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High-dimensional data

I Consider n observations x1, · · · , xnof size N, independent and identically distributed with
zero-mean and covariance CN , i.e, E

[
x1xH

1

]
= CN ,

I Let XN = [x1, · · · , xn]. The sample covariance estimate ŜN of CN is given by:

ŜN = 1
n XNXH

N = 1
n

n∑
i=1

xix
∗
i ,

I From the law of large numbers, as n→ +∞,

ŜN
a.s.−→ CN .

−→ Convergence in the operator norm

I In practice, it might be difficult to afford n→ +∞,
I if n� N, ŜN can be sufficiently accurate,
I if N/n = O(1), we model this scenario by the following assumption: N → +∞ and n→ +∞ with

N
n → c,

I Under this assumption, we have pointwise convergence to each element of CN , i.e,(
ŜN

)
i ,j

a.s.−→ (CN)i ,j

but ‖SN − CN‖ does not converge to zero.
−→ The convergence in the operator norm does not hold.
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Illustration

Consider CN = IN , the spectrum of ŜN is different from that of CN
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Figure: Spectrum of eigenvalues when N = 400 and n = 2000

−→ The asymptotic spectrum can be characterized by the Marchenko-Pastur Law.
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Reasons of interest for signal processing

I Scale similarity in array processing applications: large antenna arrays vs limited number of
observations,

I Need for detection and estimation based on large dimensional random inputs: subspace
methods in array processing.

I The assumption ”number of obervations � dimension of observation” is no longer valid:
large arrays, systems with fast dynamics.

Example
MUSIC with “few” samples (or in large arrays) Call A(Θ) = [a(θ1), . . . , a(θK )] ∈ CN×K , N large,
K small, the steering vectors to identify and X = [x1, . . . , xn] ∈ CN×n the n samples, taken from

xt =
K∑

k=1

a(θk)
√
pk sk,t +σwt .

The MUSIC localization function reads γ(θ) = a(θ)HÛW ÛH
W a(θ) in the “signal vs. noise”

spectral decomposition XXH = ÛSΛ̂S ÛH
S + ÛW Λ̂W ÛH

W .

Writing equivalently A(Θ)PA(Θ)H +σ2IN = USΛSUH
S +σ2UW UH

W , as n,N →∞, n/N → c,
from our previous remarks

ÛW ÛH
W 6→ UW UH

W

⇒ Music is NOT consistent in the large N,n regime! We need improved RMT-based solutions.
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Future Directions
4.1 Kernel matrices and kernel methods
4.2 Neural networks
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Stieltjes Transform

Definition
Let F be a real probability distribution function. The Stieltjes transform mF of F is the function
defined, for z ∈ C+, as

mF (z) =

∫
1

λ− z
dF(λ)

For a < b continuity points of F , denoting z = x + iy , we have the inverse formula

F(b) − F(a) = lim
y→0

1

π

∫b
a
=[mF (x + iy)]dx

If F has a density f at x , then

f (x) = lim
y→0

1

π
=[mF (x + iy)]

The Stieltjes transform is to the Cauchy transform as the characteristic functin is to the Fourier
transform.

Equivalence F ↔ mF

Similar to the Fourier transform, knowing mF is the same as knowing F .
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Stieltjes transform of a Hermitian matrix

I Let X be a N ×N random matrix. Denote by dFX the empirical measure of its eigenvalues
λ1, · · · ,λN , i.e, dFX = 1

N

∑N
i=1 δλi . The Stieltjes transform of X denoted by mX = mF is

the stieltjes transform of its empirical measure:

mX(z) =

∫
1

λ− z
dF(λ) =

1

N

N∑
i=1

1

λi − z
=

1

N
tr (X − zIN)

−1.

I The Stieltjes transform of a random matrix is the trace of the resolvent matrix
Q(z) = (X − zIN)

−1. The resolvent matrix plays a key role in the derivation of many of the
results of random matrix theory.

I For compactly supported F , mF (z) is linked to the moments Mk = E 1
N tr Xk ,

mF (z) = −

+∞∑
k=0

Mkz
−k−1

I mF is defined in general on C+ but exists everywhere outside the support of F .
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Side remark: the “Shannon”-transform

A. M. Tulino, S. Verdù, “Random matrix theory and wireless communications,” Now Publishers
Inc., 2004.

Definition
Let F be a probability distribution, mF its Stieltjes transform, then the Shannon-transform VF of
F is defined as

VF (x) ,
∫∞

0
log(1 + xλ)dF(λ) =

∫∞
x

(
1

t
−mF (−t)

)
dt

I This quantity is fundamental to wireless communication purposes!

I Note that mF itself is of interest, not F !
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Proof of the Marc̆enko-Pastur law

V. A. Marc̆enko, L. A. Pastur, “Distributions of eigenvalues for some sets of random matrices”,
Math USSR-Sbornik, vol. 1, no. 4, pp. 457-483, 1967.

The theorem to be proven is the following

Theorem
Let XN ∈ CN×n have i.i.d. zero mean variance 1/n entries with finite eighth order moments. As
n,N →∞ with N

n → c ∈ (0,∞), the e.s.d. of XNXH
N converges almost surely to a nonrandom

distribution function Fc with density fc given by

fc(x) = (1 − c−1)+δ(x) +
1

2πcx

√
(x − a)+(b− x)+

where a = (1 −
√
c)2, and b = (1 +

√
c)2.
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The Marc̆enko-Pastur density
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Figure: Marc̆enko-Pastur law for different limit ratios c = limN→∞ N/n.
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Diagonal entries of the resolvent

Since we want an expression of mF , we start by identifying the diagonal entries of the resolvent
(XNXH

N − zIN)
−1 of XNXH

N . Denote

XN =

[
yH

Y

]

Now, for z ∈ C+, we have

(
XNXH

N − zIN
)−1

=

[
yHy − z yHYH

Yy YYH − zIN−1

]−1

Consider the first diagonal element of (RN − zIN)
−1. From the matrix inversion lemma,(

A B
C D

)−1

=

(
(A − BD−1C)−1 −A−1B(D − CA−1B)−1

−(A − BD−1C)−1CA−1 (D − CA−1B)−1

)
which here gives [(

XNXH
N − zIN

)−1
]

11
=

1

−z − zyH(YHY − zIn)−1y
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Trace Lemma

Z. Bai, J. Silverstein, “Spectral Analysis of Large Dimensional Random Matrices”, Springer Series
in Statistics, 2009.

To go further, we need the following result,

Theorem
Let {AN } ∈ CN×N with bounded spectral norm. Let {xN } ∈ CN , be a random vector of i.i.d.
entries with zero mean, variance 1/N and finite 8th order moment, independent of AN . Then

xH
NANxN −

1

N
tr AN

a.s.−→ 0.

For large N, we therefore have approximately[(
XNXH

N − zIN
)−1

]
11
' 1

−z − z 1
N tr (YHY − zIn)−1
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Rank-1 perturbation lemma

J. W. Silverstein, Z. D. Bai, “On the empirical distribution of eigenvalues of a class of large
dimensional random matrices,” Journal of Multivariate Analysis, vol. 54, no. 2, pp. 175-192,
1995.

It is somewhat intuitive that adding a single column to Y won’t affect the trace in the limit.

Theorem
Let A and B be N ×N with B Hermitian positive definite, and v ∈ CN . For z ∈ C \ R−,∣∣∣∣ 1

N
tr
(
(B − zIN)

−1 − (B + vvH − zIN)
−1
)

A

∣∣∣∣ 6 1

N

‖A‖
dist(z,R+)

with ‖A‖ the spectral norm of A, and dist(z,A) = infy∈A ‖y − z‖.
Therefore, for large N, we have approximately,[(

XNXH
N − zIN

)−1
]

11
' 1

−z − z 1
N tr (YHY − zIn)−1

' 1

−z − z 1
N tr (XH

NXN − zIn)−1

=
1

−z − z n
NmF (z)

in which we recognize the Stieltjes transform mF of the l.s.d. of XH
NXN .
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End of the proof

We have again the relation
n

N
mF (z) = mF (z) +

N − n

N

1

z

hence [(
XNXH

N − zIN
)−1

]
11
' 1

n
N − 1 − z − zmF (z)

Note that the choice (1, 1) is irrelevant here, so the expression is valid for all pair (i , i). Summing
over the N terms and averaging, we finally have

mF (z) =
1

N
tr
(

XNXH
N − zIN

)−1
' 1

c − 1 − z − zmF (z)

which solve a polynomial of second order. Finally

mF (z) =
c − 1

2z
−

1

2
+

√
(c − 1 − z)2 − 4z

2z
.

From the inverse Stieltjes transform formula, we then verify that mF is the Stieltjes transform of
the Marc̆enko-Pastur law.
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Asymptotic results involving Stieltjes transform

J. W. Silverstein, Z. D. Bai, “On the empirical distribution of eigenvalues of a class of large
dimensional random matrices,” Journal of Multivariate Analysis, vol. 54, no. 2, pp. 175-192,
1995.

Theorem
Let YN = 1√

n
XNC

1
2
N , where XN ∈ Cn×N has i.i.d entries of mean 0 and variance 1. Consider the

regime n,N → +∞ with N
n → c. Let m̂N be the Stieltjes transform associated to XNX∗N . Then,

m̂N −mN → 0 almost surely for all z ∈ C\R+, where mN(z) is the unique solution in the set
{z ∈ C+,mN(z) ∈ C+} to:

mN(z) =

(∫
ctdFCN

1 + tmN(z)
− z

)−1

I in general, no explicit expression for FN , the distribution whose Stietljes transform is mN(z).

I The theorem above characterizes also the Stieltjes transform of BN = XH
NXN denoted by mN ,

mN = cmN + (c − 1)
1

z

This gives access to the spectrum of the sample covariance matrix model of x, when

yi = C
1
2
Nxi , xi i.i.d., CN = E [yyH].
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Getting F
′

from mF

I Remember that, for a < b real,

F ′(x) = lim
y→0

1

π
=[mF (x + iy)]

where mF is (up to now) only defined on C+.

I to plot the density F ′,
I first approach: span z = x + iy on the line {x ∈ R, y = ε} parallel but close to the real axis, solve

mF (z) for each z, and plot =[mF (z)].
I refined approach: spectral analysis, to come next.

Example (Sample covariance matrix)

For N multiple of 3, let FC (x) = 1
3 1x61 + 1

3 1x63 + 1
3 1x6K and let BN = 1

n C
1
2
NZH

NZNC
1
2
N with

FBN → F , then

mF = cmF + (c − 1)
1

z

mF (z) =

(
c

∫
t

1 + tmF (z)
dFC (t) − z

)−1

We take c = 1/10 and alternatively K = 7 and K = 4.



Part 1: Fundamentals of Random Matrix Theory/1.1. The Stieltjes Transform Method 18/142

Getting F
′

from mF

I Remember that, for a < b real,

F ′(x) = lim
y→0

1

π
=[mF (x + iy)]

where mF is (up to now) only defined on C+.
I to plot the density F ′,

I first approach: span z = x + iy on the line {x ∈ R, y = ε} parallel but close to the real axis, solve
mF (z) for each z, and plot =[mF (z)].

I refined approach: spectral analysis, to come next.

Example (Sample covariance matrix)

For N multiple of 3, let FC (x) = 1
3 1x61 + 1

3 1x63 + 1
3 1x6K and let BN = 1

n C
1
2
NZH

NZNC
1
2
N with

FBN → F , then

mF = cmF + (c − 1)
1

z

mF (z) =

(
c

∫
t

1 + tmF (z)
dFC (t) − z

)−1

We take c = 1/10 and alternatively K = 7 and K = 4.



Part 1: Fundamentals of Random Matrix Theory/1.1. The Stieltjes Transform Method 18/142

Getting F
′

from mF

I Remember that, for a < b real,

F ′(x) = lim
y→0

1

π
=[mF (x + iy)]

where mF is (up to now) only defined on C+.
I to plot the density F ′,

I first approach: span z = x + iy on the line {x ∈ R, y = ε} parallel but close to the real axis, solve
mF (z) for each z, and plot =[mF (z)].

I refined approach: spectral analysis, to come next.

