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Spectrum Analysis of Large Matrices

Absence of eigenvalues outside the support
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Why go beyond the spectrum?

> Limiting spectral results only say where the “mass” of eigenvalues lies asymptotically. Say
Fy = F, with fiy(x) = & SN, 8(x — ag).
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Why go beyond the spectrum?

> Limiting spectral results only say where the “mass” of eigenvalues lies asymptotically. Say
Fy = F, with fiy(x) = & SN, 8(x — ag).
> f,&o) ()= x8(x)+ % S N1 5(x — ax) also converges to F.
> if Fy and F,\(IO) are discrete and differ by o(N) bounded masses, F,\(IO) = F.

» We know that, for Xy € CN*" with i.i.d. zero mean variance 1/n,
FXvX = F,

with F is the compactly supported Marlenko-Pastur law of parameter ¢ = limy %

Question: for very large N, where are the eigenvalues of XNXH ?



Are there eigenvalues outside the support ?
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No eigenvalue outside the support of sample covariance matrices

Z. D. Bai, J. W. Silverstein, “No eigenvalues outside the support of the limiting spectral
distribution of large-dimensional sample covariance matrices,” The Annals of Probability, vol. 26,
no.1l pp. 316-345, 1998.

Theorem
Let Xy € CNX" with i.i.d. entries with zero mean, variance 1/n and 4" order moment of order
O(1/n?). Let Ty € CN*N be nonrandom and bounded in norm and with FTn = H. We know
that . L

FBN = F almost surely, By = T,%XNXHTEI.

Let Fy be the distribution with my(z) solution of

N T

=1 N N—nl
== (== 5 [ g TV ) e = i)+

n n z

Choose Ny € N and [a, b], a > 0, outside the union of the supports of F and Fy for all N > Np.
Denote L the set of eigenvalues of By. Then,

P(LyN[a b] #0io.)=0.
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How to read the result?

> If Ty =1y for all N, then this result is equivalent to

“For [a, b] outside the support of the Mardenko-Pastur law, with probability 1, By has no
eigenvalue in [a, b] for all large N"




How to read the result?

> If Ty =1y for all N, then this result is equivalent to

“For [a, b] outside the support of the Maréenko-Pastur law, with probability 1, By has no
eigenvalue in [a, b] for all large N"
> If Ty is not identity,
> call S the support of the limiting F.
> for some N, take the I.s.d. of By as if limy FTN = F M, and call its support Shp-
> do the previous for all N > Ny. Call A = SLJﬂ,D,\,0 Sn.
> take [a, b] outside A, and pick a random sequence Bj, By, . ... The result shows that, for all N large,
there is no eigenvalue of By in [a, b].



How to read the result?

> If Ty =1y for all N, then this result is equivalent to
“For [a, b] outside the support of the Maréenko-Pastur law, with probability 1, By has no
eigenvalue in [a, b] for all large N"
> If Ty is not identity,

> call S the support of the limiting F.

> for some N, take the I.s.d. of By as if limy FTN = F M, and call its support Shp-

> do the previous for all N > Ny. Call A = SUﬂ,D,\,0 Sn.

> take [a, b] outside A, and pick a random sequence Bj, By, . ... The result shows that, for all N large,
there is no eigenvalue of By in [a, b].

> this is very different from taking [a, b] only outside the support of F only!

» this is essential to understand spiked models, discussed later.



No eigenvalue outside the support: which models?

J. W. Silverstein, P. Debashis, “No eigenvalues outside the support of the limiting empirical
spectral distribution of a separable covariance matrix,” J. of Multivariate Analysis vol. 100, no. 1,
pp. 37-57, 2009.

> It has already been shown that (for all large N) there is no eigenvalues outside the support of
> Mar&enko-Pastur law: XXM, X i.i.d. with zero mean, variance 1/N, finite 4t" order moment.
> Sample covariance matrix: T%XXHT% and X"TX, X i.i.d. with zero mean, variance 1/N, finite 4t
order moment.

1 1
> Doubly-correlated matrix: R2 XTXHRZ, X with i.i.d. zero mean, variance 1/N, finite 4t" order
moment.
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J. W. Silverstein, P. Debashis, “No eigenvalues outside the support of the limiting empirical
spectral distribution of a separable covariance matrix,” J. of Multivariate Analysis vol. 100, no. 1,
pp. 37-57, 2009.

