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High-dimensional data

» Consider n observations xi, - - - , Xxpof size N, independent and identically distributed with
zero-mean and covariance Cy, i.e, E [x;x{!] = Cy,

> Let Xy = [x1,---,Xp]. The sample covariance estimate .§N of Cy is given by:
n

& 1 H_ 1
Sy=LXuXE =13 xix7,
i=1
> From the law of large numbers, as n — +oo,

Sn 25 cy.

—— Convergence in the operator norm
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High-dimensional data

Consider n observations xj, - - - , x,0f size N, independent and identically distributed with
zero-mean and covariance Cy, i.e, E [x;x{!] = Cy,

Let Xy = [Xx1, -+ ,Xn]. The sample covariance estimate .§N of Cy is given by:
n

2 1 H 1
Sy=LIXuXH =13 xx7,
=1\

From the law of large numbers, as n — +oo,
§N L2 N Cy.

Convergence in the operator norm
In practice, it might be difficult to afford n — +oo,

> ifn> N, §N can be sufficiently accurate,

> if N/n= O(1), we model this scenario by the following assumption: N — +oco0 and n — oo with
N
T —=c
n 0

> Under this assumption, we have pointwise convergence to each element of Cy, i.e,

(8), 25 <

but ||Sy — Cp/|| does not converge to zero.
—— The convergence in the operator norm does not hold.



Illustration

Consider Cy = Iy, the spectrum of §N is different from that of Cy

—— Spectrum of eigenvalues
—— Marchenko-Pastur Law
1 T T

Histogram

Eigenvalues of §N

Figure: Spectrum of eigenvalues when N = 400 and n = 2000

—— The asymptotic spectrum can be characterized by the Marchenko-Pastur Law.
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Reasons of interest for signal processing

> Scale similarity in array processing applications: large antenna arrays vs limited number of
observations,

> Need for detection and estimation based on large dimensional random inputs: subspace
methods in array processing.

> The assumption "number of obervations > dimension of observation” is no longer valid:
large arrays, systems with fast dynamics.

Example
MUSIC with “few” samples (or in large arrays) Call A(®) = [a(01),...,a(0k)] € CNXK N large,
K small, the steering vectors to identify and X = [xq,...,x,] € CN*n the n samples, taken from

K
=) a(0k)/PrSke + owt.
k=1

The MUSIC localization function reads y(0) = a( )

HO l:l*,/'va(e) in the “signal vs. noise”
spectral decomposition XXM = U5/\5U5 + U lAJ;'V



Reasons of interest for signal processing

> Scale similarity in array processing applications: large antenna arrays vs limited number of
observations,

> Need for detection and estimation based on large dimensional random inputs: subspace
methods in array processing.

> The assumption "number of obervations > dimension of observation” is no longer valid:
large arrays, systems with fast dynamics.

Example
MUSIC with “few” samples (or in large arrays) Call A(®) = [a(01),...,a(0k)] € CNXK N large,
K small, the steering vectors to identify and X = [xq,...,x,] € CN*n the n samples, taken from

K
Xt = Za(ek)\fpksk,t + owz.
k=1

The MUSIC localization function reads y(0) = a(e)HlfJWl:lF,/'Va(S) in the “signal vs. noise”
spectral decomposition XXM = lAJs/A\SLAJE + lAJW/A\WlAJb'V.
Writing equivalently A(©)PA(©)H + o2ly = UsAsUY + 62Uy Ul as n, N — o0, n/N — ¢,
from our previous remarks

0,/ 0%, £ uyull,

= Music is NOT consistent in the large N, n regime! We need improved RMT-based solutions.
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1.1. The Stieltjes Transform Method

N



Stieltjes Transform

Definition
Let F be a real probability distribution function. The Stieltjes transform mg of F is the function

defined, for z € C*, as
1

A—2z

me(2) :f dF(A)

For a < b continuity points of F, denoting z = x + iy, we have the inverse formula

L .
F(b) — F(a) :yh—%%L JImg (x + iy)ldx

If F has a density f at x, then

f(x) = lim %j[m,:(x—k iy)]

y—0

The Stieltjes transform is to the Cauchy transform as the characteristic functin is to the Fourier
transform.



Stieltjes Transform

Definition
Let F be a real probability distribution function. The Stieltjes transform mg of F is the function
defined, for z € C*, as

me(2) = [ 52— dF ()

For a < b continuity points of F, denoting z = x + iy, we have the inverse formula
1 b
F(b) — F(a) = lim —J JIme(x + iy)ldx
y—=07T |,

If F has a density f at x, then

f(x) = lim %j[m,:(x—k iy)]

y—0
The Stieltjes transform is to the Cauchy transform as the characteristic functin is to the Fourier
transform.

Equivalence F <> mg
Similar to the Fourier transform, knowing mg is the same as knowing F.



Stieltjes transform of a Hermitian matrix

> Let X be a N x N random matrix. Denote by dFX the empirical measure of its eigenvalues
AL -, AN, ie, dFX = % Z,'-Vzl 8y;. The Stieltjes transform of X denoted by mx = mg is
the stieltjes transform of its empirical measure:

1 18 1 1 .
mx(z)=JA72dF(A)=NZA_7Z=Ntr(x—zl,\,) .
=1 "'

> The Stieltjes transform of a random matrix is the trace of the resolvent matrix
Q(z) = (X— zIN)fl. The resolvent matrix plays a key role in the derivation of many of the
results of random matrix theory.

> For compactly supported F, mg(z) is linked to the moments M, = E%trxk,

+00
me(z) = — Z Mszkfl
k=0

> mg is defined in general on C, but exists everywhere outside the support of F.



Side remark: the “Shannon”-transform

A. M. Tulino, S. Verdu, “Random matrix theory and wireless communications,” Now Publishers
Inc., 2004.
Definition

Let F be a probability distribution, mg its Stieltjes transform, then the Shannon-transform Vg of
F is defined as

VEe(x) £ Eo log(1 + xA)dF(A) = Jw <% — m,:(—t)) dt

> This quantity is fundamental to wireless communication purposes!
> Note that mp itself is of interest, not F!



Proof of the Maréenko-Pastur law

V. A. Maréenko, L. A. Pastur, "“Distributions of eigenvalues for some sets of random matrices”,
Math USSR-Sbornik, vol. 1, no. 4, pp. 457-483, 1967.

The theorem to be proven is the following

Theorem

Let Xy € CN*" have i.i.d. zero mean variance 1/n entries with finite eighth order moments. As
n, N — oo with % — ¢ € (0,0), the e.s.d. ofXNXH converges almost surely to a nonrandom
distribution function F. with density f. given by

fe(x) = (L—c1)8(x) + (x—=a)*(b—x)*+

27tex

where a = (1 —+/c)2, and b= (1 + \/¢)2.



Density fc(x)

The Marcenko-Pastur density
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0.8 |-

0.2 |-

Figure: Mar&enko-Pastur law for different limit ratios ¢ = limy_, o, N/n.
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Diagonal entries of the resolvent

(XuXE —zIy) 7t of XyXH. Denote

Since we want an expression of mg, we start by identifying the diagonal entries of the resolvent

0[]




Diagonal entries of the resolvent

Since we want an expression of mg, we start by identifying the diagonal entries of the resolvent
(XpXH —zIy) 7t of XyXH. Denote
yH
xw=[V]

Now, for z € C*, we have

-1 Hy, HyH
H_ _Yly—=z y
<XNXN Z"V) = { Yy  YYH oz,

Consider the first diagonal element of (Ry — le)fl. From the matrix inversion lemma,

A B\ ! (A—BD1C)1 _A!B(D—CA 1B) !
c bp)] ~\—(A-BD!C)lcAa! (D—CA1B)!
which here gives
1 1
H =
[(X"’XN 2lw) ]u N (YAY —z1,) 1y



Trace Lemma

Z. Bai, J. Silverstein, “Spectral Analysis of Large Dimensional Random Matrices”, Springer Series
in Statistics, 2009.

To go further, we need the following result,

Theorem
Let {Ap} € CN*N with bounded spectral norm. Let {xy} € CN, be a random vector of i.i.d.
entries with zero mean, variance 1/N and finite 8t" order moment, independent of Ay. Then

1
XNANXN = NtrAN 250.
For large N, we therefore have approximately

1
(x,\,xnle,v) } - 1 1
1 —z—zytr (YHY —z1,)-1




Rank-1 perturbation lemma

J. W. Silverstein, Z. D. Bai, “On the empirical distribution of eigenvalues of a class of large
dimensional random matrices,” Journal of Multivariate Analysis, vol. 54, no. 2, pp. 175-192,
1995.

It is somewhat intuitive that adding a single column to Y won't affect the trace in the limit.

Theorem
Let A and B be N x N with B Hermitian positive definite, and v € CN. ForzeC \R™,

1 [IA]

1
’ Ndist(z,R+)

- =i __ H =i
Ntr((B M) (B +w! —zly) )A’g

with ||A|| the spectral norm of A, and dist(z, A) = inf,ca|ly — z||.

Therefore, for large N, we have approximately,

[(x,\,xn—zl,\,)f1 ~ !
1 —z—zytr (YHY —z1,)-1
N 1
T —z— zhtr XXy — zl1,) L

o
—z —zymg(2)

in which we recognize the Stieltjes transform mg of the l.s.d. of XNXN.



End of the proof

We have again the relation

B (2 () L
N TMEWZ) = mF(z N =z
hence 1 1
H - ~
[(XNXN Z'N) ]11— B —1—z—zme(2)

Note that the choice (1, 1) is irrelevant here, so the expression is valid for all pair (i,i). Summing
over the N terms and averaging, we finally have

1

_1 H -
me(2) = gytr (XX —2w) = oy

which solve a polynomial of second order. Finally

c—1_1

\/?
me(2) = 1. (c—1-—2)2 42.

2z 2 2z

From the inverse Stieltjes transform formula, we then verify that mg is the Stieltjes transform of
the Maréenko-Pastur law.
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Asymptotic results involving Stieltjes transform

J. W. Silverstein, Z. D. Bai, “On the empirical distribution of eigenvalues of a class of large
dimensional random matrices,” Journal of Multivariate Analysis, vol. 54, no. 2, pp. 175-192,
1995.

Theorem .
Let Yy = %XNCE/, where Xy € C"™*N has i.i.d entries of mean 0 and variance 1. Consider the

regime n, N — +oco with % — c. Let iy be the Stieltjes transform associated to XyX},. Then,
my — mpy — 0 almost surely for all z € C\R,., where my (z) is the unique solution in the set

{ze Cy,my(2) € Cy} to:
([ ctdFn !
) = <J 1+ tmy(2) _Z>



Asymptotic results involving Stieltjes transform

J. W. Silverstein, Z. D. Bai, “On the empirical distribution of eigenvalues of a class of large
dimensional random matrices,” Journal of Multivariate Analysis, vol. 54, no. 2, pp. 175-192,
1995.

Theorem .
Let Yy = %XNCE/, where Xy € C"™*N has i.i.d entries of mean 0 and variance 1. Consider the

regime n, N — +oco with % — c. Let My be the Stieltjes transform associated to XyX},. Then,
my — mpy — 0 almost surely for all z € C\R,., where my (z) is the unique solution in the set

{zeCy,my(z) € Cy} to:
_ ctdFCn
) = <J 1+ tmy(2) _Z>

> in general, no explicit expression for F, the distribution whose Stietljes transform is my (z).

-1

» The theorem above characterizes also the Stieltjes transform of By = XHXN denoted by my,
1
my = cmy + (¢ — 1)~

This gives access to the spectrum of the sample covariance matrix model of x, when
1
yi = C2x;, x; i.id., Cy = Elyy"].



Getting F' from mg
» Remember that, for a < b real,

1
Bl — (Frem .
F'(x) = )I/Il)nO 7_[J[m,.—(x +iy)]
where mg is (up to now) only defined on C™.




Getting F' from mg
» Remember that, for a < b real,

F' = lim — ]
(x) yLn;]O 7Tﬁ[m,:(x +iy)]
where mg is (up to now) only defined on C™.
> to plot the density F’,

mg(z) for each z, and plot J[mg(z)].

> first approach: span z = x + iy on the line {x € R, y = ¢} parallel but close to the real axis, solve
z
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mg(z) for each z, and plot J[mg(z)].

> first approach: span z = x + iy on the line {x € R, y = ¢} parallel but close to the real axis, solve
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> refined approach: spectral analysis, to come next.




Getting F' from mg

» Remember that, for a < b real,

1
F'(x) = lim = + i
(x) yl Y ﬂﬁ[m,:(x iy)]
where mg is (up to now) only defined on C™.

> to plot the density F’,
> first approach: span z = x + iy on the line {x € R, y = ¢} parallel but close to the real axis, solve
mg(z) for each z, and plot J[mg(z)].
> refined approach: spectral analysis, to come next.

Example (Sample covariance matrix)

1 1
For N multiple of 3, let FC(x) = 31,1 + 11,3+ 31,k and let By = 1C3ZHZyCR with
FBv — F, then

mg = cmg + (cfl)%
_ t o\
me(z) = (cJ T+ tmp(2) dF*(t) z)

We take ¢ =1/10 and alternatively K =7 and K = 4.



Spectrum of the sample covariance matrix

~ — — Empirical eigenvalue distribution ~ — - Empirical eigenvalue distribution

Limit law Limit law
06 [~
0.4 |- .
2 2z
7 7
2 2
5 5
a a
02 —

Eigenvalues

Eigenvalues

1 1
Figure: Histogram of the eigenvalues of By = 2C3 ZHZyC2, N =3000, n =300, with Cy diagonal composed
of three evenly weighted masses in (i) 1, 3 and 7 on top, (ii) 1, 3 and 4 at bottom.
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Part 1: Fundamentals of Random Matrix Theory

1.2 Extreme eigenvalues

N



Support of a distribution

The support of a density f is the closure of the set {x, f(x) # 0}.
For instance the support of the maréenko-Pastur law is [(1 — P, (14 \/E)Q}.

Density fc(x)

12 T T T

0.6 |-

0.4 -

Support of the Marchenko-Pastur law

—02 | | | | |

Figure: Mar&enko-Pastur law for different limit ratios ¢ = 0.5.



Extreme eigenvalues

> Limiting spectral results are insufficient to infer about the location of extreme eigenvalues.