Example (Sample covariance matrix)

For N multiple of 3, let FC (x) = 1
3 1x61 + 1

3 1x63 + 1
3 1x6K and let BN = 1

n C
1
2
NZH

NZNC
1
2
N with

FBN → F , then

mF = cmF + (c − 1)
1

z

mF (z) =

(
c

∫
t

1 + tmF (z)
dFC (t) − z

)−1

We take c = 1/10 and alternatively K = 7 and K = 4.



Part 1: Fundamentals of Random Matrix Theory/1.1. The Stieltjes Transform Method 18/142

Getting F
′

from mF

I Remember that, for a < b real,

F ′(x) = lim
y→0

1

π
=[mF (x + iy)]

where mF is (up to now) only defined on C+.
I to plot the density F ′,

I first approach: span z = x + iy on the line {x ∈ R, y = ε} parallel but close to the real axis, solve
mF (z) for each z, and plot =[mF (z)].

I refined approach: spectral analysis, to come next.

Example (Sample covariance matrix)

For N multiple of 3, let FC (x) = 1
3 1x61 + 1

3 1x63 + 1
3 1x6K and let BN = 1

n C
1
2
NZH

NZNC
1
2
N with

FBN → F , then

mF = cmF + (c − 1)
1

z

mF (z) =

(
c

∫
t

1 + tmF (z)
dFC (t) − z

)−1

We take c = 1/10 and alternatively K = 7 and K = 4.



Part 1: Fundamentals of Random Matrix Theory/1.1. The Stieltjes Transform Method 19/142

Spectrum of the sample covariance matrix
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Figure: Histogram of the eigenvalues of BN = 1
n C

1
2
N ZH

NZNC
1
2
N , N = 3000, n = 300, with CN diagonal composed

of three evenly weighted masses in (i) 1, 3 and 7 on top, (ii) 1, 3 and 4 at bottom.
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Support of a distribution
The support of a density f is the closure of the set {x , f (x) 6= 0}.
For instance the support of the marc̆enko-Pastur law is

[
(1 −

√
c)2, (1 +

√
c)2
]
.
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Figure: Marc̆enko-Pastur law for different limit ratios c = 0.5.
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Extreme eigenvalues

I Limiting spectral results are insufficient to infer about the location of extreme eigenvalues.

I Example: Consider dFN(x) = 1
N

∑N
k=1 δak . Then, dF 0

N = N−1
N dFN + 1

N δAN
(x) and dFN with

AN > aN satisfy:
dFN − dF 0

N ⇒ 0.

I However, the supports of FN and FN0
differ by the mass AN .

Question: How is the behaviour of the extreme eigenvalues of random covariance matrices?
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No eigenvalue outside the support of sample covariance matrices

Z. D. Bai, J. W. Silverstein, “No eigenvalues outside the support of the limiting spectral
distribution of large-dimensional sample covariance matrices,” The Annals of Probability, vol. 26,
no.1 pp. 316-345, 1998.

Theorem
Let XN ∈ CN×n with i.i.d. entries with zero mean, unit variance and infinite fourth order. Let
CN ∈ CN×N be nonrandom and bounded in norm. Let mN be the unique solution in C+ of

mN = −

(
z −

N

n

∫
τ

1 + τmN
dFCN (τ)

)−1

, mN(z) =
N

n
mN(z) +

N − n

n

1

z
, z ∈ C+,

Let FN be the distribution associated to the Stieltjes transform mN(z). Consider

BN = 1
n C

1
2
NXNXH

NC
1
2
N . We know that FBN − FN converge weakly to zero. Choose N0 ∈ N and

[a,b], a > 0, outside the support of FN for all N > N0. Denote LN the set of eigenvalues of BN .
Then,

P(LN ∩ [a,b] 6= ∅ i.o.) = 0.
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No eigenvalue outside the support: which models?

J. W. Silverstein, P. Debashis, “No eigenvalues outside the support of the limiting empirical
spectral distribution of a separable covariance matrix,” J. of Multivariate Analysis vol. 100, no. 1,
pp. 37-57, 2009.

I It has already been shown that (for all large N) there is no eigenvalues outside the support of
I Marc̆enko-Pastur law: XXH, X i.i.d. with zero mean, variance 1/N, finite 4th order moment.

I Sample covariance matrix: C
1
2 XXHC

1
2 and XHCX, X i.i.d. with zero mean, variance 1/N, finite 4th

order moment.
I Doubly-correlated matrix: R

1
2 XCXHR

1
2 , X with i.i.d. zero mean, variance 1/N, finite 4th order

moment.

J. W. Silverstein, Z.D. Bai, Y.Q. Yin, “A note on the largest eigenvalue of a large dimensional
sample covariance matrix,” Journal of Multivariate Analysis, vol. 26, no. 2, pp. 166-168, 1988.

I If 4th order moment is infinite,

lim sup
N
λXXH

max =∞
J. Silverstein, Z. Bai, “No eigenvalues outside the support of the limiting spectral distribution of
information-plus-noise type matrices” to appear in Random Matrices: Theory and Applications.

I Only recently, information plus noise models, X with i.i.d. zero mean, variance 1/N, finite
4th order moment

(X + A)(X + A)H,

and the generally correlation model where each column of X has correlation Ri .
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Extreme eigenvalues: Deeper into the spectrum

I In order to derive statistical detection tests, we need more information on the extreme
eigenvalues.

I We will study the fluctuations of the extreme eigenvalues (second order statistics)

I However, the Stieltjes transform method is not adapted here!
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Distribution of the largest eigenvalues of XXH

C. A. Tracy, H. Widom, “On orthogonal and symplectic matrix ensembles,” Communications in
Mathematical Physics, vol. 177, no. 3, pp. 727-754, 1996.
K. Johansson, “Shape Fluctuations and Random Matrices,” Comm. Math. Phys. vol. 209, pp.
437-476, 2000.

Theorem
Let X ∈ CN×n have i.i.d. Gaussian entries of zero mean and variance 1/n. Denoting λ+N the

largest eigenvalue of XXH, then

N
2
3
λ+N − (1 +

√
c)2

(1 +
√
c)

4
3 c

1
2

⇒ X+ ∼ F+

with c = limN N/n and F+ the Tracy-Widom distribution given by

F+(t) = exp

(
−

∫∞
t
(x − t)2q2(x)dx

)
with q the Painlevé II function that solves the differential equation

q ′′(x) = xq(x) + 2q3(x)

q(x) ∼x→∞ Ai(x)

in which Ai(x) is the Airy function.
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The law of Tracy-Widom

−4 −2 0 2
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Centered-scaled largest eigenvalue of XXH
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Empirical Eigenvalues

Tracy-Widom law F+

Figure: Distribution of N
2
3 c− 1

2 (1 +
√
c)−

4
3
[
λ+N − (1 +

√
c)2
]

against the distribution of X+ (distributed as

Tracy-Widom law) for N = 500, n = 1500, c = 1/3, for the covariance matrix model XXH. Empirical
distribution taken over 10, 000 Monte-Carlo simulations.
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Techniques of proof
Method of proof requires very different tools:

I orthogonal (Laguerre) polynomials: to write joint unordered eigenvalue distribution as a
kernel determinant.

ρN(λ1, . . . ,λp) =
p

det
i ,j=1

KN(λi ,λj)

with K(x , y) the kernel Laguerre polynomial.

I Fredholm determinants: we can write hole probability as a Fredholm determinant.

P
(
N2/3

(
λi − (1 +

√
c)2
)
∈ A, i = 1, . . . ,N

)
= 1 +

∑
k>1

(−1)k

k!

∫
Ac
· · ·
∫
Ac

k
det
i ,j=1

KN(xi , xj )
∏

dxi

, det(IN −KN).

I kernel theory: show that KN converges to a Airy kernel.

KN(x , y)→ KAiry(x , y) =
Ai(x)Ai ′(y) −Ai ′(x)Ai(y)

x − y
.

I differential equation tricks: hole probability in [t,∞) gives right-most eigenvalue distribution,
which is simplified as solution of a Painelvé differential equation: the Tracy-Widom
distribution.

F+(t) = e−
∫∞
t (x−t)q(x)2dx , q ′′ = tq + 2q3, q(x) ∼x→∞ Ai(x).
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Comments on the Tracy-Widom law

I deeper result than limit eigenvalue result

I gives a hint on convergence speed

I fairly biased on the left: even fewer eigenvalues outside the support.

I can be shown to hold for other distributions than Gaussian under mild assumptions
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Outline
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Spiked models

I We consider n independent observations x1, · · · , xn of size N,

I The correlation structure is in general ”white + low rank”,

E
[
x1xH

1

]
= I + P

where P is of low rank,

I Objective: to infer the eigenvalues and/or the eigenvectors of P
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The first result

J. Baik, J. W. Silverstein, “Eigenvalues of large sample covariance matrices of spiked population
models,” Journal of Multivariate Analysis, vol. 97, no. 6, pp. 1382-1408, 2006.

Theorem
Let BN = 1

n (I + P)
1
2 XNXH

N(I + P)
1
2 , where XN ∈ CN×n has i.i.d., zero mean and unit variance

entries, and PN ∈ RN×N with eigenvalues given by:

eig(P) = diag(ω1, . . . ,ωK , 0, . . . , . . . , 0︸ ︷︷ ︸
N−K

)

with ω1 > . . . >ωK > −1, c = limN N/n. Let λ1, · · · ,λN be the eigenvalues of BN . We then
have

I if ωj >
√
c, λj

a.s.−→ 1 +ωj + c
1+ωj
ωj

(i.e. beyond the Marc̆enko–Pastur bulk!)

I if ωj ∈ (0,
√
c], λj

a.s.−→ (1 +
√
c)2 (i.e. right-edge of the Marc̆enko–Pastur bulk!)

I if ωj ∈ [−
√
c, 0), λj

a.s.−→ (1 −
√
c)2 (i.e. left-edge of the Marc̆enko–Pastur bulk!)

I for the other eigenvalues, we discriminate over c:

I if ωj < −
√
c, c < 1, λj

a.s.−→ 1 +ωj + c
1+ωj
ωj

(i.e. beyond the Marc̆enko–Pastur bulk!)

I if ωj < −
√
c, c > 1, λj

a.s.−→ (1 −
√
c)2 (i.e. left-edge of the Marc̆enko–Pastur bulk!)
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Illustration of spiked models
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Figure: Eigenvalues of BN = 1
n (P + I)

1
2 XNXN

H(P + I)
1
2 , where ω1 =ω2 = 1 and ω3 =ω4 = 2 Dimensions:

N = 500, n = 1500.
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Interpretation of the result

I if c is large, or alternatively, if some “population spikes” are small, part to all of the
population spikes are attracted by the support!

I if so, no way to decide on the existence of the spikes from looking at the largest eigenvalues

I in signal processing words, signals might be missed using largest eigenvalues methods.
I as a consequence,

I the more the sensors (N),
I the larger c = limN/n,
I the more probable we miss a spike
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Sketch of the proof
I We start with a study of the limiting extreme eigenvalues.

I Let x > 0, then

det(BN − xIN) = det(IN + P)det(XXH − xIN + x[IN − (IN + P)−1])

= det(IN + P)det(XXH − xIN)
−1 det(IN + xP(IN + P)−1(XXH − xIN)

−1).

I if x eigenvalue of BN but not of XXH, then for n large, x > (1 +
√
c)2 (edge of MP law

support) and

det(IN + xP(IN + P)−1(XXH − xIN)
−1) = det(Ir + xΩ(IN +Ω)−1UH(XXH − xIN)

−1U) = 0

with P = UΩUH, U ∈ CN×r .

I due to unitary invariance of X,

UH(XXH − xIN)
−1U

a.s.−→
∫
(t − x)−1dFMP(t)Ir , m(x)Ir

with FMP the MP law, and m(x) the Stieltjes transform of the MP law (often known for
r = 1 as trace lemma).

I finally, we have that the limiting solutions xk satisfy xkm(xk) + (1 +ωk)ω
−1
k = 0.

I replacing m(x), this is finally:

λk
a.s.−→ xk , 1 +ωk + c(1 +ωk)ω

−1
k , if ωk >

√
c
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= det(IN + P)det(XXH − xIN)
−1 det(IN + xP(IN + P)−1(XXH − xIN)

−1).

