\tau)}{f(\tau)}\left[\frac{1}{p} P W^{\top} W P+\frac{1}{p} J B J^{\top}+*\right] \\
& \text { et } W=\left[w_{1}, \ldots, w_{n}\right] \in \mathbb{R}^{p \times n}\left(x_{i}=\mu_{a}+w_{i}\right), P=I_{n}-\frac{1}{n} 1_{n} 1_{n}^{\top},
\end{aligned}
$$

Random Matrix Equivalent

Theorem (Random Matrix Equivalent [Couillet, Benaych'2015]) As $n, p \rightarrow \infty,\|L-\hat{L}\| \xrightarrow{\text { a.s. }} 0$, where

$$
\begin{aligned}
& L=n D^{-\frac{1}{2}}\left(K-\frac{d d^{\top}}{d^{\top} 1_{n}}\right) D^{-\frac{1}{2}}, \text { avec } K_{i j}=f\left(\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}\right) \\
& \hat{L}=-2 \frac{f^{\prime}(\tau)}{f(\tau)}\left[\frac{1}{p} P W^{\top} W P+\frac{1}{p} J B J^{\top}+*\right]
\end{aligned}
$$

et $W=\left[w_{1}, \ldots, w_{n}\right] \in \mathbb{R}^{p \times n}\left(x_{i}=\mu_{a}+w_{i}\right), P=I_{n}-\frac{1}{n} 1_{n} 1_{n}^{\top}$,

$$
\begin{aligned}
J & =\left[j_{1}, \ldots, j_{k}\right], j_{a}^{\top}=\left(0 \ldots 0,1_{n_{a}}, 0, \ldots, 0\right) \\
B & =M^{\top} M+\left(\frac{5 f^{\prime}(\tau)}{8 f(\tau)}-\frac{f^{\prime \prime}(\tau)}{2 f^{\prime}(\tau)}\right) t t^{\top}-\frac{f^{\prime \prime}(\tau)}{f^{\prime}(\tau)} T+* .
\end{aligned}
$$

Recall $M=\left[\mu_{1}^{\circ}, \ldots, \mu_{k}^{\circ}\right], t=\left[\frac{1}{\sqrt{p}} \operatorname{tr} C_{1}^{\circ}, \ldots, \frac{1}{\sqrt{p}} \operatorname{tr} C_{k}^{\circ}\right]^{\top}, T=\left\{\frac{1}{p} \operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}\right\}_{a, b=1}^{k}$.

Random Matrix Equivalent

Theorem (Random Matrix Equivalent [Couillet, Benaych'2015]) As $n, p \rightarrow \infty,\|L-\hat{L}\| \xrightarrow{\text { a.s. }} 0$, where

$$
\begin{aligned}
& L=n D^{-\frac{1}{2}}\left(K-\frac{d d^{\top}}{d^{\top} 1_{n}}\right) D^{-\frac{1}{2}}, \text { avec } K_{i j}=f\left(\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}\right) \\
& \hat{L}=-2 \frac{f^{\prime}(\tau)}{f(\tau)}\left[\frac{1}{p} P W^{\top} W P+\frac{1}{p} J B J^{\top}+*\right]
\end{aligned}
$$

et $W=\left[w_{1}, \ldots, w_{n}\right] \in \mathbb{R}^{p \times n}\left(x_{i}=\mu_{a}+w_{i}\right), P=I_{n}-\frac{1}{n} 1_{n} 1_{n}^{\top}$,

$$
\begin{aligned}
J & =\left[j_{1}, \ldots, j_{k}\right], j_{a}^{\top}=\left(0 \ldots 0,1_{n_{a}}, 0, \ldots, 0\right) \\
B & =M^{\top} M+\left(\frac{5 f^{\prime}(\tau)}{8 f(\tau)}-\frac{f^{\prime \prime}(\tau)}{2 f^{\prime}(\tau)}\right) t t^{\top}-\frac{f^{\prime \prime}(\tau)}{f^{\prime}(\tau)} T+* .
\end{aligned}
$$

Recall $M=\left[\mu_{1}^{\circ}, \ldots, \mu_{k}^{\circ}\right], t=\left[\frac{1}{\sqrt{p}} \operatorname{tr} C_{1}^{\circ}, \ldots, \frac{1}{\sqrt{p}} \operatorname{tr} C_{k}^{\circ}\right]^{\top}, T=\left\{\frac{1}{p} \operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}\right\}_{a, b=1}^{k}$.
Fundamental conclusions:

Random Matrix Equivalent

Theorem (Random Matrix Equivalent [Couillet, Benaych'2015]) As $n, p \rightarrow \infty,\|L-\hat{L}\| \xrightarrow{\text { a.s. }} 0$, where

$$
\begin{aligned}
& L=n D^{-\frac{1}{2}}\left(K-\frac{d d^{\top}}{d^{\top} 1_{n}}\right) D^{-\frac{1}{2}}, \text { avec } K_{i j}=f\left(\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}\right) \\
& \hat{L}=-2 \frac{f^{\prime}(\tau)}{f(\tau)}\left[\frac{1}{p} P W^{\top} W P+\frac{1}{p} J B J^{\top}+*\right]
\end{aligned}
$$

et $W=\left[w_{1}, \ldots, w_{n}\right] \in \mathbb{R}^{p \times n}\left(x_{i}=\mu_{a}+w_{i}\right), P=I_{n}-\frac{1}{n} 1_{n} 1_{n}^{\top}$,

$$
\begin{aligned}
J & =\left[j_{1}, \ldots, j_{k}\right], j_{a}^{\top}=\left(0 \ldots 0,1_{n_{a}}, 0, \ldots, 0\right) \\
B & =M^{\top} M+\left(\frac{5 f^{\prime}(\tau)}{8 f(\tau)}-\frac{f^{\prime \prime}(\tau)}{2 f^{\prime}(\tau)}\right) t t^{\top}-\frac{f^{\prime \prime}(\tau)}{f^{\prime}(\tau)} T+* .
\end{aligned}
$$

Recall $M=\left[\mu_{1}^{\circ}, \ldots, \mu_{k}^{\circ}\right], t=\left[\frac{1}{\sqrt{p}} \operatorname{tr} C_{1}^{\circ}, \ldots, \frac{1}{\sqrt{p}} \operatorname{tr} C_{k}^{\circ}\right]^{\top}, T=\left\{\frac{1}{p} \operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}\right\}_{a, b=1}^{k}$.

Fundamental conclusions:

- asymptotic kernel impact only through $f^{\prime}(\tau)$ and $f^{\prime \prime}(\tau)$, that's all!

Random Matrix Equivalent

Theorem (Random Matrix Equivalent [Couillet, Benaych'2015]) As $n, p \rightarrow \infty,\|L-\hat{L}\| \xrightarrow{\text { a.s. }} 0$, where

$$
\begin{aligned}
& L=n D^{-\frac{1}{2}}\left(K-\frac{d d^{\top}}{d^{\top} 1_{n}}\right) D^{-\frac{1}{2}}, \text { avec } K_{i j}=f\left(\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}\right) \\
& \hat{L}=-2 \frac{f^{\prime}(\tau)}{f(\tau)}\left[\frac{1}{p} P W^{\top} W P+\frac{1}{p} J B J^{\top}+*\right]
\end{aligned}
$$

et $W=\left[w_{1}, \ldots, w_{n}\right] \in \mathbb{R}^{p \times n}\left(x_{i}=\mu_{a}+w_{i}\right), P=I_{n}-\frac{1}{n} 1_{n} 1_{n}^{\top}$,

$$
\begin{aligned}
J & =\left[j_{1}, \ldots, j_{k}\right], j_{a}^{\top}=\left(0 \ldots 0,1_{n_{a}}, 0, \ldots, 0\right) \\
B & =M^{\top} M+\left(\frac{5 f^{\prime}(\tau)}{8 f(\tau)}-\frac{f^{\prime \prime}(\tau)}{2 f^{\prime}(\tau)}\right) t t^{\top}-\frac{f^{\prime \prime}(\tau)}{f^{\prime}(\tau)} T+* .
\end{aligned}
$$

Recall $M=\left[\mu_{1}^{\circ}, \ldots, \mu_{k}^{\circ}\right], t=\left[\frac{1}{\sqrt{p}} \operatorname{tr} C_{1}^{\circ}, \ldots, \frac{1}{\sqrt{p}} \operatorname{tr} C_{k}^{\circ}\right]^{\top}, T=\left\{\frac{1}{p} \operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}\right\}_{a, b=1}^{k}$.
Fundamental conclusions:

- asymptotic kernel impact only through $f^{\prime}(\tau)$ and $f^{\prime \prime}(\tau)$, that's all!
- spectral clustering reads $M^{\top} M, t t^{\top}$ and T, that's all!

Isolated eigenvalues: Gaussian inputs

Figure: Eigenvalues of L and $\hat{L}, k=3, p=2048, n=512, c_{1}=c_{2}=1 / 4, c_{3}=1 / 2$, $\left[\mu_{a}\right]_{j}=4 \boldsymbol{\delta}_{a j}, C_{a}=(1+2(a-1) / \sqrt{p}) I_{p}, f(x)=\exp (-x / 2)$.

Theoretical Findings versus MNIST

Figure: Eigenvalues of L (red) and (equivalent Gaussian model) \hat{L} (white), MNIST data, $p=784$, $n=192$.

Theoretical Findings versus MNIST

Figure: Eigenvalues of L (red) and (equivalent Gaussian model) \hat{L} (white), MNIST data, $p=784$, $n=192$.

Theoretical Findings versus MNIST

Figure: Leading four eigenvectors of $D^{-\frac{1}{2}} K D^{-\frac{1}{2}}$ for MNIST data (red) and theoretical findings (blue).

Theoretical Findings versus MNIST

Figure: Leading four eigenvectors of $D^{-\frac{1}{2}} K D^{-\frac{1}{2}}$ for MNIST data (red) and theoretical findings (blue).

Theoretical Findings versus MNIST

Eigenvector 2 /Eigenvector 1

Eigenvector 3 /Eigenvector 2

Figure: 2D representation of eigenvectors of L, for the MNIST dataset. Theoretical means and 1and 2-standard deviations in blue. Class 1 in red, Class 2 in black, Class 3 in green.

Theoretical Findings versus MNIST

Eigenvector 2/Eigenvector 1

Eigenvector 3/Eigenvector 2

Figure: 2D representation of eigenvectors of L, for the MNIST dataset. Theoretical means and 1and 2 -standard deviations in blue. Class 1 in red, Class 2 in black, Class 3 in green.

The surprising $f^{\prime}(\tau)=0$ case

Figure: Polynomial kernel with $f(\tau)=4, f^{\prime \prime}(\tau)=2, x_{i} \in \mathcal{N}\left(0, C_{a}\right)$, with $C_{1}=I_{p}$, $\left[C_{2}\right]_{i, j}=.4^{|i-j|}, c_{0}=\frac{1}{4}$.

The surprising $f^{\prime}(\tau)=0$ case

Figure: Polynomial kernel with $f(\tau)=4, f^{\prime \prime}(\tau)=2, x_{i} \in \mathcal{N}\left(0, C_{a}\right)$, with $C_{1}=I_{p}$, $\left[C_{2}\right]_{i, j}=.4^{|i-j|}, c_{0}=\frac{1}{4}$.

The surprising $f^{\prime}(\tau)=0$ case

Figure: Polynomial kernel with $f(\tau)=4, f^{\prime \prime}(\tau)=2, x_{i} \in \mathcal{N}\left(0, C_{a}\right)$, with $C_{1}=I_{p}$, $\left[C_{2}\right]_{i, j}=.4^{|i-j|}, c_{0}=\frac{1}{4}$.

The surprising $f^{\prime}(\tau)=0$ case

Figure: Polynomial kernel with $f(\tau)=4, f^{\prime \prime}(\tau)=2, x_{i} \in \mathcal{N}\left(0, C_{a}\right)$, with $C_{1}=I_{p}$, $\left[C_{2}\right]_{i, j}=.4^{|i-j|}, c_{0}=\frac{1}{4}$.

- Trivial classification when $t=0, M=0$ and $\|T\|=O(1)$.

Outline

```
Basics of Random Matrix Theory (Romain COUILLET)
    Motivation: Large Sample Covariance Matrices
    The Stieltjes Transform Method
    Spiked Models
    Other Common Random Matrix Models
    Applications
```

Applications to Machine Learning (Xiaoyi MAI)

```
Applications to Random Projections and Neural Networks (Zhenyu LIAO)
    Random Projections-based Ridge Regression
    Random Projections-based Spectral Clustering
    Random Matrix Analysis for Learning Dynamics of Neural Networks
```

Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)

Position of the Problem

Problem: Cluster large data $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ based on "spanned subspaces".

Position of the Problem

Problem: Cluster large data $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ based on "spanned subspaces".

Method:

- Still assume x_{1}, \ldots, x_{n} belong to k classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$.
- Zero-mean Gaussian model for the data: for $x_{i} \in \mathcal{C}_{k}$,

$$
x_{i} \sim \mathcal{N}\left(0, C_{k}\right)
$$

Position of the Problem

Problem: Cluster large data $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ based on "spanned subspaces".

Method:

- Still assume x_{1}, \ldots, x_{n} belong to k classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$.
- Zero-mean Gaussian model for the data: for $x_{i} \in \mathcal{C}_{k}$,

$$
x_{i} \sim \mathcal{N}\left(0, C_{k}\right)
$$

- Performance of $L=n D^{-\frac{1}{2}}\left(K-\frac{1_{n} 1_{n}^{\top}}{1_{n}^{\top} D 1_{n}}\right) D^{-\frac{1}{2}}$, with

$$
K=\left\{f\left(\left\|\bar{x}_{i}-\bar{x}_{j}\right\|^{2}\right)\right\}_{1 \leq i, j \leq n}, \quad \bar{x}=\frac{x}{\|x\|}
$$

in the regime $n, p \rightarrow \infty$. (alternatively, we can ask $\frac{1}{p} \operatorname{tr} C_{i}=1$ for all $1 \leq i \leq k$)

Model and Reminders

Assumption 1 [Classes]. Vectors $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ i.i.d. from k-class Gaussian mixture, with $x_{i} \in \mathcal{C}_{k} \Leftrightarrow x_{i} \sim \mathcal{N}\left(0, C_{k}\right)$ (sorted by class for simplicity).

Model and Reminders

Assumption 1 [Classes]. Vectors $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ i.i.d. from k-class Gaussian mixture, with $x_{i} \in \mathcal{C}_{k} \Leftrightarrow x_{i} \sim \mathcal{N}\left(0, C_{k}\right)$ (sorted by class for simplicity).

Assumption 2a [Growth Rates]. As $n \rightarrow \infty$, for each $a \in\{1, \ldots, k\}$,

1. $\frac{n}{p} \rightarrow c_{0} \in(0, \infty)$
2. $\frac{n_{a}}{n} \rightarrow c_{a} \in(0, \infty)$
3. $\frac{1}{p} \operatorname{tr} C_{a}=1$ and $\operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}=O(p)$, with $C_{a}^{\circ}=C_{a}-C^{\circ}, C^{\circ}=\sum_{b=1}^{k} c_{b} C_{b}$.

Model and Reminders

Assumption 1 [Classes]. Vectors $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ i.i.d. from k-class Gaussian mixture, with $x_{i} \in \mathcal{C}_{k} \Leftrightarrow x_{i} \sim \mathcal{N}\left(0, C_{k}\right)$ (sorted by class for simplicity).

Assumption 2a [Growth Rates]. As $n \rightarrow \infty$, for each $a \in\{1, \ldots, k\}$,

1. $\frac{n}{p} \rightarrow c_{0} \in(0, \infty)$
2. $\frac{n_{a}}{n} \rightarrow c_{a} \in(0, \infty)$
3. $\frac{1}{p} \operatorname{tr} C_{a}=1$ and $\operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}=O(p)$, with $C_{a}^{\circ}=C_{a}-C^{\circ}, C^{\circ}=\sum_{b=1}^{k} c_{b} C_{b}$.

Theorem (Corollary of Previous Section)
Let f smooth with $f^{\prime}(2) \neq 0$. Then, under Assumptions 2a,
$L=n D^{-\frac{1}{2}}\left(K-\frac{1_{n} 1_{n}^{\top}}{1_{n}^{\top} D 1_{n}}\right) D^{-\frac{1}{2}}$, with $K=\left\{f\left(\left\|\bar{x}_{i}-\bar{x}_{j}\right\|^{2}\right)\right\}_{i, j=1}^{n}(\bar{x}=x /\|x\|)$
exhibits phase transition phenomenon

Model and Reminders

Assumption 1 [Classes]. Vectors $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ i.i.d. from k-class Gaussian mixture, with $x_{i} \in \mathcal{C}_{k} \Leftrightarrow x_{i} \sim \mathcal{N}\left(0, C_{k}\right)$ (sorted by class for simplicity).

Assumption 2a [Growth Rates]. As $n \rightarrow \infty$, for each $a \in\{1, \ldots, k\}$,

1. $\frac{n}{p} \rightarrow c_{0} \in(0, \infty)$
2. $\frac{n_{a}}{n} \rightarrow c_{a} \in(0, \infty)$
3. $\frac{1}{p} \operatorname{tr} C_{a}=1$ and $\operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}=O(p)$, with $C_{a}^{\circ}=C_{a}-C^{\circ}, C^{\circ}=\sum_{b=1}^{k} c_{b} C_{b}$.

Theorem (Corollary of Previous Section)

Let f smooth with $f^{\prime}(2) \neq 0$. Then, under Assumptions 2a,

$$
L=n D^{-\frac{1}{2}}\left(K-\frac{1_{n} 1_{n}^{\top}}{1_{n}^{\top} D 1_{n}}\right) D^{-\frac{1}{2}}, \text { with } K=\left\{f\left(\left\|\bar{x}_{i}-\bar{x}_{j}\right\|^{2}\right)\right\}_{i, j=1}^{n} \quad(\bar{x}=x /\|x\|)
$$

exhibits phase transition phenomenon, i.e., leading eigenvectors of L asymptotically contain structural information about $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$ if and only if

$$
T=\left\{\frac{1}{p} \operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}\right\}_{a, b=1}^{k}
$$

has sufficiently large eigenvalues (here $M=0, t=0$).

The case $f^{\prime}(2)=0$

Assumption 2b [Growth Rates]. As $n \rightarrow \infty$, for each $a \in\{1, \ldots, k\}$,

1. $\frac{n}{p} \rightarrow c_{0} \in(0, \infty)$
2. $\frac{n_{a}}{n} \rightarrow c_{a} \in(0, \infty)$
3. $\frac{1}{p} \operatorname{tr} C_{a}=1$ and $\operatorname{tr} C_{a}^{\circ} G_{b}^{\circ}=O(p)$, with $C_{a}^{\circ}=C_{a}-C^{\circ}, C^{\circ}=\sum_{b=1}^{k} c_{b} C_{b}$.

The case $f^{\prime}(2)=0$

Assumption 2b [Growth Rates]. As $n \rightarrow \infty$, for each $a \in\{1, \ldots, k\}$,

1. $\frac{n}{p} \rightarrow c_{0} \in(0, \infty)$
2. $\frac{n_{a}}{n} \rightarrow c_{a} \in(0, \infty)$
3. $\frac{1}{p} \operatorname{tr} C_{a}=1$ and $\operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}=O(\sqrt{p})$, with $C_{a}^{\circ}=C_{a}-C^{\circ}, C^{\circ}=\sum_{b=1}^{k} c_{b} C_{b}$.
(in this regime, previous kernels clearly fail)

Remark: [Neyman-Pearson optimality]

- if $C_{i}=I_{p} \pm E$ with $\|E\| \rightarrow 0$, detectability iif $\frac{1}{p} \operatorname{tr}\left(C_{1}-C_{2}\right)^{2} \geq O\left(p^{-\frac{1}{2}}\right)$.

The case $f^{\prime}(2)=0$

Assumption 2b [Growth Rates]. As $n \rightarrow \infty$, for each $a \in\{1, \ldots, k\}$,

1. $\frac{n}{p} \rightarrow c_{0} \in(0, \infty)$
2. $\frac{n_{a}}{n} \rightarrow c_{a} \in(0, \infty)$
3. $\frac{1}{p} \operatorname{tr} C_{a}=1$ and $\operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}=O(\sqrt{p})$, with $C_{a}^{\circ}=C_{a}-C^{\circ}, C^{\circ}=\sum_{b=1}^{k} c_{b} C_{b}$.
(in this regime, previous kernels clearly fail)

Remark: [Neyman-Pearson optimality]

- if $C_{i}=I_{p} \pm E$ with $\|E\| \rightarrow 0$, detectability iif $\frac{1}{p} \operatorname{tr}\left(C_{1}-C_{2}\right)^{2} \geq O\left(p^{-\frac{1}{2}}\right)$.

Theorem (Random Equivalent for $f^{\prime}(2)=0$)
Let f be smooth with $f^{\prime}(2)=0$ and

$$
\mathcal{L} \equiv \sqrt{p} \frac{f(2)}{2 f^{\prime \prime}(2)}\left[L-\frac{f(0)-f(2)}{f(2)} P\right], \quad P=I_{n}-\frac{1}{n} 1_{n} 1_{n}^{\top} .
$$

Then, under Assumptions 2b,

$$
\begin{equation*}
\mathcal{L}=P \Phi P+\left\{\frac{1}{\sqrt{p}} \operatorname{tr}\left(C_{a}^{\circ} C_{b}^{\circ}\right) \frac{1_{n_{a}} 1_{n_{b}}^{\top}}{p}\right\}_{a, b=1}^{k}+o_{\|\cdot\|} \tag{1}
\end{equation*}
$$

where $\Phi_{i j}=\delta_{i \neq j} \sqrt{p}\left[\left(x_{i}^{\top} x_{j}\right)^{2}-E\left[\left(x_{i}^{\top} x_{j}\right)^{2}\right]\right]$.

The case $f^{\prime}(2)=0$

Figure: Eigenvalues of $L, p=1000, n=2000, k=3, c_{1}=c_{2}=1 / 4, c_{3}=1 / 2$,
$C_{i} \propto I_{p}+(p / 8)^{-\frac{5}{4}} W_{i} W_{i}^{\top}, W_{i} \in \mathbb{R}^{p \times(p / 8)}$ of i.i.d. $\mathcal{N}(0,1)$ entries, $f(t)=\exp \left(-(t-2)^{2}\right)$.
\Rightarrow No longer a Marcenko-Pastur like bulk, but rather a semi-circle bulk!

The case $f^{\prime}(2)=0$

The case $f^{\prime}(2)=0$

Roadmap. We now need to:

- study the spectrum of Φ

The case $f^{\prime}(2)=0$

Roadmap. We now need to:

- study the spectrum of Φ
- study the isolated eigenvalues of \mathcal{L} (and the phase transition)

The case $f^{\prime}(2)=0$

Roadmap. We now need to:

- study the spectrum of Φ
- study the isolated eigenvalues of \mathcal{L} (and the phase transition)
- retrieve information from the eigenvectors.

The case $f^{\prime}(2)=0$

Roadmap. We now need to:

- study the spectrum of Φ
- study the isolated eigenvalues of \mathcal{L} (and the phase transition)
- retrieve information from the eigenvectors.

Theorem (Semi-circle law for Φ)
Let $\mu_{n}=\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{\delta}_{\lambda_{i}(\mathcal{L})}$. Then, under Assumption 2b,

$$
\mu_{n} \xrightarrow{\text { a.s. }} \mu
$$

with μ the semi-circle distribution

$$
\mu(d t)=\frac{1}{2 \pi c_{0} \omega^{2}} \sqrt{\left(4 c_{0} \omega^{2}-t^{2}\right)^{+}} d t, \quad \omega=\lim _{p \rightarrow \infty} \sqrt{2} \frac{1}{p} \operatorname{tr}\left(C^{\circ}\right)^{2} .
$$

The case $f^{\prime}(2)=0$

Figure: Eigenvalues of $L, p=1000, n=2000, k=3, c_{1}=c_{2}=1 / 4, c_{3}=1 / 2$, $C_{i} \propto I_{p}+(p / 8)^{-\frac{5}{4}} W_{i} W_{i}^{\top}, W_{i} \in \mathbb{R}^{p \times(p / 8)}$ of i.i.d. $\mathcal{N}(0,1)$ entries, $f(t)=\exp \left(-(t-2)^{2}\right)$.

The case $f^{\prime}(2)=0$

Denote now

$$
\mathcal{T} \equiv \lim _{p \rightarrow \infty}\left\{\frac{\sqrt{c_{a} c_{b}}}{\sqrt{p}} \operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}\right\}_{a, b=1}^{k}
$$

The case $f^{\prime}(2)=0$

Denote now

$$
\mathcal{T} \equiv \lim _{p \rightarrow \infty}\left\{\frac{\sqrt{c_{a} c_{b}}}{\sqrt{p}} \operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}\right\}_{a, b=1}^{k}
$$

Theorem (Isolated Eigenvalues)
Let $\nu_{1} \geq \ldots \geq \nu_{k}$ eigenvalues of \mathcal{T}. Then, if $\sqrt{c_{0}}\left|\nu_{i}\right|>\omega, \mathcal{L}$ has an isolated eigenvalue λ_{i} satisfying

$$
\lambda_{i} \xrightarrow{\text { a.s. }} \rho_{i} \equiv c_{0} \nu_{i}+\frac{\omega^{2}}{\nu_{i}}
$$

The case $f^{\prime}(2)=0$

Theorem (Isolated Eigenvectors)
For each isolated eigenpair $\left(\lambda_{i}, u_{i}\right)$ of \mathcal{L} corresponding to $\left(\nu_{i}, v_{i}\right)$ of \mathcal{T}, write

$$
u_{i}=\sum_{a=1}^{k} \alpha_{i}^{a} \frac{j_{a}}{\sqrt{n_{a}}}+\sigma_{i}^{a} w_{i}^{a}
$$

with $j_{a}=\left[0_{n_{1}}^{\top}, \ldots, 1_{n_{a}}^{\top}, \ldots, 0_{n_{k}}^{\top}\right]^{\top},\left(w_{i}^{a}\right)^{\top} j_{a}=0, \operatorname{supp}\left(w_{i}^{a}\right)=\operatorname{supp}\left(j_{a}\right),\left\|w_{i}^{a}\right\|=1$. Then, under Assumptions 1-2b,

$$
\begin{aligned}
& \alpha_{i}^{a} \alpha_{i}^{b} \xrightarrow{\text { a.s. }}\left(1-\frac{1}{c_{0}} \frac{\omega^{2}}{\nu_{i}^{2}}\right)\left[v_{i} v_{i}^{\top}\right]_{a b} \\
& \left(\sigma_{i}^{a}\right)^{2} \xrightarrow{\text { a.s. }} \frac{c_{a}}{c_{0}} \frac{\omega^{2}}{\nu_{i}^{2}}
\end{aligned}
$$

and the fluctuations of $u_{i}, u_{j}, i \neq j$, are asymptotically uncorrelated.