» Example: Consider dFy(x) = & Y N1 84,. Then, dF} = MzldFy + %64, (x) and dFy with
Apn > ay satisfy:
dFy — dFf = 0.

> However, the supports of Fyy and Fy, differ by the mass Ay.

Question: How is the behaviour of the extreme eigenvalues of random covariance matrices?



No eigenvalue outside the support of sample covariance matrices

Z. D. Bai, J. W. Silverstein, “No eigenvalues outside the support of the limiting spectral
distribution of large-dimensional sample covariance matrices,” The Annals of Probability, vol. 26,
no.l pp. 316-345, 1998.

Theorem
Let Xy € CNXM with i.i.d. entries with zero mean, unit variance and infinite fourth order. Let
Cy € CN*N be nonrandom and bounded in norm. Let my be the unique solution in C. of

N T e -t N N—n1l
my = — R | N = e =
N (z o J 1< NdF (T)> , mp(z) nmN(z) + - z,z€C+,

Let Fp be the distribution associated to the Stieltjes transform mp (z). Consider

By = %C,%,XNXNC,%. We know that FBN — Fp converge weakly to zero. Choose Ny € N and
[a, b], a > 0, outside the support of Fy for all N > Ny. Denote Ly the set of eigenvalues of By, .
Then,

P(LynN[a bl #0io0.)=0.



No eigenvalue outside the support: which models?

J. W. Silverstein, P. Debashis, “No eigenvalues outside the support of the limiting empirical
spectral distribution of a separable covariance matrix,” J. of Multivariate Analysis vol. 100, no. 1,
pp. 37-57, 2009.

> It has already been shown that (for all large N) there is no eigenvalues outside the support of
> Mar&enko-Pastur law: XX, X i.i.d. with zero mean, variance 1/N, finite 4t" order moment.
1 1 -
> Sample covariance matrix: C2XXHC32 and XHCX, X i.i.d. with zero mean, variance 1/N, finite 4t"
order moment. . L
> Doubly-correlated matrix: R2ZXCXHR2, X with i.i.d. zero mean, variance 1/N, finite 4" order
moment.



No eigenvalue outside the support: which models?

J. W. Silverstein, P. Debashis, “No eigenvalues outside the support of the limiting empirical
spectral distribution of a separable covariance matrix,” J. of Multivariate Analysis vol. 100, no. 1,
pp. 37-57, 2009.
> It has already been shown that (for all large N) there is no eigenvalues outside the support of
> Mar&enko-Pastur law: XX, X i.i.d. with zero mean, variance 1/N, finite 4t" order moment.
> Sample covariance matrix: CEXXHCE and XHCX, X i.i.d. with zero mean, variance 1/N, finite 4t"
order moment. . L
> Doubly-correlated matrix: R2ZXCXHR2, X with i.i.d. zero mean, variance 1/N, finite 4" order
moment.

J. W. Silverstein, Z.D. Bai, Y.Q. Yin, “A note on the largest eigenvalue of a large dimensional
sample covariance matrix,” Journal of Multivariate Analysis, vol. 26, no. 2, pp. 166-168, 1988.
» If 4th order moment is infinite,
. H
lim SL’:IP ?\z(n);x =00



No eigenvalue outside the support: which models?

J. W. Silverstein, P. Debashis, “No eigenvalues outside the support of the limiting empirical
spectral distribution of a separable covariance matrix,” J. of Multivariate Analysis vol. 100, no. 1,
pp. 37-57, 2009.
> It has already been shown that (for all large N) there is no eigenvalues outside the support of
> Mar&enko-Pastur law: XX, X i.i.d. with zero mean, variance 1/N, finite 4t" order moment.
> Sample covariance matrix: CEXXHCE and XHCX, X i.i.d. with zero mean, variance 1/N, finite 4t"
order moment.

1 1
> Doubly-correlated matrix: R2ZXCXHR2, X with i.i.d. zero mean, variance 1/N, finite 4" order
moment.

J. W. Silverstein, Z.D. Bai, Y.Q. Yin, “A note on the largest eigenvalue of a large dimensional
sample covariance matrix,” Journal of Multivariate Analysis, vol. 26, no. 2, pp. 166-168, 1988.

» If 4th order moment is infinite,
. H
lim SL,:Ip ?\fn)éx =00

J. Silverstein, Z. Bai, “No eigenvalues outside the support of the limiting spectral distribution of
information-plus-noise type matrices” to appear in Random Matrices: Theory and Applications.

> Only recently, information plus noise models, X with i.i.d. zero mean, variance 1/N, finite
4th order moment
(X+A)(X+ A,

and the generally correlation model where each column of X has correlation R;.



Extreme eigenvalues: Deeper into the spectrum

eigenvalues.

» In order to derive statistical detection tests, we need more information on the extreme




Extreme eigenvalues: Deeper into the spectrum

» In order to derive statistical detection tests, we need more information on the extreme
eigenvalues.

> We will study the fluctuations of the extreme eigenvalues (second order statistics)

> However, the Stieltjes transform method is not adapted here!
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Distribution of the largest eigenvalues of XXH

C. A. Tracy, H. Widom, “On orthogonal and symplectic matrix ensembles,” Communications in
Mathematical Physics, vol. 177, no. 3, pp. 727-754, 1996.

K. Johansson, “Shape Fluctuations and Random Matrices,” Comm. Math. Phys. vol. 209, pp.
437-476, 2000.

Theorem
Let X € CN*" have i.i.d. Gaussian entries of zero mean and variance 1/n. Denoting }\f\r, the
largest eigenvalue of XXM, then

+ 2
3Ay = (AF Vel (1+:/El) =Xt
(1++/c)3c2

with ¢ = limy N/n and F* the Tracy-Widom distribution given by

Ft(t) =exp <7Jm

t

N ~F*

(x— £ (x)dx)
with q the Painlevé Il function that solves the differential equation

q” (x) = xq(x) +2q%(x)
q(X) ~x—s00 Ai(x)

in which Ai(x) is the Airy function.



The law of Tracy-Widom

0.5

— — — Empirical Eigenvalues

Tracy-Widom law F+

Density

—4 —2 0 2

Centered-scaled largest eigenvalue of XXH

Figure: Distribution of P (1+ ﬁ)_% [Af = (14 /€)?] against the distribution of X+ (distributed as
Tracy-Widom law) for N = 500, n = 1500, ¢ = 1/3, for the covariance matrix model XXH. Empirical

distribution taken over 10,000 Monte-Carlo simulations. B
o = = = DA



Techniques of proof
Method of proof requires very different tools:
kernel determinant.

> orthogonal (Laguerre) polynomials: to write joint unordered eigenvalue distribution as a

P
PN(AL, ... Ap) = ﬂ,itl Kn (A7, Aj)
with K(x, y) the kernel Laguerre polynomial.




Techniques of proof
Method of proof requires very different tools:

> orthogonal (Laguerre) polynomials: to write joint unordered eigenvalue distribution as a
kernel determinant.

p
on(AL, ..., Ap) = ﬂ,itl Kn (A7, Aj)

with K(x, y) the kernel Laguerre polynomial.
> Fredholm determinants: we can write hole probability as a Fredholm determinant.

_ 1)k k
P(N2/3(7\,-7(1+ﬁ)2)eA,i:1 ..... N):1+§ (kl,) L L _Cji_ethN(XivXj)l [ dx
>1 ! c c ij=

2 det(ly — Kn).




Techniques of proof
Method of proof requires very different tools:

> orthogonal (Laguerre) polynomials: to write joint unordered eigenvalue distribution as a
kernel determinant.

p
on(AL, ..., Ap) = itj,itl Kn (A7, Aj)

with K(x, y) the kernel Laguerre polynomial.
> Fredholm determinants: we can write hole probability as a Fredholm determinant.
PN (Ai—(1+Ve)P)eAi=1..,N)=1 (-y* det K, dx;
( A—(1+Ve)?)eAi=1,..., )_ +) ool SRR . 2 v 0x,x5) [ dxi
k>1

2 det(ly — Kn).

> kernel theory: show that Kj converges to a Airy kernel.

AT A
Ki(xy) = Kairy (x,y) = SO = BLLIRE),




Techniques of proof

Method of proof requires very different tools:

>

orthogonal (Laguerre) polynomials: to write joint unordered eigenvalue distribution as a
kernel determinant.

p
on(AL, ..., Ap) = I,OJlitl Kn (A7, Aj)

with K(x, y) the kernel Laguerre polynomial.

Fredholm determinants: we can write hole probability as a Fredholm determinant.
P(N2/3(A-7(1+ﬁ)2)eAi:1 N):HZ(*NJ J det Ky (x; ) [T o
! oo k' Jac Ac ij—1 @ erdio !

k>1

2 det(ly — Kn).

kernel theory: show that Ky converges to a Airy kernel.

Ki(xy) = Kairy (x,y) = SO = BLLIRE),

differential equation tricks: hole probability in [t, c0) gives right-most eigenvalue distribution,
which is simplified as solution of a Painelvé differential equation: the Tracy-Widom
distribution.

Fr(t) = e JT00a0%de g/ — 4q 1263, q(x) ~xmpo0 Ai(X).



Comments on the Tracy-Widom law

> deeper result than limit eigenvalue result

> gives a hint on convergence speed

> fairly biased on the left: even fewer eigenvalues outside the support.




v

Comments on the Tracy-Widom law

deeper result than limit eigenvalue result
gives a hint on convergence speed
fairly biased on the left: even fewer eigenvalues outside the support.

can be shown to hold for other distributions than Gaussian under mild

assumptions
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1.3 Extreme eigenvalues: the spiked models
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Spiked models

» We consider n independent observations xp,

.-+, x, of size N,
> The correlation structure is in general "white + low rank”,

E[x1x{] =1+ P
where P is of low rank,

> Objective: to infer the eigenvalues and/or the eigenvectors of P




The first result

J. Baik, J. W. Silverstein, “Eigenvalues of large sample covariance matrices of spiked population
models,” Journal of Multivariate Analysis, vol. 97, no. 6, pp. 1382-1408, 2006.

Theorem . .
Let By =1 (1+P)2 XyXY (1 +P)2, where Xy € CN*" has i.i.d., zero mean and unit variance

entries, and Py € RV*N with eigenvalues given by:

eig(P) = diag(w1, ..., wk,0,...,...,0)
~—
N—K
with wy > ... > wkg > —1, c=limy N/n. Let A1,---, Ay be the eigenvalues of By. We then

have

> if w; > /¢, A} 2514 w; + cl:ru‘fj (i.e. beyond the Mar&enko—Pastur bulk!)

> if w; € (0,v/cl, Aj 25 (14 +/<)? (i.e. right-edge of the Maréenko—Pastur bulk!)
> if wj € [—/c,0), A 22 (1 —/©)? (i.e. left-edge of the Mar&enko—Pastur bulk!)
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models,” Journal of Multivariate Analysis, vol. 97, no. 6, pp. 1382-1408, 2006.

Theorem . .
Let By =1 (1+P)2 XyXY (1 +P)2, where Xy € CN*" has i.i.d., zero mean and unit variance

entries, and Py € RV*N with eigenvalues given by:

eig(P) = diag(w1, ..., wk,0,...,...,0)
~—
N—K
with wy > ... > wkg > —1, c=limy N/n. Let A1,---, Ay be the eigenvalues of By. We then

have
1+w
@f

> if w; € (0,v/cl, Aj 25 (14 +/<)? (i.e. right-edge of the Maréenko—Pastur bulk!)
> if wj € [—/c,0), A 22 (1 —/©)? (i.e. left-edge of the Mar&enko—Pastur bulk!)

> for the other eigenvalues, we discriminate over c:
1+w
w

> if w; > /¢, A} 2514 wj+c i (i.e. beyond the Maréenko—Pastur bulk!)

> ifw;<—vCc c<1, A 251+ w;+c—1 (ie beyond the Maréenko—Pastur bulk!)

j
> ifw; < —c c>1, A 25 (1—/C)? (ie. left-edge of the Maréenko—Pastur bulk!)



[llustration of spiked models

Mar&enko-Pastur law, ¢ =1/3

X Empirical Eigenvalues

0.8 [~

Density

Eigenvalues

1 1
Figure: Eigenvalues of By = %[P + D2 X XA (P +1)2, where w; = wy =1 and w3 = w4 = 2 Dimensions:

N =500, n=1500.




[llustration of spiked models

Mar&enko-Pastur law, ¢ = 1/3

X Empirical Eigenvalues

0.8 [~

Density

1+
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1+ wy+ Clt}uz)
Eigenvalues
1 1 . .
Figure: Eigenvalues of By = %[P + D2 X XA (P +1)2, where w; = wy =1 and w3 = w4 = 2 Dimensions:
N =500, n = 1500.
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Interpretation of the result

> if c is large, or alternatively, if some “population spikes” are small, part to all of the
population spikes are attracted by the support!
> if so, no way to decide on the existence of the spikes from looking at the largest eigenvalues

in signal processing words, signals might be missed using largest eigenvalues methods.

> as a consequence,
> the more the sensors (N),
> the larger c =limN/n,
> the more probable we miss a spike
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> We start with a study of the limiting extreme eigenvalues.
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Sketch of the proof

» We start with a study of the limiting extreme eigenvalues.
> Let x > 0, then

det(By — xly) = det(ly + P) det(XX" — xly + x[ly — (Iy + P)])
= det(ly + P) det(XX" — xlpy) " Ldet(ly + xP(ly + P)~1(XX" — x1y)~1).

> if x eigenvalue of By but not of XXH, then for n large, x > (1 4 /c)? (edge of MP law
support) and

det(ly + xP(ly + P)~1(XXH — x1py) 1) = det (I, + xQ (Iy + Q) TUH (XXH — x1y)~TU) =0
with P = UQUM, U e cNVxr.
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» We start with a study of the limiting extreme eigenvalues.
> Let x > 0, then

det(By — xly) = det(ly + P) det(XX" — xly + x[ly — (Iy + P)])
= det(ly + P) det(XX" — xlpy) " Ldet(ly + xP(ly + P)~1(XX" — x1y)~1).

> if x eigenvalue of By but not of XXH, then for n large, x > (1 4 /c)? (edge of MP law
support) and

det(ly + xP(ly + P)~1(XXH — x1py) 1) = det (I, + xQ (Iy + Q) TUH (XXH — x1y)~TU) =0
with P = UQUM, U e cNVxr.
> due to unitary invariance of X,

UH (XXH — x1py)~Tu 23 J(t—x)_ldFMP(t)lr 2 m(x)l,

with FMP the MP law, and m(x) the Stieltjes transform of the MP law (often known for
r =1 as trace lemma).