I if x eigenvalue of BN but not of XXH, then for n large, x > (1 +
√
c)2 (edge of MP law

support) and

det(IN + xP(IN + P)−1(XXH − xIN)
−1) = det(Ir + xΩ(IN +Ω)−1UH(XXH − xIN)

−1U) = 0

with P = UΩUH, U ∈ CN×r .

I due to unitary invariance of X,

UH(XXH − xIN)
−1U

a.s.−→
∫
(t − x)−1dFMP(t)Ir , m(x)Ir

with FMP the MP law, and m(x) the Stieltjes transform of the MP law (often known for
r = 1 as trace lemma).

I finally, we have that the limiting solutions xk satisfy xkm(xk) + (1 +ωk)ω
−1
k = 0.

I replacing m(x), this is finally:

λk
a.s.−→ xk , 1 +ωk + c(1 +ωk)ω

−1
k , if ωk >

√
c
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Comments on the result

I there exists a “phase transition” when the largest population eigenvalues move from inside to
outside (0, 1 +

√
c).

I more importantly, for t1 < 1 +
√
c, we still have the same Tracy-Widom,

I no way to see the spike even when zooming in
I in fact, simulation suggests that convergence rate to the Tracy-Widom is slower with spikes.
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Outline
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Stieltjes transform inversion for covariance matrix models

J. W. Silverstein, S. Choi, “Analysis of the limiting spectral distribution of large dimensional
random matrices,” Journal of Multivariate Analysis, vol. 54, no. 2, pp. 295-309, 1995.

I We know for the model C
1
2
NXN , XN ∈ CN×n that, if FCN ⇒ FC , the Stieltjes transform of the

e.s.d. of BN = 1
n XH

NCNXN satisfies mBN
(z)

a.s.−→ mF (z), with

mF (z) =

(
−z − c

∫
t

1 + tmF (z)
dFC (t)

)−1

which is unique on the set {z ∈ C+,mF (z) ∈ C+}.

I This can be inverted into

zF (m) = −
1

m
− c

∫
t

1 + tm
dFC (t)

for m ∈ C+.
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Stieltjes transform inversion and spectrum characterization

Remember that we can evaluate the spectrum density by taking a complex line close to R and
evaluating =[mF (z)] along this line. Now we can do better.

It is shown that
lim

z→x∈R∗
z∈C+

mF (z) = m0(x) exists.

We also have,

I for x0 inside the support, the density f (x) of F in x0 is 1
π=[m0] with m0 the unique solution

m ∈ C+ of

[zF (m) =] x0 = −
1

m
− c

∫
t

1 + tm
dFC (t)

I let m0 ∈ R∗ and xF the equivalent to zF on the real line. Then “x0 outside the support of F”

is equivalent to “x ′F (mF (x0)) > 0, mF (x0) 6= 0, −1/mF (x0) outside the support of FC”.

This provides another way to determine the support!. For m ∈ (−∞, 0), evaluate xF (m).
Whenever xF decreases, the image is outside the support. The rest is inside.
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Another way to determine the spectrum: spectrum to analyze
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Empirical eigenvalue distribution

Limit law

Figure: Histogram of the eigenvalues of BN = 1
n C

1
2
N XNXH

NC
1
2
N , N = 300, n = 3000, with CN diagonal composed

of three evenly weighted masses in 1, 3 and 7.
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Another way to determine the spectrum: inverse function method

−1 − 1
3 − 1

7
0

1

3

7

m

x F
(m

)

xF (m), m ∈ B

Support of F

Figure: Stieltjes transform of BN = 1
n C

1
2
N XNXH

NC
1
2
N , N = 300, n = 3000, with CN diagonal composed of three

evenly weighted masses in 1, 3 and 7. The support of F is read on the vertical axis, whenever mF is decreasing.
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Cluster boundaries in sample covariance matrix models

Xavier Mestre, “Improved estimation of eigenvalues of covariance matrices and their associated
subspaces using their sample estimates,” IEEE Transactions on Information Theory, vol. 54, no.
11, Nov. 2008.

Theorem
Let XN ∈ CN×n have i.i.d. entries of zero mean, unit variance, and CN be diagonal such that
FCN ⇒ FC , as n,N →∞, N/n→ c, where FC has K masses in t1, . . . , tK with multiplicity

n1, . . . ,nK respectively. Then the l.s.d. of BN = 1
n C

1
2
NXNXH

NC
1
2
N has support S given by

S = [x−
1 , x+

1 ]∪ [x−
2 , x+

2 ]∪ . . .∪ [x−
Q , x+

Q ]

with x−
q = xF (m

−
q ), x+

q = xF (m
+
q ), and

xF (m) = −
1

m
− c

1

n

K∑
k=1

nk
tk

1 + tkm

with 2Q the number of real-valued solutions counting multiplicities of x ′F (m) = 0 denoted in
order m−

1 < m+
1 6 m−

2 < m+
2 6 . . . 6 m−

Q < m+
Q .
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Comments on spectrum characterization

Previous results allows to determine

I the spectrum boundaries

I the number Q of clusters

I as a consequence, the total separation (Q = K) or not (Q < K) of the spectrum in K
clusters.

Mestre goes further: to determine local separability of the spectrum,

I identify the K inflexion points, i.e. the K solutions m1, . . . ,mK to

x ′′F (m) = 0

I check whether x ′F (mi ) > 0 and x ′F (mi+1) > 0

I if so, the cluster in between corresponds to a single population eigenvalue.
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Exact eigenvalue separation

Z. D. Bai, J. W. Silverstein, “Exact Separation of Eigenvalues of Large Dimensional Sample
Covariance Matrices,” The Annals of Probability, vol. 27, no. 3, pp. 1536-1555, 1999.

I Recall that the result on “no eigenvalue outside the support”
I says where eigenvalues are not to be found
I does not say, as we feel, that (if cluster separation) in cluster k, there are exactly nk eigenvalues.

I This is in fact the case,
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Eigeninference: Introduction of the problem

I Reminder: for a sequence x1, . . . , xn ∈ CN of independent random variables,

ĈN =
1

n

n∑
k=1

xkxH
k

is an n-consistent estimator of CN = E [x1xH
1 ].

I If n, N have comparable sizes, this no longer holds.

I Typically, n,N-consistent estimators of the full CN matrix perform very badly.

I If only the eigenvalues of CN are of interest, things can be done. The process of retrieving
information about eigenvalues, eigenspace projections, or functional of these is called
eigen-inference.
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Girko and the G -estimators

V. Girko, “Ten years of general statistical analysis,”
http://www.general-statistical-analysis.girko.freewebspace.com/chapter14.pdf

I Girko has come up with more than 50 N,n-consistent estimators, called G -estimators
(Generalized estimators). Among those, we find

I G1-estimator of generalized variance. For

G1(ĈN) = α−1
n

[
log det(CN) + log

n(n− 1)N

(n−N)
∏N

k=1(n− k)

]

with αn any sequence such that α−2
n log(n/(n−N))→ 0, we have

G1(ĈN) −α
−1
n log det(CN)→ 0

in probability.

I However, Girko’s proofs are rarely readable, if existent.
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A long standing problem

X. Mestre, “Improved estimation of eigenvalues and eigenvectors of covariance matrices using
their sample estimates,” IEEE trans. on Information Theory, vol. 54, no. 11, pp. 5113-5129,
2008.

I Consider the model BN = 1
n C

1
2
NXNXH

NC
1
2
N , where FCN is formed of a finite number of masses

t1, . . . , tK .

I It has long been thought the inverse problem of estimating t1, . . . , tK from the Stieltjes
transform method was not possible.

I Only trials were iterative convex optimization methods.

I The problem was partially solved by Mestre in 2008!

I His technique uses elegant complex analysis tools. The description of this technique is the
subject of this course.
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Reminders

I Consider the sample covariance matrix model BN = 1
n C

1
2
NXNXH

NC
1
2
N .

I Up to now, we saw:
I that there is no eigenvalue outside the support with probability 1 for all large N.
I that for all large N, when the spectrum is divided into clusters, the number of empirical eigenvalues

in each cluster is exactly as we expect.

I these results are of crucial importance for the following.



Part 1: Fundamentals of Random Matrix Theory/1.4 Spectrum Analysis and G-estimation 48/142

Reminders

I Consider the sample covariance matrix model BN = 1
n C

1
2
NXNXH

NC
1
2
N .

I Up to now, we saw:
I that there is no eigenvalue outside the support with probability 1 for all large N.
I that for all large N, when the spectrum is divided into clusters, the number of empirical eigenvalues

in each cluster is exactly as we expect.

I these results are of crucial importance for the following.



Part 1: Fundamentals of Random Matrix Theory/1.4 Spectrum Analysis and G-estimation 49/142

Eigen-inference for the sample covariance matrix model

X. Mestre, “Improved estimation of eigenvalues and eigenvectors of covariance matrices using
their sample estimates,” IEEE trans. on Information Theory, vol. 54, no. 11, pp. 5113-5129,
2008.

Theorem
Consider the model BN = 1

n C
1
2
NXNXH

NC
1
2
N , with XN ∈ CN×n, i.i.d. with entries of zero mean, unit

variance, and CN ∈ RN×N is diagonal with K distinct entries t1, . . . , tK of multiplicity N1, . . . ,NK

of same order as n. Let k ∈ {1, . . . ,K}. Then, if the cluster associated to tk is separated from the
clusters associated to k − 1 and k + 1, as N,n→∞, N/n→ c,

t̂k =
n

Nk

∑
m∈Nk

(λm −µm)

is an N,n-consistent estimator of tk , where Nk = {N −
∑K

i=k Ni + 1, . . . ,N −
∑K

i=k+1 Ni },
λ1, . . . ,λN are the eigenvalues of BN and µ1, . . . ,µN are the N solutions of

mXH
NCNXN

(µ) = 0

or equivalently, µ1, . . . ,µN are the eigenvalues of diag(λ) − 1
N

√
λ
√
λ

T
.
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Remarks on Mestre’s result

Assuming cluster separation, the result consists in

I taking the empirical ordered λi ’s inside the cluster (note that exact separation ensures there
are Nk of these!)

I getting the ordered eigenvalues µ1, . . . ,µN of

diag(λ) −
1

N

√
λ
√
λ

T

with λ = (λ1, . . . ,λN)
T. Keep only those of index inside Nk .

I take the difference and scale.
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How to obtain this result?

I Major trick requires tools from complex analysis

I Silverstein’s Stieltjes transform identity: for the conjugate model BN = 1
n XH

NCNXN ,

mN(z) =

(
−z − c

∫
t

1 + tmN(z)
dFCN (t)

)−1

with mN the deterministic equivalent of mBN
. This is the only random matrix result we need.

I Before going further, we need some reminders from complex analysis.
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Limiting spectrum of the sample covariance matrix

J. W. Silverstein, Z. D. Bai, “On the empirical distribution of eigenvalues of a class of large
dimensional random matrices,” J. of Multivariate Analysis, vol. 54, no. 2, pp. 175-192, 1995.

Reminder:

I If FCN ⇒ FC , then mBN
(z)

a.s.−→ mF (z) such that

mF (z) =

(
c

∫
t

1 + tmF (z)
dFC (t) − z

)−1

or equivalently
mFC

(
−1/mF (z)

)
= −zmF (z)mF (z)

with mF (z) = cmF (z) + (c − 1) 1
z and N/n→ c.
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mF (z) =

(
c

∫
t

1 + tmF (z)
dFC (t) − z

)−1

or equivalently
mFC

(
−1/mF (z)

)
= −zmF (z)mF (z)

with mF (z) = cmF (z) + (c − 1) 1
z and N/n→ c.



Part 1: Fundamentals of Random Matrix Theory/1.4 Spectrum Analysis and G-estimation 53/142

Reminders of complex analysis

I Cauchy integration formula

Theorem
Let U ⊂ C be an open set and f : U → C be holomorphic on U. Let γ ⊂ U be a continuous
contour (i.e. closed path). Then, for a inside the surface formed by γ, we have

1

2πi

∮
γ

f (z)

z − a
dz = f (a)

while for a outside the surface formed by γ,

1

2πi

∮
γ

f (z)

z − a
dz = 0.
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Complex integration

I From Cauchy integral formula, denoting Ck a contour enclosing only tk ,

tk =
1

2πi

∮
Ck

ω

ω− tk
dω

=
1

2πi

∮
Ck

1

Nk

K∑
j=1

Nj
ω

ω− tj
dω =

N

2πiNk

∮
Ck

ωmFC (ω)dω.