The case $f^{\prime}(2)=0$

Figure: Leading two eigenvectors of \mathcal{L} (or equivalently of L) versus deterministic approximations of $\alpha_{i}^{a} \pm \sigma_{i}^{a}$.

The case $f^{\prime}(2)=0$

Figure: Leading two eigenvectors of \mathcal{L} (or equivalently of L) versus deterministic approximations of $\alpha_{i}^{a} \pm \sigma_{i}^{a}$.

The case $f^{\prime}(2)=0$

Figure: Leading two eigenvectors of \mathcal{L} (or equivalently of L) versus deterministic approximations of $\alpha_{i}^{a} \pm \sigma_{i}^{a}$.

Application: Multiple-source Subspace Clustering

Setting.

- p dimensional vector observations.
- n data sources.
- $E\left[x_{i}\right]=0, E\left[x_{i} x_{i}^{\top}\right]=C_{a}$.

Application: Multiple-source Subspace Clustering

Setting.

- p dimensional vector observations.
- n data sources.
- $E\left[x_{i}\right]=0, E\left[x_{i} x_{i}^{\top}\right]=C_{a}$.
- T independent observations $x_{i}^{(1)}, \ldots, x_{i}^{(T)}$ for source i.

Application: Multiple-source Subspace Clustering

Setting.

- p dimensional vector observations.
- n data sources.
- $E\left[x_{i}\right]=0, E\left[x_{i} x_{i}^{\top}\right]=C_{a}$.
- T independent observations $x_{i}^{(1)}, \ldots, x_{i}^{(T)}$ for source i.

Objective. Cluster sources based on spanned subspace.

Application: Multiple-source Subspace Clustering

Setting.

- p dimensional vector observations.
- n data sources.
- $E\left[x_{i}\right]=0, E\left[x_{i} x_{i}^{\top}\right]=C_{a}$.
- T independent observations $x_{i}^{(1)}, \ldots, x_{i}^{(T)}$ for source i.

Objective. Cluster sources based on spanned subspace.
Applications examples. Massive MIMO scheduling / EEG classification / etc.

Application: Multiple-source Subspace Clustering

Setting.

- p dimensional vector observations.
- n data sources.
- $E\left[x_{i}\right]=0, E\left[x_{i} x_{i}^{\top}\right]=C_{a}$.
- T independent observations $x_{i}^{(1)}, \ldots, x_{i}^{(T)}$ for source i.

Objective. Cluster sources based on spanned subspace.
Applications examples. Massive MIMO scheduling / EEG classification / etc.

Algorithm.

1. Build kernel matrix K, then \mathcal{L}, based on $n T$ vectors $x_{1}^{(1)}, \ldots, x_{n}^{(T)}$ (as if $n T$ values to cluster).

Application: Multiple-source Subspace Clustering

Setting.

- p dimensional vector observations.
- n data sources.
- $E\left[x_{i}\right]=0, E\left[x_{i} x_{i}^{\top}\right]=C_{a}$.
- T independent observations $x_{i}^{(1)}, \ldots, x_{i}^{(T)}$ for source i.

Objective. Cluster sources based on spanned subspace.
Applications examples. Massive MIMO scheduling / EEG classification / etc.

Algorithm.

1. Build kernel matrix K, then \mathcal{L}, based on $n T$ vectors $x_{1}^{(1)}, \ldots, x_{n}^{(T)}$ (as if $n T$ values to cluster).
2. Extract dominant isolated eigenvectors $u_{1}, \ldots, u_{\kappa}$

Application: Multiple-source Subspace Clustering

Setting.

- p dimensional vector observations.
- n data sources.
- $E\left[x_{i}\right]=0, E\left[x_{i} x_{i}^{\top}\right]=C_{a}$.
- T independent observations $x_{i}^{(1)}, \ldots, x_{i}^{(T)}$ for source i.

Objective. Cluster sources based on spanned subspace.
Applications examples. Massive MIMO scheduling / EEG classification / etc.

Algorithm.

1. Build kernel matrix K, then \mathcal{L}, based on $n T$ vectors $x_{1}^{(1)}, \ldots, x_{n}^{(T)}$ (as if $n T$ values to cluster).
2. Extract dominant isolated eigenvectors $u_{1}, \ldots, u_{\kappa}$
3. For each i, create $\tilde{u}_{i}=\frac{1}{T}\left(I_{n} \otimes 1_{T}^{\top}\right) u_{i}$, i.e., average eigenvectors along time.

Application: Multiple-source Subspace Clustering

Setting.

- p dimensional vector observations.
- n data sources.
- $E\left[x_{i}\right]=0, E\left[x_{i} x_{i}^{\top}\right]=C_{a}$.
- T independent observations $x_{i}^{(1)}, \ldots, x_{i}^{(T)}$ for source i.

Objective. Cluster sources based on spanned subspace.
Applications examples. Massive MIMO scheduling / EEG classification / etc.

Algorithm.

1. Build kernel matrix K, then \mathcal{L}, based on $n T$ vectors $x_{1}^{(1)}, \ldots, x_{n}^{(T)}$ (as if $n T$ values to cluster).
2. Extract dominant isolated eigenvectors $u_{1}, \ldots, u_{\kappa}$
3. For each i, create $\tilde{u}_{i}=\frac{1}{T}\left(I_{n} \otimes 1_{T}^{\top}\right) u_{i}$, i.e., average eigenvectors along time.
4. Perform k-class clustering on vectors $\tilde{u}_{1}, \ldots, \tilde{u}_{\kappa}$.

Application Example: Massive MIMO UE Clustering

Figure: Massive MIMO application: Leading two eigenvectors before (left figure) and after (right figure) T-averaging. Setting: $p=400, n=40, T=10, k=3, c_{1}=c_{3}=1 / 4, c_{2}=1 / 2$, angular spread model with angles $-\pi / 30 \pm \pi / 20,0 \pm \pi / 20$, and $\pi / 30 \pm \pi / 20$. Kernel function $f(t)=\exp \left(-(t-2)^{2}\right)$.

Application Example: Massive MIMO UE Clustering

Figure: Overlap for different T, using the k-means or EM starting from actual centroid solutions (oracle) or randomly.

Application Example: Massive MIMO UE Clustering

Figure: Overlap for optimal kernel $f(t)$ (here $f(t)=\exp \left(-(t-2)^{2}\right)$) and Gaussian kernel $f(t)=\exp \left(-t^{2}\right)$, for different T, using the k-means or EM.

Outline

```
Basics of Random Matrix Theory (Romain COUILLET)
    Motivation: Large Sample Covariance Matrices
    The Stieltjes Transform Method
    Spiked Models
    Other Common Random Matrix Models
    Applications
```

Applications to Machine Learning (Xiaoyi MAI)

```
Applications to Random Projections and Neural Networks (Zhenyu LIAO)
    Random Projections-based Ridge Regression
    Random Projections-based Spectral Clustering
    Random Matrix Analysis for Learning Dynamics of Neural Networks
```

Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)

Optimal growth rates and optimal kernels

Conclusion of previous analyses:

- kernel $f\left(\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}\right)$ with $f^{\prime}(\tau) \neq 0$:
- optimal in $\left\|\mu_{a}^{\circ}\right\|=O(1), \frac{1}{p} \operatorname{tr} C_{a}^{\circ}=O\left(p^{-\frac{1}{2}}\right)$
- suboptimal in $\frac{1}{p} \operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}=O(1)$
\longrightarrow Model type: Marčenko-Pastur + spikes.

Optimal growth rates and optimal kernels

Conclusion of previous analyses:

- kernel $f\left(\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}\right)$ with $f^{\prime}(\tau) \neq 0$:
- optimal in $\left\|\mu_{a}^{\circ}\right\|=O(1), \frac{1}{p} \operatorname{tr} C_{a}^{\circ}=O\left(p^{-\frac{1}{2}}\right)$
- suboptimal in $\frac{1}{p} \operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}=O(1)$
\longrightarrow Model type: Marčenko-Pastur + spikes.
- kernel $f\left(\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}\right)$ with $f^{\prime}(\tau)=0$:
- suboptimal in $\left\|\mu_{a}^{\circ}\right\| \gg O(1)$ (kills the means)
- suboptimal in $\frac{1}{p} \operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}=O\left(p^{-\frac{1}{2}}\right)$
\longrightarrow Model type: smaller order semi-circle law + spikes.

Optimal growth rates and optimal kernels

Conclusion of previous analyses:

- kernel $f\left(\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}\right)$ with $f^{\prime}(\tau) \neq 0$:
- optimal in $\left\|\mu_{a}^{\circ}\right\|=O(1), \frac{1}{p} \operatorname{tr} C_{a}^{\circ}=O\left(p^{-\frac{1}{2}}\right)$
- suboptimal in $\frac{1}{p} \operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}=O(1)$
\longrightarrow Model type: Marčenko-Pastur + spikes.
- kernel $f\left(\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}\right)$ with $f^{\prime}(\tau)=0$:
- suboptimal in $\left\|\mu_{a}^{\circ}\right\| \gg O(1)$ (kills the means)
- suboptimal in $\frac{1}{p} \operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}=O\left(p^{-\frac{1}{2}}\right)$
\longrightarrow Model type: smaller order semi-circle law + spikes.

Jointly optimal solution:

- evenly weighing Marčenko-Pastur and semi-circle laws

Optimal growth rates and optimal kernels

Conclusion of previous analyses:

- kernel $f\left(\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}\right)$ with $f^{\prime}(\tau) \neq 0$:
- optimal in $\left\|\mu_{a}^{\circ}\right\|=O(1), \frac{1}{p} \operatorname{tr} C_{a}^{\circ}=O\left(p^{-\frac{1}{2}}\right)$
- suboptimal in $\frac{1}{p} \operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}=O(1)$
\longrightarrow Model type: Marčenko-Pastur + spikes.
- kernel $f\left(\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}\right)$ with $f^{\prime}(\tau)=0$:
- suboptimal in $\left\|\mu_{a}^{\circ}\right\| \gg O(1)$ (kills the means)
- suboptimal in $\frac{1}{p} \operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}=O\left(p^{-\frac{1}{2}}\right)$
\longrightarrow Model type: smaller order semi-circle law + spikes.

Jointly optimal solution:

- evenly weighing Marčenko-Pastur and semi-circle laws
- the " $\alpha-\beta$ " kernel:

$$
f^{\prime}(\tau)=\frac{\alpha}{\sqrt{p}}, \quad \frac{1}{2} f^{\prime \prime}(\tau)=\beta
$$

New assumption setting

- We consider now an improved growth rate setting.

Assumption (Optimal Growth Rate)

As $n \rightarrow \infty$,

1. Data scaling: $\frac{p}{n} \rightarrow c_{0} \in(0, \infty), \frac{n_{a}}{n} \rightarrow c_{a} \in(0,1)$,
2. Mean scaling: with $\mu^{\circ} \triangleq \sum_{a=1}^{k} \frac{n_{a}}{n} \mu_{a}$ and $\mu_{a}^{\circ} \triangleq \mu_{a}-\mu^{\circ}$, then $\left\|\mu_{a}^{\circ}\right\|=O(1)$
3. Covariance scaling: with $C^{\circ} \triangleq \sum_{a=1}^{k} \frac{n_{a}}{n} C_{a}$ and $C_{a}^{\circ} \triangleq C_{a}-C^{\circ}$, then

$$
\left\|C_{a}\right\|=O(1), \quad \operatorname{tr} C_{a}^{\circ}=O(\sqrt{p}), \quad \operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}=O(\sqrt{p}) .
$$

New assumption setting

- We consider now an improved growth rate setting.

Assumption (Optimal Growth Rate)

As $n \rightarrow \infty$,

1. Data scaling: $\frac{p}{n} \rightarrow c_{0} \in(0, \infty), \frac{n_{a}}{n} \rightarrow c_{a} \in(0,1)$,
2. Mean scaling: with $\mu^{\circ} \triangleq \sum_{a=1}^{k} \frac{n_{a}}{n} \mu_{a}$ and $\mu_{a}^{\circ} \triangleq \mu_{a}-\mu^{\circ}$, then $\left\|\mu_{a}^{\circ}\right\|=O(1)$
3. Covariance scaling: with $C^{\circ} \triangleq \sum_{a=1}^{k} \frac{n_{a}}{n} C_{a}$ and $C_{a}^{\circ} \triangleq C_{a}-C^{\circ}$, then

$$
\left\|C_{a}\right\|=O(1), \quad \operatorname{tr} C_{a}^{\circ}=O(\sqrt{p}), \quad \operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}=O(\sqrt{p}) .
$$

Kernel:

- For technical simplicity, we consider

$$
\tilde{K}=P K P=P\left\{f\left(\frac{1}{p}\left(x^{\circ}\right)^{\top}\left(x_{j}^{\circ}\right)\right)\right\}_{i, j=1}^{n} P \quad, \quad P=I_{n}-\frac{1}{n} 1_{n} 1_{n}^{\top} .
$$

i.e., τ replaced by 0 .

Main Results

Theorem
As $n \rightarrow \infty$,

$$
\left\|\sqrt{p}\left(P K P+\left(f(0)+\tau f^{\prime}(0)\right) P\right)-\hat{\mathcal{K}}\right\| \xrightarrow{\text { a.s. }} 0
$$

with, for $\alpha=\sqrt{p} f^{\prime}(0)=O(1)$ and $\beta=\frac{1}{2} f^{\prime \prime}(0)=O(1)$,

$$
\left.\begin{array}{rl}
\hat{\mathcal{K}} & =\alpha P W^{\top} W P+\beta P \Phi P+U A U^{\top} \\
A & =\left[\begin{array}{cc}
\alpha M^{\top} M+\beta T & \alpha I_{k} \\
\alpha I_{k} & 0
\end{array}\right] \\
U & =\left[\frac{J}{\sqrt{p}}, P W^{\top} M\right.
\end{array}\right] .
$$

Main Results

Theorem
As $n \rightarrow \infty$,

$$
\left\|\sqrt{p}\left(P K P+\left(f(0)+\tau f^{\prime}(0)\right) P\right)-\hat{\mathcal{K}}\right\| \xrightarrow{\text { a.s. }} 0
$$

with, for $\alpha=\sqrt{p} f^{\prime}(0)=O(1)$ and $\beta=\frac{1}{2} f^{\prime \prime}(0)=O(1)$,

$$
\left.\begin{array}{rl}
\hat{\mathcal{K}} & =\alpha P W^{\top} W P+\beta P \Phi P+U A U^{\top} \\
A & =\left[\begin{array}{cc}
\alpha M^{\top} M+\beta T & \alpha I_{k} \\
\alpha I_{k} & 0
\end{array}\right] \\
U & =\left[\frac{J}{\sqrt{p}}, P W^{\top} M\right.
\end{array}\right] .
$$

Role of α, β :

- Weighs Marčenko-Pastur versus semi-circle parts.

Limiting eigenvalue distribution

Theorem (Eigenvalues Bulk)
As $p \rightarrow \infty$,

$$
\nu_{n} \triangleq \frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i}(\hat{K})} \xrightarrow{\text { a.s. }} \nu
$$

with ν having Stieltjes transform $m(z)$ solution of

$$
\frac{1}{m(z)}=-z+\frac{\alpha}{p} \operatorname{tr} C^{\circ}\left(I_{k}+\frac{\alpha m(z)}{c_{0}} C^{\circ}\right)^{-1}-\frac{2 \beta^{2}}{c_{0}} \omega^{2} m(z)
$$

where $\omega=\lim _{p \rightarrow \infty} \frac{1}{p} \operatorname{tr}\left(C^{\circ}\right)^{2}$.

Limiting eigenvalue distribution

Figure: Eigenvalues of K (up to recentering) versus limiting law, $p=2048, n=4096, k=2$,
$n_{1}=n_{2}, \boldsymbol{\mu}_{i}=3 \boldsymbol{\delta}_{i}, f(x)=\frac{1}{2} \beta\left(x+\frac{1}{\sqrt{p}} \frac{\alpha}{\beta}\right)^{2}$. (Top left): $\alpha=8, \beta=1$, (Top right):
$\alpha=4, \beta=3$, (Bottom left): $\alpha=3, \beta=4$, (Bottom right): $\alpha=1, \beta=8$.

Asymptotic performances: MNIST

- MNIST is "means-dominant" but not that much!

Datasets	$\left\\|\boldsymbol{\mu}_{1}^{\circ}-\boldsymbol{\mu}_{2}^{\circ}\right\\|^{2}$	$\frac{1}{\sqrt{p}} \mathrm{TR}\left(\mathbf{C}_{1}-\mathbf{C}_{2}\right)^{2}$	$\frac{1}{p} \mathrm{TR}\left(\mathbf{C}_{1}-\mathbf{C}_{2}\right)^{2}$
MNIST (DIGITS 1, 7)	613	1990	71.1
MNIST (DIGITS 3, 6)	441	1119	39.9
MNIST (DIGITS 3, 8)	212	652	23.5

Asymptotic performances: MNIST

- MNIST is "means-dominant" but not that much!

Datasets	$\left\\|\boldsymbol{\mu}_{1}^{\circ}-\boldsymbol{\mu}_{2}^{\circ}\right\\|^{2}$	$\frac{1}{\sqrt{p}} \mathrm{TR}\left(\mathbf{C}_{1}-\mathbf{C}_{2}\right)^{2}$	$\frac{1}{p} \mathrm{TR}\left(\mathbf{C}_{1}-\mathbf{C}_{2}\right)^{2}$
MNIST (DIGITS 1, 7)	613	1990	71.1
MNIST (DIGITS 3, 6)	441	1119	39.9
MNIST (DIGITS 3, 8)	212	652	23.5

Figure: Spectral clustering of the MNIST database for varying $\frac{\alpha}{\beta}$.

Asymptotic performances: EEG data

- EEG data are "variance-dominant"

Datasets	$\left\\|\boldsymbol{\mu}_{1}^{\circ}-\boldsymbol{\mu}_{2}^{\circ}\right\\|^{2}$	$\frac{1}{\sqrt{p}} \mathrm{TR}\left(\mathbf{C}_{1}-\mathbf{C}_{2}\right)^{2}$	$\frac{1}{p} \mathrm{TR}\left(\mathbf{C}_{1}-\mathbf{C}_{2}\right)^{2}$
EEG $(\operatorname{SETS} A, E)$	2.4	10.9	1.1

Asymptotic performances: EEG data

- EEG data are "variance-dominant"

Datasets	$\left\\|\boldsymbol{\mu}_{1}^{\circ}-\boldsymbol{\mu}_{2}^{\circ}\right\\|^{2}$	$\frac{1}{\sqrt{p}} \mathrm{TR}\left(\mathbf{C}_{1}-\mathbf{C}_{2}\right)^{2}$	$\frac{1}{p} \mathrm{TR}\left(\mathbf{C}_{1}-\mathbf{C}_{2}\right)^{2}$
EEG $(\operatorname{SETS} A, E)$	2.4	10.9	1.1

Figure: Spectral clustering of the EEG database for varying $\frac{\alpha}{\beta}$.

Outline

```
Basics of Random Matrix Theory (Romain COUILLET)
    Motivation: Large Sample Covariance Matrices
    The Stieltjes Transform Method
    Spiked Models
    Other Common Random Matrix Models
    Applications
```

Applications to Machine Learning (Xiaoyi MAI)

```
Applications to Random Projections and Neural Networks (Zhenyu LIAO)
    Random Projections-based Ridge Regression
    Random Projections-based Spectral Clustering
    Random Matrix Analysis for Learning Dynamics of Neural Networks
```

Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)

Laplacian Regularization

Context: Similar to clustering:

- Classify $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ in K classes, with $n_{[l]}$ labelled ($n_{[l] k}$ in class \mathcal{C}_{k}) and $n_{[u]}$ unlabelled data ($n_{[u] k}$ in class \mathcal{C}_{k}).

Laplacian Regularization

Context: Similar to clustering:

- Classify $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ in K classes, with $n_{[l]}$ labelled ($n_{[l] k}$ in class \mathcal{C}_{k}) and $n_{[u]}$ unlabelled data ($n_{[u] k}$ in class \mathcal{C}_{k}).
- Problem statement: give scores $F_{i a}\left(d_{i}=\left[K 1_{n}\right]_{i}\right)$

$$
F=\operatorname{argmin}_{F \in \mathbb{R}^{n \times k}} \sum_{a=1}^{k} \sum_{i, j} K_{i j}\left(F_{i a} d_{i}^{\alpha}-F_{j a} d_{j}^{\alpha}\right)^{2}
$$

such that $F_{i a}=\delta_{\left\{x_{i} \in \mathcal{C}_{a}\right\}}$, for all labelled x_{i}.

Laplacian Regularization

Context: Similar to clustering:

- Classify $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ in K classes, with $n_{[l]}$ labelled ($n_{[l] k}$ in class \mathcal{C}_{k}) and $n_{[u]}$ unlabelled data ($n_{[u] k}$ in class \mathcal{C}_{k}).
- Problem statement: give scores $F_{i a}\left(d_{i}=\left[K 1_{n}\right]_{i}\right)$

$$
F=\operatorname{argmin}_{F \in \mathbb{R}^{n \times k}} \sum_{a=1}^{k} \sum_{i, j} K_{i j}\left(F_{i a} d_{i}^{\alpha}-F_{j a} d_{j}^{\alpha}\right)^{2}
$$

$$
\text { such that } F_{i a}=\delta_{\left\{x_{i} \in \mathcal{C}_{a}\right\}}, \text { for all labelled } x_{i}
$$

- Solution: for $F_{[u]} \in \mathbb{R}^{n}[u] \times k, F_{[l]} \in \mathbb{R}^{n_{[l]} \times k}$ scores of unlabelled/labelled data,

$$
F_{[u]}=\left(L_{[u u]}^{(\alpha)}\right)^{-1} L_{[u l]}^{(\alpha)} F_{[l]}
$$

where

$$
L^{(\alpha)}=I-D^{-1-\alpha} K D^{\alpha}=\left[\begin{array}{cc}
L_{[l l]}^{(\alpha)} & L_{[l u]}^{(\alpha)} \\
L_{[u l]}^{(\alpha)} & L_{[u u]}^{(\alpha)}
\end{array}\right]
$$

with $D=\operatorname{diag}\left\{K 1_{n}\right\}$.

Laplacian Regularization

Context: Similar to clustering:

- Classify $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ in K classes, with $n_{[l]}$ labelled ($n_{[l] k}$ in class \mathcal{C}_{k}) and $n_{[u]}$ unlabelled data ($n_{[u] k}$ in class \mathcal{C}_{k}).
- Problem statement: give scores $F_{i a}\left(d_{i}=\left[K 1_{n}\right]_{i}\right)$

$$
F=\operatorname{argmin}_{F \in \mathbb{R}^{n \times k}} \sum_{a=1}^{k} \sum_{i, j} K_{i j}\left(F_{i a} d_{i}^{\alpha}-F_{j a} d_{j}^{\alpha}\right)^{2}
$$

such that $F_{i a}=\delta_{\left\{x_{i} \in \mathcal{C}_{a}\right\}}$, for all labelled x_{i}.

- Solution: for $F_{[u]} \in \mathbb{R}^{n}[u] \times k, F_{[l]} \in \mathbb{R}^{n}[l] \times k$ scores of unlabelled/labelled data,

$$
F_{[u]}=\left(L_{[u u]}^{(\alpha)}\right)^{-1} L_{[u l]}^{(\alpha)} F_{[l]}
$$

where

$$
L^{(\alpha)}=I-D^{-1-\alpha} K D^{\alpha}=\left[\begin{array}{cc}
L_{[l l]}^{(\alpha)} & L_{[l u]}^{(\alpha)} \\
L_{[u l]}^{(\alpha)} & L_{[u u]}^{(\alpha)}
\end{array}\right]
$$

with $D=\operatorname{diag}\left\{K 1_{n}\right\}$.

- Three common choices of α :
- $\alpha=0$: Standard Laplacian Regularization
- $\alpha=-1 / 2$: Symmetric Normalized Laplacian Regularization
- $\alpha=-1$: Random Walk Normalized Laplacian Regularization

The finite-dimensional intuition: What we expect

Figure: Typical expected performance output

The finite-dimensional intuition: What we expect

Figure: Typical expected performance output

The finite-dimensional intuition: What we expect

Figure: Typical expected performance output

MNIST Data Example

Figure: Vectors $\left[F^{(u)}\right]_{, ~}, a, a=1,2,3$, for 3-class MNIST data (zeros, ones, twos), $n=192$, $p=784, n_{l} / n=1 / 16$, Gaussian kernel.

MNIST Data Example

Figure: Vectors $\left[F^{(u)}\right]_{, ~}, a, a=1,2,3$, for 3-class MNIST data (zeros, ones, twos), $n=192$, $p=784, n_{l} / n=1 / 16$, Gaussian kernel.

MNIST Data Example

Figure: Vectors $\left[F^{(u)}\right]_{, a}, a=1,2,3$, for 3-class MNIST data (zeros, ones, twos), $n=192$, $p=784, n_{l} / n=1 / 16$, Gaussian kernel.

MNIST Data Example

Figure: Performance as a function of α, for 3-class MNIST data (zeros, ones, twos), $n=192$, $p=784, n_{l} / n=1 / 16$, Gaussian kernel.

MNIST Data Example

Figure: Centered Vectors $\left[F_{(u)}^{\circ}\right]_{\cdot, a}=\left[F_{(u)}-\frac{1}{k} F_{(u)} 1_{k} 1_{k}^{\top}\right]_{., a}$, 3-class MNIST data (zeros, ones, twos), $\alpha=-1, n=192, p=784, n_{l} / n=1 / 16$, Gaussian kernel.

MNIST Data Example

Figure: Centered Vectors $\left[F_{(u)}^{\circ}\right]_{\cdot, a}=\left[F_{(u)}-\frac{1}{k} F_{(u)} 1_{k} 1_{k}^{\top}\right]_{., a}$, 3-class MNIST data (zeros, ones, twos), $\alpha=-1, n=192, p=784, n_{l} / n=1 / 16$, Gaussian kernel.

MNIST Data Example

Figure: Centered Vectors $\left[F_{(u)}^{\circ}\right]_{\cdot, a}=\left[F_{(u)}-\frac{1}{k} F_{(u)} 1_{k} 1_{k}^{\top}\right]_{., a}$, 3-class MNIST data (zeros, ones, twos), $\alpha=-1, n=192, p=784, n_{l} / n=1 / 16$, Gaussian kernel.