Sketch of the proof

» We start with a study of the limiting extreme eigenvalues.
> Let x > 0, then

det(By — xly) = det(ly + P) det(XX" — xly + x[ly — (Iy + P)])
= det(ly + P) det(XX" — xlpy) " Ldet(ly + xP(ly + P)~1(XX" — x1y)~1).

> if x eigenvalue of By but not of XXH, then for n large, x > (1 4 /c)? (edge of MP law
support) and

det(ly + xP(ly + P)~1(XXH — x1py) 1) = det (I, + xQ (Iy + Q) TUH (XXH — x1y)~TU) =0
with P = UQUM, U e cNVxr.
> due to unitary invariance of X,

UH (XXH — x1py)~Tu 23 J(t—x)_ldFMP(t)lr 2 m(x)l,

with FMP the MP law, and m(x) the Stieltjes transform of the MP law (often known for
r =1 as trace lemma).

> finally, we have that the limiting solutions x; satisfy x,m(xx) + (1 + wk)w;1 =0.
> replacing m(x), this is finally:

Ak g's—}xké1—0—(,Uk—0—c(1+(,uk)w;1, if w, >+/c
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outside (0,1 + /c).
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Comments on the result

> there exists a “phase transition” when the largest population eigenvalues move from inside to
outside (0,1 + +/c).
» more importantly, for t; < 1+ +/c, we still have the same Tracy-Widom,

> no way to see the spike even when zooming in
> in fact, simulation suggests that convergence rate to the Tracy-Widom is slower with spikes.
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Stieltjes transform inversion for covariance matrix models

J. W. Silverstein, S. Choi, “Analysis of the limiting spectral distribution of large dimensional
random matrices,” Journal of Multivariate Analysis, vol. 54, no. 2, pp. 295-309, 1995.

1
» We know for the model CEIXN, Xy € CNX1 that, if FCv = FC, the Stieltjes transform of the
es.d. of By = %XWCNXN satisfies mg, (z) 25 mg(z), with

I G S Sy
mE(z)_< z CJ1+tm£(z)dF (t))

which is unique on the set {z € C*, mg(z) € CT}.



Stieltjes transform inversion for covariance matrix models

J. W. Silverstein, S. Choi, “Analysis of the limiting spectral distribution of large dimensional
random matrices,” Journal of Multivariate Analysis, vol. 54, no. 2, pp. 295-309, 1995.

1
» We know for the model CEIXN, Xy € CNX1 that, if FCv = FC, the Stieltjes transform of the
es.d. of By = %XWCNXN satisfies mg, (z) 25 mg(z), with

I G S Sy
mE(z)_< z CJ1+tm£(z)dF (t))

which is unique on the set {z € C*, mg(z) € CT}.

» This can be inverted into

for me Ct.



Stieltjes transform inversion and spectrum characterization

Remember that we can evaluate the spectrum density by taking a complex line close to R and
evaluating J[mpg(z)] along this line. Now we can do better.




Stieltjes transform inversion and spectrum characterization

Remember that we can evaluate the spectrum density by taking a complex line close to R and
evaluating J[mpg(z)] along this line. Now we can do better.

It is shown that

lim  mg(z) = mp(x) exists.
z—=XxeER* T
zeC+

We also have,
» for xp inside the support, the density f(x) of F in xp is %ﬁ[mg] with mg the unique solution

m e Ct of )
lzp(m) =) %0 = - — ¢ |
m

t
1+tm

dFC€(t)

> let mp € R* and xg the equivalent to z¢ on the real line. Then “xq outside the support of F"
is equivalent to “x/ (mg(xg)) > 0, mg(xp) # 0, —1/mg (xp) outside the support of FCr.



Stieltjes transform inversion and spectrum characterization

Remember that we can evaluate the spectrum density by taking a complex line close to R and
evaluating J[mpg(z)] along this line. Now we can do better.

It is shown that

lim  mg(z) = mp(x) exists.
z—=XxeER* T
zeC+

We also have,
» for xp inside the support, the density f(x) of F in xp is %j[mg] with mg the unique solution

me Ct of )
lzp(m) =) %0 = - — ¢ |
m

t
1+tm

dFC€(t)

> let mp € R* and xg the equivalent to z¢ on the real line. Then “xq outside the support of F"
is equivalent to “x/ (mg(xg)) > 0, mg(xp) # 0, —1/mg (xp) outside the support of FCr.

This provides another way to determine the support!. For m € (—o0,0), evaluate xg(m).
Whenever xp decreases, the image is outside the support. The rest is inside.



Another way to determine the spectrum: spectrum to analyze

— — — Empirical eigenvalue distribution

Limit law

0.4 [~

Density

Eigenvalues

1 1
Figure: Histogram of the eigenvalues of By = 2C2 XyXHCZ, N =300, n = 3000, with Cy diagonal composed
of three evenly weighted masses in 1, 3 and 7.

Qa0

[m] = =



xg(m), meB
e Support of F

Another way to determine the spectrum: inverse function method

xg(m

T

m

Gl
i

1 1
Figure: Stieltjes transform of By = 1C2 XyX§C2, N =300, n = 3000, with Cy diagonal composed of three
evenly weighted masses in 1, 3 and 7. The support of F is read on the vertical axis, whenever mg is decreasing.

&




Cluster boundaries in sample covariance matrix models

Xavier Mestre, “Improved estimation of eigenvalues of covariance matrices and their associated
subspaces using their sample estimates,” IEEE Transactions on Information Theory, vol. 54, no.
11, Nov. 2008.

Theorem
Let Xy € CN*" have i.i.d. entries of zero mean, unit variance, and Cp be diagonal such that
FCv = FC, as n, N — oo, N/n — ¢, where F€ has K masses in ti, ..., tx with multiplicity

1 1
ny, ..., nk respectively. Then the l.s.d. of By = %CE,XNXHCKI has support 8 given by
S=I[x;, x1Ubg . x5 1U...U [Xa,xa]

with x; = xp(mg), x4 = xg(mJ), and

K
1 1 ty
xF (m) —*;*C;kzﬂ”km

with 2Q the number of real-valued solutions counting multiplicities of x{(m) = 0 denoted in
order mi <mf <m; <mj < S Smg < ma.



Comments on spectrum characterization

Previous results allows to determine
> the spectrum boundaries

» the number Q of clusters

> as a consequence, the total separation (Q = K) or not (Q < K) of the spectrum in K
clusters.




Comments on spectrum characterization

Previous results allows to determine
> the spectrum boundaries
» the number Q of clusters

> as a consequence, the total separation (Q = K) or not (Q < K) of the spectrum in K
clusters.

Mestre goes further: to determine local separability of the spectrum,

> identify the K inflexion points, i.e. the K solutions my,..., mk to
xF(m)=0

» check whether x¢£(m;) > 0 and x/(mj 1) >0

> if so, the cluster in between corresponds to a single population eigenvalue.



Exact eigenvalue separation

Z. D. Bai, J. W. Silverstein, “Exact Separation of Eigenvalues of Large Dimensional Sample
Covariance Matrices,” The Annals of Probability, vol. 27, no. 3, pp. 1536-1555, 1999.

> Recall that the result on “no eigenvalue outside the support”
> says where eigenvalues are not to be found
> does not say, as we feel, that (if cluster separation) in cluster k, there are exactly ny eigenvalues.



Exact eigenvalue separation

Z. D. Bai, J. W. Silverstein, “Exact Separation of Eigenvalues of Large Dimensional Sample
Covariance Matrices,” The Annals of Probability, vol. 27, no. 3, pp. 1536-1555, 1999.
> Recall that the result on “no eigenvalue outside the support”

> says where eigenvalues are not to be found
> does not say, as we feel, that (if cluster separation) in cluster k, there are exactly ny eigenvalues

» This is in fact the case,

— — - Empirical eigenvalue distribution

Limit law

n n; n;
1 2 Eigenvalues 3
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Eigeninference: Introduction of the problem

» Reminder: for a sequence xi,

. Xn € CN of independent random variables,
En=13 el
" k=1 K
is an n-consistent estimator of Cy = E|

xlx?].
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Eigeninference: Introduction of the problem

» Reminder: for a sequence xi,

. Xn € CN of independent random variables,

1I'I

H
— XX
n O Xk
k=1

Cy
is an n-consistent estimator of Cy = E[x1x7'].

H
If n, N have comparable sizes, this no longer holds.




Eigeninference: Introduction of the problem

» Reminder: for a sequence Xi,...,xp € CcN of independent random variables,

o 1 & H
CN ; Z Xp X
k=1

is an n-consistent estimator of Cy = E[xlx?].
> If n, N have comparable sizes, this no longer holds.

» Typically, n, N-consistent estimators of the full Cy matrix perform very badly.



Eigeninference: Introduction of the problem

> Reminder: for a sequence x1, ..., x, € CV of independent random variables,

. 1 &
C = xxH
N nkZ_lkk

is an n-consistent estimator of Cy = E[xlx?].

> If n, N have comparable sizes, this no longer holds.
» Typically, n, N-consistent estimators of the full Cy matrix perform very badly.

> If only the eigenvalues of Cy are of interest, things can be done. The process of retrieving
information about eigenvalues, eigenspace projections, or functional of these is called
eigen-inference.



Girko and the G-estimators

V. Girko, “Ten years of general statistical analysis,”
http://www.general-statistical-analysis.girko.freewebspace.com /chapter14.pdf

> Girko has come up with more than 50 N, n-consistent estimators, called G-estimators
(Generalized estimators). Among those, we find

> Gj-estimator of generalized variance. For

n(n—1)N
(n—N)TIN_;(n— k)

with o, any sequence such that «,2log(n/(n— N)) — 0, we have

G (€n) = «; ! |logdet(Cy) + log

G (€n) — o logdet(Cy) — 0

in probability.



Girko and the G-estimators

V. Girko, “Ten years of general statistical analysis,”
http://www.general-statistical-analysis.girko.freewebspace.com /chapter14.pdf

> Girko has come up with more than 50 N, n-consistent estimators, called G-estimators
(Generalized estimators). Among those, we find

> Gj-estimator of generalized variance. For

n(n—1)N
(n—N)TIN_;(n— k)

with o, any sequence such that «,2log(n/(n— N)) — 0, we have

G (€n) = «; ! |logdet(Cy) + log

G (€n) — o logdet(Cy) — 0
in probability.

» However, Girko's proofs are rarely readable, if existent.



A long standing problem

X. Mestre, “Improved estimation of eigenvalues and eigenvectors of covariance matrices using
their sample estimates,” IEEE trans. on Information Theory, vol. 54, no. 11, pp. 5113-5129,
2008.

1 1
» Consider the model By = %CK,XNXHCQ, where FCN s formed of a finite number of masses
Blg oo op Fgo
> It has long been thought the inverse problem of estimating ti, ..., tx from the Stieltjes
transform method was not possible.

» Only trials were iterative convex optimization methods.
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A long standing problem

X. Mestre, “Improved estimation of eigenvalues and eigenvectors of covariance matrices using
their sample estimates,” IEEE trans. on Information Theory, vol. 54, no. 11, pp. 5113-5129,
2008.

1 1
» Consider the model By = %CK,XNXHCQ, where FCN s formed of a finite number of masses
Blg oo op Fgo
> It has long been thought the inverse problem of estimating ti, ..., tx from the Stieltjes
transform method was not possible.

» Only trials were iterative convex optimization methods.
> The problem was partially solved by Mestre in 2008!

> His technique uses elegant complex analysis tools. The description of this technique is the
subject of this course.



Reminders

1 1
> Consider the sample covariance matrix model By = %CE,XNXﬂCEI.
» Up to now, we saw:
> that there is no eigenvalue outside the support with probability 1 for all large N.
in each cluster is exactly as we expect.

> that for all large N, when the spectrum is divided into clusters, the number of empirical eigenvalues




Reminders

1 1
> Consider the sample covariance matrix model By = %CE,XNXﬂCE,.

» Up to now, we saw:

> that there is no eigenvalue outside the support with probability 1 for all large N.
> that for all large N, when the spectrum is divided into clusters, the number of empirical eigenvalues
in each cluster is exactly as we expect.

> these results are of crucial importance for the following.



Eigen-inference for the sample covariance matrix model

X. Mestre, “Improved estimation of eigenvalues and eigenvectors of covariance matrices using
their sample estimates,” |IEEE trans. on Information Theory, vol. 54, no. 11, pp. 5113-5129,
2008.

Theorem . .

Consider the model By = %CE,XNXHCZ, with Xy € CN*n jjd. with entries of zero mean, unit

variance, and Cp € RVXN js diagonal with K distinct entries ty, ..., tx of multiplicity Ny, ..., Nk
of same order as n. Let k € {1,..., K}. Then, if the cluster associated to t, is separated from the
clusters associated to k —1 and k+1, as N,n — oo, N/n — c,

~ n
tk:Ni/( Z (Am — Km)

meN

is an N, n-consistent estimator of t,, where N = {N — Z,K:k Ni+1,...,N— Z,szﬂ N;},
A1,..., Ay are the eigenvalues of By and wy, ..., uy are the N solutions of

anchN (u)=0

or equivalently, w1, ..., uy are the eigenvalues of diag(A) — ﬁ\/X\/XT



Remarks on Mestre's result

Assuming cluster separation, the result consists in

> taking the empirical ordered A;'s inside the cluster (note that exact separation ensures there
are Ny of these!)

> getting the ordered eigenvalues g, ..., uy of

diag(A) — %ﬁ\/f

with A = (A1,...,An)T. Keep only those of index inside N.

> take the difference and scale.



How to obtain this result?

> Major trick requires tools from complex analysis
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How to obtain this result?

> Major trick requires tools from complex analysis

my(z) = (—z—CJ £

-1
C
Trtmy o (t))

> Silverstein's Stieltjes transform identity: for the conjugate model By = %X','\',CNXN,
with my the deterministic equivalent of mg, . This is the only random matrix result we need.




How to obtain this result?

> Major trick requires tools from complex analysis

> Silverstein's Stieltjes transform identity: for the conjugate model By = %XHCNXN,

(2) = _t greny)
mNZ?(_z_CJ’l—O—tmN(Z) )

with my the deterministic equivalent of mg, . This is the only random matrix result we need.