I After the variable change ω = −1/mF (z),

tk =
N

Nk

1

2πi

∮
CF ,k

zmF (z)
m ′F (z)

m2
F (z)

dz,

I When the system dimensions are large,

mF (z) ' mBN
(z) ,

1

N

N∑
k=1

1

λk − z
, with (λ1, . . . ,λN) = eig(BN) = eig(YYH).

I Dominated convergence arguments then show

tk − t̂k
a.s.−→ 0 with t̂k =

N

Nk

1

2πi

∮
CF ,k

zmBN
(z)

m ′BN
(z)

m2
BN

(z)
dz
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Understanding the contour change

−1 − 1
3 − 1

7
0

1

3

7

m1

m2

−1/x1−1/x2

m

x F
(m

)

xF (m), m ∈ B

Support of F

I IF CF ,k encloses cluster k with real points m1 < m2

I THEN −1/m1 = x1 < tk < x2 = −1/m2 and Ck encloses tk .
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Poles and residues

I we find two sets of poles (outside zeros):
I λ1, . . . ,λN , the eigenvalues of BN .
I the solutions µ1, . . . ,µN to m̂N(z) = 0.

I remember that

mBN
(w) =

n

N
mBN

(w) +
n−N

N

1

w

I residue calculus, denote f (w) =
(

n
NwmBN

(w) + n−N
N

) m′BN
(w)

mBN
(w)2 ,

I the λk ’s are poles of order 1 and

lim
z→λk

(z − λk)f (z) = −
n

N
λk

I the µk ’s are also poles of order 1 and by L’Hospital’s rule

lim
z→µk

(z − λk)f (z) = lim
z→µk

n

N

(z −µk)zm
′
BN

(z)

mBN
(z)

=
n

N
µk

I So, finally

t̂k =
n

Nk

∑
m∈contour

(λm −µm)
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Which poles in the contour?

I we now need to determine which poles are in the contour of interest.

I Since the µi are rank-1 perturbations of the λi , they have the interleaving property

λ1 < µ2 < λ2 < . . . < µN < λN

I what about µ1? the trick is to use the fact that

1

2πi

∮
Ck

1

z
dz = 0

which leads to
1

2πi

∮
∂Γk

m ′F (w)

mF (w)2
dw = 0

the empirical version of which is

#{i : λi ∈ Γk }− #{i : µi ∈ Γk }

Since their difference tends to 0, there are as many λk ’s as µk ’s in the contour, hence µ1 is
asymptotically in the integration contour.
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Problem formulation

I We want to test the hypothesis H0 against H1,

CN×n 3 Y =

{
hxT +σW , information plus noise, hypothesis H1

σW , pure noise, hpothesis H0

with h ∈ CN , x ∈ CN , W ∈ CN×n.

I We assume no knowledge whatsoever but that W has i.i.d. (non-necessarily Gaussian)
entries.
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Exploiting the conditioning number

L. S. Cardoso, M. Debbah, P. Bianchi, J. Najim, “Cooperative spectrum sensing using random
matrix theory,” International Symposium on Wireless Pervasive Computing, pp. 334-338 , 2008.

I under either hypothesis,
I if H0, for N large, we expect FYYH close to the Marc̆enko-Pastur law, of support

[σ2
(
1 −
√
c
)2

,σ2
(
1 +
√
c
)2
].

I if H1, if population spike more than 1 +
√

N
n , largest eigenvalue is further away.

I the conditioning number of YYH is therefore asymptotically, as N,n→∞, N/n→ c,
I if H0,

cond(Y) ,
λmax

λmin
→

(
1 −
√
c
)2(

1 +
√
c
)2

I if H1,

cond(Y)→ t1 +
ct1

t1 − 1
>

(
1 −
√
c
)2(

1 +
√
c
)2

with t1 =
∑N

k=1 |hk |
2 +σ2

I the conditioning number is independent of σ. We then have the decision criterion, whether
or not σ is known,

decide


H0 : if cond(YYH) 6

(
1−
√

N
n

)2

(
1+
√

N
n

)2 + ε

H1 : otherwise.

for some security margin ε.
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Comments on the method

I Advantages:
I much simpler than finite size analysis
I ratio independent of σ, so σ needs not be known

I Drawbacks:
I only stands for very large N (dimension N for which asymptotic results arise function of σ!)
I ad-hoc method, does not rely on performance criterion.
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I ad-hoc method, does not rely on performance criterion.
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Generalized likelihood ratio test

P. Bianchi, M. Debbah, M. Maida, J. Najim, “Performance of Statistical Tests for Source
Detection using Random Matrix Theory,” IEEE Trans. on Information Theory, vol. 57, no. 4, pp.
2400-2419, 2011.

I Alternative generalized likelihood ratio test (GLRT) decision criterion, i.e.

C(Y) =
supσ2,h PY|h,σ2(Y, h,σ2)

supσ2 PY|σ2(Y|σ2)
.

I Denote

TN =
λmax(YYH)

1
N tr YYH

To guarantee a maximum false alarm ratio of α,

decide

{
H1 : if

(
1 − 1

N

)(1−N)n
T−n
N

(
1 −

TN
N

)(1−N)n
> ξN

H0 : otherwise.

for some threshold ξN that can be explicitly given as a function of α.

I Optimal test with respect to GLR.

I Performs better than conditioning number test.
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Performance comparison for unknown σ2, P
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Figure: ROC curve for a priori unknown σ2 of the Neyman-Pearson test, conditioning number method and
GLRT, K = 1, N = 4, M = 8, SNR = 0 dB. For the Neyman-Pearson test, both uniform and Jeffreys prior,
with exponent β = 1, are provided.
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Outline

Part 1: Fundamentals of Random Matrix Theory
1.1. The Stieltjes Transform Method
1.2 Extreme eigenvalues
1.3 Extreme eigenvalues: the spiked models
1.4 Spectrum Analysis and G-estimation

Application to Signal Sensing and Array Processing
2.1 Eigenvalue-based detection
2.2 The spiked G-MUSIC algorithm

Advanced Random Matrix Models for Robust Estimation
3.1 Robust Estimation of Scatter
3.2 Spiked model extension and robust G-MUSIC
3.3 Robust shrinkage and application to mathematical finance
3.4 Optimal robust GLRT detectors

Future Directions
4.1 Kernel matrices and kernel methods
4.2 Neural networks
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Source localization

A uniform array of M antennas receives signal from K radio sources during n signal snapshots.
Objective: Estimate the arrival angles θ1, · · · ,θK .

θ1

θ2
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Source Localization using Music Algorithm

We consider the scenario of K sources and N antenna-array capturing n observations:

xt =
K∑

k=1

a(θk)sk,t +σwt , t = 1, · · · ,n

I AN = [aN(θ1), · · · , aN(θK )] with aN(θ) =


1

eıπ sinθ

· · ·
eı(N−1)π sinθ


I σ2 is the noise variance and is set 1 for simplicity,

I Objective: infer θ1, · · · ,θK from the n observations

I Let XN = [x1, · · · , xn], then,

X = AS + W = [A IN ]

[
S
W

]
I If K is finite while n,N → +∞, the model correponds to the spiked covariance model.

I MUSIC Algorithm: Let Π be the orthogonal projection matrix on the span of AA∗ and
Π⊥ = IN −Π (orthogonal projector on the noise subspace). Angles θ1, · · · ,θK are the
unique ones verifying

η(θ) , aN(θ)
∗ΠaN(θ) = 0
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Traditional MUSIC algorithm

I Traditional MUSIC algorithm: Angles are estimated as local minima of:

aN(θ)
∗Π̂aN(θ)

where Π̂ is the orthogonal projection matrix on the eigenspace associated to the K largest
eigenvalues of 1

n XNX∗N
I It is well-known that this estimator is consistent when n→ +∞ with K ,N fixed,

I We consider the case of K finite −→ spiked covariance model

I What happens when n,N → +∞ ?
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Asymptotic behaviour of the traditional MUSIC (1)

→ We first need to understand the spectrum of 1
n XXH

I We know that the weak spectrum is the MP law

I Up to K eigenvalues can leave the support: we identify here these eigenvalues

→ Denote P = AAH = USΩUH
S , Ω = diag(ω1, . . . ,ωK ), and Z = [ST WT]T to recover (up to

one row) the generic spiked model

X = (IN + P)
1
2 Z.

I Reminder: If x eigenvalue of 1
n XXH with x > (1 +

√
c)2 (edge of MP law), for all large n,

x , λk
a.s.−→ ρk , 1 +ωk + c(1 +ωk)ω

−1
k , if ωk >

√
c

for some k.
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Asymptotic behaviour of the traditional MUSIC (2)
→ Recall the MUSIC approach: we want to estimate

η(θ) = a(θ)HUW UH
W a(θ) (UW ∈ CN×(N−K) such that UH

W US = 0)

→ Instead of this quantity, we start with the study of

a(θ)Hûi û
H
i a(θ), k = 1, . . . ,K

with û1, . . . , ûN the eigenvectors belonging to λ1 > . . . > λN .

→ To fall back on known RMT quantities, we use the Cauchy-integral:

a(θ)Hûi û
H
i a(θ) = −

1

2πı

∮
Ci

a(θ)H(
1

n
XXH − zIN)

−1a(θ)dz

with Ci a contour enclosing λi only.

→ Woodbury’s identity (A+UCV )−1 = A−1 −A−1U(C−1 +VA−1U)−1VA−1 gives:

aHûi û
H
i a =

−1

2πı

∮
Ci

aH(IN + P)−
1
2 (

ZZH

n
− zIN)

−1(IN + P)−
1
2 adz +

1

2πı

∮
Ci

âH
1 Ĥ−1â2dz

where P = USΩUH
S , and

Ĥ = IK + zΩ(IK +Ω)−1UH
S (

1
n ZZH − zIN)−1US

âH
1 = za(θ)H(IN + P)−

1
2 ( 1

n ZZH − zIN)−1US

â2 = Ω(IK +Ω)−1UH
S (

1
n ZZH − zIN)−1(IN + P)−

1
2 a(θ).
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Asymptotic behaviour of the traditional MUSIC (3)

I For large n, the first term has no pole, while the second converges to

Ti ,
1

2πı

∮
Ci

aH
1 H−1a2dz, with


H = IK + zm(z)Ω(IK +Ω)−1

aH
1 = zm(z)a∗(IN + P)−

1
2 US

a2 = m(z)Ω(IK +Ω)−1UH
S (IN + P)−

1
2 a

which after development is

Ti =

K∑
`=1

1

1 +ω`

1

2πı

∮
Ci

zm2(z)
1+ω`
ω`

+ zm(z)
dz.

I Using residue calculus, the sole pole is in ρi and we find

a(θ)Hûi û
H
i a(θ)

a.s.−→
1 − cω−2

i

1 + cω−1
i

a(θ)Huiu
H
i a(θ).

Therefore,

η̂(θ) = a(θ)HΠ̂a(θ)
a.s.−→ a(θ)a(θ)H −

K∑
i=1

1 − cω−2
i

1 + cω−1
i

a(θ)Huiu
H
i a(θ)
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Improved G-MUSIC

Recall that:

a(θ)HukuH
k a(θ) −

1 + cω−1
k

1 − cω−2
k

a(θ)Hûk ûH
k a(θ)

a.s.−→ 0

→ The ωk are however unknown. But they can be estimated from

λk
a.s.−→ ρk = 1 +ωk + c(1 +ωk)ω

−1
k

→ This gives finally

η̂G (θ) ' a(θ)Ha(θ) −
K∑

k=1

1 + cω̂−1
k

1 − cω̂−2
k

a(θ)Hûk ûH
k a(θ)

with

ω̂k =
λ̂k − (c + 1)

2
+

√
(c + 1 − λ̂k)2 − 4c)

→ We then obtain another (N,n)-consistent MUSIC estimator, only valid for K finite!
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Simulation results
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Figure: MUSIC against G-MUSIC for DoA detection of K = 3 signal sources, N = 20 sensors, M = 150
samples, SNR of 10 dB. Angles of arrival of 10◦, 35◦, and 37◦.
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Outline of the tutorial

I Part 1: Basics of Random Matrix Theory for Sample Covariance Matrices
I 1.1. Introduction to the Stieltjes transform method, Marc̆enko–Pastur law, advanced models
I 1.2. Extreme eigenvalues: no eigenvalue outside the support, exact separation, Tracy–Widom law
I 1.3. Extreme eigenvalues: the spiked models
I 1.4. Spectrum analysis and G-estimation

I Part 2: Application to Signal Sensing and Array Processing
I 2.1. Eigenvalue-based detection
I 2.2. The (spiked) G-MUSIC algorithm

I Part 3: Advanced Random Matrix Models for Robust Estimation
I 3.1. Robust estimation of scatter
I 3.2. Robust G-MUSIC
I 3.3. Robust shrinkage in finance
I 3.4. Second order robust statistics: GLRT detectors

I Part 4: Future Directions
I 4.1. Kernel random matrices and kernel methods
I 4.2. Neural network applications
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Covariance estimation and sample covariance matrices

P.J. Huber, “Robust Statistics”, 1981.