Motivation

Empirical observations:

- Troubling flat classification scores!

Motivation

Empirical observations:

- Troubling flat classification scores!
- Only random walk normalized Laplacian regularization ($\alpha=-1$) works!.

Motivation

Empirical observations:

- Troubling flat classification scores!
- Only random walk normalized Laplacian regularization ($\alpha=-1$) works!.

Analysis to understand:

- Consider binary classification for simplicity of notations (easy to generalize to 'one-versus-all' case), and define

Motivation

Empirical observations:

- Troubling flat classification scores!
- Only random walk normalized Laplacian regularization ($\alpha=-1$) works!.

Analysis to understand:

- Consider binary classification for simplicity of notations (easy to generalize to 'one-versus-all' case), and define

$$
f_{i}=F_{i 2}-F_{i 1}
$$

Motivation

Empirical observations:

- Troubling flat classification scores!
- Only random walk normalized Laplacian regularization ($\alpha=-1$) works!.

Analysis to understand:

- Consider binary classification for simplicity of notations (easy to generalize to 'one-versus-all' case), and define

$$
f_{i}=F_{i 2}-F_{i 1}
$$

Then x_{i} is classified in \mathcal{C}_{1} if f_{i} negative, otherwise x_{i} in \mathcal{C}_{2}.

Motivation

Empirical observations:

- Troubling flat classification scores!
- Only random walk normalized Laplacian regularization ($\alpha=-1$) works!.

Analysis to understand:

- Consider binary classification for simplicity of notations (easy to generalize to 'one-versus-all' case), and define

$$
f_{i}=F_{i 2}-F_{i 1}
$$

Then x_{i} is classified in \mathcal{C}_{1} if f_{i} negative, otherwise x_{i} in \mathcal{C}_{2}.

- Assume $n_{[l] k} / p \rightarrow c_{[l] k} \in(0,1)$ and $n_{[u] k} / p \rightarrow c_{[u] k} \in(0,1) . c_{[l]}=\sum_{k} c_{[l] k}$, $c_{[u]}=\sum_{k} c_{[u] k}$. Under the previous Gaussian mixture data model.

Main Results

We can show that, for x_{i} unlabelled,

$$
f_{i}=c_{0}\left(c_{[l] 2}-c_{[l] 1}\right)+o(1)
$$

Main Results

We can show that, for x_{i} unlabelled,

$$
f_{i}=c_{0}\left(c_{[l] 2}-c_{[l] 1}\right)+o(1)
$$

Consequence: All f_{i} have the same sign if $c_{[l] 2} \neq c_{[l] 1}$.

Main Results

We can show that, for x_{i} unlabelled,

$$
f_{i}=c_{0}\left(c_{[l] 2}-c_{[l] 1}\right)+o(1)
$$

Consequence: All f_{i} have the same sign if $c_{[l] 2} \neq c_{[l] 1}$.
Amendment: Use a normalized labelling $y_{[l]}\left(-1 / c_{[l] 1}\right.$ for $\mathcal{C}_{1},-1 / c_{[l] 2}$ for $\left.\mathcal{C}_{2}\right)$.

Main Results

We can show that, for x_{i} unlabelled,

$$
f_{i}=c_{0}\left(c_{[l] 2}-c_{[l] 1}\right)+o(1)
$$

Consequence: All f_{i} have the same sign if $c_{[l] 2} \neq c_{[l] 1}$.
Amendment: Use a normalized labelling $y_{[l]}\left(-1 / c_{[l] 1}\right.$ for $\mathcal{C}_{1},-1 / c_{[l] 2}$ for $\left.\mathcal{C}_{2}\right)$.
\Downarrow

$$
f_{i}=\eta(1+\alpha)\left(t_{2}-t_{1}\right)+o(1 / \sqrt{p})
$$

Main Results

We can show that, for x_{i} unlabelled,

$$
f_{i}=c_{0}\left(c_{[l] 2}-c_{[l] 1}\right)+o(1)
$$

Consequence: All f_{i} have the same sign if $c_{[l] 2} \neq c_{[l] 1}$.
Amendment: Use a normalized labelling $y_{[l]}\left(-1 / c_{[l] 1}\right.$ for $\mathcal{C}_{1},-1 / c_{[l] 2}$ for $\left.\mathcal{C}_{2}\right)$.

$$
\begin{gathered}
\Downarrow \\
f_{i}=\eta(1+\alpha)\left(t_{2}-t_{1}\right)+o(1 / \sqrt{p})
\end{gathered}
$$

Consequence: All f_{i} have the same sign if $t_{2} \neq t_{1}$.

Main Results

We can show that, for x_{i} unlabelled,

$$
f_{i}=c_{0}\left(c_{[l] 2}-c_{[l] 1}\right)+o(1)
$$

Consequence: All f_{i} have the same sign if $c_{[l] 2} \neq c_{[l] 1}$.
Amendment: Use a normalized labelling $y_{[l]}\left(-1 / c_{[l] 1}\right.$ for $\mathcal{C}_{1},-1 / c_{[l] 2}$ for $\left.\mathcal{C}_{2}\right)$.
\Downarrow

$$
f_{i}=\eta(1+\alpha)\left(t_{2}-t_{1}\right)+o(1 / \sqrt{p})
$$

Consequence: All f_{i} have the same sign if $t_{2} \neq t_{1}$.
Amendment: Take $\alpha=-1+\frac{\beta}{\sqrt{p}}, \beta=O(1)$.

Main Results

$$
\begin{gathered}
\Downarrow \\
f_{i}=g_{i}+o(1 / p)
\end{gathered}
$$

where $g_{i} \sim \mathcal{N}\left(m_{k}, \sigma_{k}^{2}\right)$ for $x_{i} \in \mathcal{C}_{k}$ with

$$
\begin{aligned}
m_{k} & =\frac{c_{[l]}-c_{[l] k}}{c_{[l]}}(-1)^{k}\left[-\frac{2 f^{\prime}(\tau)}{p f(\tau)}\|\Delta \mu\|^{2}+\frac{f^{\prime \prime}(\tau)}{p f(\tau)} \Delta t+\frac{2 f^{\prime \prime}(\tau)}{p f(\tau)} \operatorname{tr} \Delta C^{2}\right]+(-1)^{k} \beta \frac{n}{n_{l}} \frac{f^{\prime}(\tau)}{p f(\tau)} \Delta t \\
\sigma_{k}^{2} & =\frac{2 \operatorname{tr} C_{k}^{2}}{p}\left(\frac{f^{\prime}(\tau)^{2}}{p f(\tau)^{2}}-\frac{f^{\prime \prime}(\tau)}{p f(\tau)}\right)^{2} \Delta t^{2}+\frac{4 f^{\prime}(\tau)^{2}}{p^{2} f(\tau)^{2}}\left[\Delta \mu^{\top} C_{k} \Delta \mu+\sum_{a=1}^{2} \operatorname{tr} C_{k} C_{a} / c_{[l] a}\right]
\end{aligned}
$$

where $\Delta \mu=\mu_{2}-\mu_{1}, \Delta t=t_{2}-t_{1}, \Delta C=C_{2}-C_{1}$.

Performance: Theoretical versus Empirical

Figure: Theoretical and empirical accuracy as a function of α for 2-class MNIST data (top: digits $(0,1)$, middle: digits (1,7), bottom: digits (8,9)), $n=1024, p=784, n_{[l]} / n=1 / 16$, $n_{[u] 1}=n_{[u] 2}$, Gaussian kernel. Averaged over 50 iterations.

Main Results

$$
\begin{gathered}
\Downarrow \\
f_{i}=g_{i}+o(1 / p)
\end{gathered}
$$

where $g_{i} \sim \mathcal{N}\left(m_{k}, \sigma_{k}^{2}\right)$ for $x_{i} \in \mathcal{C}_{k}$ with

$$
\begin{aligned}
m_{k} & =\frac{c_{[l]}-c_{[l] k}}{c_{[l]}}(-1)^{k}\left[-\frac{2 f^{\prime}(\tau)}{p f(\tau)}\|\Delta \mu\|^{2}+\frac{f^{\prime \prime}(\tau)}{p f(\tau)} \Delta t+\frac{2 f^{\prime \prime}(\tau)}{p f(\tau)} \operatorname{tr} \Delta C^{2}\right]+(-1)^{k} \beta \frac{n}{n_{l}} \frac{f^{\prime}(\tau)}{p f(\tau)} \Delta t \\
\sigma_{k}^{2} & =\frac{2 \operatorname{tr} C_{k}^{2}}{p}\left(\frac{f^{\prime}(\tau)^{2}}{p f(\tau)^{2}}-\frac{f^{\prime \prime}(\tau)}{p f(\tau)}\right)^{2} \Delta t^{2}+\frac{4 f^{\prime}(\tau)^{2}}{p^{2} f(\tau)^{2}}\left[\Delta \mu^{\top} C_{k} \Delta \mu+\sum_{a=1}^{2} \operatorname{tr} C_{k} C_{a} / c_{[l] a}\right]
\end{aligned}
$$

where $\Delta \mu=\mu_{2}-\mu_{1}, \Delta t=t_{2}-t_{1}, \Delta C=C_{2}-C_{1}$.

Main Results

$$
\begin{gathered}
\Downarrow \\
f_{i}=g_{i}+o(1 / p)
\end{gathered}
$$

where $g_{i} \sim \mathcal{N}\left(m_{k}, \sigma_{k}^{2}\right)$ for $x_{i} \in \mathcal{C}_{k}$ with

$$
\begin{aligned}
m_{k} & =\frac{c_{[l]}-c_{[l] k}}{c_{[l]}}(-1)^{k}\left[-\frac{2 f^{\prime}(\tau)}{p f(\tau)}\|\Delta \mu\|^{2}+\frac{f^{\prime \prime}(\tau)}{p f(\tau)} \Delta t+\frac{2 f^{\prime \prime}(\tau)}{p f(\tau)} \operatorname{tr} \Delta C^{2}\right]+(-1)^{k} \beta \frac{n}{n_{l}} \frac{f^{\prime}(\tau)}{p f(\tau)} \Delta t \\
\sigma_{k}^{2} & =\frac{2 \operatorname{tr} C_{k}^{2}}{p}\left(\frac{f^{\prime}(\tau)^{2}}{p f(\tau)^{2}}-\frac{f^{\prime \prime}(\tau)}{p f(\tau)}\right)^{2} \Delta t^{2}+\frac{4 f^{\prime}(\tau)^{2}}{p^{2} f(\tau)^{2}}\left[\Delta \mu^{\top} C_{k} \Delta \mu+\sum_{a=1}^{2} \operatorname{tr} C_{k} C_{a} / c_{[l] a}\right]
\end{aligned}
$$

where $\Delta \mu=\mu_{2}-\mu_{1}, \Delta t=t_{2}-t_{1}, \Delta C=C_{2}-C_{1}$.

$$
m_{k}, \sigma_{k}^{2} \text { independent of } c_{[u]}
$$

Main Results

$$
\begin{gathered}
\Downarrow \\
f_{i}=g_{i}+o(1 / p)
\end{gathered}
$$

where $g_{i} \sim \mathcal{N}\left(m_{k}, \sigma_{k}^{2}\right)$ for $x_{i} \in \mathcal{C}_{k}$ with

$$
\begin{aligned}
m_{k} & =\frac{c_{[l]}-c_{[l] k}}{c_{[l]}}(-1)^{k}\left[-\frac{2 f^{\prime}(\tau)}{p f(\tau)}\|\Delta \mu\|^{2}+\frac{f^{\prime \prime}(\tau)}{p f(\tau)} \Delta t+\frac{2 f^{\prime \prime}(\tau)}{p f(\tau)} \operatorname{tr} \Delta C^{2}\right]+(-1)^{k} \beta \frac{n}{n_{l}} \frac{f^{\prime}(\tau)}{p f(\tau)} \Delta t \\
\sigma_{k}^{2} & =\frac{2 \operatorname{tr} C_{k}^{2}}{p}\left(\frac{f^{\prime}(\tau)^{2}}{p f(\tau)^{2}}-\frac{f^{\prime \prime}(\tau)}{p f(\tau)}\right)^{2} \Delta t^{2}+\frac{4 f^{\prime}(\tau)^{2}}{p^{2} f(\tau)^{2}}\left[\Delta \mu^{\top} C_{k} \Delta \mu+\sum_{a=1}^{2} \operatorname{tr} C_{k} C_{a} / c_{[l] a}\right]
\end{aligned}
$$

where $\Delta \mu=\mu_{2}-\mu_{1}, \Delta t=t_{2}-t_{1}, \Delta C=C_{2}-C_{1}$.

$$
m_{k}, \sigma_{k}^{2} \text { independent of } c_{[u]}
$$

Consequence: Learning dominated by labelled data with negligible contribution from unlabelled data. Not actual semi-supervised learning!

MNIST Data Example

Figure: Classification accuracy as a function of $n_{[u]}$ with fixed $n_{[l]}$ for 2-class MNIST data $(8,9)$, Gaussian kernel. Optimal average results over 200 iterations.

MNIST Data Example

Figure: Classification accuracy as a function of $n_{[u]}$ with fixed $n_{[l]}$ for 2-class MNIST data $(8,9)$, Gaussian kernel. Optimal average results over 200 iterations.

Main Results

$$
\begin{gathered}
\Downarrow \\
f_{i}=g_{i}+o(1 / p)
\end{gathered}
$$

where $g_{i} \sim \mathcal{N}\left(m_{k}, \sigma_{k}^{2}\right)$ for $x_{i} \in \mathcal{C}_{k}$ with

$$
\begin{aligned}
m_{k} & =\frac{c_{[l]}-c_{[l] k}}{c_{[l]}}(-1)^{k}\left[-\frac{2 f^{\prime}(\tau)}{p f(\tau)}\|\Delta \mu\|^{2}+\frac{f^{\prime \prime}(\tau)}{p f(\tau)} \Delta t+\frac{2 f^{\prime \prime}(\tau)}{p f(\tau)} \operatorname{tr} \Delta C^{2}\right]+(-1)^{k} \beta \frac{n}{n_{l}} \frac{f^{\prime}(\tau)}{p f(\tau)} \Delta \\
\sigma_{k}^{2} & =\frac{2 \operatorname{tr} C_{k}^{2}}{p}\left(\frac{f^{\prime}(\tau)^{2}}{p f(\tau)^{2}}-\frac{f^{\prime \prime}(\tau)}{p f(\tau)}\right)^{2} \Delta t^{2}+\frac{4 f^{\prime}(\tau)^{2}}{p^{2} f(\tau)^{2}}\left[\Delta \mu^{\top} C_{k} \Delta \mu+\sum_{a=1}^{2} \operatorname{tr} C_{k} C_{a} / c_{[l] a}\right]
\end{aligned}
$$

where $\Delta \mu=\mu_{2}-\mu_{1}, \Delta t=t_{2}-t_{1}, \Delta C=C_{2}-C_{1}$.

$$
m_{k}, \sigma_{k}^{2} \text { independent of } c_{[u]}
$$

Consequence: Learning only from labelled data, not actual semi-supervised learning!

Main Results

$$
\begin{gathered}
\Downarrow \\
f_{i}=g_{i}+o(1 / p)
\end{gathered}
$$

where $g_{i} \sim \mathcal{N}\left(m_{k}, \sigma_{k}^{2}\right)$ for $x_{i} \in \mathcal{C}_{k}$ with

$$
\begin{aligned}
m_{k} & =\frac{c_{[l]}-c_{[l] k}}{c_{[l]}}(-1)^{k}\left[-\frac{2 f^{\prime}(\tau)}{p f(\tau)}\|\Delta \mu\|^{2}+\frac{f^{\prime \prime}(\tau)}{p f(\tau)} \Delta t+\frac{2 f^{\prime \prime}(\tau)}{p f(\tau)} \operatorname{tr} \Delta C^{2}\right]+(-1)^{k} \beta \frac{n}{n_{l}} \frac{f^{\prime}(\tau)}{p f(\tau)} \Delta \\
\sigma_{k}^{2} & =\frac{2 \operatorname{tr} C_{k}^{2}}{p}\left(\frac{f^{\prime}(\tau)^{2}}{p f(\tau)^{2}}-\frac{f^{\prime \prime}(\tau)}{p f(\tau)}\right)^{2} \Delta t^{2}+\frac{4 f^{\prime}(\tau)^{2}}{p^{2} f(\tau)^{2}}\left[\Delta \mu^{\top} C_{k} \Delta \mu+\sum_{a=1}^{2} \operatorname{tr} C_{k} C_{a} / c_{[l] a}\right]
\end{aligned}
$$

where $\Delta \mu=\mu_{2}-\mu_{1}, \Delta t=t_{2}-t_{1}, \Delta C=C_{2}-C_{1}$.

$$
m_{k}, \sigma_{k}^{2} \text { independent of } c_{[u]}
$$

Consequence: Learning only from labelled data, not actual semi-supervised learning! Amendment: No direct solution, motivating the proposition of centered kernel regularization, presented in the following section.

Outline

```
Basics of Random Matrix Theory (Romain COUILLET)
    Motivation: Large Sample Covariance Matrices
    The Stieltjes Transform Method
    Spiked Models
    Other Common Random Matrix Models
    Applications
```

Applications to Machine Learning (Xiaoyi MAI)

```
Applications to Random Projections and Neural Networks (Zhenyu LIAO)
    Random Projections-based Ridge Regression
    Random Projections-based Spectral Clustering
    Random Matrix Analysis for Learning Dynamics of Neural Networks
```

Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)

Resurrecting SSL by centering

Link between scores flatness and non-expressive unlabelled data:

Resurrecting SSL by centering

Link between scores flatness and non-expressive unlabelled data:

- The optimization solution same as stationary point of label propagation:

$$
f_{[u]} \leftarrow L_{[u u]}^{(\alpha)} f_{[u]}+L_{[u l]}^{(\alpha)} y_{[l]}
$$

with $y_{[l]}$ composed of -1 and 1 for respectively labelled data in \mathcal{C}_{1} and in \mathcal{C}_{2}.

Resurrecting SSL by centering

Link between scores flatness and non-expressive unlabelled data:

- The optimization solution same as stationary point of label propagation:

$$
f_{[u]} \leftarrow L_{[u u]}^{(\alpha)} f_{[u]}+L_{[u l]}^{(\alpha)} y_{[l]}
$$

with $y_{[l]}$ composed of -1 and 1 for respectively labelled data in \mathcal{C}_{1} and in \mathcal{C}_{2}.

- negligible contribution of $L_{[u u]} f_{[u]}$ if $f_{[u]}$ flat.

Resurrecting SSL by centering

Link between scores flatness and non-expressive unlabelled data:

- The optimization solution same as stationary point of label propagation:

$$
f_{[u]} \leftarrow L_{[u u]}^{(\alpha)} f_{[u]}+L_{[u l]}^{(\alpha)} y_{[l]}
$$

with $y_{[l]}$ composed of -1 and 1 for respectively labelled data in \mathcal{C}_{1} and in \mathcal{C}_{2}.

- negligible contribution of $L_{[u u]} f_{[u]}$ if $f_{[u]}$ flat.

Cause of flat scores: In high dimensional regime, $K_{i j} \simeq f(\tau)$ for all $i \neq j$, i.e.,

$$
\left(\mathbb{E}\left\{K_{a_{1} a_{2}}\right\}-\mathbb{E}\left\{K_{a_{1} b_{1}}\right\}\right) /\left|\mathbb{E}\left\{K_{a_{1} a_{2}}\right\}\right|\left|\mathbb{E}\left\{K_{a_{1} b_{1}}\right\}\right| \simeq \epsilon / f(\tau)^{2}=o(1)
$$

where $x_{a_{1}}, x_{a_{2}} \in \mathcal{C}_{a}$ and $x_{b_{1}} \in \mathcal{C}_{b}$ for $a \neq b \in\{1,2\}$.

Resurrecting SSL by centering

Solution:

- "Recenter" K to kill flattening, i.e., use

$$
\tilde{K}=P K P, P=I_{n}-\frac{1}{n} 1_{n} 1_{n}^{\top} .
$$

The recentering imposes $\mathbb{E}\left\{\hat{K}_{a_{1} a_{2}}\right\}+\mathbb{E}\left\{\hat{K}_{a_{1} b_{1}}\right\}=0$ (in the case of balanced datasets).

Resurrecting SSL by centering

Solution:

- "Recenter" K to kill flattening, i.e., use

$$
\tilde{K}=P K P, P=I_{n}-\frac{1}{n} 1_{n} 1_{n}^{\top} .
$$

The recentering imposes $\mathbb{E}\left\{\hat{K}_{a_{1} a_{2}}\right\}+\mathbb{E}\left\{\hat{K}_{a_{1} b_{1}}\right\}=0$ (in the case of balanced datasets).

- Since $\mathbb{E}\left\{\hat{K}_{a_{1} a_{2}}\right\}-\mathbb{E}\left\{\hat{K}_{a_{1} b_{1}}\right\}=\mathbb{E}\left\{K_{a_{1} a_{2}}\right\}-\mathbb{E}\left\{K_{a_{1} b_{1}}\right\}=\epsilon$, $\mathbb{E}\left\{\hat{K}_{a_{1} a_{2}}\right\}=-\mathbb{E}\left\{\hat{K}_{a_{1} b_{1}}\right\}=\epsilon / 2$.

Resurrecting SSL by centering

Solution:

- "Recenter" K to kill flattening, i.e., use

$$
\tilde{K}=P K P, P=I_{n}-\frac{1}{n} 1_{n} 1_{n}^{\top} .
$$

The recentering imposes $\mathbb{E}\left\{\hat{K}_{a_{1} a_{2}}\right\}+\mathbb{E}\left\{\hat{K}_{a_{1} b_{1}}\right\}=0$ (in the case of balanced datasets).

- Since $\mathbb{E}\left\{\hat{K}_{a_{1} a_{2}}\right\}-\mathbb{E}\left\{\hat{K}_{a_{1} b_{1}}\right\}=\mathbb{E}\left\{K_{a_{1} a_{2}}\right\}-\mathbb{E}\left\{K_{a_{1} b_{1}}\right\}=\epsilon$, $\mathbb{E}\left\{\hat{K}_{a_{1} a_{2}}\right\}=-\mathbb{E}\left\{\hat{K}_{a_{1} b_{1}}\right\}=\epsilon / 2$.
- Hence,

$$
\left(\mathbb{E}\left\{\hat{K}_{a_{1} a_{2}}\right\}-\mathbb{E}\left\{\hat{K}_{a_{1} b_{1}}\right\}\right) /\left|\mathbb{E}\left\{\hat{K}_{a_{1} a_{2}}\right\}\right|\left|\mathbb{E}\left\{\hat{K}_{a_{1} b_{1}}\right\}\right|=4=O(1)
$$

Non flat scores!

Centered Kernel Regularization

Method:

Centered Kernel Regularization

Method:

- Same loss function as Laplacian regularization, but with centered similarities $\tilde{K}_{i j}$.

Centered Kernel Regularization

Method:

- Same loss function as Laplacian regularization, but with centered similarities $\tilde{K}_{i j}$.
- Optimization problem:

$$
\begin{array}{ll}
\min _{f} & \sum_{i, j=1}^{n} \tilde{K}_{i j}\left|f_{i}-f_{j}\right|^{2} \\
\text { s.t. } & \left\|f_{[u]}\right\|=t
\end{array}
$$

with $f_{[l]}=y_{[l]}$.

Centered Kernel Regularization

Method:

- Same loss function as Laplacian regularization, but with centered similarities $\tilde{K}_{i j}$.
- Optimization problem:

$$
\begin{array}{ll}
\min _{f} & \sum_{i, j=1}^{n} \tilde{K}_{i j}\left|f_{i}-f_{j}\right|^{2} \\
\text { s.t. } & \left\|f_{[u]}\right\|=t
\end{array}
$$

with $f_{[l]}=y_{[l]}$.

- Solution obtained by the Lagrange multipliers method (α being the Lagrange multiplier):

$$
\begin{equation*}
f_{[u]}=\left(\alpha I-\tilde{K}_{[u u]}\right)^{-1} \tilde{K}_{[u l]} y_{[l]} \tag{1}
\end{equation*}
$$

with α determined by $\alpha>\left\|\tilde{K}_{[u u]}\right\|$ and $\left\|f_{[u]}\right\|=t$.

MNIST Data Example

Figure: Classification accuracy as a function of $n_{[u]}$ with fixed $n_{[l]}$ for 2-class MNIST data $(8,9)$, Gaussian kernel. Optimal average results over 200 iterations.

MNIST Data Example

Figure: Classification accuracy as a function of $n_{[u]}$ with fixed $n_{[l]}$ for 2-class MNIST data $(8,9)$, Gaussian kernel. Optimal average results over 200 iterations.

MNIST Data Example

Figure: Classification accuracy as a function of $n_{[u]}$ with fixed $n_{[l]}$ for 2-class MNIST data $(8,9)$, Gaussian kernel. Optimal average results over 200 iterations.

Theoretical results

Effective learning from labelled and unlabelled data

- $m_{1}<0$ and $m_{2}>0$ for all α. (recall that $m_{k}=\mathbb{E}\left\{f_{i}\right\}, \sigma_{k}^{2}=\operatorname{Var}\left\{f_{i}\right\}$ with $\left.x_{i} \in \mathcal{C}_{k}\right)$

Theoretical results

Effective learning from labelled and unlabelled data

- $m_{1}<0$ and $m_{2}>0$ for all α. (recall that $m_{k}=\mathbb{E}\left\{f_{i}\right\}, \sigma_{k}^{2}=\operatorname{Var}\left\{f_{i}\right\}$ with $x_{i} \in \mathcal{C}_{k}$)
$-\frac{\sigma_{k}^{2}}{m_{k}^{2}}=s_{k}+\frac{\gamma_{[u] k}}{c_{[u]}}+\frac{h\left(\gamma_{[l] k}\right)}{c_{[l]}}$ where $s_{k}, \gamma_{[u] k}$ and $\gamma_{[l] k}$ upper-bounded positive values dependent of α.

Theoretical results

Effective learning from labelled and unlabelled data

- $m_{1}<0$ and $m_{2}>0$ for all α. (recall that $m_{k}=\mathbb{E}\left\{f_{i}\right\}, \sigma_{k}^{2}=\operatorname{Var}\left\{f_{i}\right\}$ with $\left.x_{i} \in \mathcal{C}_{k}\right)$
- $\frac{\sigma_{k}^{2}}{m_{k}^{2}}=s_{k}+\frac{\gamma_{[u] k}}{c_{[u]}}+\frac{h\left(\gamma_{[l] k}\right)}{c_{[l]}}$ where $s_{k}, \gamma_{[u] k}$ and $\gamma_{[l] k}$ upper-bounded positive values dependent of α.
- $\gamma_{[u] k}$ is a decreasing function of $\gamma_{[l] k}$ which has a minimal value of zero. $\gamma_{[l] k}$ can also achieve zero, buy only for a sufficiently large $c_{[u]}$.