» Before going further, we need some reminders from complex analysis.



R RRBRRRRRRERSBSBiiiEBBEBZEZEEESES
Limiting spectrum of the sample covariance matrix

Reminder:

J. W. Silverstein, Z. D. Bai, “On the empirical distribution of eigenvalues of a class of large
dimensional random matrices,” J. of Multivariate Analysis, vol. 54, no. 2, pp. 175-192, 1995

> If FEv = FC, then mg,, (2) 2% mg(z) such that

me(z) = (CJ;

~1
C
Trempe(z) 0 (B Z)




Limiting spectrum of the sample covariance matrix

J. W. Silverstein, Z. D. Bai, “On the empirical distribution of eigenvalues of a class of large

dimensional random matrices,” J. of Multivariate Analysis, vol. 54, no. 2, pp. 175-192, 1995
Reminder:

> If FEv = FC, then mg,, (2) 2% mg(z) such that

= L 4FC(t B
mF(Z)—<CJm ()—Z>

or equivalently
mec (=1/mg(z)) = —zmge(z)me(2)
c—1ia

with mg(z) = cmge(z) + ( 1)2 and N/n— c.



Reminders of complex analysis

» Cauchy integration formula

Theorem
Let U C C be an open set and f : U — C be holomorphic on U. Let v C U be a continuous
contour (i.e. closed path). Then, for a inside the surface formed by 'y, we have

! jﬁ A2 4y — f(a)
;

27i |, z—a

while for a outside the surface formed by vy,

i,jﬁ f2) 4, o,
2ni J, z—a




Complex integration

» From Cauchy integral formula, denoting €, a contour enclosing only ¢,

T g
k_27'[i [

w — ty

dw

N



Complex integration

» From Cauchy integral formula, denoting €, a contour enclosing only ¢,
1

et M=
k_27'[i Cy

1 18 w
w—tkdw:ﬁﬂgekﬁkj;/vfiw—qdw




Complex integration

» From Cauchy integral formula, denoting €, a contour enclosing only ¢,
1

1 1 w
do=-—¢ — Y N— g
w — ty @ 2ﬂ/§ekaj:Zl Tw—t @

N
= mikw’"ﬂ(“d“’




S A S S S e
Complex integration

» From Cauchy integral formula, denoting €, a contour enclosing only ¢,
1

1 1 w

dw = —% — ) Nj——dw
w — ty 27ti ekaj; Tw—t
> After the variable change w = —1/mg(z),

b w
_27tiNk Cx

mec(w)dw
=N 1
K7 Ny 2mi

2me(2)TED 4y
Cr mZ(z)
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Complex integration

» From Cauchy integral formula, denoting €, a contour enclosing only ¢,

K

1 w 1 1 w N
4= g d, o " 2k, N Mg Zy , e ()9
> After the variable change w = —1/mg(z),
LN 1 ( )m’F(z)
= =5 me(z) —%—dz,
T Ne2miJe, T m2(2)

> When the system dimensions are large,

N
1 . . .
me(z) ~ mg, (z) £ § . with  (Aq,...,Ay) = eig(By) = eig(YYM).




Complex integration

» From Cauchy integral formula, denoting €, a contour enclosing only ¢,

1 w 1 1 w N

> After the variable change w = —1/mg(z),
. N 1 ( )m’F(z)
=5 mg(z) ———dz,
T Ne2miJe,, ST m2(2)
> When the system dimensions are large,
N
me(z) ~ mg Z . with  (Aq,...,Ay) = eig(By) = eig(YYM).
wl = )\kfz
» Dominated convergence arguments then show
. as, s N1 j@ mg,, (2)
ty —tx — 0 with & =-—-—"— (z)—=N—dz
b= K= Ng 2 Je By m§ (2)



Understanding the contour change

I | I
xp(m), meB V
e Support of F

7|= i
E
w
3

- 72

37 ]

- e = AT

| 1

| |

-1 1 1 0

> IF Cg x encloses cluster k with real points m; < mp

» THEN —1/m; = x; < t, < xp = —1/my and € encloses t.
[m] = =




Poles and residues
> we find two sets of poles (outside zeros):

> A1,...,Ap, the eigenvalues of By.
> the solutions i,

1y to iy (z) = 0.




Poles and residues
> we find two sets of poles (outside zeros):
> A

An, the eigenvalues of By.
> the solutions pi,..., uy to My (z) =0.
> remember that

n—N1
me,, (W) = me, (W) + —y——




Poles and residues

> we find two sets of poles (outside zeros):

..... An, the eigenvalues of By.
> the solutions pi,..., uy to My (z) =0.
> remember that

n— N
N

mg, (W) = £ mg,, (W) +

1
w

» residue calculus, denote f(w) = (ﬁmeN(w) +

n7N> méN(W]
N ) mg,, ()2’
> the Ay's are poles of order 1 and

zﬂ{gk(zf?\k)f(Z) ==

n
—A
Nk

> the py's are also poles of order 1 and by L'Hospital’s rule
n (z—wlzmg (2) 4
li —A)f(z) = lim — —N =

Hlmuk(z Kf(z) Jm N ey () T



Poles and residues

> we find two sets of poles (outside zeros):

..... An, the eigenvalues of By.
> the solutions pi,..., uy to My (z) =0.
> remember that

n— N
N

mg, (W) = £ mg,, (W) +

1
w

» residue calculus, denote f(w) = (ﬁmeN(W) +

n7N> méN(W]
N ) mg,, ()2’
> the Af's are poles of order 1 and

zﬂ{gk(zf?\k)f[Z) ==

n
—A
Nk

> the py's are also poles of order 1 and by L'Hospital’s rule

lim (z—AW)f(z) = lim n (27 w2, (2)
Z— g

Z Ky N mBN(z) B Nuk
> So, finally

tk:m Z (Am — Hm)

me&contour



Which poles in the contour?

> we now need to determine which poles are in the contour of interest.

N
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> we now need to determine which poles are in the contour of interest.

> Since the p; are rank-1 perturbations of the A;, they have the interleaving property
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Which poles in the contour?

> we now need to determine which poles are in the contour of interest.
> Since the p; are rank-1 perturbations of the A;, they have the interleaving property

M<H<A<...<uy <Ay

> what about p;? the trick is to use the fact that

2mi Je, z
which leads to

1 mg(w)
f, mhon=o

ﬁ T mE(W)2
the empirical version of which is
#{i N € Tut —#{i : 1 € Ty}

Since their difference tends to 0, there are as many A, 's as s in the contour, hence u; is
asymptotically in the integration contour.
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Application to Signal Sensing and Array Processing
2.1 Eigenvalue-based detection
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Problem formulation

» We want to test the hypothesis H( against 3y,

cVxn 5y — hx” + oW , information plus noise, hypothesis
B oW , pure noise, hpothesis Hg
with he CV, x e CV, W e CVxn,

> We assume no knowledge whatsoever but that W has i.i.d. (non-necessarily Gaussian)
entries.



Exploiting the conditioning number

L. S. Cardoso, M. Debbah, P. Bianchi, J. Najim, “Cooperative spectrum sensing using random
matrix theory,” International Symposium on Wireless Pervasive Computing, pp. 334-338 , 2008.

> under either hypothesis,
> if 3o, for N large, we expect Fyyn close to the Marenko-Pastur law, of support

[02 (1 — <)%, 02 (1 +v2)*].
> if 3y, if population spike more than 1 +
> the conditioning number of YYH is therefore asymptotically, as N, n — oo, N/n — ¢,

> if Ho,

N largest eigenvalue is further away.

A
cond(Y) = —— -—
— 1+ +v0)°

>
if 9‘(1, .
ct; (1—+/)
1

with t; = YN |2 4 o2



Exploiting the conditioning number

L. S. Cardoso, M. Debbah, P. Bianchi, J. Najim, “Cooperative spectrum sensing using random
matrix theory,” International Symposium on Wireless Pervasive Computing, pp. 334-338 , 2008.

> under either hypothesis,
> if 3o, for N large, we expect Fyyn close to the Marcenko-Pastur law, of support
[02 (1 — <)%, 02 (1 +v2)*].
N . .
o largest eigenvalue is further away.

> if 3y, if population spike more than 1+
> the conditioning number of YYH is therefore asymptotically, as N, n — oo, N/n — ¢,

> if 3o, 5
cond(Y) £ )\‘:7‘“: — 78 ; ﬁ;z

> if 3y, )

ct; - (1— ﬁ)Z

with t; = YN |2 4 o2
> the conditioning number is independent of . We then have the decision criterion, whether

or not o is known,

L |
decide Ho: if cond(YY"T) K ) )
o
J1: otherwise.

for some security margin ¢.



Comments on the method

» Advantages:

> much simpler than finite size analysis

> ratio independent of o, so ¢ needs not be known
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Comments on the method

> Advantages:

> much simpler than finite size analysis

> ratio independent of o, so ¢ needs not be known
» Drawbacks:

> only stands for very large N (dimension N for which asymptotic results arise function of o)
> ad-hoc method, does not rely on performance criterion.




Generalized likelihood ratio test

P. Bianchi, M. Debbah, M. Maida, J. Najim, “Performance of Statistical Tests for Source
Detection using Random Matrix Theory,” IEEE Trans. on Information Theory, vol. 57, no. 4, pp.
2400-2419, 2011.

> Alternative generalized likelihood ratio test (GLRT) decision criterion, i.e.

cry) = SPozn Prino2 (Y. 1 o?)

sup,2 Py|q2 (Y|o2?)

» Denote

Ty =
N7 LryyH
To guarantee a maximum false alarm ratio of «,
) i 1\ (1=N)n o T (1—N)n
decide] Fr: i 1—4) T (1- %) > Ey
Jo: otherwise.

for some threshold &y that can be explicitly given as a function of «.



Generalized likelihood ratio test

P. Bianchi, M. Debbah, M. Maida, J. Najim, “Performance of Statistical Tests for Source
Detection using Random Matrix Theory,” IEEE Trans. on Information Theory, vol. 57, no. 4, pp.
2400-2419, 2011.

> Alternative generalized likelihood ratio test (GLRT) decision criterion, i.e.

cry) = SPozn Prino2 (Y. 1 o?)

sup,2 Py|q2 (Y|o2?)

» Denote
o Amax (YYH )

Ty =
1 H
ntrYY
To guarantee a maximum false alarm ratio of «,

) i (1—N)n o T (1—N)n
decide] Fr: i 1—4) T (1- %) > Ey
Jo: otherwise.

for some threshold &y that can be explicitly given as a function of «.
> Optimal test with respect to GLR.

» Performs better than conditioning number test.



Performance comparison for unknown o2, P

4444444 Neyman-Pearson, Jeffreys prior

Neyman-Pearson, uniform prior
— — — Conditioning number test
- — - GLRT

Correct detection rate

ot | |
01 05 1 2

—2
False alarm rate 10

Figure: ROC curve for a priori unknown o2 of the Neyman-Pearson test, conditioning number method and
GLRT, K=1, N=4, M =8, SNR =0 dB. For the Neyman-Pearson test, both uniform and Jeffreys prior,
with exponent 3 = 1, are provided.
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Application to Signal Sensing and Array Processing

2.2 The spiked G-MUSIC algorithm




Source localization

Objective: Estimate the arrival angles 61, ---, 0.

A uniform array of M antennas receives signal from K radio sources during n signal snapshots.

02
) \

rYYrry




Source Localization using Music Algorithm

We consider the scenario of K sources and N antenna-array capturing n observations:

K
Z (Bk)skt +owe, t=1,---,n

1
elnsine

> Ay =[an(01), -, an(Ok)] with ay(0) =
eL(Nfl)nsinB

» 02 is the noise variance and is set 1 for simplicity,

» Objective: infer 01, -, 0, from the n observations

> Let Xy = [x1,---,Xp], then,

X=AS+W=[A Iy [\?v]

» If K is finite while n, N — +o00, the model correponds to the spiked covariance model.

» MUSIC Algorithm: Let TT be the orthogonal projection matrix on the span of AA* and
TTL = Iy — TT (orthogonal projector on the noise subspace). Angles 01,---,0x are the
unique ones verifying

n(8) £ay(6)*TTay(6) =0
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Traditional MUSIC algorithm

» Traditional MUSIC algorithm: Angles are estimated as local minima of:
ay(0) TTay(0)
where TT is the orthogonal projection matrix on the eigenspace associated to the K largest
eigenvalues of %XNXTV
» It is well-known that this estimator is consistent when n — 400 with K, N fixed,
» We consider the case of K finite — spiked covariance model

» What happens when n, N — +o00 ?
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— We first need to understand the spectrum of %XXH
> We know that the weak spectrum is the MP law

> Up to K eigenvalues can leave the support: we identify here these eigenvalues
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Asymptotic behaviour of the traditional MUSIC (1)

— We first need to understand the spectrum of %XXH
> We know that the weak spectrum is the MP law

> Up to K eigenvalues can leave the support: we identify here these eigenvalues

— Denote P = AA" = UsQUY, Q = diag(wi, ..., wk), and Z = [ST WT]T to recover (up to
one row) the generic spiked model

X=(ly+P)Z



e
Asymptotic behaviour of the traditional MUSIC (1)

— We first need to understand the spectrum of %XXH
> We know that the weak spectrum is the MP law

> Up to K eigenvalues can leave the support: we identify here these eigenvalues

— Denote P = AA" = UsQUY, Q = diag(wi, ..., wk), and Z = [ST WT]T to recover (up to
one row) the generic spiked model

X=(ly+P)iz
» Reminder: If x eigenvalue of %XXH with x > (14 +/c)? (edge of MP law), for all large n,
x 2N 25 pké1+wk+c(l+wk)w;l, if wy >+/c

for some k.
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Asymptotic behaviour of the traditional MUSIC (2)
— Recall the MUSIC approach: we want to estimate
n(oe) =

(Uy € CN*IN=K) such that U}, Us = 0)




Asymptotic behaviour of the traditional MUSIC (2)

— Recall the MUSIC approach: we want to estimate

n(e) =a(e)fuyUtia(e) (Uy e CV*(V=K) such that Ut Us = 0)

— Instead of this quantity, we start with the study of
a(0)Ma;0ta(e), k=1,... . K
with @1, ..., Gy the eigenvectors belonging to A1 > ... > Ap.
— To fall back on known RMT quantities, we use the Cauchy-integral:

a(0)Hg,6Ma(0) = ——= 3§ a(e)“(%
C;

s H —1
o XXH — z1y)"ta(0)dz

with €; a contour enclosing A; only.