−→ Many statistical inference techniques rely on the sample covariance matrix (SCM) taken
from i.i.d. observations x1, . . . , xn of a r.v. x ∈ CN .

I The main reasons are:
I Assuming E [x] = 0, E [xx∗] = CN , with X = [x1, . . . , xn], by the LLN

ŜN ,
1

n
XX∗

a.s.−→ CN as n→∞.

→ Hence, if θ = f (CN), we often use the n-consistent estimate θ̂ = f (ŜN).
I The SCM ŜN is the ML estimate of CN for Gaussian x
→ One therefore expects θ̂ to closely approximate θ for all finite n.

I This approach however has two limitations:
I if N,n are of the same order of magnitude,

‖ŜN − CN‖ 6→ 0 as N,n→∞, N/n→ c > 0, so that in general |θ̂− θ| 6→ 0

→ This motivated the introduction of G-estimators.
I if x is not Gaussian, but has heavier tails, ŜN is a poor estimator for CN .
→ This motivated the introduction of robust estimators.
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from i.i.d. observations x1, . . . , xn of a r.v. x ∈ CN .

I The main reasons are:
I Assuming E [x] = 0, E [xx∗] = CN , with X = [x1, . . . , xn], by the LLN

ŜN ,
1

n
XX∗

a.s.−→ CN as n→∞.

→ Hence, if θ = f (CN), we often use the n-consistent estimate θ̂ = f (ŜN).

I The SCM ŜN is the ML estimate of CN for Gaussian x
→ One therefore expects θ̂ to closely approximate θ for all finite n.

I This approach however has two limitations:
I if N,n are of the same order of magnitude,

‖ŜN − CN‖ 6→ 0 as N,n→∞, N/n→ c > 0, so that in general |θ̂− θ| 6→ 0

→ This motivated the introduction of G-estimators.
I if x is not Gaussian, but has heavier tails, ŜN is a poor estimator for CN .
→ This motivated the introduction of robust estimators.
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Reminders on robust estimation

J. T. Kent, D. E. Tyler, “Redescending M-estimates of multivariate location and scatter”, 1991.
R. A. Maronna, “Robust M-estimators of multivariate location and scatter”, 1976.
Y. Chitour, F. Pascal, “Exact maximum likelihood estimates for SIRV covariance matrix:
Existence and algorithm analysis”, 2008.

→ The objectives of robust estimators:

I Replace the SCM ŜN by another estimate ĈN of CN which:
I rejects (or downscales) observations deterministically
I or rejects observations inconsistent with the full set of observations

→ Example: Huber estimator, ĈN defined as solution of

ĈN =
1

n

n∑
i=1

βixix
∗
i with βi = αmin

{
1,

k2

1
N x∗i Ĉ

−1
N xi

}
for some α > 1, k2 function of ĈN .

I Provide scale-free estimators of CN :
→ Example: Tyler’s estimator: if one observes xi = τizi for unknown scalars τi ,

ĈN =
1

n

n∑
i=1

1
1
N x∗i Ĉ

−1
N xi

xix
∗
i

I existence and uniqueness of ĈN defined up to a constant.
I few constraints on x1, . . . , xn (N + 1 of them must be linearly independent)
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Reminders on robust estimation

→ The objectives of robust estimators:

I replace the SCM ŜN by the ML estimate for CN .
→ Example: Maronna’s estimator for elliptical x

ĈN =
1

n

n∑
i=1

u

(
1

N
x∗i Ĉ

−1
N xi

)
xix
∗
i

with u(s) such that
(i) u(s) is continuous and non-increasing on [0,∞)

(ii) φ(s) = su(s) is non-decreasing, bounded by φ∞ > 1. Moreover, φ(s) increases where φ(s) < φ∞.

(note that Huber’s estimator is compliant with Maronna’s estimators)

I existence is not too demanding
I uniqueness imposes strictly increasing u(s) (inconsistent with Huber’s estimate)
I consistency result: ĈN → CN if u(s) meets the ML estimator for CN .
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I replace the SCM ŜN by the ML estimate for CN .
→ Example: Maronna’s estimator for elliptical x
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Robust Estimation and RMT

→ So far, RMT has mostly focused on the SCM ŜN .

I x = ANw , w having i.i.d. zero-mean unit variance entries,

I x satisfies concentration inequalities, e.g. elliptically distributed x .

Robust RMT estimation
Can we study the performance of estimators based on the ĈN?

I what are the spectral properties of ĈN?

I can we generate RMT-based estimators relying on ĈN?
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Setting and assumptions
I Assumptions:

I Take x1, . . . , xn ∈ CN “elliptical-like” random vectors, i.e. xi =
√
τiC

1
2
N wi where

I τ1, . . . ,τn ∈ R+ random or deterministic with 1
n
∑n

i=1 τi
a.s.−→ 1

I w1, . . . ,wn ∈ CN random independent with wi/
√
N uniformly distributed over the unit-sphere

I CN ∈ CN×N deterministic, with CN � 0 and lim supN ‖CN‖ <∞
I We denote cN , N/n and consider the growth regime cN → c ∈ (0, 1).

I Maronna’s estimator of scatter: (almost sure) unique solution to

ĈN =
1

n

n∑
i=1

u

(
1

N
x∗i Ĉ

−1
N xi

)
xix
∗
i

where u satisfies
(i) u : [0,∞)→ (0,∞) nonnegative continuous and non-increasing

(ii) φ : x 7→ xu(x) increasing and bounded with limx→∞φ(x) , φ∞ > 1
(iii) φ∞ < c−1

+ .

I Additional technical assumption: Let νn , 1
n

∑n
i=1 δτi . For each a > b > 0, a.s.

lim sup
t→∞

lim supn νn((t,∞))

φ(at) −φ(bt)
= 0.

→ Controls relative speed of the tail of νn versus the flattening speed of φ(x) as x →∞.
Examples:

I τi <M for each i . In this case, νn((t,∞)) = 0 a.s. for t >M.
I For u(t) = (1 +α)/(α+ t), α > 0, and τi i.i.d., it is sufficient to have E [τ1+ε

1 ] <∞.
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Heuristic approach
I Major issues with ĈN :

I Defined implicitly

I Sum of non-independent rank-one matrices from vectors
√
u( 1

N x∗i Ĉ
−1
N xi )xi (ĈN depends on all xj ’s).

I But there is some hope:
I First remark: we can work with CN = IN without generality restriction!
I Denote

Ĉ(j) =
1

n

n∑
i 6=j

u

(
1

N
x∗i Ĉ

−1
N xi

)
xix
∗
i

−→ Then intuitively, Ĉ(j) and xj are only “weakly” dependent.
I We expect in particular (highly non-rigorous but intuitive!!):

1

N
x∗i Ĉ

−1
(i) xi ' τi

1

N
tr Ĉ−1

(i) ' τi
1

N
tr Ĉ−1

N .

I Our heuristic approach:
I Rewrite 1

N x∗i Ĉ
−1
N xi as f ( 1

N x∗i Ĉ
−1
(i) xi ) for some function f (later called g−1)

I Deduce that

ĈN =
1

n

n∑
i=1

(u ◦ f )
(

1

N
x∗i Ĉ

−1
(i) xi

)
xix
∗
i

I Use 1
N x∗i Ĉ

−1
(i) xi ' τi

1
N tr Ĉ−1

N to get

ĈN '
1

n

n∑
i=1

(u ◦ f )
(
τi

1

N
tr Ĉ−1

N

)
xix
∗
i

I Use random matrix results to find a limiting value γ for 1
N tr Ĉ−1

N , and conclude

ĈN '
1

n

n∑
i=1

(u ◦ f )(τiγ)xix∗i .
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−1
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−1
N xi as f ( 1

N x∗i Ĉ
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Heuristic approach in detail: f and γ

I Determination of f : Recall the identity (A+ tvv∗)−1v = A−1/(1 + tv∗A−1v). Then

1

N
x∗i Ĉ

−1
N xi =

1
N x∗i Ĉ

−1
(i) xi

1 + cNu(
1
N x∗i Ĉ

−1
N xi )

1
N x∗i Ĉ

−1
(i) xi

so that
1

N
x∗i Ĉ

−1
(i) xi =

1
N x∗i Ĉ

−1
N xi

1 − cNφ( 1
N x∗i Ĉ

−1
N xi )

.

Now the function g : x 7→ x/(1 − cNφ(x)) is monotonous increasing (we use the assumption
φ∞ < c−1!), hence, with f = g−1,

1

N
x∗i Ĉ

−1
N xi = g−1

(
1

N
x∗i Ĉ

−1
(i) xi

)
.
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Heuristic approach in detail: f and γ
I Determination of γ: From previous calculus, we expect

ĈN '
1

n

n∑
i=1

(u ◦ g−1)

(
τi

1

N
tr Ĉ−1

N

)
xix
∗
i '

1

n

n∑
i=1

(u ◦ g−1) (τiγ) xix
∗
i .

Hence

γ ' 1

N
tr Ĉ−1

N ' 1

N
tr

(
1

n

n∑
i=1

(u ◦ g−1) (τiγ)τiwiw
∗
i

)−1

.

Since τi are independent of wi and γ deterministic, this is a Bai-Silverstein model

1

n
WDW ∗, W = [w1, . . . ,wn], D = diag(Dii ) = u ◦ g−1(τiγ).

And we have:

γ ' 1

N
tr

(
1

n
WDW ∗

)−1

= m 1
nWDW∗(0) '

(
0 +

∫
t(u ◦ g−1)(tγ)

1 + c(u ◦ g−1)(tγ)m 1
nWDW∗(0)

νN(dt)

)−1

=

(
1

n

n∑
i=1

τi (u ◦ g−1)(τiγ)

1 + cτi (u ◦ g−1)(τiγ)m 1
nWDW∗(0)

)−1

.

Since γ ' m 1
nWDW∗(0), this defines γ as a solution of a fixed-point equation:

γ =

(
1

n

n∑
i=1

τi (u ◦ g−1)(τiγ)

1 + cτi (u ◦ g−1)(τiγ)γ

)−1

.
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Main result

R. Couillet, F. Pascal, J. W. Silverstein, “The Random Matrix Regime of Maronna’s M-estimator
with elliptically distributed samples”, (submitted to) Elsevier Journal of Multivariate Analysis.

Theorem (Asymptotic Equivalence)
Under the assumptions defined earlier, we have

∥∥∥ĈN − ŜN

∥∥∥ a.s.−→ 0, where ŜN ,
1

n

n∑
i=1

v(τiγ)xix
∗
i

v(x) = (u ◦ g−1)(x), ψ(x) = xv(x), g(x) = x/(1 − cφ(x)) and γ > 0 unique solution of

1 =
1

n

n∑
i=1

ψ(τiγ)

1 + cψ(τiγ)
.

I Remarks:
I Th. says: first order substitution of ĈN by ŜN allowed for large N,n.
I It turns out that v ∼ u and ψ ∼ φ in general behavior.
I Corollaries:

max
16i6n

∣∣∣λi (ŜN) − λi (ĈN)
∣∣∣ a.s.−→ 0

1

N
tr (ĈN − zIN)

−1 −
1

N
tr (ŜN − zIN)

−1 a.s.−→ 0

−→ Important feature for detection and estimation.
I Proof: So far in the tutorial, we do not have a rigorous proof!
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Proof

I Fundamental idea: Showing that all 1
τi

1
N x∗i Ĉ

−1
(i) xi converge to the same limit γ.