Theoretical results

Effective learning from labelled and unlabelled data

- $m_{1}<0$ and $m_{2}>0$ for all α. (recall that $m_{k}=\mathbb{E}\left\{f_{i}\right\}, \sigma_{k}^{2}=\operatorname{Var}\left\{f_{i}\right\}$ with $x_{i} \in \mathcal{C}_{k}$)
$-\frac{\sigma_{k}^{2}}{m_{k}^{2}}=s_{k}+\frac{\gamma_{[u] k}}{c_{[u]}}+\frac{h\left(\gamma_{[l] k}\right)}{c_{[l]}}$ where $s_{k}, \gamma_{[u] k}$ and $\gamma_{[l] k}$ upper-bounded positive values dependent of α.
- $\gamma_{[u] k}$ is a decreasing function of $\gamma_{[l] k}$ which has a minimal value of zero. $\gamma_{[l] k}$ can also achieve zero, buy only for a sufficiently large $c_{[u]}$.

Formula for special cases

- Setting: $x_{i} \sim \mathcal{N}\left(\pm \mu, I_{p}\right)$, with balanced data for each class.

Theoretical results

Effective learning from labelled and unlabelled data
$>m_{1}<0$ and $m_{2}>0$ for all α. (recall that $m_{k}=\mathbb{E}\left\{f_{i}\right\}, \sigma_{k}^{2}=\operatorname{Var}\left\{f_{i}\right\}$ with $x_{i} \in \mathcal{C}_{k}$)
$-\frac{\sigma_{k}^{2}}{m_{k}^{2}}=s_{k}+\frac{\gamma_{[u] k}}{c_{[u]}}+\frac{h\left(\gamma_{[l] k}\right)}{c_{[l]}}$ where $s_{k}, \gamma_{[u] k}$ and $\gamma_{[l] k}$ upper-bounded positive values dependent of α.
$-\gamma_{[u] k}$ is a decreasing function of $\gamma_{[l] k}$ which has a minimal value of zero. $\gamma_{[l] k}$ can also achieve zero, buy only for a sufficiently large $c_{[u]}$.

Formula for special cases

- Setting: $x_{i} \sim \mathcal{N}\left(\pm \mu, I_{p}\right)$, with balanced data for each class.
- Formula:

$$
\frac{\sigma_{1}^{2}}{m_{1}^{2}}=\frac{\sigma_{2}^{2}}{m_{2}^{2}}=\left(1-\frac{g^{2}}{\|\mu\|^{4} c_{[u]}}\right)^{-1}\left(\frac{1}{\|\mu\|^{2}}+\frac{g^{2}}{\|\mu\|^{4} c_{[u]}}+\frac{(1-g)^{2}}{\|\mu\|^{4} c_{[l]}}\right)
$$

where $g(\alpha) \in(0, q)$ with $q=\min \left\{1, \sqrt{\|\mu\|^{4} c_{[u]}}\right\}$.

Theoretical results

Effective learning from labelled and unlabelled data

- $m_{1}<0$ and $m_{2}>0$ for all α. (recall that $m_{k}=\mathbb{E}\left\{f_{i}\right\}, \sigma_{k}^{2}=\operatorname{Var}\left\{f_{i}\right\}$ with $x_{i} \in \mathcal{C}_{k}$)
- $\frac{\sigma_{k}^{2}}{m_{k}^{2}}=s_{k}+\frac{\gamma_{[u] k}}{c_{[u]}}+\frac{h\left(\gamma_{[l] k}\right)}{c_{[l]}}$ where $s_{k}, \gamma_{[u] k}$ and $\gamma_{[l] k}$ upper-bounded positive values dependent of α.
- $\gamma_{[u] k}$ is a decreasing function of $\gamma_{[l] k}$ which has a minimal value of zero. $\gamma_{[l] k}$ can also achieve zero, buy only for a sufficiently large $c_{[u]}$.

Formula for special cases

- Setting: $x_{i} \sim \mathcal{N}\left(\pm \mu, I_{p}\right)$, with balanced data for each class.
- Formula:

$$
\frac{\sigma_{1}^{2}}{m_{1}^{2}}=\frac{\sigma_{2}^{2}}{m_{2}^{2}}=\left(1-\frac{g^{2}}{\|\mu\|^{4} c_{[u]}}\right)^{-1}\left(\frac{1}{\|\mu\|^{2}}+\frac{g^{2}}{\|\mu\|^{4} c_{[u]}}+\frac{(1-g)^{2}}{\|\mu\|^{4} c_{[l]}}\right)
$$

where $g(\alpha) \in(0, q)$ with $q=\min \left\{1, \sqrt{\|\mu\|^{4} c_{[u]}}\right\}$.

- Optimal performance of Laplacian regularization (random walk normalized Laplacian):

$$
\frac{\sigma_{1}^{2}}{m_{1}^{2}}=\frac{\sigma_{2}^{2}}{m_{2}^{2}}=\frac{1}{\|\mu\|^{2}}+\frac{1}{\|\mu\|^{4} c_{[l]}}
$$

Performance as a function of $n_{[u]}, n_{[l]}$

Figure: Correct classification rate, at optimal α, as a function of (i) $n_{[u]}$ for fixed $p / n_{[l]}=5$ (blue) and (ii) $n_{[l]}$ for fixed $p / n_{[u]}=5$ (black); $c_{1}=c_{2}=\frac{1}{2}$; different values for $\|\mu\|$. Comparison to optimal Neyman-Pearson performance for known μ (in red).

SSL: the road from supervised to unsupervised

Figure: Theory (solid) versus practice (dashed; from right to left: $n=400,1000,4000$): correct classification probability as a function of α for $c_{[u]}=\frac{9}{10}, c_{0}=\frac{1}{2}, c_{1}=\frac{1}{2}$, and left: $\|\mu\|=0.75$ (below phase transition); right: $\|\mu\|=1.25$ (above phase transition). Different values of n.

Experimental evidence: MNIST

Digits	$(0,8)$	$(2,7)$	$(6,9)$
	$n_{[u]}=100$		
Centered kernel	$\mathbf{8 9 . 5} \pm \mathbf{3 . 6}$	$\mathbf{8 9 . 5} \pm \mathbf{3 . 4}$	$\mathbf{8 5 . 3} \pm \mathbf{5 . 9}$
Iterated centered kernel	$\mathbf{8 9 . 5} \pm \mathbf{3 . 6}$	$\mathbf{8 9 . 5} \pm \mathbf{3 . 4}$	$\mathbf{8 5 . 3} \pm \mathbf{5 . 9}$
Laplacian	75.5 ± 5.6	74.2 ± 5.8	70.0 ± 5.5
Iterated Laplacian	87.2 ± 4.7	86.0 ± 5.2	81.4 ± 6.8
Manifold	88.0 ± 4.7	88.4 ± 3.9	82.8 ± 6.5
$n_{[u]}=500$			
Centered kernel	$\mathbf{9 1 . 7} \pm \mathbf{1 . 3}$	$\mathbf{9 2 . 2} \pm \mathbf{1 . 3}$	91.6 ± 2.2
Iterated centered kernel	$\mathbf{9 1 . 8} \pm \mathbf{1 . 4}$	$\mathbf{9 2 . 2} \pm \mathbf{1 . 3}$	$\mathbf{9 2 . 0} \pm \mathbf{2 . 1}$
Laplacian	75.6 ± 4.1	74.4 ± 4.0	69.5 ± 3.7
Iterated Laplacian	$\mathbf{9 1 . 6} \pm \mathbf{1 . 5}$	91.9 ± 1.4	90.6 ± 2.7
Manifold	90.7 ± 2.1	91.2 ± 1.9	90.1 ± 3.7

Table: Comparison of classification accuracy (\%) on MNIST datasets with $n_{[l]}=10$. Computed over 1000 random iterations for $n_{[u]}=100$ and 500 for $n_{[u]}=500$.

Experimental evidence: Traffic signs (HOG features)

Class ID	$(2,7)$	$(9,10)$	$(11,18)$
	$n_{[u]}=100$		
Centered kernel	79.0 ± 10.4	77.5 ± 9.2	78.5 ± 7.1
Iterated centered kernel	$\mathbf{8 5 . 3} \pm \mathbf{5 . 9}$	$\mathbf{8 9 . 2} \pm \mathbf{5 . 6}$	$\mathbf{9 0 . 1} \pm \mathbf{6 . 7}$
Laplacian	73.8 ± 9.8	77.3 ± 9.5	78.6 ± 7.2
Iterated Laplacian	83.7 ± 7.2	88.0 ± 6.8	87.1 ± 8.8
Manifold	77.6 ± 8.9	81.4 ± 10.4	82.3 ± 10.8
$n_{[u]}=500$			
Centered kernel	82.5 ± 4.0	82.6 ± 6.4	79.2 ± 18.0
Iterated centered kernel	$\mathbf{8 4 . 4} \pm \mathbf{4 . 2}$	$\mathbf{8 8 . 9} \pm \mathbf{5 . 7}$	$\mathbf{9 5 . 8} \pm \mathbf{3 . 2}$
Laplacian	72.7 ± 8.9	$\mathbf{7 7 . 6} \pm 8.3$	79.1 ± 6.3
Iterated Laplacian	82.7 ± 5.7	88.1 ± 7.4	92.4 ± 6.7
Manifold	77.4 ± 5.9	83.5 ± 10.4	89.3 ± 9.2

Table: Comparison of classification accuracy (\%) on German Traffic Sign datasets with $n_{[l]}=10$.
Computed over 1000 random iterations for $n_{[u]}=100$ and 500 for $n_{[u]}=500$.

Outline

```
Basics of Random Matrix Theory (Romain COUILLET)
    Motivation: Large Sample Covariance Matrices
    The Stieltjes Transform Method
    Spiked Models
    Other Common Random Matrix Models
    Applications
```

Applications to Machine Learning (Xiaoyi MAI)
Applications to Random Projections and Neural Networks (Zhenyu LIAO)
Random Projections-based Ridge Regression
Random Projections-based Spectral Clustering
Random Matrix Analysis for Learning Dynamics of Neural Networks
Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)

Outline

```
Basics of Random Matrix Theory (Romain COUILLET)
    Motivation: Large Sample Covariance Matrices
    The Stieltjes Transform Method
    Spiked Models
    Other Common Random Matrix Models
    Applications
```

Applications to Machine Learning (Xiaoyi MAI)

Applications to Random Projections and Neural Networks (Zhenyu LIAO)
Random Projections-based Ridge Regression
Random Projections-based Spectral Clustering
Random Matrix Analysis for Learning Dynamics of Neural Networks

Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)

Motivation: Feature extraction in machine learning

$$
\text { Learning }=\text { Representation }+ \text { Evaluation }+ \text { Optimization. }{ }^{1}
$$

Features: representation of the data that contains crucial information for the given task.

[^0]
Motivation: Feature extraction in machine learning

$$
\text { Learning }=\text { Representation }+ \text { Evaluation }+ \text { Optimization. }{ }^{1}
$$

Features: representation of the data that contains crucial information for the given task.
Various methods for feature extraction:

[^1]
Motivation: Feature extraction in machine learning

$$
\text { Learning }=\text { Representation }+ \text { Evaluation }+ \text { Optimization. }{ }^{1}
$$

Features: representation of the data that contains crucial information for the given task.
Various methods for feature extraction:

- feature selection by hand (expert system)

[^2]
Motivation: Feature extraction in machine learning

$$
\text { Learning }=\text { Representation }+ \text { Evaluation }+ \text { Optimization. }{ }^{1}
$$

Features: representation of the data that contains crucial information for the given task.
Various methods for feature extraction:

- feature selection by hand (expert system)
- feature learned via backpropagation

[^3]
Motivation: Feature extraction in machine learning

$$
\text { Learning }=\text { Representation }+ \text { Evaluation }+ \text { Optimization. }{ }^{1}
$$

Features: representation of the data that contains crucial information for the given task.
Various methods for feature extraction:

- feature selection by hand (expert system)
- feature learned via backpropagation
- random projections/random feature maps:

[^4]
Motivation: Feature extraction in machine learning

$$
\text { Learning }=\text { Representation }+ \text { Evaluation }+ \text { Optimization. }{ }^{1}
$$

Features: representation of the data that contains crucial information for the given task.
Various methods for feature extraction:

- feature selection by hand (expert system)
- feature learned via backpropagation
- random projections/random feature maps:
- simple, fast and tractable theoretical analysis

[^5]
Motivation: Feature extraction in machine learning

$$
\text { Learning }=\text { Representation }+ \text { Evaluation }+ \text { Optimization. }{ }^{1}
$$

Features: representation of the data that contains crucial information for the given task.
Various methods for feature extraction:

- feature selection by hand (expert system)
- feature learned via backpropagation
- random projections/random feature maps:
- simple, fast and tractable theoretical analysis
- early stage of gradient-based methods (with random initialization)

[^6]
Motivation: Feature extraction in machine learning

$$
\text { Learning }=\text { Representation }+ \text { Evaluation }+ \text { Optimization. }{ }^{1}
$$

Features: representation of the data that contains crucial information for the given task.
Various methods for feature extraction:

- feature selection by hand (expert system)
- feature learned via backpropagation
- random projections/random feature maps:
- simple, fast and tractable theoretical analysis
- early stage of gradient-based methods (with random initialization)
- remaining difficulty: handle the nonlinearity!

[^7]
Motivation: Feature extraction in machine learning

$$
\text { Learning }=\text { Representation }+ \text { Evaluation }+ \text { Optimization. }{ }^{1}
$$

Features: representation of the data that contains crucial information for the given task.
Various methods for feature extraction:

- feature selection by hand (expert system)
- feature learned via backpropagation
- random projections/random feature maps:
- simple, fast and tractable theoretical analysis
- early stage of gradient-based methods (with random initialization)
- remaining difficulty: handle the nonlinearity!

How to study and understand these features?

[^8]
Motivation: Feature extraction in machine learning

$$
\text { Learning }=\text { Representation }+ \text { Evaluation }+ \text { Optimization. }{ }^{1}
$$

Features: representation of the data that contains crucial information for the given task.
Various methods for feature extraction:

- feature selection by hand (expert system)
- feature learned via backpropagation
- random projections/random feature maps:
- simple, fast and tractable theoretical analysis
- early stage of gradient-based methods (with random initialization)
- remaining difficulty: handle the nonlinearity!

How to study and understand these features? \Rightarrow Sample Covariance Matrix

$$
\mathrm{SCM} \equiv \frac{1}{T} X X^{\top}
$$

of data $X=\left[x_{1}, \ldots, x_{T}\right] \in \mathbb{R}^{p \times T}$.

[^9]
Motivation: Feature extraction in machine learning

$$
\text { Learning }=\text { Representation }+ \text { Evaluation }+ \text { Optimization. }{ }^{1}
$$

Features: representation of the data that contains crucial information for the given task.
Various methods for feature extraction:

- feature selection by hand (expert system)
- feature learned via backpropagation
- random projections/random feature maps:
- simple, fast and tractable theoretical analysis
- early stage of gradient-based methods (with random initialization)
- remaining difficulty: handle the nonlinearity!

How to study and understand these features? \Rightarrow Sample Covariance Matrix

$$
\mathrm{SCM} \equiv \frac{1}{T} X X^{\top}
$$

of data $X=\left[x_{1}, \ldots, x_{T}\right] \in \mathbb{R}^{p \times T}$. SCM in feature space \Rightarrow feature Gram matrix G :

$$
G \equiv \frac{1}{T} \Sigma^{\top} \Sigma
$$

with $\Sigma=\left[\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{T}\right)\right]$ feature matrix of X.

[^10]
Motivation: RMT for random feature maps

Recall: G determines training and test performance via its resolvent

$$
Q(z) \equiv\left(G-z I_{T}\right)^{-1} .
$$

Motivation: RMT for random feature maps

Recall: G determines training and test performance via its resolvent

$$
Q(z) \equiv\left(G-z I_{T}\right)^{-1}
$$

Example:
data
vectors

$$
X=\left[x_{1}, \ldots, x_{T}\right] \in \mathbb{R}^{p \times T}
$$

Figure: Illustration of random feature maps

Motivation: RMT for random feature maps

Recall: G determines training and test performance via its resolvent

$$
Q(z) \equiv\left(G-z I_{T}\right)^{-1}
$$

Example:

Figure: Illustration of random feature maps

Motivation: RMT for random feature maps

Recall: G determines training and test performance via its resolvent

$$
Q(z) \equiv\left(G-z I_{T}\right)^{-1}
$$

Example:

$$
\begin{aligned}
& \underset{\substack{\text { data } \\
\text { vectors }}}{\substack{\text { random } W \in \mathbb{R}^{n \times p} \\
\sigma(\cdot) \text { entry-wise }}} \\
& X=\left[x_{1}, \ldots, x_{T}\right] \in \mathbb{R}^{p \times T}
\end{aligned}
$$

Figure: Illustration of random feature maps

Motivation: RMT for random feature maps

Recall: G determines training and test performance via its resolvent

$$
Q(z) \equiv\left(G-z I_{T}\right)^{-1}
$$

Example:

$$
\begin{gathered}
\begin{array}{c}
\text { data } \\
\text { vectors }
\end{array} \xrightarrow[\text { random } W \in \mathbb{R}^{n \times p}]{\sigma(\cdot) \text { entry-wise }} \begin{array}{c}
\text { feature } \\
\text { vectors }
\end{array} \\
X=\left[x_{1}, \ldots, x_{T}\right] \in \mathbb{R}^{p \times T} \quad \Sigma=\sigma(W X) \in \mathbb{R}^{n \times T}
\end{gathered}
$$

Figure: Illustration of random feature maps

Motivation: RMT for random feature maps

Recall: G determines training and test performance via its resolvent

$$
Q(z) \equiv\left(G-z I_{T}\right)^{-1}
$$

Example:

$$
\begin{gathered}
\underset{\begin{array}{c}
\text { data } \\
\text { vectors }
\end{array} \xrightarrow[\sigma(\cdot) \text { entry-wise }]{\text { random } W \in \mathbb{R}^{n \times p}} \text { feature }}{\text { vectors }} \text { vis }
\end{gathered}
$$

Figure: Illustration of random feature maps

MSE of random feature-based ridge regression (also called extreme learning machines):

$$
\mathrm{E}_{\text {train }}=\frac{1}{T}\left\|y-\beta^{\top} \Sigma\right\|_{F}^{2}=\frac{\gamma^{2}}{T} y^{\top} Q^{2}(-\gamma) y, \quad \mathrm{E}_{\text {test }}=\frac{1}{\hat{T}}\left\|\hat{y}-\beta^{\top} \hat{\Sigma}\right\|_{F}^{2}
$$

with ridge regressor $\beta \equiv \frac{1}{T} \Sigma\left(G+\gamma I_{T}\right)^{-1} y^{\top}=\frac{1}{T} \Sigma Q(-\gamma) y^{\top}$ and regularization $\gamma>0$. y associated target of training data X and \hat{y} target of test data \hat{X}.

Motivation: RMT for random feature maps

Recall: G determines training and test performance via its resolvent

$$
Q(z) \equiv\left(G-z I_{T}\right)^{-1}
$$

Example:

$$
\begin{gathered}
\begin{array}{c}
\text { data } \\
\text { vectors }
\end{array} \xrightarrow[\sigma(\cdot) \text { entry-wise }]{\text { random } W \in \mathbb{R}^{n \times p}} \xrightarrow[\text { feature }]{\text { vectors }}
\end{gathered}
$$

Figure: Illustration of random feature maps

MSE of random feature-based ridge regression (also called extreme learning machines):

$$
\mathrm{E}_{\text {train }}=\frac{1}{T}\left\|y-\beta^{\top} \Sigma\right\|_{F}^{2}=\frac{\gamma^{2}}{T} y^{\top} Q^{2}(-\gamma) y, \quad \mathrm{E}_{\text {test }}=\frac{1}{\hat{T}}\left\|\hat{y}-\beta^{\top} \hat{\Sigma}\right\|_{F}^{2}
$$

with ridge regressor $\beta \equiv \frac{1}{T} \Sigma\left(G+\gamma I_{T}\right)^{-1} y^{\top}=\frac{1}{T} \Sigma Q(-\gamma) y^{\top}$ and regularization $\gamma>0$. y associated target of training data X and \hat{y} target of test data \hat{X}.
Key Issue
(Classical) quadratic form $a^{\top} Q(z) b$ for nonlinear model $\Sigma=\sigma(W X)$!

Handle nonlinearity in RMT: concentration of measure approach

Recall:

For $\sigma(t)=t, G=\frac{1}{T} X^{\top} W^{\top} W X$ with random W : Sample Covariance Matrix Model. Proof essentially based on trace lemma: $w \in \mathbb{R}^{n}$ of i.i.d. entries and A of bound norm,

$$
\left|\frac{1}{n} w^{\top} A w-\frac{1}{n} \operatorname{tr} A\right| \xrightarrow{\text { a.s. }} 0 .
$$

Handle nonlinearity in RMT: concentration of measure approach

Recall:

For $\sigma(t)=t, G=\frac{1}{T} X^{\top} W^{\top} W X$ with random W : Sample Covariance Matrix Model. Proof essentially based on trace lemma: $w \in \mathbb{R}^{n}$ of i.i.d. entries and A of bound norm,

$$
\left|\frac{1}{n} w^{\top} A w-\frac{1}{n} \operatorname{tr} A\right| \xrightarrow{\text { a.s. }} 0 .
$$

Nonlinearity
However, here for nonlinear $\sigma(\cdot)$, similar to the proof of Marčenko-Pastur law:

$$
\Sigma=\sigma(W X)=\left[\begin{array}{c}
\sigma_{i}^{\top} \\
\Sigma_{-i}
\end{array}\right] \in \mathbb{R}^{n \times T}
$$

with $\sigma_{i}=\sigma\left(X^{\top} w_{i}\right) \in \mathbb{R}^{T}, w_{i}$ the i-th row of W.

Handle nonlinearity in RMT: concentration of measure approach

Recall:

For $\sigma(t)=t, G=\frac{1}{T} X^{\top} W^{\top} W X$ with random W : Sample Covariance Matrix Model. Proof essentially based on trace lemma: $w \in \mathbb{R}^{n}$ of i.i.d. entries and A of bound norm,

$$
\left|\frac{1}{n} w^{\top} A w-\frac{1}{n} \operatorname{tr} A\right| \xrightarrow{\text { a.s. }} 0 .
$$

Nonlinearity
However, here for nonlinear $\sigma(\cdot)$, similar to the proof of Marčenko-Pastur law:

$$
\Sigma=\sigma(W X)=\left[\begin{array}{c}
\sigma_{i}^{\top} \\
\Sigma_{-i}
\end{array}\right] \in \mathbb{R}^{n \times T}
$$

with $\sigma_{i}=\sigma\left(X^{\top} w_{i}\right) \in \mathbb{R}^{T}, w_{i}$ the i-th row of W. Rank-one perturbation:

$$
Q=\left(\frac{1}{T} \Sigma^{\top} \Sigma-z I_{T}\right)^{-1}=\left(\frac{1}{T} \Sigma_{-i}^{\top} \Sigma_{-i}+\frac{1}{T} \sigma_{i} \sigma_{i}^{\top}-z I_{T}\right)^{-1}
$$

Handle nonlinearity in RMT: concentration of measure approach

Recall:

For $\sigma(t)=t, G=\frac{1}{T} X^{\top} W^{\top} W X$ with random W : Sample Covariance Matrix Model. Proof essentially based on trace lemma: $w \in \mathbb{R}^{n}$ of i.i.d. entries and A of bound norm,

$$
\left|\frac{1}{n} w^{\top} A w-\frac{1}{n} \operatorname{tr} A\right| \xrightarrow{\text { a.s. }} 0 .
$$

Nonlinearity
However, here for nonlinear $\sigma(\cdot)$, similar to the proof of Marčenko-Pastur law:

$$
\Sigma=\sigma(W X)=\left[\begin{array}{c}
\sigma_{i}^{\top} \\
\Sigma_{-i}
\end{array}\right] \in \mathbb{R}^{n \times T}
$$

with $\sigma_{i}=\sigma\left(X^{\top} w_{i}\right) \in \mathbb{R}^{T}, w_{i}$ the i-th row of W. Rank-one perturbation:

$$
\begin{aligned}
Q & =\left(\frac{1}{T} \Sigma^{\top} \Sigma-z I_{T}\right)^{-1}=\left(\frac{1}{T} \Sigma_{-i}^{\top} \Sigma_{-i}+\frac{1}{T} \sigma_{i} \sigma_{i}^{\top}-z I_{T}\right)^{-1} \\
& =Q_{-i}-\frac{Q_{-i} \frac{1}{T} \sigma_{i} \sigma_{i}^{\top} Q_{-i}}{1+\frac{1}{T} \sigma_{i}^{\top} Q_{-i} \sigma_{i}}
\end{aligned}
$$

with $Q_{-i} \equiv\left(\frac{1}{T} \Sigma_{-i}^{\top} \Sigma_{-i}-z I_{T}\right)^{-1}$ independent of σ_{i} !

Handle nonlinearity in RMT: concentration of measure approach

Object under study $\frac{1}{n} \sigma\left(w^{\top} X\right) A \sigma\left(X^{\top} w\right)$: (compared to $\left.\frac{1}{n} w^{\top} A w\right)$

- loss of independence between entries

Handle nonlinearity in RMT: concentration of measure approach

Object under study $\frac{1}{n} \sigma\left(w^{\top} X\right) A \sigma\left(X^{\top} w\right)$: (compared to $\left.\frac{1}{n} w^{\top} A w\right)$

- loss of independence between entries
- more elusive due to $\sigma(\cdot)$

Handle nonlinearity in RMT: concentration of measure approach

Object under study $\frac{1}{n} \sigma\left(w^{\top} X\right) A \sigma\left(X^{\top} w\right)$: (compared to $\left.\frac{1}{n} w^{\top} A w\right)$

- loss of independence between entries
- more elusive due to $\sigma(\cdot)$
\Rightarrow extend trace lemma to handle nonlinear case!

Object under study $\frac{1}{n} \sigma\left(w^{\top} X\right) A \sigma\left(X^{\top} w\right)$: (compared to $\left.\frac{1}{n} w^{\top} A w\right)$

- loss of independence between entries
- more elusive due to $\sigma(\cdot)$
\Rightarrow extend trace lemma to handle nonlinear case!