Asymptotic behaviour of the traditional MUSIC (2)

— Recall the MUSIC approach: we want to estimate

n(e) =a(@)HuyUila(e) (Uy € cV*NV=K) guch that U, Us = 0)

— Instead of this quantity, we start with the study of
a(0)Ma;0ta(e), k=1,... . K
with @1, ..., Gy the eigenvectors belonging to A1 > ... > Ap.

— To fall back on known RMT quantities, we use the Cauchy-integral:

a(0)Ma;6Ma(0) = —iﬁ; a(e)H(lxxH —zly)ta(0)dz
2m Je, n
with €; a contour enclosing A; only.

— Woodbury's identity (A+ UCV) 1 =A1_-A1U(C 1+ VA IU)1VA T gives:

— H 1 &
a ﬁ,.ﬁ,.*'a:—ljﬁ aH(lN+P)*%(£—le)*1(|N+P)*2adz+iff aHA1a,dz
c: n 2m e;

where P = USQUE, and
H =l +2zQ(lk+ Q) U (2ZZ" — z1y) 1Us
a = za(0)"(ly+P) % (1ZzH — z1y) 1Us
G = Q(l+Q) UL (EZZ% —zly) 11y + P)2a(o).

n



Asymptotic behaviour of the traditional MUSIC (3)

> For large n, the first term has no pole, while the second converges to

H =lx+zm(z)Q(x+ Q)1
H o — zm(z)a*(Iy + P)~3Us

T,éﬁﬁi al'H laydz, with { af
€ a =m2)Q(k+ Q) U (Iy +P) 2a

which after development is

K
1 1 zm?(z)
Ti=) Troamy, T e
) € o T zm(z)



Asymptotic behaviour of the traditional MUSIC (3)

> For large n, the first term has no pole, while the second converges to
H =lx+zm(z)Q(x+ Q)1
H o — zm(z)a*(Iy + P)~3Us

éiﬁﬁ al'H laydz, with { af
(Ik + Q)7 Ul (Iy +P)2a

T
! 2m e
! aa =m(z)Q

which after development is

K
1 1 zm?(z)
T=Y el Tar o
) € o T zm(z)

> Using residue calculus, the sole pole is in p; and we find
—2
l1—cw; H

i_a(8)"u;utla(e).

a(0)"a;ata(e) 25 L
1+ cw;

Therefore,
H al 1—cw; 2 H. H
7(0) = a(0)"'TTa(0) 25 a 0)Hu;ut'a(0)
7 1+cw

i=
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Improved G-MUSIC
Recall that:

1+cwi!
a(0)Mu,utla(e) — koa(@)Magdlla(e) 25
1—cwy
— The wy are however unknown. But they can be estimated from

=0
— This gives finally

A 22 ok =1+ wy + c(1+ wp)wi?t

K A1
1+ch .
fic(0) ~a(0)a(0) — 3 ———Kra(0)akdia(e)
fmn & = E0
with
N Ak — 1
Wy = ks (2C+ )+
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Improved G-MUSIC

Recall that:
1+ cw,?! as.

k-a(e)Ma,alla(e) 250

a(e)HukuEa(B)f
1—cw,

— The wy are however unknown. But they can be estimated from

A 22 ok =1+ wy + c(1+ wp)wi?t

— This gives finally

K A1
1
fi6(0) ~a(®)Ma(6) — 3~ <Ck_a(0)Ma.ilfa(e)
1—cd;? k
k=1 k
with
@k:er (c4+1—Ap)2— 4c)

— We then obtain another (N, n)-consistent MUSIC estimator, only valid for K finite!



Simulation results

Cost function [dB]

—— MUSIC
———-G-MUSIC

—30

1]
-10
angle [deg]

Figure: MUSIC against G-MUSIC for DoA detection of K = 3 signal sources, N = 20 sensors, M = 150
samples, SNR of 10 dB. Angles of arrival of 10°, 35°, and 37°.
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1.1. Introduction to the Stieltjes transform method, Maréenko—Pastur law, advanced models

1.2. Extreme eigenvalues: no eigenvalue outside the support, exact separation, Tracy—Widom law
1.3. Extreme eigenvalues: the spiked models

1.4. Spectrum analysis and G-estimation
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» Part 1: Basics of Random Matrix Theory for Sample Covariance Matrices
> 1.1. Introduction to the Stieltjes transform method, Maréenko—Pastur law, advanced models
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Outline of the tutorial

v

Part 1: Basics of Random Matrix Theory for Sample Covariance Matrices
> 1.1. Introduction to the Stieltjes transform method, Maréenko—Pastur law, advanced models
> 1.2. Extreme eigenvalues: no eigenvalue outside the support, exact separation, Tracy—Widom law
> 1.3. Extreme eigenvalues: the spiked models
> 1.4. Spectrum analysis and G-estimation
Part 2: Application to Signal Sensing and Array Processing
> 2.1. Eigenvalue-based detection
> 2.2. The (spiked) G-MUSIC algorithm
Part 3: Advanced Random Matrix Models for Robust Estimation
> 3.1. Robust estimation of scatter
3.2. Robust G-MUSIC
3.3. Robust shrinkage in finance
3.4. Second order robust statistics: GLRT detectors
Part 4: Future Directions

> 4.1. Kernel random matrices and kernel methods
> 4.2. Neural network applications

\{ v
vyvy
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Advanced Random Matrix Models for Robust Estimation
3.1 Robust Estimation of Scatter




Covariance estimation and sample covariance matrices

P.J. Huber, “Robust Statistics”, 1981.

from i.i.d. observations xq,

— Many statistical inference techniques rely on the sample covariance matrix (SCM) taken
. xpofarv. xeCN.




Covariance estimation and sample covariance matrices

P.J. Huber, “Robust Statistics”, 1981.
— Many statistical inference techniques rely on the sample covariance matrix (SCM) taken
from i.i.d. observations xi,...,xn of a r.v. x € CN,
> The main reasons are:
> Assuming E[x] =0, E[xx*] = Cy, with X = [xq, ..., xn], by the LLN
Sy 2 %XX" 25 Cy as n — oo.

— Hence, if 6 = f(Cy), we often use the n-consistent estimate 6 = f(§N).



Covariance estimation and sample covariance matrices

P.J. Huber, “Robust Statistics”, 1981.
— Many statistical inference techniques rely on the sample covariance matrix (SCM) taken
from i.i.d. observations xi,...,xn of a r.v. x € CN,
> The main reasons are:
> Assuming E[x] =0, E[xx*] = Cy, with X = [xq, ..., xn], by the LLN
§Né% X* 255 Cy as n — co.

— Hence, if 6 = f(Cy), we often use the n-consistent estimate 6 = f(§N).
> The SCM Sy is the ML estimate of Cy for Gaussian x
— One therefore expects 0 to closely approximate 0 for all finite n.



Covariance estimation and sample covariance matrices

P.J. Huber, “Robust Statistics”, 1981.
— Many statistical inference techniques rely on the sample covariance matrix (SCM) taken
from i.i.d. observations xi,...,xn of a r.v. x € CN,
> The main reasons are:
> Assuming E[x] =0, E[xx*] = Cy, with X =[xy, ..., xs], by the LLN
§Né% X* 255 Cy as n— oo.

— Hence, if @ = f(Cy), we often use the n-consistent estimate 6 = f(§N).
> The SCM Sy is the ML estimate of Cy for Gaussian x
— One therefore expects 0 to closely approximate 0 for all finite n.

> This approach however has two limitations:
> if N, n are of the same order of magnitude,

||§N, Cnll 4 0as N,n— oo, N/n— ¢ >0, so that in general |6 — 6] 4 0

— This motivated the introduction of G-estimators.
> if x is not Gaussian, but has heavier tails, Sy is a poor estimator for Cy.
— This motivated the introduction of robust estimators.



Reminders on robust estimation

J. T. Kent, D. E. Tyler, “Redescending M-estimates of multivariate location and scatter”, 1991.
R. A. Maronna, “Robust M-estimators of multivariate location and scatter”, 1976.

Y. Chitour, F. Pascal, “Exact maximum likelihood estimates for SIRV covariance matrix:
Existence and algorithm analysis”, 2008.

— The objectives of robust estimators:

» Replace the SCM §N by another estimate CN of Cp which:

> rejects (or downscales) observations deterministically
> or rejects observations inconsistent with the full set of observations

— Example: Huber estimator, CN defined as solution of

~ n 2 ~
Cy = 1 Z Bixixi with B; = amin{ 1, kiA for some o > 1, k? function of Cy.
=] fix; Cytxi



Reminders on robust estimation

J. T. Kent, D. E. Tyler, “Redescending M-estimates of multivariate location and scatter”, 1991.
R. A. Maronna, “Robust M-estimators of multivariate location and scatter”, 1976.

Y. Chitour, F. Pascal, “Exact maximum likelihood estimates for SIRV covariance matrix:
Existence and algorithm analysis”, 2008.

— The objectives of robust estimators:

» Replace the SCM §N by another estimate CN of Cp which:
> rejects (or downscales) observations deterministically
> or rejects observations inconsistent with the full set of observations

— Example: Huber estimator, CN defined as solution of

k2
0 T il
NX Cy X

A 1¢ . . . ~
Cy == Z Bixixi with B; = aminq{1 for some o > 1, k? function of Cy.
i=1
> Provide scale-free estimators of Cy:
— Example: Tyler's estimator: if one observes x; = t;z; for unknown scalars ;,

> existence and uniqueness of (f'N defined up to a constant.
> few constraints on xi,...,x, (N + 1 of them must be linearly independent)



Reminders on robust estimation

— The objectives of robust estimators:

> replace the SCM §N by the ML estimate for Cy.
— Example: Maronna'’s estimator for elliptical x

A 2 1, A ;
Cy = ;Z u (in CN1X,'> XiX;

with u(s) such that

(i) u(s) is continuous and non-increasing on [0, co)
(ii) &(s) = su(s) is non-decreasing, bounded by ¢, > 1. Moreover, ¢ (s) increases where ¢ (s) < Ppoo.

(note that Huber's estimator is compliant with Maronna's estimators)



Reminders on robust estimation

— The objectives of robust estimators:

> replace the SCM §N by the ML estimate for Cy.
— Example: Maronna'’s estimator for elliptical x

. 1 & 1 . .
Cy = EZ u (—X,-*C,\’le,-> Xi X}

with u(s) such that
(i) u(s) is continuous and non-increasing on [0, co)
(ii) &(s) = su(s) is non-decreasing, bounded by ¢, > 1. Moreover, ¢ (s) increases where ¢ (s) < Ppoo.
(note that Huber's estimator is compliant with Maronna's estimators)
> existence is not too demanding
> uniqueness imposes strictly increasing u(s) (inconsistent with Huber’s estimate)
> consistency result: (.A'N — Cy if u(s) meets the ML estimator for Cy.
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Robust Estimation and RMT

— So far, RMT has mostly focused on the SCM §y,.
» x = Ayw, w having i.i.d. zero-mean unit variance entries,

> x satisfies concentration inequalities, e.g. elliptically distributed x.

Robust RMT estimation .
Can we study the performance of estimators based on the Cy?

» what are the spectral properties of 6,\,?

> can we generate RMT-based estimators relying on Cy?



Setting and assumptions
> Assumptions:
> Take xq,..

1
.. xp € CN “elliptical-like” random vectors, i.e. x; = \/T;C; w; where
> T1,...,Tp € R random or deterministic with 1 ¥ 7, t; %1
> wiy,...,wh € cN random independent with w;/v/N uniformly distributed over the unit-sphere
> Cy € CVXN deterministic, with Cp > 0 and limsupyy || Cy || < oo

> We denote cy £ N/n and consider the growth regime cy — c € (0,1).
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> Take xi,...,x, € CV “elliptical-like" random vectors, i.e. x; = /T;C; w; where
» T1,...,Tn € RF random or deterministic with % 1T 2%y
> wiy,...,wh € cN random independent with w;/v/N uniformly distributed over the unit-sphere

> Cy € CVXN deterministic, with Cp > 0 and limsupyy || Cy || < oo
> We denote cy £ N/n and consider the growth regime cy — c € (0,1).

» Maronna’s estimator of scatter: (almost sure) unique solution to
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where u satisfies
(i) u:[0,00) — (0,00) nonnegative continuous and non-increasing

(i) & : x — xu(x) increasing and bounded with limy ;. ¢ (x) £ bo > 1
(i) doo < 7t



Setting and assumptions

> Assumptions:

1
> Take xi,...,x, € CV “elliptical-like” random vectors, i.e. x; = \/T;C¢ w; where
» T1,...,Tn € RF random or deterministic with % 1T 2%y
> wiy,...,wh € cN random independent with w;/v/N uniformly distributed over the unit-sphere

> Cy € CVXN deterministic, with Cp > 0 and limsupyy || Cy || < oo
> We denote cy £ N/n and consider the growth regime cy — c € (0,1).

» Maronna’s estimator of scatter: (almost sure) unique solution to

where u satisfies
(i) u:[0,00) — (0,00) nonnegative continuous and non-increasing
(i) & : x — xu(x) increasing and bounded with limy_, ¢ (x) 2 G >1
(i) doo < 7t
> Additional technical assumption: Let v, 2 157 5. Foreacha>b>0, as.
. lims t,
fimsup MSUPn va((£,00)) _ o

twoo  P(at) — d(bt)

— Controls relative speed of the tail of v, versus the flattening speed of ¢ (x) as x — oco.
Examples:

> 1; < M for each i. In this case, v,((t,00)) =0 a.s. for t > M.

> For u(t) = (1+ o)/(ex+t), x>0, and T; i.i.d., it is sufficient to have E[T}+S] < o0.
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> First remark: we can work with Cy = Iy without generality restriction!

> Denote
A 1y - x
CU) = ; Z u (NX,- CN X,') Xi X
i#J
—— Then intuitively, é(j] and x; are only “weakly” dependent.
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Heuristic approach
> Major issues with Cy:
> Defined implicitly
> Sum of non-independent rank-one matrices from vectors y/u(ﬁxi* éATlx;)x; (C'N depends on all x;'s).

> But there is some hope:
> First remark: we can work with Cy = Iy without generality restriction!