I Technical trick: Denote

ei ,
v
(

1
N x∗i Ĉ

−1
(i) xi

)
v(τiγ)

and relabel terms such that
e1 6 . . . 6 en

We shall prove that, for each ` > 0,

e1 > 1 − ` i.o. and en < 1 + ` i.o.

I Some basic inequalities: Denoting di ,
1
τi

1
N x∗i Ĉ

−1
(i) xi =

1
Nw∗i Ĉ

−1
(i) wi , we have

ej =

v

(
τj

1
Nw∗j

(
1
n

∑
i 6=j τiv(τidi )wiw

∗
i

)−1
wj

)
v(τjγ)

=

v

(
τj

1
Nw∗j

(
1
n

∑
i 6=j τiv(τiγ)eiwiw

∗
i

)−1
wj

)
v(τjγ)

6
v

(
τj

1
Nw∗j

(
1
n

∑
i 6=j τiv(τiγ)enwiw

∗
i

)−1
wj

)
v(τjγ)

=

v

(
τj
en

1
Nw∗j

(
1
n

∑
i 6=j τiv(τiγ)wiw

∗
i

)−1
wj

)
v(τjγ)
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Proof
I Specialization to en:

en 6
v

(
τn
en

1
Nw∗n

(
1
n

∑
i 6=n τiv(τiγ)wiw

∗
i

)−1
wn

)
v(τnγ)

or equivalently, recalling ψ(x) = xv(x),

1
Nw∗n

(
1
n

∑
i 6=n τiv(τiγ)wiw

∗
i

)−1
wn

γ
6
ψ

(
τn
en

1
Nw∗n

(
1
n

∑
i 6=n τiv(τiγ)wiw

∗
i

)−1
wn

)
ψ(τnγ)

.

I Random Matrix results:
I By trace lemma, we should have

1

N
w∗n

 1

n

∑
i 6=n

τiv(τiγ)wiw
∗
i

−1

wn '
1

N
tr

 1

n

∑
i 6=n

τiv(τiγ)wiw
∗
i

−1

' γ

(by definition of γ as in previous slides). . .
I DANGER: by relabeling, wn no longer independent of w1, . . . ,wn−1!
⇒ Broken trace lemma!

I Solution: uniform convergence result.
By (higher order) moment bounds, Markov inequality, and Borel Cantelli, for all large n a.s.

max
16j6n

∣∣∣∣∣∣∣
1

N
w∗j

 1

n

∑
i 6=j

τiv(τiγ)wiw
∗
i

−1

wj −γ

∣∣∣∣∣∣∣ < ε.
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Proof

I Back to original problem: For all large n a.s., we then have (using growth of ψ)

γ− ε

γ
6
ψ
(
τn
en

(γ+ ε)
)

ψ(τnγ)
.

I Proof by contradiction: Assume en > 1+ ` i.o., then on a subsequence en > 1+ ` always and

γ− ε

γ
6
ψ
(
τn

1+` (γ+ ε)
)

ψ(τnγ)
.

I Bounded support for τi : If 0 < τ− < τi < τ+ <∞ for all i ,n, then on a subsequence where
τn → τ0,

γ− ε

γ︸ ︷︷ ︸
→1 as ε→0

6
ψ
( τ0

1+` (γ+ ε)
)

ψ(τ0γ)︸ ︷︷ ︸
→
ψ
( τ0

1+` γ
)

ψ(τ0γ)
<1 as ε→0

CONTRADICTION!

I Unbounded support for τi : Importance of relative growth of τn versus convergence of ψ to ψ∞.
Proof consists in dividing {τi } in two groups: few large ones versus all others.
Sufficient condition:

lim sup
t→∞

lim supn νn((t,∞))

φ(at) −φ(bt)
= 0.
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Simulations
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Figure: Histogram of the eigenvalues of 1
n

∑n
i=1 xix

∗
i for n = 2500, N = 500, CN = diag(I125, 3I125, 10I250), τ1

with Γ(.5, 2)-distribution.
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Simulations
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Limiting density

Figure: Histogram of the eigenvalues of ĈN (left) and ŜN (right) for n = 2500, N = 500,
CN = diag(I125, 3I125, 10I250), τ1 with Γ(.5, 2)-distribution.

I Remark/Corollary: Spectrum of ĈN a.s. bounded uniformly on n.
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Hint on potential applications

I Spectrum boundedness: for impulsive noise scenarios,
I SCM spectrum grows unbounded
I robust scatter estimator spectrum remains bounded

⇒ Robust estimators improve spectrum separability (important for many statistical inference
techniques seen previously)

I Spiked model generalization: we may expect a generalization to spiked models
I spikes are swallowed by the bulk in SCM context
I we expect spikes to re-emerge in robust scatter context

⇒ We shall see that we get even better than this. . .
I Application scenarios:

I Radar detection in impulsive noise (non-Gaussian noise, possibly clutter)
I Financial data analytics
I Any application where Gaussianity is too strong an assumption. . .
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Outline

Part 1: Fundamentals of Random Matrix Theory
1.1. The Stieltjes Transform Method
1.2 Extreme eigenvalues
1.3 Extreme eigenvalues: the spiked models
1.4 Spectrum Analysis and G-estimation

Application to Signal Sensing and Array Processing
2.1 Eigenvalue-based detection
2.2 The spiked G-MUSIC algorithm

Advanced Random Matrix Models for Robust Estimation
3.1 Robust Estimation of Scatter
3.2 Spiked model extension and robust G-MUSIC
3.3 Robust shrinkage and application to mathematical finance
3.4 Optimal robust GLRT detectors

Future Directions
4.1 Kernel matrices and kernel methods
4.2 Neural networks
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System Setting

I Signal model:

yi =
L∑

l=1

√
plal sli +

√
τiwi = Ai w̄i

Ai ,
[√

p1a1 . . .
√
pLaL

√
τi IN

]
, w̄i , [s1i , . . . , sLi ,wi ]

T.

with y1, . . . , yn ∈ CN satisfying:

1. τ1, . . . ,τn > 0 random such that νn , 1
n

∑n
i=1 δτi → ν weakly and

∫
tν(dt) = 1;

2. w1, . . . ,wn ∈ CN random independent unitarily invariant
√
N-norm;

3. L ∈ N, p1 > . . . > pL > 0 deterministic;

4. a1, . . . , aL ∈ CN deterministic or random with A∗A
a.s.−→ diag(p1, . . . ,pL) as N →∞, with

A , [
√
p1a1, . . . ,

√
pLaL] ∈ CN×L.

5. s1,1, . . . , sLn ∈ C independent with zero mean, unit variance.

I Relation to previous model: If L = 0, yi =
√
τiwi .

⇒ Elliptical model with covariance a low-rank (L) perturbation of IN .
⇒ We expect a spiked version of previous results.

I Application contexts:
I wireless communications: signals sli from L transmitters, N-antenna receiver; al random i.i.d.

channels (a∗l al ′ → δl−l ′ , e.g. al ∼ CN(0, IN/N));
I array processing: L sources emit signals sli at steering angle al = a(θl ). For ULA,

[a(θ)]j = N− 1
2 exp(2πıdj sin(θ)).
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Some intuition

I Signal detection/estimation in impulsive environments: Two scenarios
I heavy-tailed noise (elliptical, Gaussian mixtures, etc.)
I Gaussian noise with spurious impulsions

I Problems expected with SCM: Respectively,
I unbounded limiting spectrum, no source separation!
⇒ Invalidates G-MUSIC

I isolated eigenvalues due to spikes in time direction
⇒ False alarms induced by noise impulses!

I Our results: In a spiked model with noise impulsions,
I whatever noise impulsion type, spectrum of ĈN remains bounded
I isolated largest eigenvalues may appear, two classes:

I isolated eigenvalues due to noise impulses CANNOT exceed a threshold!
I all isolated eigenvalues beyond this threshold are due to signal
⇒ Detection criterion: everything above threshold is signal.
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Theoretical results

Theorem (Extension to spiked robust model)
Under the same assumptions as in previous section,

‖ĈN − ŜN‖
a.s.−→ 0

where

ŜN ,
1

n

n∑
i=1

v(τiγ)Ai w̄i w̄
∗
i A
∗
i

with γ the unique solution to

1 =

∫
ψ(tγ)

1 + cψ(tγ)
ν(dt)

and we recall

Ai ,
[√

p1a1 . . .
√
pLaL

√
τi IN

]
w̄i = [s1i , . . . , sLi ,wi ]

T.

I Remark: For L = 0, Ai = [0, . . . , 0, IN ].
⇒ Recover previous result Ai w̄i becomes wi .



Advanced Random Matrix Models for Robust Estimation/3.2 Spiked model extension and robust G-MUSIC 98/142

Theoretical results

Theorem (Extension to spiked robust model)
Under the same assumptions as in previous section,
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Localization of eigenvalues

Theorem (Eigenvalue localization)
Denote

I uk eigenvector of k-th largest eigenvalue of AA∗ =
∑L

i=1 piaia
∗
i

I ûk eigenvector of k-th largest eigenvalue of ĈN

Also define δ(x) unique positive solution to

δ(x) = c

(
−x +

∫
tvc(tγ)

1 + δ(x)tvc(tγ)
ν(dt)

)−1

.

Further denote

p− , lim
x↓S+

−c

(∫
δ(x)vc(tγ)

1 + δ(x)tvc(tγ)
ν(dt)

)−1

, S+ ,
φ∞(1 +

√
c)2

γ(1 − cφ∞)
.

Then, if pj > p−, λ̂j
a.s.−→Λj > S+, otherwise lim supn λ̂j 6 S+ a.s., with Λj unique positive

solution to

−c

(
δ(Λj)

∫
vc(τγ)

1 + δ(Λj)τvc(τγ)
ν(dτ)

)−1

= pj .
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Simulation
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N = 200, n = 1000, Sudent-t impulsions.
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Simulation
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Figure: Histogram of the eigenvalues of ĈN against the limiting spectral measure, for u(x) = (1 +α)/(α+ x)
with α = 0.2, L = 2, p1 = p2 = 1, N = 200, n = 1000, Student-t impulsions.
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Comments

I SCM vs robust: Spikes invisible in SCM in impulsive noise, reborn in robust estimate of
scatter.

I Largest eigenvalues:
I λi (ĈN) > S+ ⇒ Presence of a source!
I λi (ĈN) ∈ (sup(Support),S+)⇒ May be due to a source or to a noise impulse.
I λi (ĈN) < sup(Support)⇒ As usual, nothing can be said.

⇒ Induces a natural source detection algorithm.
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Eigenvalue and eigenvector projection estimates
I Two scenarios:

I known ν = limn
1
n

∑n
i=1 δτi

I unknown ν

Theorem (Estimation under known ν)
1. Power estimation. For each pj > p−,

−c

(
δ(λ̂j)

∫
vc(τγ)

1 + δ(λ̂j)τvc(τγ)
ν(dτ)

)−1
a.s.−→ pj .

2. Bilinear form estimation. For each a,b ∈ CN with ‖a‖ = ‖b‖ = 1, and pj > p−∑
k,pk=pj

a∗uku
∗
kb−

∑
k,pk=pj

wka
∗ûk û

∗
kb

a.s.−→ 0

where

wk =

∫
vc(tγ)(

1 + δ(λ̂k)tvc(tγ)
)2
ν(dt)

∫
vc(tγ)

1 + δ(λ̂k)tvc(tγ)
ν(dt)

1 −
1

c

∫
δ(λ̂k)

2t2vc(tγ)2(
1 + δ(λ̂k)tvc(tγ)

)2
ν(dt)


.
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Eigenvalue and eigenvector projection estimates

Theorem (Estimation under unknown ν)
1. Purely empirical power estimation. For each pj > p−,

−

(
δ̂(λ̂j)

1

N

n∑
i=1

v(τ̂i γ̂n)

1 + δ̂(λ̂j)τ̂iv(τ̂i γ̂n)

)−1
a.s.−→ pj .