Lemma (Concentration of Quadratic Forms)

$w \in \mathbb{R}^{n}$ of i.i.d. standard Gaussian entries and $\sigma(\cdot) \lambda_{\sigma}$-Lipschitz continuous. For $\|A\| \leq 1$ and X of bounded norm,

$$
P\left(\left|\frac{1}{T} \sigma\left(w^{\top} X\right) A \sigma\left(X^{\top} w\right)-\frac{1}{T} \operatorname{tr} \Phi A\right|>t\right) \leq C e^{-c n \min \left(t, t^{2}\right)}
$$

for some $C, c>0$ and $\Phi \equiv E_{w}\left[\sigma\left(X^{\top} w\right) \sigma\left(w^{\top} X\right)\right]$ (function of data X).

Performance evaluation of random feature-based ridge regression

Theorem (Asymptotic Training Performance)
$W \sim \mathcal{N}\left(0, I_{n}\right)$ and $\sigma(\cdot) \lambda_{\sigma}$-Lipschitz continuous and X of bounded norm. Then, as $n, p, T \rightarrow \infty, p / n \rightarrow c_{p} \in(0, \infty)$ and $T / n \rightarrow c_{T} \in(0, \infty)$,

$$
\mathrm{E}_{\text {train }}-\overline{\mathrm{E}}_{\text {train }} \xrightarrow{\text { a.s. }} 0
$$

where $\overline{\mathrm{E}}_{\text {train }}=\frac{\gamma^{2}}{T} y^{\top} \bar{Q}\left[\frac{\frac{1}{n} \operatorname{tr} \bar{Q} \Psi \bar{Q}}{1-\frac{1}{n} \operatorname{tr} \Psi^{2} \bar{Q}^{2}}+I_{T}\right] \bar{Q} y$ and $\bar{Q}=\left(\Psi+\gamma I_{T}\right)^{-1}, \Psi \equiv \frac{n}{T} \frac{\Phi}{1+\delta}$ with δ the unique solution of $\delta=\frac{1}{T} \operatorname{tr} \Phi \bar{Q}$ and $\Phi \equiv E_{w}\left[\sigma\left(X^{\top} w\right) \sigma\left(w^{\top} X\right)\right]$.

Performance evaluation of random feature-based ridge regression

Theorem (Asymptotic Training Performance)
$W \sim \mathcal{N}\left(0, I_{n}\right)$ and $\sigma(\cdot) \lambda_{\sigma}$-Lipschitz continuous and X of bounded norm. Then, as $n, p, T \rightarrow \infty, p / n \rightarrow c_{p} \in(0, \infty)$ and $T / n \rightarrow c_{T} \in(0, \infty)$,

$$
\mathrm{E}_{\text {train }}-\overline{\mathrm{E}}_{\text {train }} \xrightarrow{\text { a.s. }} 0
$$

where $\overline{\mathrm{E}}_{\text {train }}=\frac{\gamma^{2}}{T} y^{\top} \bar{Q}\left[\frac{\frac{1}{n} \operatorname{tr} \bar{Q} \Psi \bar{Q}}{1-\frac{1}{n} \operatorname{tr} \Psi^{2} \bar{Q}^{2}}+I_{T}\right] \bar{Q} y$ and $\bar{Q}=\left(\Psi+\gamma I_{T}\right)^{-1}, \Psi \equiv \frac{n}{T} \frac{\Phi}{1+\delta}$ with δ the unique solution of $\delta=\frac{1}{T} \operatorname{tr} \Phi \bar{Q}$ and $\Phi \equiv E_{w}\left[\sigma\left(X^{\top} w\right) \sigma\left(w^{\top} X\right)\right]$.

Several remarks:

- (asymptotic) training performance only depends on (the training data X via) the key averaged kernel matrix Φ and the dimension of problem

Performance evaluation of random feature-based ridge regression

Theorem (Asymptotic Training Performance)
$W \sim \mathcal{N}\left(0, I_{n}\right)$ and $\sigma(\cdot) \lambda_{\sigma}$-Lipschitz continuous and X of bounded norm. Then, as $n, p, T \rightarrow \infty, p / n \rightarrow c_{p} \in(0, \infty)$ and $T / n \rightarrow c_{T} \in(0, \infty)$,

$$
\mathrm{E}_{\text {train }}-\overline{\mathrm{E}}_{\text {train }} \xrightarrow{\text { a.s. }} 0
$$

where $\overline{\mathrm{E}}_{\text {train }}=\frac{\gamma^{2}}{T} y^{\top} \bar{Q}\left[\frac{\frac{1}{n} \operatorname{tr} \bar{Q} \Psi \bar{Q}}{1-\frac{1}{n} \operatorname{tr} \Psi^{2} \bar{Q}^{2}}+I_{T}\right] \bar{Q} y$ and $\bar{Q}=\left(\Psi+\gamma I_{T}\right)^{-1}, \Psi \equiv \frac{n}{T} \frac{\Phi}{1+\delta}$ with δ the unique solution of $\delta=\frac{1}{T} \operatorname{tr} \Phi \bar{Q}$ and $\Phi \equiv E_{w}\left[\sigma\left(X^{\top} w\right) \sigma\left(w^{\top} X\right)\right]$.

Several remarks:

- (asymptotic) training performance only depends on (the training data X via) the key averaged kernel matrix Φ and the dimension of problem
- similar results can be obtained for test performance

Performance evaluation of random feature-based ridge regression

Theorem (Asymptotic Training Performance)
$W \sim \mathcal{N}\left(0, I_{n}\right)$ and $\sigma(\cdot) \lambda_{\sigma}$-Lipschitz continuous and X of bounded norm. Then, as $n, p, T \rightarrow \infty, p / n \rightarrow c_{p} \in(0, \infty)$ and $T / n \rightarrow c_{T} \in(0, \infty)$,

$$
\mathrm{E}_{\text {train }}-\overline{\mathrm{E}}_{\text {train }} \xrightarrow{\text { a.s. }} 0
$$

where $\overline{\mathrm{E}}_{\text {train }}=\frac{\gamma^{2}}{T} y^{\top} \bar{Q}\left[\frac{\frac{1}{n} \operatorname{tr} \bar{Q} \Psi \bar{Q}}{1-\frac{1}{n} \operatorname{tr} \Psi^{2} \bar{Q}^{2}}+I_{T}\right] \bar{Q} y$ and $\bar{Q}=\left(\Psi+\gamma I_{T}\right)^{-1}, \Psi \equiv \frac{n}{T} \frac{\Phi}{1+\delta}$ with δ the unique solution of $\delta=\frac{1}{T} \operatorname{tr} \Phi \bar{Q}$ and $\Phi \equiv E_{w}\left[\sigma\left(X^{\top} w\right) \sigma\left(w^{\top} X\right)\right]$.

Several remarks:

- (asymptotic) training performance only depends on (the training data X via) the key averaged kernel matrix Φ and the dimension of problem
- similar results can be obtained for test performance
- \Rightarrow remains to compute Φ on function of X

Computation of averaged kernel Φ

To evaluate the training and test performance, it remains to compute Φ for different σ :

$$
\Phi(X)=E_{w}\left[\sigma\left(X^{\top} w\right) \sigma\left(w^{\top} X\right)\right]
$$

Computation of averaged kernel Φ

To evaluate the training and test performance, it remains to compute Φ for different σ :

$$
\Phi(X)=E_{w}\left[\sigma\left(X^{\top} w\right) \sigma\left(w^{\top} X\right)\right]
$$

the (i, j)-th entry of which given by

$$
\Phi_{i, j}=(2 \pi)^{-\frac{p}{2}} \int_{\mathbb{R}^{p}} \sigma\left(w^{\top} x_{i}\right) \sigma\left(w^{\top} x_{j}\right) d w
$$

Computation of averaged kernel Φ

To evaluate the training and test performance, it remains to compute Φ for different σ :

$$
\Phi(X)=E_{w}\left[\sigma\left(X^{\top} w\right) \sigma\left(w^{\top} X\right)\right]
$$

the (i, j)-th entry of which given by

$$
\begin{aligned}
\Phi_{i, j} & =(2 \pi)^{-\frac{p}{2}} \int_{\mathbb{R}^{p}} \sigma\left(w^{\top} x_{i}\right) \sigma\left(w^{\top} x_{j}\right) d w \\
& \left.=\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} \sigma\left(\tilde{w}^{\top} \tilde{x}_{i}\right) \sigma\left(\tilde{w}^{\top} \tilde{x}_{j}\right) e^{-\frac{1}{2}\|\tilde{w}\|^{2}} d \tilde{w} \quad \text { (projection on } \operatorname{span}\left(x_{i}, x_{j}\right)\right) .
\end{aligned}
$$

Computation of averaged kernel Φ

To evaluate the training and test performance, it remains to compute Φ for different σ :

$$
\Phi(X)=E_{w}\left[\sigma\left(X^{\top} w\right) \sigma\left(w^{\top} X\right)\right]
$$

the (i, j)-th entry of which given by

$$
\begin{aligned}
\Phi_{i, j} & =(2 \pi)^{-\frac{p}{2}} \int_{\mathbb{R}^{p}} \sigma\left(w^{\top} x_{i}\right) \sigma\left(w^{\top} x_{j}\right) d w \\
& \left.=\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} \sigma\left(\tilde{w}^{\top} \tilde{x}_{i}\right) \sigma\left(\tilde{w}^{\top} \tilde{x}_{j}\right) e^{-\frac{1}{2}\|\tilde{w}\|^{2}} d \tilde{w} \quad \text { (projection on } \operatorname{span}\left(x_{i}, x_{j}\right)\right) .
\end{aligned}
$$

Example: for $\sigma(t)=\max (t, 0)=\operatorname{ReLU}(t)$,
$\Phi_{i, j}=\frac{1}{2 \pi} \int_{S} \sigma\left(\tilde{w}^{\top} \tilde{x}_{i}\right) \sigma\left(\tilde{w}^{\top} \tilde{x}_{j}\right) e^{-\frac{1}{2}\|\tilde{w}\|^{2}} d \tilde{w}=\frac{1}{2 \pi}\left\|x_{i}\right\|\left\|x_{j}\right\|\left(\sqrt{1-L^{2}}+\angle \cdot \arccos (-\angle)\right)$
with $S=\min \left(\tilde{w}^{\top} \tilde{x}_{i}, \tilde{w}^{\top} \tilde{x}_{j}\right)>0, \angle \equiv \frac{x_{i}^{\top} x_{j}}{\left\|x_{i}\right\|\left\|x_{j}\right\|}$.

Results of Φ for commonly used $\sigma(\cdot)$

Table: $\Phi_{i, j}$ for commonly used $\sigma(\cdot), \angle \equiv \frac{x_{i}^{\top} x_{j}}{\left\|x_{i}\right\|\left\|x_{j}\right\|}$.

$\sigma(t)$	$\Phi_{i, j}$								
t	$x_{i}^{\top} x_{j}$								
$\max (t, 0)$	$\frac{1}{2 \pi}\left\\|x_{i}\right\\|\left\\|x_{j}\right\\|\left(\angle \cdot \arccos (-\angle)+\sqrt{1-L^{2}}\right)$								
$\|t\|$	$\frac{2}{\pi}\left\\|x_{i}\right\\|\left\\|x_{j}\right\\|\left(\angle \cdot \arcsin (\angle)+\sqrt{1-L^{2}}\right)$								
$\varsigma_{+} \max (t, 0)+$									
$\varsigma_{-} \max (-t, 0)$	$\frac{1}{2}\left(\varsigma_{+}^{2}+\varsigma_{-}^{2}\right) x_{i}^{\top} x_{j}+\frac{\left\\|x_{i}\right\\|\left\\|x_{j}\right\\|}{2 \pi}\left(\varsigma_{+}+\varsigma_{-}\right)^{2}\left(\sqrt{1-L^{2}}-\angle \cdot \arccos (\angle)\right)$								
$1_{t>0}$	$\frac{1}{2}-\frac{1}{2 \pi} \arccos (\angle)$								
$\varsigma_{2} t^{2}+\varsigma_{1} t+\varsigma_{0}$	$\varsigma_{2}^{2}\left(2\left(x_{i}^{\top} x_{j}\right)^{2}+\left\\|x_{i}\right\\|^{2}\left\\|x_{j}\right\\|^{2}\right)+\varsigma_{1}^{2} x_{i}^{\top} x_{j}+\varsigma_{2} \varsigma_{0}\left(\left\\|x_{i}\right\\|^{2}+\left\\|x_{j}\right\\|^{2}\right)+\varsigma_{0}^{2}$								
$\cos (t)$	$\exp \left(-\frac{1}{2}\left(\left\\|x_{i}\right\\|^{2}+\left\\|x_{j}\right\\|^{2}\right)\right) \cosh \left(x_{i}^{\top} x_{j}\right)$								
$\sin (t)$	$\exp \left(-\frac{1}{2}\left(\left\\|x_{i}\right\\|^{2}+\left\\|x_{j}\right\\|^{2}\right)\right) \operatorname{sinh(x_{i}^{\top }x_{j})}$								
$\operatorname{erf}(t)$	$\frac{2}{\pi} \arcsin \left(\frac{2 x_{i}^{\top} x_{j}}{\sqrt{\left(1+2\left\\|x_{i}\right\\|^{2}\right)\left(1+2\left\\|x_{j}\right\\|^{2}\right)}}\right)$								
$\exp \left(-\frac{t^{2}}{2}\right)$	$\frac{1}{\sqrt{\left(1+\left\\|x_{i}\right\\|^{2}\right)\left(1+\left\\|x_{j}\right\\|^{2}\right)-\left(x_{i}^{\top} x_{j}\right)^{2}}}$								

Results of Φ for commonly used $\sigma(\cdot)$

Table: $\Phi_{i, j}$ for commonly used $\sigma(\cdot), \angle \equiv \frac{x_{i}^{\top} x_{j}}{\left\|x_{i}\right\|\left\|x_{j}\right\|}$.

$\sigma(t)$	$\Phi_{i, j}$								
t	$x_{i}^{\top} x_{j}$								
$\max (t, 0)$	$\frac{1}{2 \pi}\left\\|x_{i}\right\\|\left\\|x_{j}\right\\|\left(\angle \cdot \arccos (-\angle)+\sqrt{1-L^{2}}\right)$								
$\|t\|$	$\frac{2}{\pi}\left\\|x_{i}\right\\|\left\\|x_{j}\right\\|\left(\angle \cdot \arcsin (\angle)+\sqrt{1-\angle^{2}}\right)$								
$\begin{aligned} & \varsigma_{+} \max (t, 0)+ \\ & \varsigma_{-} \max (-t, 0) \end{aligned}$	$\frac{1}{2}\left(\varsigma_{+}^{2}+\varsigma_{-}^{2}\right) x_{i}^{\top} x_{j}+\frac{\left\\|x_{i}\right\\|\left\\|x_{j}\right\\|}{2 \pi}\left(\varsigma_{+}+\varsigma_{-}\right)^{2}\left(\sqrt{1-L^{2}}-\angle \cdot \arccos (\angle)\right)$								
$1_{t>0}$	$\frac{1}{2}-\frac{1}{2 \pi} \arccos (\angle)$								
$\operatorname{sign}(t)$	$\frac{2}{\pi} \arcsin (\angle)$								
$\varsigma_{2} t^{2}+\varsigma_{1} t+\varsigma_{0}$	$\varsigma_{2}^{2}\left(2\left(x_{i}^{\top} x_{j}\right)^{2}+\left\\|x_{i}\right\\|^{2}\left\\|x_{j}\right\\|^{2}\right)+\varsigma_{1}^{2} x_{i}^{\top} x_{j}+\varsigma_{2} \varsigma_{0}\left(\left\\|x_{i}\right\\|^{2}+\left\\|x_{j}\right\\|^{2}\right)+\varsigma_{0}^{2}$								
$\cos (t)$	$\exp \left(-\frac{1}{2}\left(\left\\|x_{i}\right\\|^{2}+\left\\|x_{j}\right\\|^{2}\right)\right) \cosh \left(x_{i}^{\top} x_{j}\right)$								
$\sin (t)$	$\exp \left(-\frac{1}{2}\left(\left\\|x_{i}\right\\|^{2}+\left\\|x_{j}\right\\|^{2}\right)\right) \sinh \left(x_{i}^{\top} x_{j}\right)$								
$\operatorname{erf}(t)$	$\frac{2}{\pi} \arcsin \left(\frac{2 x_{i}^{\top} x_{j}}{\sqrt{\left(1+2\left\\|x_{i}\right\\|^{2}\right)\left(1+2\left\\|x_{j}\right\\|^{2}\right)}}\right)$								
$\exp \left(-\frac{t^{2}}{2}\right)$	$\frac{1}{\sqrt{\left(1+\left\\|x_{i}\right\\|^{2}\right)\left(1+\left\\|x_{j}\right\\|^{2}\right)-\left(x_{i}^{\top} x_{j}\right)^{2}}}$								

\Rightarrow (Still) highly nonlinear function of data X !

Numerical validations

Performance of random feature-based ridge regression:

Figure: Performance for MNIST data (number 7 and 9), $n=512, T=\hat{T}=1024, p=784$.

Numerical validations

Performance of random feature-based ridge regression:

Figure: Performance for MNIST data (number 7 and 9), $n=512, T=\hat{T}=1024, p=784$.

Numerical validations

Performance of random feature-based ridge regression:

Figure: Performance for MNIST data (number 7 and 9), $n=512, T=\hat{T}=1024, p=784$.

Numerical validations

Performance of random feature-based ridge regression:

Figure: Performance for MNIST data (number 7 and 9), $n=512, T=\hat{T}=1024, p=784$.

Numerical validations

Performance of random feature-based ridge regression:

Figure: Performance for MNIST data (number 7 and 9), $n=512, T=\hat{T}=1024, p=784$.

Numerical validations

Performance of random feature-based ridge regression:

Figure: Performance for MNIST data (number 7 and 9), $n=512, T=\hat{T}=1024, p=784$.

Numerical validations

Performance of random feature-based ridge regression:

Figure: Performance for MNIST data (number 7 and 9), $n=512, T=\hat{T}=1024, p=784$.

Numerical validations

Performance of random feature-based ridge regression:

Figure: Performance for MNIST data (number 7 and 9), $n=512, T=\hat{T}=1024, p=784$.
\Rightarrow Theoretical performance understanding and fast tuning of hyperparameter γ !

Outline

```
Basics of Random Matrix Theory (Romain COUILLET)
    Motivation: Large Sample Covariance Matrices
    The Stieltjes Transform Method
    Spiked Models
    Other Common Random Matrix Models
    Applications
```

Applications to Machine Learning (Xiaoyi MAI)
Applications to Random Projections and Neural Networks (Zhenyu LIAO)
Random Projections-based Ridge Regression
Random Projections-based Spectral Clustering
Random Matrix Analysis for Learning Dynamics of Neural Networks
Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)

Dig deeper into the averaged kernel Φ

For random feature maps:

- if deterministic data: performance determined by $\Phi(X)$ and problem dimension

Dig deeper into the averaged kernel Φ

For random feature maps:

- if deterministic data: performance determined by $\Phi(X)$ and problem dimension
- if data following certain distribution (statistical information+random fluctuation): \Rightarrow what is the impact of nonlinearities on information extraction?

Dig deeper into the averaged kernel Φ

For random feature maps:

- if deterministic data: performance determined by $\Phi(X)$ and problem dimension
- if data following certain distribution (statistical information+random fluctuation): \Rightarrow what is the impact of nonlinearities on information extraction?

Data Model (same as for kernel clustering)

Consider data drawn from a K-class Gaussian mixture model (GMM):

$$
x_{i} \in \mathcal{C}_{a} \Leftrightarrow x_{i}=\frac{\mu_{a}}{\sqrt{p}}+\omega_{i}
$$

with $\omega_{i} \sim \mathcal{N}\left(0, \frac{1}{p} C_{a}\right), a=1, \ldots, K$ of statistical means $\mu_{a} \in \mathbb{R}^{p}$ and covariance
$C_{a} \in \mathbb{R}^{p \times p}$. Class \mathcal{C}_{a} has cardinality T_{a}.

Dig deeper into the averaged kernel Φ

For random feature maps:

- if deterministic data: performance determined by $\Phi(X)$ and problem dimension
- if data following certain distribution (statistical information+random fluctuation): \Rightarrow what is the impact of nonlinearities on information extraction?

Data Model (same as for kernel clustering)

Consider data drawn from a K-class Gaussian mixture model (GMM):

$$
x_{i} \in \mathcal{C}_{a} \Leftrightarrow x_{i}=\frac{\mu_{a}}{\sqrt{p}}+\omega_{i}
$$

with $\omega_{i} \sim \mathcal{N}\left(0, \frac{1}{p} C_{a}\right), a=1, \ldots, K$ of statistical means $\mu_{a} \in \mathbb{R}^{p}$ and covariance
$C_{a} \in \mathbb{R}^{p \times p}$. Class \mathcal{C}_{a} has cardinality T_{a}. For $T \rightarrow \infty$, we have

- $p / T \rightarrow c_{0} \in(0, \infty)$
- $T_{a} / T \rightarrow c_{a} \in(0,1)$
- let $\mu^{\circ} \equiv \sum_{i=1}^{K} \frac{T_{i}}{T} \mu_{i}$ and $\mu_{a}^{\circ} \equiv \mu_{a}-\mu^{\circ}$, then $\left\|\mu_{a}^{\circ}\right\|=O(1)$
- let $C^{\circ} \equiv \sum_{i=1}^{K} \frac{T_{i}}{T} C_{i}$ and $C_{a}^{\circ} \equiv C_{a}-c^{\circ}$, then $\left\|C_{a}\right\|=O(1), \operatorname{tr} C_{a}^{\circ} / \sqrt{p}=O(1)$.

Dig deeper into the averaged kernel Φ

For random feature maps:

- if deterministic data: performance determined by $\Phi(X)$ and problem dimension
- if data following certain distribution (statistical information+random fluctuation): \Rightarrow what is the impact of nonlinearities on information extraction?

Data Model (same as for kernel clustering)

Consider data drawn from a K-class Gaussian mixture model (GMM):

$$
x_{i} \in \mathcal{C}_{a} \Leftrightarrow x_{i}=\frac{\mu_{a}}{\sqrt{p}}+\omega_{i}
$$

with $\omega_{i} \sim \mathcal{N}\left(0, \frac{1}{p} C_{a}\right), a=1, \ldots, K$ of statistical means $\mu_{a} \in \mathbb{R}^{p}$ and covariance
$C_{a} \in \mathbb{R}^{p \times p}$. Class \mathcal{C}_{a} has cardinality T_{a}. For $T \rightarrow \infty$, we have

- $p / T \rightarrow c_{0} \in(0, \infty)$
- $T_{a} / T \rightarrow c_{a} \in(0,1)$
- let $\mu^{\circ} \equiv \sum_{i=1}^{K} \frac{T_{i}}{T} \mu_{i}$ and $\mu_{a}^{\circ} \equiv \mu_{a}-\mu^{\circ}$, then $\left\|\mu_{a}^{\circ}\right\|=O(1)$
- let $C^{\circ} \equiv \sum_{i=1}^{K} \frac{T_{i}}{T} C_{i}$ and $C_{a}^{\circ} \equiv C_{a}-c^{\circ}$, then $\left\|C_{a}\right\|=O(1), \operatorname{tr} C_{a}^{\circ} / \sqrt{p}=O(1)$.
\Rightarrow how different nonlinearities influence statistical information in Φ (and thus G)?