> It has already been shown that (for all large N) there is no eigenvalues outside the support of
> Mar&enko-Pastur law: XXM, X i.i.d. with zero mean, variance 1/N, finite 4t" order moment.
> Sample covariance matrix: T%XXHT% and X"TX, X i.i.d. with zero mean, variance 1/N, finite 4t
order moment.

1 1
> Doubly-correlated matrix: R2 XTXHRZ, X with i.i.d. zero mean, variance 1/N, finite 4t" order
moment.

J. W. Silverstein, Z.D. Bai, Y.Q. Yin, “A note on the largest eigenvalue of a large dimensional
sample covariance matrix,” Journal of Multivariate Analysis, vol. 26, no. 2, pp. 166-168, 1988.

» If 4th order moment is infinite,

. xxH
lim sn,:lp Alax = 00



No eigenvalue outside the support: which models?

J. W. Silverstein, P. Debashis, “No eigenvalues outside the support of the limiting empirical
spectral distribution of a separable covariance matrix,” J. of Multivariate Analysis vol. 100, no. 1,
pp. 37-57, 2009.

> It has already been shown that (for all large N) there is no eigenvalues outside the support of
> Mar&enko-Pastur law: XXM, X i.i.d. with zero mean, variance 1/N, finite 4t" order moment.
> Sample covariance matrix: T%XXHT% and X"TX, X i.i.d. with zero mean, variance 1/N, finite 4t
order moment.

1 1
> Doubly-correlated matrix: R2 XTXHRZ, X with i.i.d. zero mean, variance 1/N, finite 4t" order
moment.

J. W. Silverstein, Z.D. Bai, Y.Q. Yin, “A note on the largest eigenvalue of a large dimensional
sample covariance matrix,” Journal of Multivariate Analysis, vol. 26, no. 2, pp. 166-168, 1988.

» If 4th order moment is infinite,

. xxH
lim sn,:lp Alax = 00

J. Silverstein, Z. Bai, “No eigenvalues outside the support of the limiting spectral distribution of
information-plus-noise type matrices” to appear in Random Matrices: Theory and Applications.
> Only recently, information plus noise models, X with i.i.d. zero mean, variance 1/N, finite

4th order moment.
(X+A)(X+AM



Sketch of Proof
> Proof entirely relies on the Stieltjes transform.

> Up to now, we know |mg, (z) — my(2)| 25 0forze C\R.
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> Proof entirely relies on the Stieltjes transform.

> Up to now, we know |mg, (z) — my(2)| 25 0forze C\R.
> This is not enough, we need in fact to show: for z = x+ ivkvy, vy = N~1/68 k=1, . . . 34,
1 1
ma s m + ik2 —m + ik2 =o(vl).
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Sketch of Proof

> Proof entirely relies on the Stieltjes transform.
> Up to now, we know |mp,, (z) — mpy(2)] 25 0forze C\R.
> This is not enough, we need in fact to show: for z = x+ ivkvy, vy = N~1/68 k=1, . . . 34,

67
max su ‘m x+lk?v )—m ((x+1k?v ‘ o(vy').
W an By N N N VN

> Expanding the Stieltjes transforms and considering only the imaginary parts, this is

Jd(FB"’(M—FN(M)

66
(x — A2+ kv, W)

max  sup
1§k§34x€ [a,b]

=o(v

almost surely. Taking successive differences over the 34 values of k, we end up with

J(vﬁ)“d(FBNm—FNm) oSS
[ (x— A2 +kv2) N

Consider a’ < a and b’ > b such that [a’, b’] is outside the support of F. We then have

sup
x€la,b]

1 1 p(N)d(FBy(A) — Fy () v08
sup J S 24 ,\; 2 & + Z 34 n > 5| =o(1)
x€la,b] ke1 (X = A)2 + kvy) Aj€la b’] ITela ((x = Aj)2 + kvy)

almost surely. If, there is one eigenvalue of all B,y in [a, b], then one term of the sum is
1/34! > 0. So the integral must away from zero. But the integral tends to 0. Contradiction.