> Denote
A 1y - *
CU) = ;Zu NX,- CN Xi | XiX;
i#j
— Then intuitively, C(;) and x; are only “weakly” dependent.
> We expect in particular (highly non-rigorous but intuitive!!):
1 .~ =
—Xx;* C(,.]lx, o~ Ntr C(,]1 ~ 1 —trCy 1,

=2

> Our heuristic approach
> Rewrite Nx CN X; as f( X; C(,)x,) for some function f (later called g 1)

> Deduce that )
. 1 .
Cy = = ‘72 1[uo f) <7x me,> XiX;

> Use %x* é(T)lx,- ~ T At (t',\jl to get

Cszzuof< trC > X"

> Use random matrix results to find a limiting value y for Ntr é,\Tl, and conclude
n

A 1 .
Cye ) (wof)(Tiy)xix.

i=1



Heuristic approach in detail: £ and y

» Determination of f: Recall the identity (A + tww*) v = A"1/(1+ tv*A~1v). Then

1 xpA~—1
L1, _ NX7Cy X
N SN 1 L il Lo =il
+enu( X Cyxi) X (i) Xi
so that LA
leké‘—lxl _ WXi*CIV i
x; = A_ .
NTEOTT 1 — ey (g Cytxi)

Now the function g : x — x/(1 — ¢y (x)) is monotonous increasing (we use the assumption
boo < c 1), hence, with f = g1,

%x,-*(:",glx,- =g! (—x-" CA’.lx,-) .



Heuristic approach in detail: £ and y

» Determination of y: From previous calculus, we expect

n n

A 1 1 x 1 *
Cy =~ ;Z(uogil) (T;Ntr C,\71> XjX; > Z(uogil) (Tiv) xix;".

i=1 i=1
Hence
n =il
] 1 1 =il *
V:NtrCN :Ntr ;Z(uog ) (Tiy) Tiwiw; .
i=1
Since T, are independent of w; and v deterministic, this is a Bai-Silverstein model

%WDW*, W = [wi,...,wy], D=diag(D;) =uog (tiv).

And we have:

~ Lo (Luows) = N tuog Y)(ty) -
Y= < WDW) = mMiwpw-(0) = <O+J1+c(uogil)(tY)m;WDW*(O)VN(dt)

Z T; uog 1) (tiv) -
1+ cri(uog ) (tiy)miypy-(0) )

Since v ~ my .« (0), this defines v as a solution of a fixed-point equation:
n

uvog N (tiv) -
( Zl+CT uog*l)(T;Y)V)




Main result

R. Couillet, F. Pascal, J. W. Silverstein, “The Random Matrix Regime of Maronna's M-estimator
with elliptically distributed samples”, (submitted to) Elsevier Journal of Multivariate Analysis.

Theorem (Asymptotic Equivalence)
Under the assumptions defined earlier, we have

s, 2wl .
23,0, where 5y £ - Z v(Tiv)xix;

feu-s

vix) = (uog 1) (x), V(x) =xv(x), g(x) =x/(1—cd(x)) and y > 0 unique solution of

¢ Wty
1= 52 T% chle)
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R. Couillet, F. Pascal, J. W. Silverstein, “The Random Matrix Regime of Maronna’s M-estimator
with elliptically distributed samples”, (submitted to) Elsevier Journal of Multivariate Analysis.

Theorem (Asymptotic Equivalence)
Under the assumptions defined earlier, we have

s s aly \
23,0, where 5y £ = Z v(Tiv)XxiX;

feu-s

vix) = (uog 1) (x), V(x) =xv(x), g(x) =x/(1—cd(x)) and y > 0 unique solution of

¢ Wty
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> Remarks: N N
> Th. says: first order substitution of Cy by Sy allowed for large N, n.
> |t turns out that v ~ u and 1 ~ ¢ in general behavior.
> Corollaries:
é A~ a.s,
w2 Ai(Sn) = Ai(Cy)| =0
1 A 1 1 & 1 a.s,
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—— Important feature for detection and estimation.



Main result

R. Couillet, F. Pascal, J. W. Silverstein, “The Random Matrix Regime of Maronna’s M-estimator
with elliptically distributed samples”, (submitted to) Elsevier Journal of Multivariate Analysis.

Theorem (Asymptotic Equivalence)
Under the assumptions defined earlier, we have

s s aly \
23,0, where 5y £ = Z v(Tiv)XxiX;

feu-s

vix) = (uog 1) (x), V(x) =xv(x), g(x) =x/(1—cd(x)) and y > 0 unique solution of
_l¢ W(ty)
1= L Tt cbir)

» Remarks: N N
> Th. says: first order substitution of Cy by Sy allowed for large N, n.
> |t turns out that v ~ u and 1 ~ ¢ in general behavior.
> Corollaries:

é A~ a.s,
e Ai(Sn) = Ai(Cy)| =0
%tr (Cy—zly) L — %tr (Sy—zly) 1 2% 0
—— Important feature for detection and estimation.

» Proof: So far in the tutorial, we do not have a rigorous proof!
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Proof

» Fundamental idea: Showing that all %ﬁx,* é(j)lx,- converge to the same limit y.

N



Proof
» Technical trick: Denote

» Fundamental idea: Showing that all %ﬁx,* 6(7)1X,' converge to the same limit v

e = v <%X’* 6(7)1)(;)
v(Tiv)
and relabel terms such that
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We shall prove that, for each £ > 0,

eg>1—"Lio. ande, <1+ Ci.0.




Proof

» Fundamental idea: Showing that all %ﬁx,—* C(j)lx,- converge to the same limit y.

» Technical trick: Denote

and relabel terms such that

We shall prove that, for each £ > 0,

eg>1—"Lio. ande, <1+ Ci.0.

» Some basic inequalities: Denoting d; £ %ﬁx* Cilx; = ﬁwi* C(T)l w;, we have
1

)]

-1 —1
V(W%"Vf <% Zi#ijV(def]WfW;k) Wj) V(%‘%Wf (% Zi#jTiV(TiWefWin*> Wj)
o _ _

/ v(Tjv) v(Tiv)

—1 - -1
V<TJ%""J'* (% Zi;&ij"(TfWeanW?) WJ> V(éﬁwf (%Z:#j TfV(TiV)Wi""f) WJ)
<

< —

v(Tiv) v(Tjv)




Proof
» Specialization to e;:

Tn
(z
en <

—il
NV (% Y iznTivITiv)W; ,-*) Wn)
v(Thy)
or equivalently, recalling 1V (x) = xv(x),

1
1 1
W (;Z,‘#’fiV(TiY)Wi ,-*) Wi

1
ﬂ’(%ﬁﬁw*
<
%

3

W (Thy)

1
(% Xy TiV(TiY)WiW,-*) Wn)
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Proof

> Specialization to e;:

=i
v (%Z%Wﬁ (% X T/V(Tﬂ/)WiW,-*) Wn)
<
v(Tay)

or equivalently, recalling 1V (x) = xv(x),

-1 1 1 =1
b (3 oo vtz o) @ (345 (3 ool nr)  wo)
Y W (Thy) '

» Random Matrix results:
> By trace lemma, we should have

—1 —1
ZT,V Tiy) w,w 7tr ZT v(Tiy) W,W ~y
l;én l;én

(by definition of -y as in previous slides). ..
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» Random Matrix results:
> By trace lemma, we should have

—1 —1
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(by definition of -y as in previous slides). ..
» DANGER: by relabeling, w, no longer independent of wy, ..., w, 1!
= Broken trace lemma!



S
Proof

> Specialization to e;:
T 1 % (1 * =1
v &2 yws (; Z,-%n T,'V(T,"Y)W,'Wl-) Wp
<
v(Thy)

or equivalently, recalling 1V (x) = xv(x),

-1 1 1 =1
fws (% X TiV(TiV)WiWi*) wy, W (gWW: (F 2izn T’V(T"V)W"W"*) Wn)
Y b (Thy) '

» Random Matrix results:
> By trace lemma, we should have

—1 —1
ZT,V Tiy) W,W 7tr ZT v(Tiy) W,W ~y
l;én l;én

(by definition of -y as in previous slides). ..
» DANGER: by relabeling, w, no longer independent of wy, ..., w, 1!
= Broken trace lemma!
> Solution: uniform convergence result.
By (higher order) moment bounds, Markov inequality, and Borel Cantelli, for all large n a.s.

1
1 .[1 o
EER VA (HZT,'V(T;Y)W;W,' ) wj —v| <&

i#j
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Proof

> Back to original problem: For all large n a.s., we then have (using growth of V)

Y—¢

<11)(:—g(v+s))
S

Y (Tny)
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> Back to original problem: For all large n a.s., we then have (using growth of V)

y,£<ﬂ)<§—g(v+e))
Yy O W(my)

> Proof by contradiction: Assume e, > 1+ ¢ i.0., then on a subsequence e, > 1+ ¢ always and

Y—c¢ < ¥ (g (v + ¢))

Y W (Thy)




Proof
> Back to original problem: For all large n a.s., we then have (using growth of V)

y,5<¢<2—g(v+e)>
Yy O W(my)

> Proof by contradiction: Assume e, > 1+ ¢ i.0., then on a subsequence e, > 1+ ¢ always and

’Y*€<II—’(1L$((—Y+5))
Yy O W(Ty)

> Bounded support for t;: If 0 < T < T; < T4 < oo for all i, n, then on a subsequence where

Tn — To,
_ 0 (4
yoe o ¥(oElvree) CONTRADICTION!
Y Y (Tov)
.

—1 as e—0 T
H%(Tiw<l as e—0
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Proof

> Back to original problem: For all large n a.s., we then have (using growth of V)

y,5<1b<2—g(v+s))
Yy O W(my)

> Proof by contradiction: Assume e, > 1+ ¢ i.0., then on a subsequence e, > 1+ ¢ always and

y75<1|)(1Tng(V+€])
Yy Wb(Ty)

> Bounded support for t;: If 0 < T < 1; < T4 < oo for all i, n, then on a subsequence where

Tn — To,
o
y—e o ¥ (re (v +¢)) CONTRADICTION!
Y Y (Tov)
N
—1 as ¢ —0 T
H%<1 as € —0

> Unbounded support for t;: Importance of relative growth of T, versus convergence of 1\ to V.
Proof consists in dividing {T;} in two groups: few large ones versus all others.
Sufficient condition: .
. imsup, v,((t, o0
fimsup MSUPy Va((£,00)) _

sl " (at) — b (bt)



Simulations
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Figure: Histogram of the eigenvalues of % i x;x;* for n = 2500, N = 500, Cy = diag(h2s,3h2s5,10hso), T1

with T'(.5, 2)-distribution.
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Figure: Histogram of the eigenvalues of Cy (left) and Sy (right) for n = 2500, N = 500,
Cy = diag(h2s,3h2s5,10hs0), T1 with T'(.5, 2)-distribution.



Simulations

T T T T
- - - Empirical eigenvalue distribution of Cpy L - - - Empirical eigenvalue distribution of Sy L

Limiting density

Limiting density

Density
Density
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Eigenvalues Eigenvalues

Figure: Histogram of the eigenvalues of Cy (left) and Sy (right) for n = 2500, N = 500,
Cy = diag(h2s,3h2s5,10hs0), T1 with T'(.5, 2)-distribution.

» Remark/Corollary: Spectrum of €y a.s. bounded uniformly on n.
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= We shall see that we get even better than this. ..



Hint on potential applications

» Spectrum boundedness: for impulsive noise scenarios,
> SCM spectrum grows unbounded
> robust scatter estimator spectrum remains bounded
= Robust estimators improve spectrum separability (important for many statistical inference
techniques seen previously)
> Spiked model generalization: we may expect a generalization to spiked models

> spikes are swallowed by the bulk in SCM context
> we expect spikes to re-emerge in robust scatter context

= We shall see that we get even better than this. ..
» Application scenarios:

> Radar detection in impulsive noise (non-Gaussian noise, possibly clutter)
> Financial data analytics
> Any application where Gaussianity is too strong an assumption. . .
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Advanced Random Matrix Models for Robust Estimation

3.2 Spiked model extension and robust G-MUSIC




System Setting

> Signal model:

L
Yi =Y _VPiaisi + JTiw = A
(=

A - A
A& [prar ... Prae i, w2 lsi, ..., si,wilT
with y1,...,yn € CN satisfying:
1. T1,...,7T, > 0 random such that v, £ % T 8+, — v weakly and [tv(dt) =1,
2. wy,...,w, € CN random independent unitarily invariant v/N-norm;
3. LEN, p1 > ... > p. > 0 deterministic;
4. ay,...,a, € CN deterministic or random with A*A 25 diag(pi,...,p) as N — oo, with

AL [\/ﬁal,...,,/pLaL] G(CNXL.

5. s11,...,5Ln € C independent with zero mean, unit variance.
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with y1,...,yn € CN satisfying:
1. T1,...,7T, > 0 random such that v, £ % T 8+, — v weakly and [tv(dt) =1,
2. wy,...,w, € CN random independent unitarily invariant v/N-norm;
3. LEN, p1 > ... > p. > 0 deterministic;
4. ay,...,a, € CN deterministic or random with A*A 25 diag(pi,...,p) as N — oo, with
A% [\/prat,...,/pral € CNxL.
5. s11,...,5Ln € C independent with zero mean, unit variance.

» Relation to previous model: If L =0, y; = \/T;w;.
= Elliptical model with covariance a low-rank (L) perturbation of /y.
= We expect a spiked version of previous results.



System Setting

> Signal model:

L
Yi =Y _VPiaisi + JTiw = A
=1

A _ T
A& [prar ... bPrar T, W = sy, ..., s wil
with y1, ..., yn € CN satisfying:
1. T1,...,7T, > 0 random such that v, £ % T 8+, — v weakly and [tv(dt) =1,
2. wy,...,w, € CN random independent unitarily invariant v/N-norm;
3. LEN, p1 > ... > p. > 0 deterministic;
4. ay,...,a, € CN deterministic or random with A*A 25 diag(pi,...,p) as N — oo, with
A% [\/prat,...,/pral € CNxL.
5. s11,...,5Ln € C independent with zero mean, unit variance.

> Relation to previous model: If L =0, y; = /T;w;.
= Elliptical model with covariance a low-rank (L) perturbation of /y.
= We expect a spiked version of previous results.