Analysis of (averaged) kernel matrix Φ (revisit)

Similar to the analysis of kernel matrix $K \equiv f\left(\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}\right)$, for $\sigma(t)=\operatorname{ReLU}(t)$,

$$
\Phi_{i, j}=\frac{1}{2 \pi}\left\|x_{i}\right\|\left\|x_{j}\right\|\left(\angle\left(x_{i}, x_{j}\right) \arccos \left(-\angle\left(x_{i}, x_{j}\right)\right)+\sqrt{1-\angle^{2}\left(x_{i}, x_{j}\right)}\right)
$$

with $\angle\left(x_{i}, x_{j}\right) \equiv \frac{x_{i}^{\top} x_{j}}{\left\|x_{i}\right\|\left\|x_{j}\right\|}$. To understand Φ :

Analysis of (averaged) kernel matrix Φ (revisit)

Similar to the analysis of kernel matrix $K \equiv f\left(\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}\right)$, for $\sigma(t)=\operatorname{ReLU}(t)$,

$$
\Phi_{i, j}=\frac{1}{2 \pi}\left\|x_{i}\right\|\left\|x_{j}\right\|\left(\angle\left(x_{i}, x_{j}\right) \arccos \left(-\angle\left(x_{i}, x_{j}\right)\right)+\sqrt{1-\angle^{2}\left(x_{i}, x_{j}\right)}\right)
$$

with $\angle\left(x_{i}, x_{j}\right) \equiv \frac{x_{i}^{\top} x_{j}}{\left\|x_{i}\right\|\left\|x_{j}\right\|}$. To understand Φ :

- Taylor-expand nonlinear functions of x_{i}, x_{j} to get entry-wise approximation of $\Phi_{i, j}$

Analysis of (averaged) kernel matrix Φ (revisit)

Similar to the analysis of kernel matrix $K \equiv f\left(\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}\right)$, for $\sigma(t)=\operatorname{ReLU}(t)$,

$$
\Phi_{i, j}=\frac{1}{2 \pi}\left\|x_{i}\right\|\left\|x_{j}\right\|\left(\angle\left(x_{i}, x_{j}\right) \arccos \left(-\angle\left(x_{i}, x_{j}\right)\right)+\sqrt{1-\angle^{2}\left(x_{i}, x_{j}\right)}\right)
$$

with $\angle\left(x_{i}, x_{j}\right) \equiv \frac{x_{i}^{\top} x_{j}}{\left\|x_{i}\right\|\left\|x_{j}\right\|}$. To understand Φ :

- Taylor-expand nonlinear functions of x_{i}, x_{j} to get entry-wise approximation of $\Phi_{i, j}$
- assembling in matrix form with careful control on operator norm

Analysis of (averaged) kernel matrix Φ (revisit)

Similar to the analysis of kernel matrix $K \equiv f\left(\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}\right)$, for $\sigma(t)=\operatorname{ReLU}(t)$,

$$
\Phi_{i, j}=\frac{1}{2 \pi}\left\|x_{i}\right\|\left\|x_{j}\right\|\left(\angle\left(x_{i}, x_{j}\right) \arccos \left(-\angle\left(x_{i}, x_{j}\right)\right)+\sqrt{1-\angle^{2}\left(x_{i}, x_{j}\right)}\right)
$$

with $\angle\left(x_{i}, x_{j}\right) \equiv \frac{x_{i}^{\top} x_{j}}{\left\|x_{i}\right\|\left\|x_{j}\right\|}$. To understand Φ :

- Taylor-expand nonlinear functions of x_{i}, x_{j} to get entry-wise approximation of $\Phi_{i, j}$
- assembling in matrix form with careful control on operator norm

Theorem (Asymptotic Equivalent of Φ)

For all $\sigma(\cdot)$ listed, we have, as $T \rightarrow \infty$,

$$
\|\Phi-\tilde{\Phi}\| \xrightarrow{\text { a.s. }} 0
$$

with

$$
\tilde{\Phi}=d_{1}\left(\Omega+M \frac{J^{\top}}{\sqrt{p}}\right)^{\top}\left(\Omega+M \frac{J^{\top}}{\sqrt{p}}\right)+d_{2} U B U^{\top}+d_{0} I_{T}
$$

and $U=\left[\frac{J}{\sqrt{p}}, \phi\right], B=\left[\begin{array}{cc}t t^{\top}+2 S & t \\ t^{\top} & 1\end{array}\right]$,

Analysis of (averaged) kernel matrix Φ (revisit)

Similar to the analysis of kernel matrix $K \equiv f\left(\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}\right)$, for $\sigma(t)=\operatorname{ReLU}(t)$,

$$
\Phi_{i, j}=\frac{1}{2 \pi}\left\|x_{i}\right\|\left\|x_{j}\right\|\left(\angle\left(x_{i}, x_{j}\right) \arccos \left(-\angle\left(x_{i}, x_{j}\right)\right)+\sqrt{1-\angle^{2}\left(x_{i}, x_{j}\right)}\right)
$$

with $\angle\left(x_{i}, x_{j}\right) \equiv \frac{x_{i}^{\top} x_{j}}{\left\|x_{i}\right\|\left\|x_{j}\right\|}$. To understand Φ :

- Taylor-expand nonlinear functions of x_{i}, x_{j} to get entry-wise approximation of $\Phi_{i, j}$
- assembling in matrix form with careful control on operator norm

Theorem (Asymptotic Equivalent of Φ)

For all $\sigma(\cdot)$ listed, we have, as $T \rightarrow \infty$,

$$
\|\Phi-\tilde{\Phi}\| \xrightarrow{\text { a.s. }} 0
$$

with

$$
\tilde{\Phi}=d_{1}\left(\Omega+M \frac{J^{\top}}{\sqrt{p}}\right)^{\top}\left(\Omega+M \frac{J^{\top}}{\sqrt{p}}\right)+d_{2} U B U^{\top}+d_{0} I_{T}
$$

and $U=\left[\frac{J}{\sqrt{p}}, \phi\right], B=\left[\begin{array}{cc}t t^{\top}+2 S & t \\ t^{\top} & 1\end{array}\right]$, where $J=\left[j_{1}, \ldots, j_{K}\right], j_{a}$ canonical vector of class \mathcal{C}_{a} (for clustering), weighted by two key parameters d_{1}, d_{2} and

- Ω, ϕ random fluctuations of data
- $M=\left[\mu_{1}^{\circ}, \ldots, \mu_{K}^{\circ}\right]$ containing differences in means, $t=\left\{\frac{1}{\sqrt{p}} \operatorname{tr} C_{a}^{\circ}\right\}_{a=1}^{K}$ and $S=\left\{\frac{1}{p} \operatorname{tr} C_{a} C_{b}\right\}_{a, b=1}^{K}$ differences in traces and shapes of covariances.

Consequence

Table: Coefficients d_{i} in $\tilde{\Phi}$ for different $\sigma(\cdot)$.
A natural classification of $\sigma(\cdot)$:

$\sigma(t)$	d_{1}	d_{2}
t	1	0
$\max (t, 0)$	$\frac{1}{4}$	$\frac{1}{8 \pi \tau}$
$\|t\|$	0	$\frac{1}{2 \pi \tau}$
$\varsigma_{+} \max (t, 0)+$	$\frac{1}{4}\left(\varsigma_{+}-\varsigma_{-}\right)^{2}$	$\frac{1}{8 \tau \pi}\left(\varsigma_{+}+\varsigma_{-}\right)^{2}$
$\varsigma_{-} \max (-t, 0)$	$\frac{1}{2 \pi \tau}$	0
$1_{t>0}$	$\frac{2}{\pi \tau}$	0
$\operatorname{sign}(t)$	ς_{1}^{2}	ς_{2}^{2}
$\varsigma_{2} t^{2}+\varsigma_{1} t+\varsigma_{0}$	0	$\frac{e^{-\tau}}{4}$
$\cos (t)$	$e^{-\tau}$	0
$\sin (t)$	$\frac{4}{\pi} \frac{1}{2 \tau+1}$	0
$\operatorname{erf}(t)$	0	$\frac{1}{4(\tau+1)^{3}}$
$\exp \left(-\frac{t^{2}}{2}\right)$		

Consequence

Table: Coefficients d_{i} in $\tilde{\Phi}$ for different $\sigma(\cdot)$.

$\sigma(t)$	d_{1}	d_{2}
t	1	0
$\max (t, 0)$	$\frac{1}{4}$	$\frac{1}{8 \pi \tau}$
$\|t\|$	0	$\frac{1}{2 \pi \tau}$
$\varsigma_{+} \max (t, 0)+$	$\frac{1}{4}\left(\varsigma_{+}-\varsigma_{-}\right)^{2}$	$\frac{1}{8 \tau \pi}\left(\varsigma_{+}+\varsigma_{-}\right)^{2}$
$\varsigma_{-} \max (-t, 0)$	$\frac{1}{2 \pi \tau}$	0
$1_{t>0}$	$\frac{2}{\pi \tau}$	0
$\operatorname{sign}(t)$	ς_{1}^{2}	ς_{2}^{2}
$\varsigma_{2} t^{2}+\varsigma_{1} t+\varsigma_{0}$	0	$\frac{e^{-\tau}}{4}$
$\cos (t)$	$e^{-\tau}$	0
$\sin (t)$	$\frac{4}{\pi} \frac{1}{2 \tau+1}$	0
$\operatorname{erf}(t)$	0	$\frac{1}{4(\tau+1)^{3}}$
$\exp \left(-\frac{t^{2}}{2}\right)$		

A natural classification of $\sigma(\cdot)$:

- mean-oriented, $d_{1} \neq 0, d_{2}=0: t$, $1_{t>0}, \operatorname{sign}(t), \sin (t)$ and $\operatorname{erf}(t)$ \Rightarrow separate with differences in means M;

Consequence

Table: Coefficients d_{i} in $\tilde{\Phi}$ for different $\sigma(\cdot)$.

$\sigma(t)$	d_{1}	d_{2}
t	1	0
$\max (t, 0)$	$\frac{1}{4}$	$\frac{1}{8 \pi \tau}$
$\|t\|$	0	$\frac{1}{2 \pi \tau}$
$\varsigma_{+} \max (t, 0)+$	$\frac{1}{4}\left(\varsigma_{+}-\varsigma_{-}\right)^{2}$	$\frac{1}{8 \tau \pi}\left(\varsigma_{+}+\varsigma_{-}\right)^{2}$
$\varsigma_{-} \max (-t, 0)$	$\frac{1}{2 \pi \tau}$	0
$1_{t>0}$	$\frac{2}{\pi \tau}$	0
$\operatorname{sign}(t)$	ς_{1}^{2}	ς_{2}^{2}
$\varsigma_{2} t^{2}+\varsigma_{1} t+\varsigma_{0}$	0	$\frac{e^{-\tau}}{4}$
$\cos (t)$	$e^{-\tau}$	0
$\sin (t)$	$\frac{4}{\pi} \frac{1}{2 \tau+1}$	0
$\operatorname{erf}(t)$	0	$\frac{1}{4(\tau+1)^{3}}$
$\exp \left(-\frac{t^{2}}{2}\right)$		

A natural classification of $\sigma(\cdot)$:

- mean-oriented, $d_{1} \neq 0, d_{2}=0: t$, $1_{t>0}, \operatorname{sign}(t), \sin (t)$ and $\operatorname{erf}(t)$ \Rightarrow separate with differences in means M;
- covariance-oriented, $d_{1}=0$, $d_{2} \neq 0:|t|, \cos (t)$ and $\exp \left(-t^{2} / 2\right)$ \Rightarrow track differences in covariances t, S;

Consequence

Table: Coefficients d_{i} in $\tilde{\Phi}$ for different $\sigma(\cdot)$.

$\sigma(t)$	d_{1}	d_{2}
t	1	0
$\max (t, 0)$	$\frac{1}{4}$	$\frac{1}{8 \pi \tau}$
$\|t\|$	0	$\frac{1}{2 \pi \tau}$
$\varsigma_{+} \max (t, 0)+$	$\frac{1}{4}\left(\varsigma_{+}-\varsigma_{-}\right)^{2}$	$\frac{1}{8 \tau \pi}\left(\varsigma_{+}+\varsigma_{-}\right)^{2}$
$\varsigma_{-} \max (-t, 0)$	$\frac{1}{2 \pi \tau}$	0
$1_{t>0}$	$\frac{2}{\pi \tau}$	0
$\operatorname{sign}(t)$	ς_{1}^{2}	ς_{2}^{2}
$\varsigma_{2} t^{2}+\varsigma_{1} t+\varsigma_{0}$	0	$\frac{e^{-\tau}}{4}$
$\cos (t)$	$e^{-\tau}$	0
$\sin (t)$	$\frac{4}{\pi} \frac{1}{2 \tau+1}$	0
$\operatorname{erf}(t)$	0	$\frac{1}{4(\tau+1)^{3}}$
$\exp \left(-\frac{t^{2}}{2}\right)$		

A natural classification of $\sigma(\cdot)$:

- mean-oriented, $d_{1} \neq 0, d_{2}=0: t$, $1_{t>0}, \operatorname{sign}(t), \sin (t)$ and $\operatorname{erf}(t)$ \Rightarrow separate with differences in means M;
- covariance-oriented, $d_{1}=0$, $d_{2} \neq 0:|t|, \cos (t)$ and $\exp \left(-t^{2} / 2\right)$
\Rightarrow track differences in covariances t, S;
- balanced, both $d_{1}, d_{2} \neq 0$:
- ReLU function $\max (t, 0)$,
- Leaky ReLU function
$\varsigma_{+} \max (t, 0)+\varsigma_{-} \max (-t, 0)$,
- quadratic function $\varsigma_{2} t^{2}+\varsigma_{1} t+\varsigma_{0}$.
\Rightarrow make use of both statistics!

Consequence

Table: Coefficients d_{i} in $\tilde{\Phi}$ for different $\sigma(\cdot)$.
A natural classification of $\sigma(\cdot)$:

- mean-oriented, $d_{1} \neq 0, d_{2}=0: t$, $1_{t>0}, \operatorname{sign}(t), \sin (t)$ and $\operatorname{erf}(t)$ \Rightarrow separate with differences in means M;
- covariance-oriented, $d_{1}=0$, $d_{2} \neq 0:|t|, \cos (t)$ and $\exp \left(-t^{2} / 2\right)$
\Rightarrow track differences in covariances t, S;
- balanced, both $d_{1}, d_{2} \neq 0$:
- ReLU function $\max (t, 0)$,
- Leaky ReLU function
$\varsigma_{+} \max (t, 0)+\varsigma_{-} \max (-t, 0)$,
- quadratic function $\varsigma_{2} t^{2}+\varsigma_{1} t+\varsigma_{0}$.
\Rightarrow make use of both statistics!

Not freely tunable as in the case of spectral clustering or SSL!

Numerical validations: Gaussian data

Example: Gaussian mixture data of four classes: $\mathcal{N}\left(\mu_{1}, C_{1}\right), \mathcal{N}\left(\mu_{1}, C_{2}\right), \mathcal{N}\left(\mu_{2}, C_{1}\right)$ and $\mathcal{N}\left(\mu_{2}, C_{2}\right)$ with Leaky ReLU function $\varsigma_{+} \max (t, 0)+\varsigma_{-} \max (-t, 0)$.

Numerical validations: Gaussian data

Example: Gaussian mixture data of four classes: $\mathcal{N}\left(\mu_{1}, C_{1}\right), \mathcal{N}\left(\mu_{1}, C_{2}\right), \mathcal{N}\left(\mu_{2}, C_{1}\right)$ and $\mathcal{N}\left(\mu_{2}, C_{2}\right)$ with Leaky ReLU function $\varsigma_{+} \max (t, 0)+\varsigma_{-} \max (-t, 0)$.
Case 1: $\varsigma_{+}=-\varsigma_{-}=1$ (equivalent to $\sigma(t)=|t|$)

Eigenvector 1

Eigenvector 2

Numerical validations: Gaussian data

Example: Gaussian mixture data of four classes: $\mathcal{N}\left(\mu_{1}, C_{1}\right), \mathcal{N}\left(\mu_{1}, C_{2}\right), \mathcal{N}\left(\mu_{2}, C_{1}\right)$ and $\mathcal{N}\left(\mu_{2}, C_{2}\right)$ with Leaky ReLU function $\varsigma_{+} \max (t, 0)+\varsigma_{-} \max (-t, 0)$.
Case 1: $\varsigma_{+}=-\varsigma_{-}=1$ (equivalent to $\sigma(t)=|t|$)

Eigenvector 1

Eigenvector 2

Case 2: $\varsigma_{+}=\varsigma_{-}=1$ (equivalent to linear map $\sigma(t)=t$)

Eigenvector 1

Numerical validations: Gaussian data

Case 3: $\varsigma_{+}=1, \varsigma_{-}=0$ (the ReLU function)

Eigenvector 1

Eigenvector 2

Numerical validations: Gaussian data

Case 3: $\varsigma_{+}=1, \varsigma_{-}=0$ (the ReLU function)

Eigenvector 1
Eigenvector 2

Eigenvector 1

Numerical validations: real datasets

Table: Empirical estimation of differences in means and covariances of MNIST and EEG datasets.

	$\left\\|M^{\top} M\right\\|$	$\left\\|t t^{\top}+2 S\right\\|$
MNIST data	$\mathbf{1 7 2 . 4}$	86.0
EEG data	1.2	$\mathbf{1 8 2 . 7}$

Numerical validations: real datasets

Table: Empirical estimation of differences in means and covariances of MNIST and EEG datasets.

	$\left\\|M^{\top} M\right\\|$	$\left\\|t t^{\top}+2 S\right\\|$
MNIST data	$\mathbf{1 7 2 . 4}$	86.0
EEG data	1.2	$\mathbf{1 8 2 . 7}$

Table: Clustering accuracies on MNIST dataset.

	$\sigma(t)$	$T=64$	$T=128$
mean- oriented	1 $\operatorname{sign}(t)$ $\sin (t)$	83.34%	85.22%
	$\operatorname{erf}(t)$	87.28%	87.50%
	$\|t\|$	60.41%	57.81%
	$\cos (t)$	59.56%	57.72%
balanced	$\operatorname{ReLU}\left(-\frac{t^{2}}{2}\right)$	60.44%	58.67%

Table: Clustering accuracies on EEG dataset.

	$\sigma(t)$	$T=64$	$T=128$
mean- oriented	1 	$\operatorname{sign}(t)$	64.63%
	70.34%	63.03%	
	$\operatorname{erf}(t)$	70.59%	67.70%
cov- oriented	$\|t\|$	99.69%	99.50%
	$\cos (t)$	99.38%	99.36%
	$\exp \left(-\frac{t^{2}}{2}\right)$	$\mathbf{9 9 . 8 1 \%}$	$\mathbf{9 9 . 7 7 \%}$
balanced	$\operatorname{ReLU}(t)$	87.91%	90.97%

Numerical validations: real datasets

Figure: Leading eigenvector of Φ for the MNIST (top) and EEG (bottom) with Gaussian mixture data (of same statistics) with a width of ± 1 standard deviations.

Numerical validations: real datasets

Figure: Leading eigenvector of Φ for the MNIST (top) and EEG (bottom) with Gaussian mixture data (of same statistics) with a width of ± 1 standard deviations.

Numerical validations: real datasets

Figure: Leading eigenvector of Φ for the MNIST (top) and EEG (bottom) with Gaussian mixture data (of same statistics) with a width of ± 1 standard deviations.

Numerical validations: real datasets

Figure: Leading eigenvector of Φ for the MNIST (top) and EEG (bottom) with Gaussian mixture data (of same statistics) with a width of ± 1 standard deviations.

Numerical validations: real datasets

Figure: Leading eigenvector of Φ for the MNIST (top) and EEG (bottom) with Gaussian mixture data (of same statistics) with a width of ± 1 standard deviations.

Numerical validations: real datasets

Figure: Leading eigenvector of Φ for the MNIST (top) and EEG (bottom) with Gaussian mixture data (of same statistics) with a width of ± 1 standard deviations.

Summary: random feature maps

Summary for random feature maps:

- concentration of measure helps extend trace lemma to nonlinear case \Rightarrow asymptotic training/test performance of random feature-based ridge regression

Summary: random feature maps

Summary for random feature maps:

- concentration of measure helps extend trace lemma to nonlinear case \Rightarrow asymptotic training/test performance of random feature-based ridge regression
- "concentration" of high dimensional data helps understand the key averaged kernel matrix $\Phi \Rightarrow$ random feature-based spectral clustering

Summary: random feature maps

Summary for random feature maps:

- concentration of measure helps extend trace lemma to nonlinear case \Rightarrow asymptotic training/test performance of random feature-based ridge regression
- "concentration" of high dimensional data helps understand the key averaged kernel matrix $\Phi \Rightarrow$ random feature-based spectral clustering

Take-away messages:

Summary: random feature maps

Summary for random feature maps:

- concentration of measure helps extend trace lemma to nonlinear case \Rightarrow asymptotic training/test performance of random feature-based ridge regression
- "concentration" of high dimensional data helps understand the key averaged kernel matrix $\Phi \Rightarrow$ random feature-based spectral clustering

Take-away messages:

- fast tuning of hyperparameters

Summary: random feature maps

Summary for random feature maps:

- concentration of measure helps extend trace lemma to nonlinear case \Rightarrow asymptotic training/test performance of random feature-based ridge regression
- "concentration" of high dimensional data helps understand the key averaged kernel matrix $\Phi \Rightarrow$ random feature-based spectral clustering

Take-away messages:

- fast tuning of hyperparameters
- nonlinearities into three attributes: means-, covariance-oriented and "balanced"

Summary: random feature maps

Summary for random feature maps:

- concentration of measure helps extend trace lemma to nonlinear case \Rightarrow asymptotic training/test performance of random feature-based ridge regression
- "concentration" of high dimensional data helps understand the key averaged kernel matrix $\Phi \Rightarrow$ random feature-based spectral clustering

Take-away messages:

- fast tuning of hyperparameters
- nonlinearities into three attributes: means-, covariance-oriented and "balanced"
- optimize the choice of nonlinearity as a function of data for quadratic and LReLU (similar to the " $\alpha-\beta$ " kernel!)

Summary: random feature maps

Summary for random feature maps:

- concentration of measure helps extend trace lemma to nonlinear case \Rightarrow asymptotic training/test performance of random feature-based ridge regression
- "concentration" of high dimensional data helps understand the key averaged kernel matrix $\Phi \Rightarrow$ random feature-based spectral clustering

Take-away messages:

- fast tuning of hyperparameters
- nonlinearities into three attributes: means-, covariance-oriented and "balanced"
- optimize the choice of nonlinearity as a function of data for quadratic and LReLU (similar to the " $\alpha-\beta$ " kernel!)
\Rightarrow What happens if weights W are not i.i.d. but depend on data (in the case of backpropagation)?

Outline

```
Basics of Random Matrix Theory (Romain COUILLET)
    Motivation: Large Sample Covariance Matrices
    The Stieltjes Transform Method
    Spiked Models
    Other Common Random Matrix Models
    Applications
```

Applications to Machine Learning (Xiaoyi MAI)
Applications to Random Projections and Neural Networks (Zhenyu LIAO)
Random Projections-based Ridge Regression
Random Projections-based Spectral Clustering
Random Matrix Analysis for Learning Dynamics of Neural Networks
Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)

Motivation: learning dynamics of neural networks

About neural networks and deep learning:

- Some known facts:

Motivation: learning dynamics of neural networks

About neural networks and deep learning:

- Some known facts:
- trained with backpropagation (gradient-based method)

Motivation: learning dynamics of neural networks

About neural networks and deep learning:

- Some known facts:
- trained with backpropagation (gradient-based method)
- highly over-parameterized, but some still generalize remarkably well

Motivation: learning dynamics of neural networks

About neural networks and deep learning:

- Some known facts:
- trained with backpropagation (gradient-based method)
- highly over-parameterized, but some still generalize remarkably well
- and some (more) mysteries:

Motivation: learning dynamics of neural networks

About neural networks and deep learning:

- Some known facts:
- trained with backpropagation (gradient-based method)
- highly over-parameterized, but some still generalize remarkably well
- and some (more) mysteries:
- how do neural networks learn from training data? what kind of features are learned?

Motivation: learning dynamics of neural networks

About neural networks and deep learning:

- Some known facts:
trained with backpropagation (gradient-based method)
- highly over-parameterized, but some still generalize remarkably well
- and some (more) mysteries:
- how do neural networks learn from training data? what kind of features are learned?
- how they generalize on unseen data of similar nature? why they do not over-fit?

Motivation: learning dynamics of neural networks

About neural networks and deep learning:

- Some known facts:
trained with backpropagation (gradient-based method)
- highly over-parameterized, but some still generalize remarkably well
- and some (more) mysteries:
- how do neural networks learn from training data? what kind of features are learned?
- how they generalize on unseen data of similar nature? why they do not over-fit?
- can the network performance be guaranteed or ...

Motivation: learning dynamics of neural networks

About neural networks and deep learning:

- Some known facts:
trained with backpropagation (gradient-based method)
- highly over-parameterized, but some still generalize remarkably well
- and some (more) mysteries:
- how do neural networks learn from training data? what kind of features are learned?
- how they generalize on unseen data of similar nature? why they do not over-fit?
- can the network performance be guaranteed or ...even predicted?

Motivation: learning dynamics of neural networks

About neural networks and deep learning:

- Some known facts:
trained with backpropagation (gradient-based method)
- highly over-parameterized, but some still generalize remarkably well
- and some (more) mysteries:
- how do neural networks learn from training data? what kind of features are learned?
- how they generalize on unseen data of similar nature? why they do not over-fit?
- can the network performance be guaranteed or ...even predicted?
\Rightarrow The learning dynamics of neural networks!

Motivation: learning dynamics of neural networks

About neural networks and deep learning:

- Some known facts:
trained with backpropagation (gradient-based method)
- highly over-parameterized, but some still generalize remarkably well
- and some (more) mysteries:
- how do neural networks learn from training data? what kind of features are learned?
- how they generalize on unseen data of similar nature? why they do not over-fit?
- can the network performance be guaranteed or ...even predicted?
\Rightarrow The learning dynamics of neural networks!

With RMT:

A general framework for studying learning dynamics of a single-layer network!

Motivation: learning dynamics of neural networks

About neural networks and deep learning:

- Some known facts:
trained with backpropagation (gradient-based method)
- highly over-parameterized, but some still generalize remarkably well
- and some (more) mysteries:
- how do neural networks learn from training data? what kind of features are learned?
- how they generalize on unseen data of similar nature? why they do not over-fit?
- can the network performance be guaranteed or ...even predicted?
\Rightarrow The learning dynamics of neural networks!

With RMT:

A general framework for studying learning dynamics of a single-layer network!
In particular, under the appropriate double asymptotic regime: number of network parameters and number of data instances comparably large!

Motivation: learning dynamics of neural networks

About neural networks and deep learning:

- Some known facts:
trained with backpropagation (gradient-based method)
- highly over-parameterized, but some still generalize remarkably well
- and some (more) mysteries:
- how do neural networks learn from training data? what kind of features are learned?
- how they generalize on unseen data of similar nature? why they do not over-fit?
- can the network performance be guaranteed or . . .even predicted?
\Rightarrow The learning dynamics of neural networks!

With RMT:

A general framework for studying learning dynamics of a single-layer network!
In particular, under the appropriate double asymptotic regime: number of network parameters and number of data instances comparably large!

As a consequence, more insights on:

Motivation: learning dynamics of neural networks

About neural networks and deep learning:

- Some known facts:
trained with backpropagation (gradient-based method)
- highly over-parameterized, but some still generalize remarkably well
- and some (more) mysteries:
- how do neural networks learn from training data? what kind of features are learned?
- how they generalize on unseen data of similar nature? why they do not over-fit?
- can the network performance be guaranteed or . . .even predicted?
\Rightarrow The learning dynamics of neural networks!

With RMT:

A general framework for studying learning dynamics of a single-layer network!
In particular, under the appropriate double asymptotic regime: number of network parameters and number of data instances comparably large!

As a consequence, more insights on:

- (random) initialization of training

Motivation: learning dynamics of neural networks

About neural networks and deep learning:

- Some known facts:
trained with backpropagation (gradient-based method)
- highly over-parameterized, but some still generalize remarkably well
- and some (more) mysteries:
- how do neural networks learn from training data? what kind of features are learned?
- how they generalize on unseen data of similar nature? why they do not over-fit?
- can the network performance be guaranteed or . . .even predicted?
\Rightarrow The learning dynamics of neural networks!

With RMT:

A general framework for studying learning dynamics of a single-layer network!
In particular, under the appropriate double asymptotic regime: number of network parameters and number of data instances comparably large!

As a consequence, more insights on:

- (random) initialization of training
- overfitting in neural networks

Motivation: learning dynamics of neural networks

About neural networks and deep learning:

- Some known facts:
trained with backpropagation (gradient-based method)
- highly over-parameterized, but some still generalize remarkably well
- and some (more) mysteries:
how do neural networks learn from training data? what kind of features are learned?
- how they generalize on unseen data of similar nature? why they do not over-fit?
- can the network performance be guaranteed or . . .even predicted?
\Rightarrow The learning dynamics of neural networks!

With RMT:

A general framework for studying learning dynamics of a single-layer network!
In particular, under the appropriate double asymptotic regime: number of network parameters and number of data instances comparably large!

As a consequence, more insights on:

- (random) initialization of training
- overfitting in neural networks
- (explicit or implicit) regularization: early stopping, l_{2}-penalization

Problem setup

A toy model of binary classification:

Problem setup

A toy model of binary classification:

Gaussian Mixture Data

Consider data x_{i} drawn from a two-class Gaussian mixture model: for $a=1,2$

$$
x_{i} \in \mathcal{C}_{a} \Leftrightarrow x_{i}=(-1)^{a} \mu+\omega_{i}
$$

with ω_{i} of i.i.d. $\mathcal{N}(0,1)$ entries, label $y_{i}=-1$ for \mathcal{C}_{1} and +1 for \mathcal{C}_{2}.