What's the link with wireless communications?

X1,...,Xp. Then

Assume N sensors wish to detect the presence of a signal. They scan successive samples
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What's the link with wireless communications?

X1,...,Xp. Then

Assume N sensors wish to detect the presence of a signal. They scan successive samples
transmitted.

» if R, = %Z,’-’zl x,-x,.* has eigenvalues outside the support: with high probability, a signal was




What's the link with wireless communications?

Assume N sensors wish to detect the presence of a signal. They scan successive samples
X1,...,Xp. Then
» if R, = %Z,’-’zl x,-x,.* has eigenvalues outside the support: with high probability, a signal was
transmitted.
» if R, has all eigenvalues inside the expected noise support, what can we say?

> we cannot conclude so far
> we need to further study the spectrum
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Spectrum Analysis of Large Matrices

Further details on the asymptotic spectrum

N



Stieltjes transform inversion for covariance matrix models

J. W. Silverstein, S. Choi, “Analysis of the limiting spectral distribution of large dimensional
random matrices,” Journal of Multivariate Analysis, vol. 54, no. 2, pp. 295-309, 1995.

1
» We know for the model TEIXN, Xy € CNXn that, if FTN = H, the Stieltjes transform of the
es.d. of By = X”TNXN satisfies mp, (2) 22N mg(z), with

" 1
me(z) = (,Z, cjde(t)>

which is unique on the set {z € C*, mg(z) € CT}.



Stieltjes transform inversion for covariance matrix models

J. W. Silverstein, S. Choi, “Analysis of the limiting spectral distribution of large dimensional
random matrices,” Journal of Multivariate Analysis, vol. 54, no. 2, pp. 295-309, 1995.

1
» We know for the model TEIXN, Xy € CNXn that, if FTN = H, the Stieltjes transform of the
es.d. of By = X”TNXN satisfies mp, (2) 22N mg(z), with

" 1
me(z) = (,Z, cjde(t)>

which is unique on the set {z € C*, mg(z) € CT}.

» This can be inverted into

for me Ct.



Stieltjes transform inversion and spectrum characterization

Remember that we can evaluate the spectrum density by taking a complex line close to R and
evaluating J[mg(z)] along this line. Now we can do better.




Stieltjes transform inversion and spectrum characterization

Remember that we can evaluate the spectrum density by taking a complex line close to R and
evaluating J[mg(z)] along this line. Now we can do better.

It is shown that

lim  mg(z) = mg(x) exists.
z—xER*
zeC+

We also have,
» for xo inside the support, the density f(x) of F in xq is £J[mg] with mg the unique solution

7T
me Ct of )

lze(m) =) %0 = - — ¢

1T tde(t)

> let myp € R* and xg the equivalent to z¢ on the real line. Then “xq outside the support of F"
is equivalent to “x/(mg(xp)) > 0, me(xp) # 0, —1/mg(xo) outside the support of H".



Stieltjes transform inversion and spectrum characterization

Remember that we can evaluate the spectrum density by taking a complex line close to R and
evaluating J[mg(z)] along this line. Now we can do better.

It is shown that

lim  mg(z) = mp(x) exists.
z—xER*
zeC+

We also have,
» for xp inside the support, the density f(x) of F in xp is %J[mo] with mg the unique solution
m e C* of

(2 (m) =] xO:flch dH (1)

= m 1+ tm
> let mp € R* and xg the equivalent to zg on the real line. Then “x; outside the support of F"

is equivalent to “xz(mﬂ(xo)) >0, mEGo) # 0, —1/mg(xp) outside the support of H".

This provides another way to determine the support!. For m € (—o0,0), evaluate xg(m).
Whenever xg decreases, the image is outside the support. The rest is inside.



Another way to determine the spectrum: spectrum to analyze

I . Empirical eigenvalue distribution

Limit law
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Figure: Histogram of the eigenvalues of By = T2 XyX{ T2, N =300, n = 3000
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of three evenly weighted masses in 1, 3 and 7.
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xg(m), meB

e Support of F

Another way to determine the spectrum: inverse function method
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1 1
Figure: Stieltjes transform of By = T3 XyXN T2, N =300, n = 3000, with Ty diagonal composed of three
evenly weighted masses in 1, 3 and 7. The support of F is read on the vertical axis, whenever mg is decreasing.
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Cluster boundaries in sample covariance matrix models

Xavier Mestre, “Improved estimation of eigenvalues of covariance matrices and their associated
subspaces using their sample estimates,” IEEE Transactions on Information Theory, vol. 54, no.
11, Nov. 2008.