» Application contexts:

> wireless communications: signals s; from L transmitters, N-antenna receiver; a; random i.i.d.
channels (afa;y — 8,_;/, e.g. a~ €N (0, Iy/N));
> array processing: L sources emit signals s; at steering angle a; = a(0,). For ULA,

[a(0)]; = N~ % exp(2mdjsin(6)).
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= False alarms induced by noise impulses!



Some intuition

> Signal detection/estimation in impulsive environments: Two scenarios

>
>

heavy-tailed noise (elliptical, Gaussian mixtures, etc.)
Gaussian noise with spurious impulsions

» Problems expected with SCM: Respectively,

>

>

> Our

unbounded limiting spectrum, no source separation!
= Invalidates G-MUSIC

isolated eigenvalues due to spikes in time direction
= False alarms induced by noise impulses!

results: In a spiked model with noise impulsions,

whatever noise impulsion type, spectrum of Cy remains bounded
isolated largest eigenvalues may appear, two classes:
> isolated eigenvalues due to noise impulses CANNOT exceed a threshold!
> all isolated eigenvalues beyond this threshold are due to signal
= Detection criterion: everything above threshold is signal.
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Theoretical results
Theorem (Extension to spiked robust model)

Under the same assumptions as in previous section,
where

v — Snll =550

§Né% v(Tiv)Aiw,; w; A
i=1
with v the unique solution to
P (ty)
1= dt
J1+c¢(tv)v( )
and we recall
A s [ prar ... Praw Tl
Wi = lstj, - spwilT




Theoretical results

Theorem (Extension to spiked robust model)

Under the same assumptions as in previous section,

v — Snll =550

where
A 1<
SN £ E V(T,‘Y)A,’VT/,‘VT/?‘AT
i=1
with v the unique solution to
P (ty)
l=|————v(dt
J1+c¢(tv)v( )
and we recall
A s [ prar ... Praw Tl
Wi = [s1v ... st wil T

» Remark: For L=0, A; =10,...,0, Iy].
= Recover previous result A;w; becomes w;.



Localization of eigenvalues

Theorem (Eigenvalue localization)
Denote

> wuy eigenvector of k-th largest eigenvalue of AA* = Z,‘L:1 pia;ja;

> (. eigenvector of k-th largest eigenvalue of éN

Also define & (x) unique positive solution to
tve(ty) o
5(x)=c (—X+ J mv(dt}) .
Further denote

A m
_ = lim —c
- x}S+

_ 80ve(ty) - + s Po(1+VCE)?
(J1+6(x)tvc(ty)v(d”> S S e



Localization of eigenvalues

Theorem (Eigenvalue localization)
Denote

> wuy eigenvector of k-th largest eigenvalue of AA* = Z,‘L:1 pia;ja;
> (. eigenvector of k-th largest eigenvalue of éN

Also define & (x) unique positive solution to

B tve(ty) o
ok ‘C<‘X+fm”‘”)) '

Further denote

A S(x)vel(ty) )71 2 boo(1++/<)?
2 |im — — P _y(dt , St Lo
P2 lim e (] SV Y- cdu)
Then, if pj > p—, )\ 25 Aj > ST, otherwise lim sup,A; < ST a.s., with Aj unique positive

solution to

ve(Ty) o
*C(“A‘)Jm”‘“)) —”J'



Simulation

1.2 T T T T
I Eicenvalues of 157y

s Limiting spectral measure
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Eigenvalues

Figure: Histogram of the eigenvalues of % > Yiy{ against the limiting spectral measure, L =2, p; = p> =1,
N = 200, n = 1000, Sudent-t impulsions.
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e Limiting spectral measure
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0)
a

Right-edge of support

| | I |

Al

0 0.2 0.4 0.6 0.8 1
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Figure: Histogram of the eigenvalues of Cn against the limiting spectral measure, for
with « =0.2, L=2, p; = po =1, N =200, n= 1000, Student-t impulsions.

u(x) = (14 o)/ (x+ x)



Comments

scatter.

> SCM vs robust: Spikes invisible in SCM in impulsive noise, reborn in robust estimate of




Comments

> SCM vs robust: Spikes invisible in SCM in impulsive noise, reborn in robust estimate of
scatter.

> Largest eigenvalues:
> A;[@N) > S+ = Presence of a source!
> A;(Cpy) € (sup(Support), ST™) = May be due to a source or to a noise impulse.
> A[[@N) < sup(Support) = As usual, nothing can be said.

= Induces a natural source detection algorithm.
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Eigenvalue and eigenvector projection estimates

» Two scenarios:
> known v =lim, 1y 7 S+,
> unknown v

Theorem (Estimation under known v)
1. Power estimation. For each p; > p_,

—1
€ (5(}\1)J1+5(5\1)TVC(TY)V(dT)> oY

2. Bilinear form estimation. For each a, b € CN with ||a|| = ||b|| = 1, and pj > p—
Z a‘ugughb — Z wya* by g b 250
k.pk=p; k.p=p;

where

Wy =

ve(ty) 1 8(Ak)2Pve(ty)?
Jm—v(dt) 1J< S v(dt)

(k) tve(ty) V(14 sRtve(en))



Eigenvalue and eigenvector projection estimates

Theorem (Estimation under unknown v)
1. Purely empirical power estimation. For each p; > p_,

2. Purely empirical bilinear form estimation. For each a, b € CN with ||a|| = ||b|| = 1, and each
Pj > P—,
> atwupb— Y Weatdedph 220

k.pk=p; k.pk=p;

where

.*CA'(?)I}’:', 5(x) as 8(x) but for (t;,v) = (€1, 9).
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Application to G-MUSIC

> Assume the model a; = a(0;) with

a(0) = N2 [exp(2mdjsin(0))] V5.
Corollary (Robust G-MUSIC)
Define irg (0) and gy (0) as

1U.pj>p—1}I

frg(0) =1— Y wia(0)*d,d,a(0)
k=1
1U.pj>p—1}I
~emp _ A kAo
iR (0) =1— 3 Wea(0)*d,0,a(0).
k=1

Then, for each p; > p_,

a.s,
8, 2% g;
Aemp a.s. .
5P 25 0;
where

6,2 argmineem; {ira(0)}

éfmp £ argmineeyf (ARG (8)}.



Localization functions fjx (6)

0.8

0.6

0.4

0.2

Simulations: Single-shot in elliptical noise

—@— Robust G-MUSIC

— -@ - Emp. robust G-MUSIC
—o— G-MUSIC

— -0 - Emp. G-MUSIC
—=&a— Robust MUSIC
—8— MUSIC

0 [deg]

18

Figure: Random realization of the localization functions for the various MUSIC estimators, with N = 20,
n =100, two sources at 10° and 12°, Student-t impulsions with parameter 3 = 100, u(x) = (1 + «)/ (o + x)
with o = 0.2. Powers p; = p, = 10%5 =5 dB.



Simulations: Elliptical noise

101 =
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Figure: Means square error performance of the estimation of 8; = 10°, with N =20, n = 100, two sources at
10° and 12°, Student-t impulsions with parameter 3 = 10, u(x) = (1 + «)/ (o + x) with o« = 0.2, p; = p2.



Simulations: Spurious impulses
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Figure: Means square error performance of the estimation of 8; = 10°, with N =20, n = 100, two sources at
10° and 12°, sample outlier scenario T; =1, i < n, T, =100, u(x) = (1 + «)/(x + x) with « = 0.2, p; = p>.
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3.3 Robust shrinkage and application to mathematical finance




Context

Ledoit and Wolf, 2004. A well-conditioned estimator for large-dimensional covariance matrices.
Pascal, Chitour, Quek, 2013. Generalized robust shrinkage estimator — Application to STAP data.
Chen, Wiesel, Hero, 2011. Robust shrinkage estimation of high-dimensional covariance matrices.

> Shrinkage covariance estimation: For N > n or N ~ n, shrinkage estimator

1 n
(1— p); Zx,—x,-* + ply, for some p € [0, 1].
i=1

> allows for invertibility, better conditioning
> p may be chosen to minimize an expected error metric
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Context

Ledoit and Wolf, 2004. A well-conditioned estimator for large-dimensional covariance matrices.
Pascal, Chitour, Quek, 2013. Generalized robust shrinkage estimator — Application to STAP data.
Chen, Wiesel, Hero, 2011. Robust shrinkage estimation of high-dimensional covariance matrices.

> Shrinkage covariance estimation: For N > n or N ~ n, shrinkage estimator

1 n
(1— p); Zx,—x,-* + ply, for some p € [0, 1].
i=1

> allows for invertibility, better conditioning
> p may be chosen to minimize an expected error metric

> Limitation of Maronna’s estimator:
> Maronna and Tyler estimators limited to N < n, otherwise do not exist
> introducing shrinkage in robust estimator cannot do much harm anyhow...

> Introducing the robust-shrinkage estimator: The literature proposes two such estimators

N— 7y 1) (Pascal)

n *
Cne)=(1-p) 2y 4 oiy, pe (maxio, Vo
i WX Gy (e)xi
5 B . 1< v
Culp) = 222 By =(1—p) 1Y Lo, pe (01 (Chen)
i X Gy ()X



Main theoretical result

» Which estimator is better?

Having asked to authors of both papers, their estimator was much better than the
other, but the arguments we received were quite vague...
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Main theoretical result

> Which estimator is better?
Having asked to authors of both papers, their estimator was much better than the

other, but the arguments we received were quite vague...

> Our result: In the random matrix regime, both estimators tend to be one and the same!

» Assumptions: As before, “elliptical-like” model

1
xi =1 CEw;

— This time, Cy cannot be taken Iy (due to +ply)!
—— Maronna-based shrinkage is possible but more involved...



Pascal’s estimator

Theorem (Pascal’s estimator)
For € € (0, min{1,c™1}), define 9A2£ = [e + max{0,1 — c1},1]. Then, as N, n — oo,
N/n— c € (0,0),

sup | Culp) = Suip)| 2 0
peR
where
~ 18 Xix*
Culp) =(1—p) o ply

1Y Ai(Cy)
L= N 3o A pIN Gy

Moreover, p — vy (p) is continuous on (0, 1].



Chen's estimator

Theorem (Chen's estimator)
For e € (0,1), define R, = [e,1]. Then, as N,n — co, N/n — c € (0, 00),

sup HCN H 250
peR,
where
By (p) ~ i< s
Culp) = % Bn(p)=(1—p)= ' +ply
LtrBy(p) n = xiCy(p)~1x
. 1-p 1 = 1 5 Ty
Sw(e) 17p+Tp;;CNW‘W’CN+1*p+TpIN

in which Ty = pY(p)F(V(p); p) with, for all x > 0,

Flxip) = 2 (p—c1— o))+ /5 (o—cl—p)2+ (1 - p) 2

2

and YV (p) is the unique positive solution to the equation in y

Y Ai(Cw)
; P+ o A (Cn)

(1—p)c+F(v;p) "

2 \

Moreover, p — v (p) is continuous on (0,1].



Asymptotic Model Equivalence

Theorem (Model Equivalence)

For each p € (0,1], there exist unique p € (max{0,1— c1},1] and ¢ € (0, 1] such that

o 1< 1 1
15— =5vP) =(1— D]BZCE, wiw CZ + ply.
7P T-1-pic P =1

Besides, (0,1] — (max{0,1—c1},1], p— p and (0,1] — (0,1], p — @ are increasing and onto
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For each p € (0,1], there exist unique p € (max{0,1— c1},1] and ¢ € (0, 1] such that

5 1< 1 1
—=5y(p) = (1 — D);ZC,\Z, wiwi Cg + ply.
76 1I=(1—p)c P i=1
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» Up to normalization, both estimators behave the same!

» Both estimators behave the same as an impulsion-free Ledoit-Wolf estimator



Asymptotic Model Equivalence

Theorem (Model Equivalence)

For each p € (0, 1], there exist unique p € (max{0,1 —c~1},1] and § € (0, 1] such that

5 1< 1 1
—=5y(p) = (1 — P);ZC,\Z, wiwi Cg + ply.
76 1I=(1—p)c P i=1

Besides, (0,1] — (max{0,1—c1},1], p+— p and (0,1] — (0,1], p — @ are increasing and onto.

» Up to normalization, both estimators behave the same!
» Both estimators behave the same as an impulsion-free Ledoit-Wolf estimator

> About uniformity: Uniformity over p in the theorems is essential to find optimal values of p.
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Optimal Shrinkage parameter

> Chen sought for a Frobenius norm minimizing p but got stuck by implicit nature of Cn(p)
> Our results allow for a simplification of the problem for large N, n!

> Model equivalence says only one problem needs be solved.

Theorem (Optimal Shrinkage)
For each p € (0, 1], define

A 2
A1 Culp) NS B 2
Dulp) = gtr ((m—cN> ) . Du(p) = Ftr ((CN(p)—CN) >

N
Denote D* = cci/’,f,,;il, p* = C+,\jz_1, M, = limy ﬁ Z,N:l A?(CN) and p*, p* unique solutions to
p* _ T+ — o
1 7*5’ 6  1—p*+ Tyge =
) T=(1-p7)c T P Prr T

Then, letting ¢ small enough,

inf Dy(p) 2% D*, |nf Dy(p) 25 D*
pERe



Estimating p* and p*
> Theorem only useful if p* and p* can be estimated!

N
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» Careful control of the proofs provide many ways to estimate these.
» Proposition below provides one example.
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Estimating p* and p*

> Theorem only useful if p* and p* can be estimated!
» Careful control of the proofs provide many ways to estimate these.

» Proposition below provides one example.

Optimal Shrinkage Estimate
Let py € (max{0,1—c1},1] and py € (0,1] be solutions (not necessarily unique) to

PN N

%tl‘ Cn(pn) i 150 xix* 2 1
N L 1

* x o y—1
« 1vn X CnBy) X
Pua 2ict ™ g v

FCy(n)1x; [ ]
18yt sylsn  XCnen) 1 22
Bn + By i Tl Atr (130, W -1

defined arbitrarily when no such solutions exist. Then
N a.s. A a.s.,
v —> 0, By —> p*

Dy (pn) 23 D*, Dy(pn) =% D*.



Simulations

3 T [ T T
—@— inf,c(01) Oy (p)}
- @ - Dy(sp)

—6— D*
—B— Dy (80)

Normalized Frobenius norm

0 | | | | | |

1 2 4 8 16 52 64 128

n [log, scale]

Figure: Performance of optimal shrinkage averaged over 10000 Monte Carlo simulations, for N = 32, various
values of n, [Cylj = rl"=I with r = 0.7; §y as above; Ppo the clairvoyant estimator proposed in (Chen'11).