2. Purely empirical bilinear form estimation. For each a,b ∈ CN with ‖a‖ = ‖b‖ = 1, and each
pj > p−, ∑

k,pk=pj

a∗uku
∗
kb−

∑
k,pk=pj

ŵka
∗ûk û

∗
kb

a.s.−→ 0

where

ŵk =

1

n

n∑
i=1

v(τ̂i γ̂)(
1 + δ̂(λ̂k)τ̂iv(τ̂i γ̂)

)2

1

n

n∑
i=1

v(τ̂i γ̂)

1 + δ̂(λ̂k)τ̂iv(τ̂i γ̂)

1 −
1

N

n∑
i=1

δ̂(λ̂k)
2τ̂2

i v(τ̂i γ̂)
2(

1 + δ̂(λ̂k)τ̂iv(τ̂i γ̂)
)2


γ̂ ,

1

n

n∑
i=1

1

N
y∗i Ĉ

−1
(i) yi , τ̂i ,

1

γ̂

1

N
y∗i Ĉ

−1
(i) yi , δ̂(x) as δ(x) but for (τi ,γ)→ (τ̂i , γ̂).



Advanced Random Matrix Models for Robust Estimation/3.2 Spiked model extension and robust G-MUSIC 105/142

Application to G-MUSIC
I Assume the model ai = a(θi ) with

a(θ) = N− 1
2 [exp(2πıdj sin(θ))]N−1

j=0 .

Corollary (Robust G-MUSIC)
Define η̂RG(θ) and η̂emp

RG (θ) as

η̂RG(θ) = 1 −

|{j ,pj>p−}|∑
k=1

wka(θ)
∗ûk ûka(θ)

η̂
emp
RG (θ) = 1 −

|{j ,pj>p−}|∑
k=1

ŵka(θ)
∗ûk ûka(θ).

Then, for each pj > p−,

θ̂j
a.s.−→ θj

θ̂
emp
j

a.s.−→ θj

where

θ̂j , argminθ∈Rκj
{η̂RG(θ)}

θ̂
emp
j , argminθ∈Rκj

{
η̂
emp
RG (θ)

}
.
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Simulations: Single-shot in elliptical noise
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Figure: Random realization of the localization functions for the various MUSIC estimators, with N = 20,
n = 100, two sources at 10◦ and 12◦, Student-t impulsions with parameter β = 100, u(x) = (1 +α)/(α+ x)
with α = 0.2. Powers p1 = p2 = 100.5 = 5 dB.
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Simulations: Elliptical noise
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Figure: Means square error performance of the estimation of θ1 = 10◦, with N = 20, n = 100, two sources at
10◦ and 12◦, Student-t impulsions with parameter β = 10, u(x) = (1 +α)/(α+ x) with α = 0.2, p1 = p2.
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Simulations: Spurious impulses
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Figure: Means square error performance of the estimation of θ1 = 10◦, with N = 20, n = 100, two sources at
10◦ and 12◦, sample outlier scenario τi = 1, i < n, τn = 100, u(x) = (1 +α)/(α+ x) with α = 0.2, p1 = p2.
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Outline

Part 1: Fundamentals of Random Matrix Theory
1.1. The Stieltjes Transform Method
1.2 Extreme eigenvalues
1.3 Extreme eigenvalues: the spiked models
1.4 Spectrum Analysis and G-estimation

Application to Signal Sensing and Array Processing
2.1 Eigenvalue-based detection
2.2 The spiked G-MUSIC algorithm

Advanced Random Matrix Models for Robust Estimation
3.1 Robust Estimation of Scatter
3.2 Spiked model extension and robust G-MUSIC
3.3 Robust shrinkage and application to mathematical finance
3.4 Optimal robust GLRT detectors

Future Directions
4.1 Kernel matrices and kernel methods
4.2 Neural networks
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Context

Ledoit and Wolf, 2004. A well-conditioned estimator for large-dimensional covariance matrices.
Pascal, Chitour, Quek, 2013. Generalized robust shrinkage estimator – Application to STAP data.
Chen, Wiesel, Hero, 2011. Robust shrinkage estimation of high-dimensional covariance matrices.

I Shrinkage covariance estimation: For N > n or N ' n, shrinkage estimator

(1 − ρ)
1

n

n∑
i=1

xix
∗
i + ρIN , for some ρ ∈ [0, 1].

I allows for invertibility, better conditioning
I ρ may be chosen to minimize an expected error metric

I Limitation of Maronna’s estimator:
I Maronna and Tyler estimators limited to N < n, otherwise do not exist
I introducing shrinkage in robust estimator cannot do much harm anyhow...

I Introducing the robust-shrinkage estimator: The literature proposes two such estimators

ĈN(ρ) = (1 − ρ)
1

n

n∑
i=1

xix
∗
i

1
N x∗i Ĉ

−1
N (ρ)xi

+ ρIN , ρ ∈ (max{0,
N − n

N
}, 1] (Pascal)

ČN(ρ) =
B̌N(ρ)

1
N tr B̌N(ρ)

, B̌N(ρ) = (1 − ρ)
1

n

n∑
i=1

xix
∗
i

1
N x∗i Ĉ

−1
N (ρ)xi

+ ρIN , ρ ∈ (0, 1] (Chen)
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(1 − ρ)
1

n

n∑
i=1

xix
∗
i + ρIN , for some ρ ∈ [0, 1].

I allows for invertibility, better conditioning
I ρ may be chosen to minimize an expected error metric

I Limitation of Maronna’s estimator:
I Maronna and Tyler estimators limited to N < n, otherwise do not exist
I introducing shrinkage in robust estimator cannot do much harm anyhow...

I Introducing the robust-shrinkage estimator: The literature proposes two such estimators

ĈN(ρ) = (1 − ρ)
1

n

n∑
i=1

xix
∗
i

1
N x∗i Ĉ

−1
N (ρ)xi

+ ρIN , ρ ∈ (max{0,
N − n

N
}, 1] (Pascal)

ČN(ρ) =
B̌N(ρ)

1
N tr B̌N(ρ)

, B̌N(ρ) = (1 − ρ)
1

n

n∑
i=1

xix
∗
i

1
N x∗i Ĉ

−1
N (ρ)xi

+ ρIN , ρ ∈ (0, 1] (Chen)
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Main theoretical result

I Which estimator is better?

Having asked to authors of both papers, their estimator was much better than the
other, but the arguments we received were quite vague...

I Our result: In the random matrix regime, both estimators tend to be one and the same!

I Assumptions: As before, “elliptical-like” model

xi = τiC
1
2
N wi

−→ This time, CN cannot be taken IN (due to +ρIN)!
−→ Maronna-based shrinkage is possible but more involved...
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Pascal’s estimator

Theorem (Pascal’s estimator)
For ε ∈ (0, min{1, c−1}), define R̂ε = [ε+ max{0, 1 − c−1}, 1]. Then, as N,n→∞,
N/n→ c ∈ (0,∞),

sup
ρ∈R̂ε

∥∥∥ĈN(ρ) − ŜN(ρ)
∥∥∥ a.s.−→ 0

where

ĈN(ρ) = (1 − ρ)
1

n

n∑
i=1

xix
∗
i

1
N x∗i ĈN(ρ)−1xi

+ ρIN

ŜN(ρ) =
1

γ̂(ρ)

1 − ρ

1 − (1 − ρ)c

1

n

n∑
i=1

C
1
2
N wiw

∗
i C

1
2
N + ρIN

and γ̂(ρ) is the unique positive solution to the equation in γ̂

1 =
1

N

N∑
i=1

λi (CN)

γ̂ρ+ (1 − ρ)λi (CN)
.

Moreover, ρ 7→ γ̂(ρ) is continuous on (0, 1].
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Chen’s estimator

Theorem (Chen’s estimator)
For ε ∈ (0, 1), define Řε = [ε, 1]. Then, as N,n→∞, N/n→ c ∈ (0,∞),

sup
ρ∈Řε

∥∥∥ČN(ρ) − ŠN(ρ)
∥∥∥ a.s.−→ 0

where

ČN(ρ) =
B̌N(ρ)

1
N tr B̌N(ρ)

, B̌N(ρ) = (1 − ρ)
1

n

n∑
i=1

xix
∗
i

1
N x∗i ČN(ρ)−1xi

+ ρIN

ŠN(ρ) =
1 − ρ

1 − ρ+Tρ

1

n

n∑
i=1

C
1
2
N wiw

∗
i C

1
2
N +

Tρ
1 − ρ+Tρ

IN

in which Tρ = ργ̌(ρ)F(γ̌(ρ);ρ) with, for all x > 0,

F(x ;ρ) =
1

2
(ρ− c(1 − ρ)) +

√
1

4
(ρ− c(1 − ρ))2 + (1 − ρ)

1

x

and γ̌(ρ) is the unique positive solution to the equation in γ̌

1 =
1

N

N∑
i=1

λi (CN)

γ̌ρ+ 1−ρ
(1−ρ)c+F(γ̌;ρ)λi (CN)

.

Moreover, ρ 7→ γ̌(ρ) is continuous on (0, 1].
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Asymptotic Model Equivalence

Theorem (Model Equivalence)
For each ρ ∈ (0, 1], there exist unique ρ̂ ∈ (max{0, 1 − c−1}, 1] and ρ̌ ∈ (0, 1] such that

ŜN(ρ̂)
1

γ̂(ρ̂)
1−ρ̂

1−(1−ρ̂)c + ρ̂
= ŠN(ρ̌) = (1 − ρ)

1

n

n∑
i=1

C
1
2
N wiw

∗
i C

1
2
N + ρIN .

Besides, (0, 1]→ (max{0, 1 − c−1}, 1], ρ 7→ ρ̂ and (0, 1]→ (0, 1], ρ 7→ ρ̌ are increasing and onto.

I Up to normalization, both estimators behave the same!

I Both estimators behave the same as an impulsion-free Ledoit-Wolf estimator

I About uniformity: Uniformity over ρ in the theorems is essential to find optimal values of ρ.
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Optimal Shrinkage parameter

I Chen sought for a Frobenius norm minimizing ρ but got stuck by implicit nature of ČN(ρ)

I Our results allow for a simplification of the problem for large N,n!

I Model equivalence says only one problem needs be solved.

Theorem (Optimal Shrinkage)
For each ρ ∈ (0, 1], define

D̂N(ρ) =
1

N
tr

( ĈN(ρ)
1
N tr ĈN(ρ)

− CN

)2
 , ĎN(ρ) =

1

N
tr

((
ČN(ρ) − CN

)2
)

.

Denote D? = c M2−1
c+M2−1 , ρ? = c

c+M2−1 , M2 = limN
1
N

∑N
i=1 λ

2
i (CN) and ρ̂?, ρ̌? unique solutions to

ρ̂?

1
γ̂(ρ̂?)

1−ρ̂?

1−(1−ρ̂?)c + ρ̂?
=

Tρ̌?

1 − ρ̌? +Tρ̌?
= ρ?.

Then, letting ε small enough,

inf
ρ∈R̂ε

D̂N(ρ)
a.s.−→ D?, inf

ρ∈Řε
ĎN(ρ)

a.s.−→ D?

D̂N(ρ̂
?)

a.s.−→ D?, ĎN(ρ̌
?)

a.s.−→ D?.
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ρ∈Řε
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Estimating ρ̂? and ρ̌?

I Theorem only useful if ρ̂? and ρ̌? can be estimated!

I Careful control of the proofs provide many ways to estimate these.

I Proposition below provides one example.

Optimal Shrinkage Estimate
Let ρ̂N ∈ (max{0, 1 − c−1}, 1] and ρ̌N ∈ (0, 1] be solutions (not necessarily unique) to

ρ̂N
1
N tr ĈN(ρ̂N)

=
cN

1
N tr

[(
1
n

∑n
i=1

xi x
∗
i

1
N ‖xi‖

2

)2
]
− 1

ρ̌N
1
n

∑n
i=1

x∗i ČN (ρ̌N )−1xi
‖xi‖2

1 − ρ̌N + ρ̌N
1
n

∑n
i=1

x∗i ČN (ρ̌N )−1xi
‖xi‖2

=
cN

1
N tr

[(
1
n

∑n
i=1

xi x
∗
i

1
N ‖xi‖

2

)2
]
− 1

defined arbitrarily when no such solutions exist. Then

ρ̂N
a.s.−→ ρ̂?, ρ̌N

a.s.−→ ρ̌?