Theorem
Let Xy € CN*" have i.i.d. entries of zero mean, variance 1/n, and Ty be diagonal such that
FTn = H, as n,N — oo, N/n — ¢, where H' has K masses in ti, ..., tx with multiplicity

1 1
ny, ..., nk respectively. Then the l.s.d. of By = T,@XNXHTK, has support 8 given by
S=[x; ., x1Ubg . x5 1U...U [Xa,xa]

with x; = xp(mg), x4 = xg(mJ), and

K
1 1 ty
xF (m) —*;*C;kzﬂ”km

with 2Q the number of real-valued solutions counting multiplicities of x{(m) = 0 denoted in
order mi <mf <m; <mj < S Smg < ma.



Comments on spectrum characterization

Previous results allows to determine
> the spectrum boundaries

» the number Q of clusters

> as a consequence, the total separation or not of the spectrum

in K clusters




Comments on spectrum characterization

Previous results allows to determine
> the spectrum boundaries
» the number Q of clusters

> as a consequence, the total separation or not of the spectrum in K clusters.

Mestre goes further: to determine local separability of the spectrum,

> identify the K inflexion points, i.e. the K solutions my, ..., mk to
x£(m)=0

» check whether x{£(m;) > 0 and x/(mj 1) >0

> if so, the cluster in between corresponds to a single population eigenvalue.
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Spectrum Analysis of Large Matrices

Exact spectrum separation



Further than the “no eigenvalues” result

Z. D. Bai, J. W. Silverstein, “Exact Separation of Eigenvalues of Large Dimensional Sample
Covariance Matrices,” The Annals of Probability, vol. 27, no. 3, pp. 1536-1555, 1999.

> The result on “no eigenvalue outside the support”

> says where eigenvalues are not to be found
> does not say, as we feel, that (if cluster separation) in cluster k, there are exactly ny eigenvalues.



Further than the “no eigenvalues” result

Z. D. Bai, J. W. Silverstein, “Exact Separation of Eigenvalues of Large Dimensional Sample
Covariance Matrices,” The Annals of Probability, vol. 27, no. 3, pp. 1536-1555, 1999.

> The result on “no eigenvalue outside the support”
> says where eigenvalues are not to be found
> does not say, as we feel, that (if cluster separation) in cluster k, there are exactly ny eigenvalues.

» This is in fact the case,

Theorem .
Let By = TZXyXR T2 with I.s.d. F, Xy i.i.d., zero mean, variance 1/n, finite 4t moment,

FTn = H, and % — c. Consider 0 < a < b such that [a, b] is outside the support of F. Denote
additionally A\ 's and T, s the ordered eigenvalues of By and Ty. Then we have

1. If c(1— H(0)) > 1, then the smallest eigenvalue xy of the support of F is positive and Ay — xo
almost surely, as N — oo.

2. Ifc(1—H(0)) <1, orc(l—H(0)) >1 but [a, b] is not contained in [0, xol, then, almost surely,
there exists Ny such that for all N > Ny,

7\,‘N>b, 7\,-N¢1<a
where iy is the unique integer such that
Ty > —1/m (b)

Tiy+1 < —1/mg(a).



Consequence of exact separation

> If eigenvalues are found outside the expected clusters, some extra “signal” must have been
transmitted.

» The quantity of eigenvalues in each cluster gives an exact estimate of the multiplicity of the
population!

> This is essential for eigen-inference.
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Consequence of exact separation

> If eigenvalues are found outside the expected clusters, some extra “signal” must have been
transmitted.

» The quantity of eigenvalues in each cluster gives an exact estimate of the multiplicity of the
population!

> This is essential for eigen-inference.
> Exact separation is only known for the sample covariance matrix model so far.