Figure: Shrinkage parameter p averaged over 10000 Monte Carlo simulations, for N = 32, various values of n,
[Cnlij = rli=il with r = 0.7; py and By as above; po the clairvoyant estimator proposed in (Chen’11);

A0

P

Simulations

Shrinkage parameter

0 I I I | | |
1 2 4 8 16 32 64 128

n [logy scale]

= ABMIN ¢ (maxo1—cyrty DN (P)} and 5% = argming, ¢ 0.1 {Dn(p)}-
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3.4 Optimal robust GLRT detectors




Context
> Hypothesis testing problem: Two sets of data

1
> Initial pure-noise data: xi,...,Xn, X; = 1/'r,-C,E w; as before
> New incoming data y given by:

_ [ x . Ho
Y= ap+ x
1
with x = ﬁC,g w, p € CN deterministic known, & unknown.

0 Hn
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1
with x = \/?C,g w, p € CN deterministic known, o« unknown.
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Context

> Hypothesis testing problem: Two sets of data
1
> Initial pure-noise data: xi,...,Xn, X; = «/T,'C,\% w; as before.
> New incoming data y given by:
J x , Ho
Y= ap+x , Hy
1
with x = \/?C,g w, p € CN deterministic known, o« unknown.
> GLRT detection test:
3

Tn(p) ST
Ho

for some detection threshold T where

Tn(p) 2

and éN(p) defined in previous section.

— In fact, originally found to be C'N(O) but

> only valid for N < n
> introducing p may bring improved for arbitrary N/n ratios.
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Objectives and main results

> Initial observations:
» As N,n— oo, N/n — ¢ > 0, under Jo,

a.s.

Tn(p) == 0.

= Trivial result of little interest!
> Natural question: for finite N, n and given T, find p such that

P(Tn(p) >T) =min

> Turns out the correct non-trivial object is, for y > 0 fixed

P(WTN(p) >y) — min

» Objectives:
> for each p, develop central limit theorem to evaluate
lim P(\/NTN(p] >y)
N,n— o0
N/n—c
> determine limiting minimizing p
> empirically estimate minimizing p
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What do we need?

CLT over C"N statistics
> We know that ||Cy(p) — Sy (p)|l 2350
— Key result so far!

> What about [|[VN(Cy(p) — Sn(p))] ?
—— Does not converge to zero!!!

> But there is hope...:

= This is our main result!

» This requires much more delicate treatment, not discussed in this tutorial.



Main results

Theorem (Fluctuation of bilinear forms)
every k € Z,

sup N1—¢
PERK

where Ry = [k +max{0,1—1/c}, 1].

Let a,b € CN with ||a|| = ||b]| = 1. Then, as N,n — oo with N/n — ¢ > 0, for any ¢ > 0 and

a*Cf(p)b—a*Sf(p)b| 230




False alarm performance

Theorem (Asymptotic detector performance)
As N,n — oo with N/n — c € (0, ),

v v?
P(TN(p) > ﬁ) — exp <_2U%\1((3)>‘ —0

where p — { is the aforementioned mapping and

sup
pPERK

1 P Cn QR (P)p
2p*Qu(p)p- fitrCnQn(P) - (1 —c(1— p)2m(—p)2 ftr CF QR (p))

with Qu(p) £ (Iy + (1 —p)m(—p)Cy) L.



False alarm performance

Theorem (Asymptotic detector performance)
As N,n — oo with N/n — c € (0, ),

Y v?
P(TN(p) > ﬁ) — exp (—20%\1(@)>’ —0

where p — { is the aforementioned mapping and

1 P Cn QR (P)p
20" QuP)p - JtrCwQn () - (1—c(1— p)2m(—p)2 & trC3 Q3 (D))

sup
pPERK

with Qu(p) £ (Iv + (1 —p)m(—p)Cy) 2.
» Limiting Rayleigh distribution
= Weak convergence to Rayleigh variable Ry (p)

» Remark: oy and p not a function of y
= There exists a uniformly optimal p!



Simulation
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Figure: Histogram distribution function of the /N Ty(p) versus Ry(p), N =20, p = N*% [1,...,1]7, Cy
Toeplitz from AR of order 0.7, cy =1/2, p =0.2.
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Simulation
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Figure: Histogram distribution function of the VN Ty (p) versus Ry(p), N =100, p = N*% [1,...,1]7, Cy
Toeplitz from AR of order 0.7, cy =1/2, p =0.2.
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Empirical estimation of optimal p

» Optimal p can be found by line search. . .but Cp unknown!
> We shall successively:

> empirical estimate oy (p)
> minimize the estimate
> prove by uniformity asymptotic optimality of estimate

Theorem (Empirical performance estimation)
For p € (max{0,1 — cﬁl}, 1), let

Also let 8%(1) £ limpyq 6%(p). Then

sup |0y (p) — 87 (P)
PERK



Final result

Theorem (Optimality of empirical estimator)
Define

Then, for every y > 0,

By = argmingoeny {8%,(6)}

P(VNTu(py

) >y> ~ inf {P(\/NTN(p) >y)} -0




Simulations
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Figure: False alarm rate P(v/NTn(p) >v), N =20, p= Nf% [1,...,1]7, Cy Toeplitz from AR of order 0.7,
cy=1/2.
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Figure: False alarm rate P(v/NTy(p) >v), N =100, p = Nf% ..., 1]7, Cy Toeplitz from AR of order 0.7,
cy=1/2.
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Figure: False alarm rate P(Ty(p) > T') for N =20 and N = 100, p = N3 [1,....17, [Cyl; = 0.7,
v =1/2.
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Future Directions

4.1 Kernel matrices and kernel methods
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Motivation: Spectral Clustering

N. El Karoui. The spectrum of kernel random matrices. The Annals of Statistics, 38(1):150, 2010.
» Objective: Clustering data xg,

. xn € CNin k similarity classes
> classical machine learning problem = brought here to big data!




- Future Diectons/ T Kemel matees and kemel methods e
Motivation: Spectral Clustering

» Objective: Clustering data xg,

N. El Karoui. The spectrum of kernel random matrices. The Annals of Statistics, 38(1):150, 2010.

> assumes similarity function, e.g. Gaussian kernel

.. Xn € CN in k similarity classes
> classical machine learning problem = brought here to big data!

. x:||2
Floxng) = exp (1251

202 >




- Future Diectons/ T Kemel matees and kemel methods e
Motivation: Spectral Clustering

» Objective: Clustering data xg,

N. El Karoui. The spectrum of kernel random matrices. The Annals of Statistics, 38(1):150, 2010.

.. Xn € CN in k similarity classes
> classical machine learning problem = brought here to big data!
> assumes similarity function, e.g. Gaussian kernel

f(xi,x;) = exp (
> naturally brings kernel matrix:

_lxi=xl1?

202 >

W = [Wjligij<n = [f (X X)) ligij<n

<




Motivation: Spectral Clustering

N. El Karoui. The spectrum of kernel random matrices. The Annals of Statistics, 38(1):150, 2010.

» Objective: Clustering data xq,...,x, € cNin k similarity classes

> classical machine learning problem = brought here to big data!
> assumes similarity function, e.g. Gaussian kernel

. x:||2
o) =5 (_u)

202
> naturally brings kernel matrix:

W = [Wjligij<n = [f (X x) ligijgn-

<

> Letting xi,..., X, random, leads naturally to studying kernel random matrices.



Motivation: Spectral Clustering

N. El Karoui. The spectrum of kernel random matrices. The Annals of Statistics, 38(1):150, 2010.

» Objective: Clustering data xq,...,x, € cNin k similarity classes

> classical machine learning problem = brought here to big data!
> assumes similarity function, e.g. Gaussian kernel

. x:||2
o) =5 <_u)

202
> naturally brings kernel matrix:

W = [Wjligij<n = [f (X x) ligijgn-

<

> Letting xi,..., X, random, leads naturally to studying kernel random matrices.

» Little is known on such random matrices, but for x; i.i.d. zero mean and covariance Iy:

wa (ocllT = ﬁ%WW*) 259

for some «, 3 depending on f and its derivatives.
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N. El Karoui. The spectrum of kernel random matrices. The Annals of Statistics, 38(1):150, 2010.

» Objective: Clustering data xq,...,x, € cNin k similarity classes

> classical machine learning problem = brought here to big data!
> assumes similarity function, e.g. Gaussian kernel

. x:||2
o) =5 <_u)

20?2

> naturally brings kernel matrix:

W = [Wjligij<n = [f (X x) ligijgn-

> Letting xi,..., X, random, leads naturally to studying kernel random matrices.

» Little is known on such random matrices, but for x; i.i.d. zero mean and covariance Iy:

wa (ocllT = ﬁ%WW*) 259

for some «, 3 depending on f and its derivatives.
= Basically, W gets equivalent to a rank-one matrix.



Motivation: Spectral Clustering
> Clustering xq, . .

., Xn in k often written as:

(RatioCut)

ke f(x;, x7)
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—— But difficult to solve, NP hard!




Motivation: Spectral Clustering

> Clustering xi, ..., Xp in k often written as:

L f(xj, x7)
. . ! J
(RatioCut) i Z Z 8T

Vi, 8;N8;=0

—— But difficult to solve, NP hard!

» Can be equivalently rewritten

(RatioCut) min  tr (MTLM>
MeM, MTM=I;

1
where M = {M = [mjlici<ni<i<k, mij = 18;172 Sxiegj} and

L= [Ljhigijcn = =W +diag(W - 1)]1¢; jcn = |:_f(Xi-Xj) + ISi,jZ f(Xin/)}
1<i

I=1 <ij<n



Motivation: Spectral Clustering

> Clustering xi, ..., Xp in k often written as:

L f(xj, x7)
. . ! J
(RatioCut) i Z Z 8T

Vi, 8;N8;=0

—— But difficult to solve, NP hard!

» Can be equivalently rewritten

(RatioCut) min  tr (MTLM>
MeM, MTM=I;

1
where M = {M = [mjlici<ni<i<k, mij = 18;172 Sxiegj} and

L= [Ljhigijcn = =W +diag(W - 1)]1¢; jcn = |:_f(Xi-Xj) + ISi,jZ f(Xin/)}
1<i

I=1 <ij<n

» Relaxing M to unitary leads to a simple eigenvalue/eigenvector problem:
= Spectral clustering.



Objectives

» Generalization to k distributions for xi,

..., Xp should lead to asymptotically
matrices.

> If established, specific choices of known “good” kernel better understood.
» Eventually, find optimal choices for kernels.

rank-k W
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Future Directions

4.2 Neural networks
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Echo-state neural networks

» Neural network:

> Input neuron signal s; € R (could be multivariate)
> Output neuron signal y; € R (could be multivariate)
> N neurons with

> state x; € RV at time ¢

> connectivity matrix W € RVXN

> connectivity vector to input w; € RV

> connectivity vector to output wp € RN
> State evolution xp = 0 (say) and

Xe+1 =S (Wxe + wist)
with S entry-wise sigmoid function.
> Output observation
=
Yt = Wp X¢.
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Echo-state neural networks

» Neural network:

> Input neuron signal s; € R (could be multivariate)
> Output neuron signal y; € R (could be multivariate)
> N neurons with

>
>
>
>

state x¢ € RN at time t

connectivity matrix W € RVXN
connectivity vector to input w; € RV
connectivity vector to output wp € RN

> State evolution xg = 0 (say) and

xe+1 =S (Wxt + wst)

with S entry-wise sigmoid function.
> Output observation

-
Yt = Wp X¢.

» Classical neural networks:

> Learning phase: input-output data (s;,y:) used to learn W, wo, w; (via e.g. LS)
> Interpolation phase: W, wp, w; fixed, we observe output y; from new data s;.

= Poses overlearning problems, difficult to set up, demands lots of learning data.



Echo-state neural networks

» Neural network:

Input neuron signal s; € R (could be multivariate)
Output neuron signal y; € R (could be multivariate)
N neurons with

>
| 4
| 4

>
>
>
>

state x¢ € RN at time t

connectivity matrix W € RVXN
connectivity vector to input w; € RV
connectivity vector to output wp € RN

State evolution xp = 0 (say) and

xe+1 =S (Wxt + wst)

with S entry-wise sigmoid function.
Output observation

-
Yt = Wp X¢.

» Classical neural networks:

> Learning phase: input-output data (s;,y:) used to learn W, wo, w; (via e.g. LS)
> Interpolation phase: W, wp, w; fixed, we observe output y; from new data s;.

= Poses overlearning problems, difficult to set up, demands lots of learning data.

» Echo-state neural networks: To solve the problems of neural networks

> W and w; set to be a random matrix, no longer learned
> only wp is learned

= Reduces amount of data to learn, shows striking performances in some scenarios.



e
ESN and random matrices

» W, w, being random, performance study involves random matrices.
= Stability, chaos regime, etc. involve extreme eigenvalues of W

N
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ESN and random matrices

» W, w, being random, performance study involves random matrices.
| g p y

= Stability, chaos regime, etc. involve extreme eigenvalues of W
» main difficulty is non-linearity caused by S




ESN and random matrices

» W, w; being random, performance study involves random matrices.
= Stability, chaos regime, etc. involve extreme eigenvalues of W
» main difficulty is non-linearity caused by S

» Performance measures:

> MSE for training data
> MSE for interpolated data

= Optimization to be performed on regression method!, e.g.

Wwop = (XtrainXt-lr—ain + ‘Y’N)_lxtrainytrain

With Xirain = [X1, ... XT], Ytrain = y1,...,y71T, T train period.



ESN and random matrices

» W, w; being random, performance study involves random matrices.
= Stability, chaos regime, etc. involve extreme eigenvalues of W

» main difficulty is non-linearity caused by S
» Performance measures:

> MSE for training data
> MSE for interpolated data

= Optimization to be performed on regression method!, e.g.
Wwop = (XtrainXt-lr—ain + YIN)_IXtrainytrain
With Xirain = [X1, ... XT], Ytrain = y1,...,y71T, T train period.
> In first approximation: S = Id.
= MSE performance with stationary inputs leads to study

> Wiww[ (W)
j=1

= New random matrix model, can be analyzed with usual tools though.
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