Problem setup

A toy model of binary classification:

Gaussian Mixture Data

Consider data x_{i} drawn from a two-class Gaussian mixture model: for $a=1,2$

$$
x_{i} \in \mathcal{C}_{a} \Leftrightarrow x_{i}=(-1)^{a} \mu+\omega_{i}
$$

with ω_{i} of i.i.d. $\mathcal{N}(0,1)$ entries, label $y_{i}=-1$ for \mathcal{C}_{1} and +1 for \mathcal{C}_{2}.

Objective: Learning Dynamics

Gradient descent on loss $L(w)=\frac{1}{2 n}\left\|y^{\top}-w^{\top} X\right\|^{2}$ with $X=\left[x_{1}, \ldots, x_{n}\right]$. For small learning rate α, with continuous-time approximation:

$$
\frac{d w(t)}{d t}=-\alpha \frac{\partial L(w)}{\partial w}=\frac{\alpha}{n} X\left(y-X^{\top} w(t)\right)
$$

of explicit solution $w(t)=e^{-\frac{\alpha t}{n} X X^{\top}} w_{0}+\left(I_{p}-e^{-\frac{\alpha t}{n} X X^{\top}}\right)\left(X X^{\top}\right)^{-1} X y$ if $X X^{\top}$ invertible and w_{0} the initialization.

Problem setup

A toy model of binary classification:

Gaussian Mixture Data

Consider data x_{i} drawn from a two-class Gaussian mixture model: for $a=1,2$

$$
x_{i} \in \mathcal{C}_{a} \Leftrightarrow x_{i}=(-1)^{a} \mu+\omega_{i}
$$

with ω_{i} of i.i.d. $\mathcal{N}(0,1)$ entries, label $y_{i}=-1$ for \mathcal{C}_{1} and +1 for \mathcal{C}_{2}.

Objective: Learning Dynamics

Gradient descent on loss $L(w)=\frac{1}{2 n}\left\|y^{\top}-w^{\top} X\right\|^{2}$ with $X=\left[x_{1}, \ldots, x_{n}\right]$. For small learning rate α, with continuous-time approximation:

$$
\frac{d w(t)}{d t}=-\alpha \frac{\partial L(w)}{\partial w}=\frac{\alpha}{n} X\left(y-X^{\top} w(t)\right)
$$

of explicit solution $w(t)=e^{-\frac{\alpha t}{n} X X^{\top}} w_{0}+\left(I_{p}-e^{-\frac{\alpha t}{n} X X^{\top}}\right)\left(X X^{\top}\right)^{-1} X y$ if $X X^{\top}$ invertible and w_{0} the initialization.

To evaluate the learning dynamics:

- depends only on the projection of eigenvector weighted by $\exp (-\alpha t \lambda)$ of associated eigenvalue λ

Problem setup

A toy model of binary classification:

Gaussian Mixture Data

Consider data x_{i} drawn from a two-class Gaussian mixture model: for $a=1,2$

$$
x_{i} \in \mathcal{C}_{a} \Leftrightarrow x_{i}=(-1)^{a} \mu+\omega_{i}
$$

with ω_{i} of i.i.d. $\mathcal{N}(0,1)$ entries, label $y_{i}=-1$ for \mathcal{C}_{1} and +1 for \mathcal{C}_{2}.

Objective: Learning Dynamics

Gradient descent on loss $L(w)=\frac{1}{2 n}\left\|y^{\top}-w^{\top} X\right\|^{2}$ with $X=\left[x_{1}, \ldots, x_{n}\right]$. For small learning rate α, with continuous-time approximation:

$$
\frac{d w(t)}{d t}=-\alpha \frac{\partial L(w)}{\partial w}=\frac{\alpha}{n} X\left(y-X^{\top} w(t)\right)
$$

of explicit solution $w(t)=e^{-\frac{\alpha t}{n} X X^{\top}} w_{0}+\left(I_{p}-e^{-\frac{\alpha t}{n} X X^{\top}}\right)\left(X X^{\top}\right)^{-1} X y$ if $X X^{\top}$ invertible and w_{0} the initialization.

To evaluate the learning dynamics:

- depends only on the projection of eigenvector weighted by $\exp (-\alpha t \lambda)$ of associated eigenvalue λ
- functional of sample covariance matrix $\frac{1}{n} X X^{\top}$ (again): RMT is the answer!

Problem setup

Objective: Generalization Performance
Generalization performance for a new datum $\hat{x}: P\left(w(t)^{\top} \hat{x}>0 \mid \hat{x} \in \mathcal{C}_{1}\right)$, or $P\left(w(t)^{\top} \hat{x}<0 \mid \hat{x} \in \mathcal{C}_{2}\right)$. Since \hat{x} Gaussian and independent of $w(t)$:

$$
w(t)^{\top} \hat{x} \sim \mathcal{N}\left(\pm w(t)^{\top} \mu,\|w(t)\|^{2}\right)
$$

for $w(t)=e^{-\frac{\alpha t}{n} X X^{\boldsymbol{\top}}} w_{0}+\left(I_{p}-e^{-\frac{\alpha t}{n} X X^{\boldsymbol{\top}}}\right)\left(X X^{\boldsymbol{\top}}\right)^{-1} X y$.

Problem setup

Objective: Generalization Performance

Generalization performance for a new datum $\hat{x}: P\left(w(t)^{\top} \hat{x}>0 \mid \hat{x} \in \mathcal{C}_{1}\right)$, or $P\left(w(t)^{\top} \hat{x}<0 \mid \hat{x} \in \mathcal{C}_{2}\right)$. Since \hat{x} Gaussian and independent of $w(t)$:

$$
w(t)^{\top} \hat{x} \sim \mathcal{N}\left(\pm w(t)^{\top} \mu,\|w(t)\|^{2}\right)
$$

for $w(t)=e^{-\frac{\alpha t}{n} X X^{\top}} w_{0}+\left(I_{p}-e^{-\frac{\alpha t}{n} X X^{\top}}\right)\left(X X^{\top}\right)^{-1} X y$.

With RMT:

- although X random: $w(t)^{\top} \mu$ and $\|w(t)\|^{2}$ have asymptotically deterministic behavior (only depends on data statistics and problem dimension): \Rightarrow the technique of deterministic equivalent

Problem setup

Objective: Generalization Performance

Generalization performance for a new datum $\hat{x}: P\left(w(t)^{\top} \hat{x}>0 \mid \hat{x} \in \mathcal{C}_{1}\right)$, or $P\left(w(t)^{\top} \hat{x}<0 \mid \hat{x} \in \mathcal{C}_{2}\right)$. Since \hat{x} Gaussian and independent of $w(t)$:

$$
w(t)^{\top} \hat{x} \sim \mathcal{N}\left(\pm w(t)^{\top} \mu,\|w(t)\|^{2}\right)
$$

for $w(t)=e^{-\frac{\alpha t}{n} X X^{\top}} w_{0}+\left(I_{p}-e^{-\frac{\alpha t}{n} X X^{\top}}\right)\left(X X^{\top}\right)^{-1} X y$.

With RMT:

- although X random: $w(t)^{\top} \mu$ and $\|w(t)\|^{2}$ have asymptotically deterministic behavior (only depends on data statistics and problem dimension):
\Rightarrow the technique of deterministic equivalent
- Cauchy's integral formula to express the functional $\exp (\cdot)$ via contour integration

Problem setup

Objective: Generalization Performance

Generalization performance for a new datum $\hat{x}: P\left(w(t)^{\top} \hat{x}>0 \mid \hat{x} \in \mathcal{C}_{1}\right)$, or $P\left(w(t)^{\top} \hat{x}<0 \mid \hat{x} \in \mathcal{C}_{2}\right)$. Since \hat{x} Gaussian and independent of $w(t)$:

$$
w(t)^{\top} \hat{x} \sim \mathcal{N}\left(\pm w(t)^{\top} \mu,\|w(t)\|^{2}\right)
$$

for $w(t)=e^{-\frac{\alpha t}{n} X X^{\top}} w_{0}+\left(I_{p}-e^{-\frac{\alpha t}{n} X X^{\top}}\right)\left(X X^{\top}\right)^{-1} X y$.

With RMT:

- although X random: $w(t)^{\top} \mu$ and $\|w(t)\|^{2}$ have asymptotically deterministic behavior (only depends on data statistics and problem dimension):
\Rightarrow the technique of deterministic equivalent
- Cauchy's integral formula to express the functional $\exp (\cdot)$ via contour integration
\Rightarrow Network performance at any time is in fact deterministic and predictable!

Proposed analysis framework

Resolvent and deterministic equivalents
Consider an $n \times n$ Hermitian random matrix M. Define its resolvent $Q_{M}(z)$, for $z \in \mathbb{C}$ not eigenvalue of M

$$
Q_{M}(z)=\left(M-z I_{n}\right)^{-1} .
$$

Proposed analysis framework

Resolvent and deterministic equivalents
Consider an $n \times n$ Hermitian random matrix M. Define its resolvent $Q_{M}(z)$, for $z \in \mathbb{C}$ not eigenvalue of M

$$
Q_{M}(z)=\left(M-z I_{n}\right)^{-1} .
$$

For a family of M, define a so-called deterministic equivalent \bar{Q}_{M} of Q_{M} : a deterministic matrix so that as $n \rightarrow \infty$,

- $\frac{1}{n} \operatorname{tr} A Q_{M}-\frac{1}{n} \operatorname{tr} A \bar{Q}_{M} \xrightarrow{\text { a.s. }} 0$
- $a^{\top}\left(Q_{M}-\bar{Q}_{M}\right) b \xrightarrow{\text { a.s. }} 0$
with A, a, b of bounded norm (operator and Euclidean).

Proposed analysis framework

Resolvent and deterministic equivalents
Consider an $n \times n$ Hermitian random matrix M. Define its resolvent $Q_{M}(z)$, for $z \in \mathbb{C}$ not eigenvalue of M

$$
Q_{M}(z)=\left(M-z I_{n}\right)^{-1} .
$$

For a family of M, define a so-called deterministic equivalent \bar{Q}_{M} of Q_{M} : a deterministic matrix so that as $n \rightarrow \infty$,

- $\frac{1}{n} \operatorname{tr} A Q_{M}-\frac{1}{n} \operatorname{tr} A \bar{Q}_{M} \xrightarrow{\text { a.s. }} 0$
- $a^{\top}\left(Q_{M}-\bar{Q}_{M}\right) b \xrightarrow{\text { a.s. }} 0$
with A, a, b of bounded norm (operator and Euclidean).
\Rightarrow Study \bar{Q}_{M} instead of the random Q_{M} for n large!

Proposed analysis framework

Resolvent and deterministic equivalents
Consider an $n \times n$ Hermitian random matrix M. Define its resolvent $Q_{M}(z)$, for $z \in \mathbb{C}$ not eigenvalue of M

$$
Q_{M}(z)=\left(M-z I_{n}\right)^{-1} .
$$

For a family of M, define a so-called deterministic equivalent \bar{Q}_{M} of Q_{M} : a deterministic matrix so that as $n \rightarrow \infty$,
$-\frac{1}{n} \operatorname{tr} A Q_{M}-\frac{1}{n} \operatorname{tr} A \bar{Q}_{M} \xrightarrow{\text { a.s. }} 0$
$-a^{\top}\left(Q_{M}-\bar{Q}_{M}\right) b \xrightarrow{\text { a.s. }} 0$
with A, a, b of bounded norm (operator and Euclidean).

$$
\Rightarrow \text { Study } \bar{Q}_{M} \text { instead of the random } Q_{M} \text { for } n \text { large! }
$$

However, for more sophisticated functionals of M (than $\frac{1}{n} \operatorname{tr} A Q_{M}$ and $a^{\top} Q_{M} b$):

Proposed analysis framework

Resolvent and deterministic equivalents
Consider an $n \times n$ Hermitian random matrix M. Define its resolvent $Q_{M}(z)$, for $z \in \mathbb{C}$ not eigenvalue of M

$$
Q_{M}(z)=\left(M-z I_{n}\right)^{-1} .
$$

For a family of M, define a so-called deterministic equivalent \bar{Q}_{M} of Q_{M} : a deterministic matrix so that as $n \rightarrow \infty$,

- $\frac{1}{n} \operatorname{tr} A Q_{M}-\frac{1}{n} \operatorname{tr} A \bar{Q}_{M} \xrightarrow{\text { a.s. }} 0$
- $a^{\top}\left(Q_{M}-\bar{Q}_{M}\right) b \xrightarrow{\text { a.s. }} 0$
with A, a, b of bounded norm (operator and Euclidean).
\Rightarrow Study \bar{Q}_{M} instead of the random Q_{M} for n large!
However, for more sophisticated functionals of M (than $\frac{1}{n} \operatorname{tr} A Q_{M}$ and $a^{\top} Q_{M} b$):
Cauchy's integral formula
Example: for $f(M)=a^{\top} e^{M} b d z$,

$$
f(M)=-\frac{1}{2 \pi i} \oint_{\gamma} \exp (z) a^{\top} Q_{M}(z) b d z
$$

Proposed analysis framework

Resolvent and deterministic equivalents
Consider an $n \times n$ Hermitian random matrix M. Define its resolvent $Q_{M}(z)$, for $z \in \mathbb{C}$ not eigenvalue of M

$$
Q_{M}(z)=\left(M-z I_{n}\right)^{-1} .
$$

For a family of M, define a so-called deterministic equivalent \bar{Q}_{M} of Q_{M} : a deterministic matrix so that as $n \rightarrow \infty$,

- $\frac{1}{n} \operatorname{tr} A Q_{M}-\frac{1}{n} \operatorname{tr} A \bar{Q}_{M} \xrightarrow{\text { a.s. }} 0$
- $a^{\top}\left(Q_{M}-\bar{Q}_{M}\right) b \xrightarrow{\text { a.s. }} 0$
with A, a, b of bounded norm (operator and Euclidean).
\Rightarrow Study \bar{Q}_{M} instead of the random Q_{M} for n large!
However, for more sophisticated functionals of M (than $\frac{1}{n} \operatorname{tr} A Q_{M}$ and $a^{\top} Q_{M} b$):
Cauchy's integral formula
Example: for $f(M)=a^{\top} e^{M} b d z$,

$$
f(M)=-\frac{1}{2 \pi i} \oint_{\gamma} \exp (z) a^{\top} Q_{M}(z) b d z \approx-\frac{1}{2 \pi i} \oint_{\gamma} \exp (z) a^{\top} \bar{Q}_{M}(z) b d z
$$

with γ a positively oriented path circling around all the eigenvalues of M.

Generalization performance

To evaluate generalization performance: $w(t)^{\top} \hat{x} \sim \mathcal{N}\left(\pm w(t)^{\top} \mu,\|w(t)\|^{2}\right)$ with $w(t)=e^{-\frac{\alpha t}{n} X X^{\top}} w_{0}+\left(I_{p}-e^{-\frac{\alpha t}{n} X X^{\top}}\right)\left(X X^{\top}\right)^{-1} X y$.

Generalization performance

To evaluate generalization performance: $w(t)^{\top} \hat{x} \sim \mathcal{N}\left(\pm w(t)^{\top} \mu,\|w(t)\|^{2}\right)$ with $w(t)=e^{-\frac{\alpha t}{n} X X^{\top}} w_{0}+\left(I_{p}-e^{-\frac{\alpha t}{n} X X^{\top}}\right)\left(X X^{\top}\right)^{-1} X y$.

- Cauchy's integral formula: for $w(t)^{\top} \mu$:

$$
\mu^{\top} w(t)=-\frac{1}{2 \pi i} \oint_{\gamma} \mu^{\top}\left(\frac{1}{n} X X^{\top}-z I_{p}\right)^{-1}\left(f_{t}(z) w_{0}+\frac{1-f_{t}(z)}{z} \frac{1}{n} X y\right) d z
$$

with $f_{t}(x) \equiv \exp (-\alpha t x)$.

Generalization performance

To evaluate generalization performance: $w(t)^{\top} \hat{x} \sim \mathcal{N}\left(\pm w(t)^{\top} \mu,\|w(t)\|^{2}\right)$ with $w(t)=e^{-\frac{\alpha t}{n} X X^{\top}} w_{0}+\left(I_{p}-e^{-\frac{\alpha t}{n} X X^{\top}}\right)\left(X X^{\top}\right)^{-1} X y$.

- Cauchy's integral formula: for $w(t)^{\top} \mu$:

$$
\mu^{\top} w(t)=-\frac{1}{2 \pi i} \oint_{\gamma} \mu^{\top}\left(\frac{1}{n} X X^{\top}-z I_{p}\right)^{-1}\left(f_{t}(z) w_{0}+\frac{1-f_{t}(z)}{z} \frac{1}{n} X y\right) d z
$$

with $f_{t}(x) \equiv \exp (-\alpha t x)$. Since $X=-\mu j_{1}^{\top}+\mu j_{2}^{\top}+\Omega=\mu y^{\top}+\Omega$, with $\Omega \equiv\left[\omega_{1}, \ldots, \omega_{n}\right] \in \mathbb{R}^{p \times n}$ of i.i.d. $\mathcal{N}(0,1)$ entries and $j_{a} \in \mathbb{R}^{n}$ the canonical vectors of class \mathcal{C}_{a}, With Woodbury's identity,

$$
\begin{aligned}
& \left(\frac{1}{n} X X^{\top}-z I_{p}\right)^{-1}=Q(z)-Q(z)\left[\begin{array}{ll}
\mu & \frac{1}{n} \Omega y
\end{array}\right] \\
& {\left[\begin{array}{cc}
\mu^{\top} Q(z) \mu & 1+\frac{1}{n} \mu^{\top} Q(z) \Omega y \\
1+\frac{1}{n} \mu^{\top} Q(z) \Omega y & -1+\frac{1}{n} y^{\top} \Omega^{\top} Q(z) \frac{1}{n} \Omega y
\end{array}\right]^{-1}\left[\begin{array}{c}
\mu^{\top} \\
\frac{1}{n} y^{\top} \Omega^{\top}
\end{array}\right] Q(z)}
\end{aligned}
$$

where $Q(z)=\left(\frac{1}{n} \Omega \Omega^{\top}-z I_{p}\right)^{-1}$

Generalization performance

To evaluate generalization performance: $w(t)^{\top} \hat{x} \sim \mathcal{N}\left(\pm w(t)^{\top} \mu,\|w(t)\|^{2}\right)$ with $w(t)=e^{-\frac{\alpha t}{n} X X^{\top}} w_{0}+\left(I_{p}-e^{-\frac{\alpha t}{n} X X^{\top}}\right)\left(X X^{\top}\right)^{-1} X y$.

- Cauchy's integral formula: for $w(t)^{\top} \mu$:

$$
\mu^{\top} w(t)=-\frac{1}{2 \pi i} \oint_{\gamma} \mu^{\top}\left(\frac{1}{n} X X^{\top}-z I_{p}\right)^{-1}\left(f_{t}(z) w_{0}+\frac{1-f_{t}(z)}{z} \frac{1}{n} X y\right) d z
$$

with $f_{t}(x) \equiv \exp (-\alpha t x)$. Since $X=-\mu j_{1}^{\top}+\mu j_{2}^{\top}+\Omega=\mu y^{\top}+\Omega$, with $\Omega \equiv\left[\omega_{1}, \ldots, \omega_{n}\right] \in \mathbb{R}^{p \times n}$ of i.i.d. $\mathcal{N}(0,1)$ entries and $j_{a} \in \mathbb{R}^{n}$ the canonical vectors of class \mathcal{C}_{a}, With Woodbury's identity,

$$
\begin{aligned}
& \left(\frac{1}{n} X X^{\top}-z I_{p}\right)^{-1}=Q(z)-Q(z)\left[\begin{array}{ll}
\mu & \frac{1}{n} \Omega y
\end{array}\right] \\
& {\left[\begin{array}{cc}
\mu^{\top} Q(z) \mu & 1+\frac{1}{n} \mu^{\top} Q(z) \Omega y \\
1+\frac{1}{n} \mu^{\top} Q(z) \Omega y & -1+\frac{1}{n} y^{\top} \Omega^{\top} Q(z) \frac{1}{n} \Omega y
\end{array}\right]^{-1}\left[\begin{array}{c}
\mu^{\top} \\
\frac{1}{n} y^{\top} \Omega^{\top}
\end{array}\right] Q(z)}
\end{aligned}
$$

where $Q(z)=\left(\frac{1}{n} \Omega \Omega^{\top}-z I_{p}\right)^{-1}$ and its deterministic equivalent:

$$
Q(z) \leftrightarrow \bar{Q}(z)=m(z) I_{p}
$$

with $m(z)$ given by Marčenko-Pastur equation $m(z)=\frac{1-c-z}{2 c z}+\frac{\sqrt{(1-c-z)^{2}-4 c z}}{2 c z}$.

Generalization performance

To evaluate generalization performance: $w(t)^{\top} \hat{x} \sim \mathcal{N}\left(\pm w(t)^{\top} \mu,\|w(t)\|^{2}\right)$ with $w(t)=e^{-\frac{\alpha t}{n} X X^{\top}} w_{0}+\left(I_{p}-e^{-\frac{\alpha t}{n} X X^{\top}}\right)\left(X X^{\top}\right)^{-1} X y$.

- Cauchy's integral formula: for $w(t)^{\top} \mu$:

$$
\mu^{\top} w(t)=-\frac{1}{2 \pi i} \oint_{\gamma} \mu^{\top}\left(\frac{1}{n} X X^{\top}-z I_{p}\right)^{-1}\left(f_{t}(z) w_{0}+\frac{1-f_{t}(z)}{z} \frac{1}{n} X y\right) d z
$$

with $f_{t}(x) \equiv \exp (-\alpha t x)$. Since $X=-\mu j_{1}^{\top}+\mu j_{2}^{\top}+\Omega=\mu y^{\top}+\Omega$, with $\Omega \equiv\left[\omega_{1}, \ldots, \omega_{n}\right] \in \mathbb{R}^{p \times n}$ of i.i.d. $\mathcal{N}(0,1)$ entries and $j_{a} \in \mathbb{R}^{n}$ the canonical vectors of class \mathcal{C}_{a}, With Woodbury's identity,

$$
\begin{aligned}
& \left(\frac{1}{n} X X^{\top}-z I_{p}\right)^{-1}=Q(z)-Q(z)\left[\begin{array}{ll}
\mu & \frac{1}{n} \Omega y
\end{array}\right] \\
& {\left[\begin{array}{cc}
\mu^{\top} Q(z) \mu & 1+\frac{1}{n} \mu^{\top} Q(z) \Omega y \\
1+\frac{1}{n} \mu^{\top} Q(z) \Omega y & -1+\frac{1}{n} y^{\top} \Omega^{\top} Q(z) \frac{1}{n} \Omega y
\end{array}\right]^{-1}\left[\begin{array}{c}
\mu^{\top} \\
\frac{1}{n} y^{\top} \Omega^{\top}
\end{array}\right] Q(z)}
\end{aligned}
$$

where $Q(z)=\left(\frac{1}{n} \Omega \Omega^{\top}-z I_{p}\right)^{-1}$ and its deterministic equivalent:

$$
Q(z) \leftrightarrow \bar{Q}(z)=m(z) I_{p}
$$

with $m(z)$ given by Marc̆enko-Pastur equation $m(z)=\frac{1-c-z}{2 c z}+\frac{\sqrt{(1-c-z)^{2}-4 c z}}{2 c z}$.

- "replace" the random $Q(z)$ by its deterministic equivalent $\bar{Q}(z)=m(z) I_{p}$.

Main result

Theorem (Generalization Performance)

Let $p / n \rightarrow c \in(0, \infty)$ and the initialization w_{0} be a random vector with i.i.d. entries of zero mean, variance σ^{2} / p and finite fourth moment. Then, as $n \rightarrow \infty$,

$$
\begin{aligned}
& P\left(w(t)^{\top} \hat{x}>0 \mid \hat{x} \in \mathcal{C}_{1}\right)-Q\left(\frac{\mathrm{E}}{\sqrt{\mathrm{~V}}}\right) \xrightarrow{\text { a.s. }} 0 \\
& P\left(w(t)^{\top} \hat{x}<0 \mid \hat{x} \in \mathcal{C}_{2}\right)-Q\left(\frac{\mathrm{E}}{\sqrt{\mathrm{~V}}}\right) \xrightarrow{\text { a.s. }} 0
\end{aligned}
$$

with the Q-function: $Q(x) \equiv \frac{1}{\sqrt{2 \pi}} \exp \left(-u^{2} / 2\right) d u$ and

$$
\begin{aligned}
& \mathrm{E} \equiv-\frac{1}{2 \pi i} \oint_{\gamma} \frac{1-f_{t}(z)}{z} \frac{\|\mu\|^{2} m(z) d z}{\left(\|\mu\|^{2}+c\right) m(z)+1} \\
& \mathrm{~V} \equiv \frac{1}{2 \pi i} \oint_{\gamma}\left[\frac{\frac{1}{z^{2}}\left(1-f_{t}(z)\right)^{2}}{\left(\|\mu\|^{2}+c\right) m(z)+1}-\sigma^{2} f_{t}^{2}(z) m(z)\right] d z
\end{aligned}
$$

γ a closed positively oriented path containing all eigenvalues of $\frac{1}{n} X X^{\top}$ and origin.

Main result

Theorem (Generalization Performance)

Let $p / n \rightarrow c \in(0, \infty)$ and the initialization w_{0} be a random vector with i.i.d. entries of zero mean, variance σ^{2} / p and finite fourth moment. Then, as $n \rightarrow \infty$,

$$
\begin{aligned}
& P\left(w(t)^{\top} \hat{x}>0 \mid \hat{x} \in \mathcal{C}_{1}\right)-Q\left(\frac{\mathrm{E}}{\sqrt{\mathrm{~V}}}\right) \xrightarrow{\text { a.s. }} 0 \\
& P\left(w(t)^{\top} \hat{x}<0 \mid \hat{x} \in \mathcal{C}_{2}\right)-Q\left(\frac{\mathrm{E}}{\sqrt{\mathrm{~V}}}\right) \xrightarrow{\text { a.s. }} 0
\end{aligned}
$$

with the Q-function: $Q(x) \equiv \frac{1}{\sqrt{2 \pi}} \exp \left(-u^{2} / 2\right) d u$ and

$$
\begin{aligned}
& \mathrm{E} \equiv-\frac{1}{2 \pi i} \oint_{\gamma} \frac{1-f_{t}(z)}{z} \frac{\|\mu\|^{2} m(z) d z}{\left(\|\mu\|^{2}+c\right) m(z)+1} \\
& \mathrm{~V} \equiv \frac{1}{2 \pi i} \oint_{\gamma}\left[\frac{\frac{1}{z^{2}}\left(1-f_{t}(z)\right)^{2}}{\left(\|\mu\|^{2}+c\right) m(z)+1}-\sigma^{2} f_{t}^{2}(z) m(z)\right] d z
\end{aligned}
$$

γ a closed positively oriented path containing all eigenvalues of $\frac{1}{n} X X^{\top}$ and origin.
Contour integration: hard to understand/interpret \Rightarrow can we further simplify?