> Recently, extension to information-plus-noise model.
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Spectrum Analysis of Large Matrices

Distribution of extreme eigenvalues: the Tracy-Widom law

N



Deeper into the spectrum

eigenvalues.

» In order to derive statistical detection tests, we need more information on the extreme




Deeper into the spectrum

» In order to derive statistical detection tests, we need more information on the extreme
eigenvalues.

> We will study the fluctuations of the extreme eigenvalues (second order statistics)

> However, the Stieltjes transform method is not adapted here!
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Distribution of the largest eigenvalues of XXH

C. A. Tracy, H. Widom, “On orthogonal and symplectic matrix ensembles,” Communications in
Mathematical Physics, vol. 177, no. 3, pp. 727-754, 1996.

K. Johansson, “Shape Fluctuations and Random Matrices,” Comm. Math. Phys. vol. 209, pp.
437-476, 2000.

Theorem
Let X € CN*" have i.i.d. Gaussian entries of zero mean and variance 1/n. Denoting }\f\r, the
largest eigenvalue of XXM, then

+ 2
3Ay - B+ Vel (1+:/El) =Xt
(1++/c)3c2

with ¢ = limy N/n and F* the Tracy-Widom distribution given by

Ft(t) =exp <7Jm

t

N ~F*

(x— t12a2(x)dx)
with q the Painlevé Il function that solves the differential equation

q” (x) = xq(x) +2q3(x)
q(X) ~x—s00 Ai(x)

in which Ai(x) is the Airy function.



The law of Tracy-Widom

T T T T
I l Empirical Eigenvalues
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Tracy-Widom law F+
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—4 —2 0 2

Centered-scaled largest eigenvalue of XXH

Figure: Distribution of P (1+ ﬁ)_% [Af — (14 /<)?] against the distribution of X+ (distributed as
Tracy-Widom law) for N = 500, n = 1500, ¢ = 1/3, for the covariance matrix model XXH. Empirical
distribution taken over 10,000 Monte-Carlo simulations. = B
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Techniques of proof
Method of proof requires very different tools:
kernel determinant.

> orthogonal (Laguerre) polynomials: to write joint unordered eigenvalue distribution as a

P
PN (AL, Ap) = ﬂ,itl Kn(Ai Af)
with K(x, y) the kernel Laguerre polynomial.




Techniques of proof
Method of proof requires very different tools:

> orthogonal (Laguerre) polynomials: to write joint unordered eigenvalue distribution as a
kernel determinant.

p
Pn(AL, ..., Ap) = ﬂ,itl Kn (A, Aj)

with K(x, y) the kernel Laguerre polynomial.
> Fredholm determinants: we can write hole probability as a Fredholm determinant.

_ 1)k k
P(N2/3(7\,-7(1+ﬁ)2)eA,i:1 ..... N):1+§ (kl,) L L _Cji_ethN(XivXj)l [ dx
>1 ! c c ij=

2 det(ly — Kp).




Techniques of proof
Method of proof requires very different tools:

> orthogonal (Laguerre) polynomials: to write joint unordered eigenvalue distribution as a
kernel determinant.

p
Pn(AL, ..., Ap) = itj,itl Kn (A, Aj)

with K(x, y) the kernel Laguerre polynomial.
> Fredholm determinants: we can write hole probability as a Fredholm determinant.
PN (Ai—(1+Ve)P)eAi=1..,N)=1 (-y* det K, dx;
( A—(1+Ve)?)eAi=1,..., )_ +) ool RSN Y. 2 v 0xx) [ dxi
k>1

2 det(ly — Kp).

> kernel theory: show that Kj converges to a Airy kernel.

AT A
Ki(xy) = Kairy (x,y) = SO0 = BLLIAE),




Techniques of proof

Method of proof requires very different tools:

>

orthogonal (Laguerre) polynomials: to write joint unordered eigenvalue distribution as a
kernel determinant.

p
Pn(AL, ..., Ap) = I,OJlitl Kn (A, Aj)

with K(x, y) the kernel Laguerre polynomial.

Fredholm determinants: we can write hole probability as a Fredholm determinant.
P (N3 (ni— (1+ V) € Ai=1 N):1+Z(fl)kj J det Ky (x; ) [ ] dx
! oo k' Jac Ac ij—1 @ rtio !

k>1

2 det(ly — Kp).

kernel theory: show that Ky converges to a Airy kernel.