D̂N(ρ̂N)
a.s.−→ D?, ĎN(ρ̌N)

a.s.−→ D?.
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Simulations
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Figure: Performance of optimal shrinkage averaged over 10 000 Monte Carlo simulations, for N = 32, various
values of n, [CN ]ij = r |i−j| with r = 0.7; ρ̌N as above; ρ̌O the clairvoyant estimator proposed in (Chen’11).
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Figure: Shrinkage parameter ρ averaged over 10 000 Monte Carlo simulations, for N = 32, various values of n,
[CN ]ij = r |i−j| with r = 0.7; ρ̂N and ρ̌N as above; ρ̌O the clairvoyant estimator proposed in (Chen’11);

ρ̂◦ = argmin
{ρ∈(max{0,1−c−1

N
},1]}

{D̂N(ρ)} and ρ̌◦ = argmin{ρ∈(0,1]}{ĎN(ρ)}.
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Outline

Part 1: Fundamentals of Random Matrix Theory
1.1. The Stieltjes Transform Method
1.2 Extreme eigenvalues
1.3 Extreme eigenvalues: the spiked models
1.4 Spectrum Analysis and G-estimation

Application to Signal Sensing and Array Processing
2.1 Eigenvalue-based detection
2.2 The spiked G-MUSIC algorithm

Advanced Random Matrix Models for Robust Estimation
3.1 Robust Estimation of Scatter
3.2 Spiked model extension and robust G-MUSIC
3.3 Robust shrinkage and application to mathematical finance
3.4 Optimal robust GLRT detectors

Future Directions
4.1 Kernel matrices and kernel methods
4.2 Neural networks
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Context

I Hypothesis testing problem: Two sets of data

I Initial pure-noise data: x1, . . . , xn, xi =
√
τiC

1
2
N wi as before.

I New incoming data y given by:

y =

{
x , H0

αp + x , H1

with x =
√
τC

1
2
N w , p ∈ CN deterministic known, α unknown.

I GLRT detection test:

TN(ρ)
H1

≶
H0

Γ

for some detection threshold Γ where

TN(ρ) ,
|y∗Ĉ−1

N (ρ)p|√
y∗Ĉ−1

N (ρ)y
√
p∗Ĉ−1

N (ρ)p
.

and ĈN(ρ) defined in previous section.

−→ In fact, originally found to be ĈN(0) but
I only valid for N < n
I introducing ρ may bring improved for arbitrary N/n ratios.
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Objectives and main results

I Initial observations:
I As N,n→∞, N/n→ c > 0, under H0,

TN(ρ)
a.s.−→ 0.

⇒ Trivial result of little interest!

I Natural question: for finite N,n and given Γ , find ρ such that

P (TN(ρ) > Γ) = min

I Turns out the correct non-trivial object is, for γ > 0 fixed

P
(√

NTN(ρ) > γ
)
= min

I Objectives:
I for each ρ, develop central limit theorem to evaluate

lim
N,n→∞
N/n→c

P
(√

NTN(ρ) > γ
)

I determine limiting minimizing ρ
I empirically estimate minimizing ρ
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What do we need?

CLT over ĈN statistics

I We know that ‖ĈN(ρ) − ŜN(ρ)‖
a.s.−→ 0

−→ Key result so far!

I What about ‖
√
N(ĈN(ρ) − ŜN(ρ))‖ ?

−→ Does not converge to zero!!!

I But there is hope. . . : √
N(a∗Ĉ−1

N (ρ)b− a∗Ŝ−1
N (ρ)b)

a.s.−→ 0

⇒ This is our main result!

I This requires much more delicate treatment, not discussed in this tutorial.
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a.s.−→ 0

−→ Key result so far!

I What about ‖
√
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N (ρ)b− a∗Ŝ−1
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Main results

Theorem (Fluctuation of bilinear forms)
Let a,b ∈ CN with ‖a‖ = ‖b‖ = 1. Then, as N,n→∞ with N/n→ c > 0, for any ε > 0 and
every k ∈ Z,

sup
ρ∈Rκ

N1−ε
∣∣∣a∗Ĉ k

N(ρ)b− a∗Ŝk
N(ρ)b

∣∣∣ a.s.−→ 0

where Rκ = [κ+ max{0, 1 − 1/c}, 1].
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False alarm performance

Theorem (Asymptotic detector performance)
As N,n→∞ with N/n→ c ∈ (0,∞),

sup
ρ∈Rκ

∣∣∣∣∣P
(
TN(ρ) >

γ√
N

)
− exp

(
−

γ2

2σ2
N(ρ̂)

)∣∣∣∣∣→ 0

where ρ 7→ ρ̂ is the aforementioned mapping and

σ2
N(ρ̂) ,

1

2

p∗CNQ
2
N(ρ̂)p

p∗QN(ρ̂)p · 1
N tr CNQN(ρ̂) ·

(
1 − c(1 − ρ)2m(−ρ̂)2 1

N tr C2
NQ

2
N(ρ̂)

)
with QN(ρ̂) , (IN + (1 − ρ̂)m(−ρ̂)CN)

−1.

I Limiting Rayleigh distribution
⇒ Weak convergence to Rayleigh variable RN(ρ̂)

I Remark: σN and ρ̂ not a function of γ
⇒ There exists a uniformly optimal ρ!
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Simulation
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Figure: Histogram distribution function of the
√
NTN(ρ) versus RN(ρ̂), N = 20, p = N− 1

2 [1, . . . , 1]T, CN

Toeplitz from AR of order 0.7, cN = 1/2, ρ = 0.2.
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Simulation
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Figure: Histogram distribution function of the
√
NTN(ρ) versus RN(ρ̂), N = 100, p = N− 1

2 [1, . . . , 1]T, CN

Toeplitz from AR of order 0.7, cN = 1/2, ρ = 0.2.
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Empirical estimation of optimal ρ

I Optimal ρ can be found by line search. . . but CN unknown!
I We shall successively:

I empirical estimate σN(ρ̂)
I minimize the estimate
I prove by uniformity asymptotic optimality of estimate

Theorem (Empirical performance estimation)
For ρ ∈ (max{0, 1 − c−1

N }, 1), let

σ̂2
N(ρ̂) ,

1

2

1 − ρ̂ · p
∗Ĉ−2

N (ρ)p

p∗Ĉ−1
N (ρ)p

· 1
N tr ĈN(ρ)(

1 − c + cρ̂ 1
N tr Ĉ−1

N (ρ) · 1
N tr ĈN(ρ)

)(
1 − ρ̂ 1

N tr Ĉ−1
N (ρ) · 1

N tr ĈN(ρ)
) .

Also let σ̂2
N(1) , limρ̂↑1 σ̂

2
N(ρ̂). Then

sup
ρ∈Rκ

∣∣∣σ2
N(ρ̂) − σ̂

2
N(ρ̂)

∣∣∣ a.s.−→ 0.
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Final result

Theorem (Optimality of empirical estimator)
Define

ρ̂∗N = argmin{ρ∈R′κ}

{
σ̂2
N(ρ̂)

}
.

Then, for every γ > 0,

P
(√

NTN(ρ̂
∗
N) > γ

)
− inf
ρ∈Rκ

{
P
(√

NTN(ρ) > γ
)}
→ 0.
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Simulations
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Figure: False alarm rate P(
√
NTN(ρ) > γ), N = 20, p = N− 1

2 [1, . . . , 1]T, CN Toeplitz from AR of order 0.7,
cN = 1/2.
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Simulations
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Figure: False alarm rate P(TN(ρ) > Γ) for N = 20 and N = 100, p = N− 1
2 [1, . . . , 1]T, [CN ]ij = 0.7|i−j|,

cN = 1/2.
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Outline

Part 1: Fundamentals of Random Matrix Theory
1.1. The Stieltjes Transform Method
1.2 Extreme eigenvalues
1.3 Extreme eigenvalues: the spiked models
1.4 Spectrum Analysis and G-estimation

Application to Signal Sensing and Array Processing
2.1 Eigenvalue-based detection
2.2 The spiked G-MUSIC algorithm

Advanced Random Matrix Models for Robust Estimation
3.1 Robust Estimation of Scatter
3.2 Spiked model extension and robust G-MUSIC
3.3 Robust shrinkage and application to mathematical finance
3.4 Optimal robust GLRT detectors

Future Directions
4.1 Kernel matrices and kernel methods
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Motivation: Spectral Clustering

N. El Karoui. The spectrum of kernel random matrices. The Annals of Statistics, 38(1):150, 2010.

I Objective: Clustering data x1, . . . , xn ∈ CN in k similarity classes
I classical machine learning problem ⇒ brought here to big data!

I assumes similarity function, e.g. Gaussian kernel

f (xi , xj ) = exp

(
−
‖xi − xj‖2

2σ2

)
I naturally brings kernel matrix:

W = [Wij ]16i ,j6n = [f (xi , xj )]16i ,j6n.

I Letting x1, . . . , xn random, leads naturally to studying kernel random matrices.

I Little is known on such random matrices, but for xi i.i.d. zero mean and covariance IN :∥∥∥∥W −

(
α11T −β

1

n
WW ∗

)∥∥∥∥ a.s.−→ 0

for some α,β depending on f and its derivatives.
⇒ Basically, W gets equivalent to a rank-one matrix.
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Motivation: Spectral Clustering

I Clustering x1, . . . , xn in k often written as:

(RatioCut) min
S1,...,Sk

S1∪...∪Sk=S
∀i 6=j , Si∩Sj=∅

k∑
i=1

∑
j∈Si ,j̄∈Sc

i

f (xj , xj̄)

|Si |
.

−→ But difficult to solve, NP hard!

I Can be equivalently rewritten

(RatioCut) min
M∈M, MTM=Ik

tr
(
MTLM

)
where M = {M = [mij ]16i6n,16j6k , mij = |Sj |

− 1
2 δxi∈Sj

} and

L = [Lij ]16i ,j6n = [−W + diag(W · 1)]16i ,j6n =

[
−f (xi , xj) + δi ,j

n∑
l=1

f (xi , xl)

]
16i ,j6n

.

I Relaxing M to unitary leads to a simple eigenvalue/eigenvector problem:
⇒ Spectral clustering.
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Objectives

I Generalization to k distributions for x1, . . . , xn should lead to asymptotically rank-k W
matrices.

I If established, specific choices of known “good” kernel better understood.

I Eventually, find optimal choices for kernels.
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Echo-state neural networks

I Neural network:
I Input neuron signal st ∈ R (could be multivariate)
I Output neuron signal yt ∈ R (could be multivariate)
I N neurons with

I state xt ∈ RN at time t
I connectivity matrix W ∈ RN×N

I connectivity vector to input wI ∈ RN

I connectivity vector to output wO ∈ RN

I State evolution x0 = 0 (say) and
xt+1 = S (Wxt +wI st)

with S entry-wise sigmoid function.
I Output observation

yt = wT
O xt .

I Classical neural networks:
I Learning phase: input-output data (st , yt) used to learn W ,wO ,wI (via e.g. LS)
I Interpolation phase: W ,wO ,wI fixed, we observe output yt from new data st .

⇒ Poses overlearning problems, difficult to set up, demands lots of learning data.

I Echo-state neural networks: To solve the problems of neural networks
I W and wI set to be a random matrix, no longer learned
I only wO is learned

⇒ Reduces amount of data to learn, shows striking performances in some scenarios.
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ESN and random matrices

I W ,wI being random, performance study involves random matrices.
⇒ Stability, chaos regime, etc. involve extreme eigenvalues of W

I main difficulty is non-linearity caused by S
I Performance measures:

I MSE for training data
I MSE for interpolated data

⇒ Optimization to be performed on regression method!, e.g.

wO = (XtrainX
T
train +γIN)

−1Xtrainytrain

with Xtrain = [x1, . . . , xT ], ytrain = [y1, . . . , yT ]T, T train period.

I In first approximation: S = Id.
⇒ MSE performance with stationary inputs leads to study

∞∑
j=1

W jwIw
T
I (WT )j

⇒ New random matrix model, can be analyzed with usual tools though.
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To know more about all this

Our webpages:

I http://couillet.romain.perso.sfr.fr

I http://sri-uq.kaust.edu.sa/Pages/KammounAbla.aspx
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