Simplification: "break" the contour integration

Figure: Eigenvalue distribution of $\frac{1}{n} X X^{\top}$ for $\mu=\left[1.5 ; 0_{p-1}\right], p=512, n=1024$.

Figure: Eigenvalue distribution of $\frac{1}{n} X X^{\top}$ for $\mu=\left[1.5 ; 0_{p-1}\right], p=512, n=1024$.

Simplification: "break" the contour integration

Figure: Eigenvalue distribution of $\frac{1}{n} X X^{\top}$ for $\mu=\left[1.5 ; 0_{p-1}\right], p=512, n=1024$.

Figure: Eigenvalue distribution of $\frac{1}{n} X X^{\top}$ for $\mu=\left[1.5 ; 0_{p-1}\right], p=512, n=1024$.

Two types of eigenvalues:

Simplification: "break" the contour integration

Figure: Eigenvalue distribution of $\frac{1}{n} X X^{\top}$ for $\mu=\left[1.5 ; 0_{p-1}\right], p=512, n=1024$.

Figure: Eigenvalue distribution of $\frac{1}{n} X X^{\top}$ for $\mu=\left[1.5 ; 0_{p-1}\right], p=512, n=1 \stackrel{n}{0} 24$.

Two types of eigenvalues:

- "main bulk" ([$\left.\left.\lambda_{-}, \lambda_{+}\right]\right)$: sum of real integrals

Simplification: "break" the contour integration

Figure: Eigenvalue distribution of $\frac{1}{n} X X^{\top}$ for $\mu=\left[1.5 ; 0_{p-1}\right], p=512, n=1024$.

Figure: Eigenvalue distribution of $\frac{1}{n} X X^{\top}$ for $\mu=\left[1.5 ; 0_{p-1}\right], p=512, n=1 \stackrel{n}{0} 24$.

Two types of eigenvalues:

- "main bulk" ([$\left.\left.\lambda_{-}, \lambda_{+}\right]\right)$: sum of real integrals
- isolated eigenvalue $\left(\lambda_{s}\right)$: residue theorem.

Localization of isolated eigenvalue

Computation of λ_{s} (Spike model)

- find λ eigenvalue of $\frac{1}{n} X X^{\top}$ outside $\left[\lambda_{-}, \lambda_{+}\right]$(i.e., not eigenvalue of $\frac{1}{n} \Omega \Omega^{\top}$),

$$
\operatorname{det}\left(\frac{1}{n} X X^{\top}-\lambda I_{p}\right)=0
$$

Localization of isolated eigenvalue

Computation of λ_{s} (Spike model)

- find λ eigenvalue of $\frac{1}{n} X X^{\top}$ outside $\left[\lambda_{-}, \lambda_{+}\right]$(i.e., not eigenvalue of $\frac{1}{n} \Omega \Omega^{\top}$),

$$
\begin{aligned}
& \operatorname{det}\left(\frac{1}{n} X X^{\top}-\lambda I_{p}\right)=0 \\
& \Leftrightarrow \operatorname{det}\left(\frac{1}{n} \Omega \Omega^{\top}-\lambda I_{p}+\left[\begin{array}{ll}
\mu & \frac{1}{n} \Omega y
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
\mu^{\top} \\
\frac{1}{n} y^{\top} \Omega^{\top}
\end{array}\right]\right)=0
\end{aligned}
$$

Localization of isolated eigenvalue

Computation of λ_{s} (Spike model)

- find λ eigenvalue of $\frac{1}{n} X X^{\top}$ outside $\left[\lambda_{-}, \lambda_{+}\right]$(i.e., not eigenvalue of $\frac{1}{n} \Omega \Omega^{\top}$),

$$
\begin{aligned}
& \operatorname{det}\left(\frac{1}{n} X X^{\top}-\lambda I_{p}\right)=0 \\
& \Leftrightarrow \operatorname{det}\left(\frac{1}{n} \Omega \Omega^{\top}-\lambda I_{p}+\left[\begin{array}{ll}
\mu & \frac{1}{n} \Omega y
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
\mu^{\top} \\
\frac{1}{n} y^{\top} \Omega^{\top}
\end{array}\right]\right)=0 \\
& \Leftrightarrow \operatorname{det}\left(I_{2}+\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
\mu^{\top} \\
\frac{1}{n} y^{\top} \Omega^{\top}
\end{array}\right] Q(\lambda)\left[\begin{array}{ll}
\mu & \frac{1}{n} \Omega y
\end{array}\right]\right)=0
\end{aligned}
$$

Localization of isolated eigenvalue

Computation of λ_{s} (Spike model)

- find λ eigenvalue of $\frac{1}{n} X X^{\top}$ outside $\left[\lambda_{-}, \lambda_{+}\right]$(i.e., not eigenvalue of $\frac{1}{n} \Omega \Omega^{\top}$),

$$
\begin{aligned}
& \operatorname{det}\left(\frac{1}{n} X X^{\top}-\lambda I_{p}\right)=0 \\
& \Leftrightarrow \operatorname{det}\left(\frac{1}{n} \Omega \Omega^{\top}-\lambda I_{p}+\left[\begin{array}{ll}
\mu & \frac{1}{n} \Omega y
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
\mu^{\top} \\
\frac{1}{n} y^{\top} \Omega^{\top}
\end{array}\right]\right)=0 \\
& \Leftrightarrow \operatorname{det}\left(I_{2}+\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
\mu^{\top} \\
\frac{1}{n} y^{\top} \Omega^{\top}
\end{array}\right] Q(\lambda)\left[\begin{array}{ll}
\mu & \frac{1}{n} \Omega y
\end{array}\right]\right)=0 \\
& \Leftrightarrow 1+\left(\|\mu\|^{2}+c\right) m(\lambda)+o(1)=0
\end{aligned}
$$

Discussions

(Simplified) generalization performance

$$
\mathrm{E}=\int \frac{1-f_{t}(x)}{x} \eta(d x), \mathrm{V}=\frac{\|\mu\|^{2}+c}{\|\mu\|^{2}} \int \frac{\left(1-f_{t}(x)\right)^{2} \mu(d x)}{x^{2}}+\sigma^{2} \int f_{t}^{2}(x) \nu(d x)
$$

with MarčenkoâĂȘPastur distribution $\nu(d x) \equiv \frac{\sqrt{\left(x-\lambda_{-}\right)^{+}\left(\lambda_{+}-x\right)^{+}}}{2 \pi c x} d x+\left(1-\frac{1}{c}\right)^{+} \delta(x)$ with $\lambda_{-} \equiv(1-\sqrt{c})^{2}, \lambda_{+} \equiv(1+\sqrt{c})^{2}, \lambda_{s}=c+1+\|\mu\|^{2}+c /\|\mu\|^{2}$ and the measure

$$
\eta(d x) \equiv \frac{\sqrt{\left(x-\lambda_{-}\right)^{+}\left(\lambda_{+}-x\right)^{+}}}{2 \pi\left(\lambda_{s}-x\right)} d x+\frac{\left(\|\mu\|^{4}-c\right)^{+}}{\|\mu\|^{2}} \delta_{\lambda_{s}}(x) .
$$

Discussions

(Simplified) generalization performance

$$
\mathrm{E}=\int \frac{1-f_{t}(x)}{x} \eta(d x), \mathrm{V}=\frac{\|\mu\|^{2}+c}{\|\mu\|^{2}} \int \frac{\left(1-f_{t}(x)\right)^{2} \mu(d x)}{x^{2}}+\sigma^{2} \int f_{t}^{2}(x) \nu(d x)
$$

with MarčenkoâĂȘPastur distribution $\nu(d x) \equiv \frac{\sqrt{\left(x-\lambda_{-}\right)^{+}\left(\lambda_{+}-x\right)^{+}}}{2 \pi c x} d x+\left(1-\frac{1}{c}\right)^{+} \delta(x)$ with $\lambda_{-} \equiv(1-\sqrt{c})^{2}, \lambda_{+} \equiv(1+\sqrt{c})^{2}, \lambda_{s}=c+1+\|\mu\|^{2}+c /\|\mu\|^{2}$ and the measure

$$
\eta(d x) \equiv \frac{\sqrt{\left(x-\lambda_{-}\right)^{+}\left(\lambda_{+}-x\right)^{+}}}{2 \pi\left(\lambda_{s}-x\right)} d x+\frac{\left(\|\mu\|^{4}-c\right)^{+}}{\|\mu\|^{2}} \delta_{\lambda_{s}}(x) .
$$

Some remarks:

- $\eta(d x)$: continuous distribution $\left[\lambda_{-}, \lambda_{+}\right](p-1$ eigenvalues $)+$ Dirac measure at λ_{s} (one single eigenvalue): contains comparable information!

Discussions

(Simplified) generalization performance

$$
\mathrm{E}=\int \frac{1-f_{t}(x)}{x} \eta(d x), \mathrm{V}=\frac{\|\mu\|^{2}+c}{\|\mu\|^{2}} \int \frac{\left(1-f_{t}(x)\right)^{2} \mu(d x)}{x^{2}}+\sigma^{2} \int f_{t}^{2}(x) \nu(d x)
$$

with MarčenkoâĂȘPastur distribution $\nu(d x) \equiv \frac{\sqrt{\left(x-\lambda_{-}\right)^{+}\left(\lambda_{+}-x\right)^{+}}}{2 \pi c x} d x+\left(1-\frac{1}{c}\right)^{+} \delta(x)$ with $\lambda_{-} \equiv(1-\sqrt{c})^{2}, \lambda_{+} \equiv(1+\sqrt{c})^{2}, \lambda_{s}=c+1+\|\mu\|^{2}+c /\|\mu\|^{2}$ and the measure

$$
\eta(d x) \equiv \frac{\sqrt{\left(x-\lambda_{-}\right)^{+}\left(\lambda_{+}-x\right)^{+}}}{2 \pi\left(\lambda_{s}-x\right)} d x+\frac{\left(\|\mu\|^{4}-c\right)^{+}}{\|\mu\|^{2}} \delta_{\lambda_{s}}(x)
$$

Some remarks:

- $\eta(d x)$: continuous distribution $\left[\lambda_{-}, \lambda_{+}\right]$($p-1$ eigenvalues $)+$ Dirac measure at λ_{s} (one single eigenvalue): contains comparable information!
- $\int \eta(d x)=\|\mu\|^{2}$, together with Cauchy Schwarz inequality:
$\mathrm{E}^{2} \leq \int \frac{\left(1-f_{t}(x)\right)^{2}}{x^{2}} d \mu(x) \cdot \int d \mu(x) \leq \frac{\|\mu\|^{4}}{\|\mu\|^{2}+c} \mathrm{~V}$, with equality if and only if the (initialization) variance $\sigma^{2}=0: \Rightarrow$ Performance drop due to large σ^{2} !

Discussions

(Simplified) generalization performance

$$
\mathrm{E}=\int \frac{1-f_{t}(x)}{x} \eta(d x), \mathrm{V}=\frac{\|\mu\|^{2}+c}{\|\mu\|^{2}} \int \frac{\left(1-f_{t}(x)\right)^{2} \mu(d x)}{x^{2}}+\sigma^{2} \int f_{t}^{2}(x) \nu(d x)
$$

with MarčenkoâĂȘPastur distribution $\nu(d x) \equiv \frac{\sqrt{\left(x-\lambda_{-}\right)^{+}\left(\lambda_{+}-x\right)^{+}}}{2 \pi c x} d x+\left(1-\frac{1}{c}\right)^{+} \delta(x)$ with $\lambda_{-} \equiv(1-\sqrt{c})^{2}, \lambda_{+} \equiv(1+\sqrt{c})^{2}, \lambda_{s}=c+1+\|\mu\|^{2}+c /\|\mu\|^{2}$ and the measure

$$
\eta(d x) \equiv \frac{\sqrt{\left(x-\lambda_{-}\right)^{+}\left(\lambda_{+}-x\right)^{+}}}{2 \pi\left(\lambda_{s}-x\right)} d x+\frac{\left(\|\mu\|^{4}-c\right)^{+}}{\|\mu\|^{2}} \delta_{\lambda_{s}}(x)
$$

Some remarks:

- $\eta(d x)$: continuous distribution $\left[\lambda_{-}, \lambda_{+}\right]$($p-1$ eigenvalues $)+$ Dirac measure at λ_{s} (one single eigenvalue): contains comparable information!
- $\int \eta(d x)=\|\mu\|^{2}$, together with Cauchy Schwarz inequality:
$\mathrm{E}^{2} \leq \int \frac{\left(1-f_{t}(x)\right)^{2}}{x^{2}} d \mu(x) \cdot \int d \mu(x) \leq \frac{\|\mu\|^{4}}{\|\mu\|^{2}+c} \mathrm{~V}$, with equality if and only if the (initialization) variance $\sigma^{2}=0: \Rightarrow$ Performance drop due to large σ^{2} !
- How much we over-fit? As $t \rightarrow \infty$, performance drop by $\sqrt{1-\min \left(c, c^{-1}\right)}$

Numerical validations

Figure: Optimal performance and stopping time as functions of σ^{2} with $c=1 / 2$, $\|\mu\|^{2}=4$ and $\alpha=0.01$.

Numerical validations

Figure: Optimal performance and stopping time as functions of σ^{2} with $c=1 / 2$, $\|\mu\|^{2}=4$ and $\alpha=0.01$.

Figure: Training and generalization performance for MNIST data (number 1 and 7) with $n=p=784, c_{1}=c_{2}=1 / 2$, $\alpha=0.01$ and $\sigma^{2}=0.1$. Results averaged over 100 runs.

Summary: RMT for network learning dynamics

Take-away messages:

- RMT framework to understand and predict learning dynamics:

Cauchy's integral formula + technique of deterministic equivalent

Summary: RMT for network learning dynamics

Take-away messages:

- RMT framework to understand and predict learning dynamics:

Cauchy's integral formula + technique of deterministic equivalent

- easily extended to more elaborate data models: e.g., Gaussian mixture model with different means and covariances

Summary: RMT for network learning dynamics

Take-away messages:

- RMT framework to understand and predict learning dynamics:

Cauchy's integral formula + technique of deterministic equivalent

- easily extended to more elaborate data models: e.g., Gaussian mixture model with different means and covariances
- a byproduct: choose the initialization variance σ^{2} even smaller (than classical normalization of $1 / p$)!

Outline

```
Basics of Random Matrix Theory (Romain COUILLET)
    Motivation: Large Sample Covariance Matrices
    The Stieltjes Transform Method
    Spiked Models
    Other Common Random Matrix Models
    Applications
Applications to Machine Learning (Xiaoyi MAI)
Applications to Random Projections and Neural Networks (Zhenyu LIAO)
    Random Projections-based Ridge Regression
    Random Projections-based Spectral Clustering
    Random Matrix Analysis for Learning Dynamics of Neural Networks
```

Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)

Take-away messages

- Asymptotic "concentration effect" for large n, p

Take-away messages

- Asymptotic "concentration effect" for large $n, p \Rightarrow$ simplification in analyses and models.

Take-away messages

- Asymptotic "concentration effect" for large $n, p \Rightarrow$ simplification in analyses and models.
- Non-trivial phase transition phenomena (ability to detect, estimate) when $p, n \rightarrow \infty$.

Take-away messages

- Asymptotic "concentration effect" for large $n, p \Rightarrow$ simplification in analyses and models.
- Non-trivial phase transition phenomena (ability to detect, estimate) when $p, n \rightarrow \infty$.
- Access to limiting performances and not only bounds!

Take-away messages

- Asymptotic "concentration effect" for large $n, p \Rightarrow$ simplification in analyses and models.
- Non-trivial phase transition phenomena (ability to detect, estimate) when $p, n \rightarrow \infty$.
- Access to limiting performances and not only bounds! \Rightarrow hyperparameter optimization, algorithm improvement.

Take-away messages

- Asymptotic "concentration effect" for large $n, p \Rightarrow$ simplification in analyses and models.
- Non-trivial phase transition phenomena (ability to detect, estimate) when $p, n \rightarrow \infty$.
- Access to limiting performances and not only bounds! \Rightarrow hyperparameter optimization, algorithm improvement.
- Complete intuitive change

Take-away messages

- Asymptotic "concentration effect" for large $n, p \Rightarrow$ simplification in analyses and models.
- Non-trivial phase transition phenomena (ability to detect, estimate) when $p, n \rightarrow \infty$.
- Access to limiting performances and not only bounds! \Rightarrow hyperparameter optimization, algorithm improvement.
- Complete intuitive change \Rightarrow opens way to renewed methods.

Take-away messages

- Asymptotic "concentration effect" for large $n, p \Rightarrow$ simplification in analyses and models.
- Non-trivial phase transition phenomena (ability to detect, estimate) when $p, n \rightarrow \infty$.
- Access to limiting performances and not only bounds! \Rightarrow hyperparameter optimization, algorithm improvement.
- Complete intuitive change \Rightarrow opens way to renewed methods.
- Strong coincidence with real datasets

Take-away messages

- Asymptotic "concentration effect" for large $n, p \Rightarrow$ simplification in analyses and models.
- Non-trivial phase transition phenomena (ability to detect, estimate) when $p, n \rightarrow \infty$.
- Access to limiting performances and not only bounds! \Rightarrow hyperparameter optimization, algorithm improvement.
- Complete intuitive change \Rightarrow opens way to renewed methods.
- Strong coincidence with real datasets \Rightarrow easy link between theory and practice.

Perspectives and Open Problems

- Neural nets: loss landscape, gradient descent dynamics and

Perspectives and Open Problems

- Neural nets: loss landscape, gradient descent dynamics and deep learning!

Perspectives and Open Problems

- Neural nets: loss landscape, gradient descent dynamics and deep learning!
- Generalized linear models

Perspectives and Open Problems

- Neural nets: loss landscape, gradient descent dynamics and deep learning!
- Generalized linear models
- More general problems from convex optimization (often of implicit solution)

Perspectives and Open Problems

- Neural nets: loss landscape, gradient descent dynamics and deep learning!
- Generalized linear models
- More general problems from convex optimization (often of implicit solution)
- More difficult: problem raised from non-convex optimization problems

Perspectives and Open Problems

- Neural nets: loss landscape, gradient descent dynamics and deep learning!
- Generalized linear models
- More general problems from convex optimization (often of implicit solution)
- More difficult: problem raised from non-convex optimization problems
- Transfer learning, active learning, generative networks (GAN)

Perspectives and Open Problems

- Neural nets: loss landscape, gradient descent dynamics and deep learning!
- Generalized linear models
- More general problems from convex optimization (often of implicit solution)
- More difficult: problem raised from non-convex optimization problems
- Transfer learning, active learning, generative networks (GAN)
- Robust statistics in machine learning

Perspectives and Open Problems

- Neural nets: loss landscape, gradient descent dynamics and deep learning!
- Generalized linear models
- More general problems from convex optimization (often of implicit solution)
- More difficult: problem raised from non-convex optimization problems
- Transfer learning, active learning, generative networks (GAN)
- Robust statistics in machine learning

Summary of Results and Perspectives I

Kernel Methods: References
N. El Karoui, "The spectrum of kernel random matrices", The Annals of Statistics, 38(1), 1-50, 2010.

C. Xiuyuan, A. Singer, "The spectrum of random inner-product kernel matrices", Random Matrices: Theory and Applications 2.04 (2013): 1350010.

R. Couillet, F. Benaych-Georges, "Kernel Spectral Clustering of Large Dimensional Data", Electronic Journal of Statistics, vol. 10, no. 1, pp. 1393-1454, 2016.
R. Couillet, A. Kammoun, "Random Matrix Improved Subspace Clustering", Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 2016.
Z. Liao, R. Couillet, "Random matrices meet machine learning: a large dimensional analysis of LS-SVM", IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'17), New Orleans, USA, 2017.

X. Mai, R. Couillet, "The counterintuitive mechanism of graph-based semi-supervised learning in the big data regime", IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'17), New Orleans, USA, 2017.

X. Mai, R. Couillet, "A random matrix analysis and improvement of semi-supervised learning for large dimensional data", (under review) Journal of Machine Learning Research, 2017.

Z. Liao, R. Couillet, "A Large Dimensional Analysis of Least Squares Support Vector Machines", (under review) Journal of Machine Learning Research, 2017.

Summary of Results and Perspectives II

Kernel Methods: References

K. Elkhalil, A. Kammoun, R. Couillet, T. AI-Naffouri, M.-S. Alouini, "Asymptotic Performance of Regularized Quadratic Discriminant Analysis Based Classifiers", IEEE International Workshop on Machine Learning for Signal Processing (MLSP'17), Roppongi, Tokyo, Japan, 2017.
H. Tiomoko Ali, A. Kammoun, R. Couillet, "Random matrix-improved kernels for large dimensional spectral clustering"', Statistical Signal Processing Workshop (SSP'18), Freiburg, Germany, 2018.

Summary of Results and Perspectives I

Feature Maps and Neural Networks: References

C. Williams, "Computation with infinite neural networks", Neural Computation, 10(5), 1203-1216, 1998.
A. Rahimi, B. Recht, "Random features for large-scale kernel machines", Advances in neural information processing systems pp. 1177-1184, 2007.
N. El Karoui, "Concentration of measure and spectra of random matrices: applications to correlation matrices, elliptical distributions and beyond", The Annals of Applied Probability, 19(6), 2362-2405, 2009.
A. Saxe, J. McClelland, S. Ganguli, "Exact solutions to the nonlinear dynamics of learning in deep linear neural networks", arXiv:1312.6120, 2013.
A. Choromanska, M. Henaff, M. Mathieu, G. Arous, Y. LeCun, "The loss surfaces of multilayer networks", In Artificial Intelligence and Statistics (pp. 192-204), 2015.

R. Couillet, G. Wainrib, H. Sevi, H. Tiomoko Ali, "The asymptotic performance of linear echo state neural networks", Journal of Machine Learning Research, vol. 17, no. 178, pp. 1-35, 2016.
気
C. Louart, R. Couillet, "Harnessing neural networks: a random matrix approach", IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'17), New Orleans, USA, 2017.

Summary of Results and Perspectives II

Feature Maps and Neural Networks: References

C. Louart, R. Couillet, "A Random Matrix and Concentration Inequalities Framework for Neural Networks Analysis", IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'18), Calgary, Canada, 2018.

C. Louart, Z. Liao, R. Couillet, "A Random Matrix Approach to Neural Networks", The Annals of Applied Probability, vol. 28, no. 2, pp. 1190-1248, 2018.

J. Pennington, Y. Bahri, "Geometry of neural network loss surfaces via random matrix theory", In International Conference on Machine Learning, pp. 2798-2806. 2017.
Z. Liao, R. Couillet, "The Dynamics of Learning: A Random Matrix Approach", International Conference on Machine Learning, Stockholm, Sweden, 2018.
Z. Liao, R. Couillet, "On the Spectrum of Random Features Maps of High Dimensional Data", International Conference on Machine Learning, Stockholm, Sweden, 2018.

Summary of Results and Perspectives I

Robust Statistics: References
N. El Karoui, Noureddine, et al. "On robust regression with high-dimensional predictors", Proceedings of the National Academy of Sciences 110.36 (2013): 14557-14562.
R. Couillet, M. McKay, "Large Dimensional Analysis and Optimization of Robust Shrinkage Covariance Matrix Estimators", Elsevier Journal of Multivariate Analysis, vol. 131, pp. 99-120, 2014.

R. Couillet, "Robust spiked random matrices and a robust G-MUSIC estimator", Elsevier Journal of Multivariate Analysis, vol. 140, pp. 139-161, 2015.
D. Morales-Jimenez, R. Couillet, M. McKay, "Large Dimensional Analysis of Robust

M-Estimators of Covariance with Outliers", IEEE Transactions on Signal Processing, vol. 63, no. 21, pp. 5784-5797, 2015.
D. Donoho, A. Montanari, "High dimensional robust m-estimation: Asymptotic variance via approximate message passing", Probability Theory and Related Fields 166.3-4 (2016): 935-969.
R. Couillet, A. Kammoun, F. Pascal, "Second order statistics of robust estimators of scatter. Application to GLRT detection for elliptical signals", Elsevier Journal of Multivariate Analysis, vol. 143, pp. 249-274, 2016.
A. Kammoun, R. Couillet, F. Pascal, M.-S. Alouini, "Optimal Design of the Adaptive Normalized Matched Filter Detector using Regularized Tyler Estimator", IEEE Transactions on Aerospace and Electronic Systems, 2017.

The End

Thank you.

[^0]: ${ }^{1}$ Domingos, Pedro. "A few useful things to know about machine learning." Communications of the ACM 55.10 (2012): 78-87.

[^1]: ${ }^{1}$ Domingos, Pedro. "A few useful things to know about machine learning." Communications of the ACM 55.10 (2012): 78-87.

[^2]: ${ }^{1}$ Domingos, Pedro. "A few useful things to know about machine learning." Communications of the ACM 55.10 (2012): 78-87.

[^3]: ${ }^{1}$ Domingos, Pedro. "A few useful things to know about machine learning." Communications of the ACM 55.10 (2012): 78-87.

[^4]: ${ }^{1}$ Domingos, Pedro. "A few useful things to know about machine learning." Communications of the ACM 55.10 (2012): 78-87.

[^5]: ${ }^{1}$ Domingos, Pedro. "A few useful things to know about machine learning." Communications of the ACM 55.10 (2012): 78-87.

[^6]: ${ }^{1}$ Domingos, Pedro. "A few useful things to know about machine learning." Communications of the ACM 55.10 (2012): 78-87.

[^7]: ${ }^{1}$ Domingos, Pedro. "A few useful things to know about machine learning." Communications of the ACM 55.10 (2012): 78-87.

[^8]: ${ }^{1}$ Domingos, Pedro. "A few useful things to know about machine learning." Communications of the ACM 55.10 (2012): 78-87.

[^9]: ${ }^{1}$ Domingos, Pedro. "A few useful things to know about machine learning." Communications of the ACM 55.10 (2012): 78-87.

[^10]: ${ }^{1}$ Domingos, Pedro. "A few useful things to know about machine learning." Communications of the ACM 55.10 (2012): 78-87.