Ki(xy) = Kairy (x,y) = SO0 = BLLIAE),

differential equation tricks: hole probability in [t, c0) gives right-most eigenvalue distribution,
which is simplified as solution of a Painelvé differential equation: the Tracy-Widom
distribution.

Fr(t) = e JT 0000 g/ — g1 263, q(x) ~xmpo0 Ai(X).



Comments on the Tracy-Widom law

> deeper result than limit eigenvalue result

> gives a hint on convergence speed

» fairly biased on the left: even fewer eigenvalues outside the support.
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» fairly biased on the left: even fewer eigenvalues outside the support.

> can be shown to hold for other distributions than Gaussian under mild

assumptions




Comments on the Tracy-Widom law

> deeper result than limit eigenvalue result

> gives a hint on convergence speed

» fairly biased on the left: even fewer eigenvalues outside the support.

> can be shown to hold for other distributions than Gaussian under mild

» Now, what about largest eigenvalue of a spiked model?

assumptions
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Introduction of the problem

» Reminder: for a sequence xi,

., %n € CN of independent random variables,

1 n
R, == X xH
"= PRETE
k=1
is an n-consistent estimator of R = E[xlx'l"].
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. Xn € CN of independent random variables,

1 n
R, == X xH
"= PRETE
k=1
is an n-consistent estimator of R = E[xlx'l"].

If n, N have comparable sizes, this no longer holds.




Introduction of the problem

» Reminder: for a sequence Xi,...,xp € CcN of independent random variables,
1 n
H
R, = o Z Xpe X,
k=1

is an n-consistent estimator of R = E[xlx'l"}.
> If n, N have comparable sizes, this no longer holds.

» Typically, n, N-consistent estimators of the full R matrix perform very badly.



Introduction of the problem

> Reminder: for a sequence X1, ..., x, € CV of independent random variables,
1 n
H
R, = o Z Xpe X,
k=1

is an n-consistent estimator of R = E[xlx'l"}.
> If n, N have comparable sizes, this no longer holds.
» Typically, n, N-consistent estimators of the full R matrix perform very badly.

> If only the eigenvalues of R are of interest, things can be done. The process of retrieving
information about eigenvalues, eigenspace projections, or functional of these is called
eigen-inference.



Girko and the G-estimators

V. Girko, “Ten years of general statistical analysis,”
http://www.general-statistical-analysis.girko.freewebspace.com /chapter14.pdf

> Girko has come up with more than 50 N, n-consistent estimators, called G-estimators
(Generalized estimators). Among those, we find

> Gj-estimator of generalized variance. For

n(n—1)N
(n—N)TIV_, (n— k)
with «, any sequence such that «,2log(n/(n— N)) — 0, we have

G1(R,) — tx,Tl logdet(R) — 0

Gi(R,) = «, ! |logdet(R,) + log

in probability.



Girko and the G-estimators

V. Girko, “Ten years of general statistical analysis,”
http://www.general-statistical-analysis.girko.freewebspace.com /chapter14.pdf

> Girko has come up with more than 50 N, n-consistent estimators, called G-estimators
(Generalized estimators). Among those, we find

> Gj-estimator of generalized variance. For

n(n—1)N
(n—N)TIV_, (n— k)
with «, any sequence such that «,2log(n/(n— N)) — 0, we have

G1(R,) — tx,Tl logdet(R) — 0

Gi(R,) = «, ! |logdet(R,) + log

in probability.

» However, Girko's proofs are rarely readable, if existent.
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Position of the problem

1 1
> it has long been difficult to analytically invert the simplest By = T2 Xy X} T7 model to
recover the diagonal entries of Ty . Indeed, we only have the deterministic equivalent result
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with my the deterministic equivalent of the Stieltjes transform for By = X','\',TNXN.
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» an N, n-consistent estimator for the t,'s was never found until recently...



Position of the problem

1 1
> it has long been difficult to analytically invert the simplest By = T2 Xy X} T7 model to
recover the diagonal entries of Ty . Indeed, we only have the deterministic equivalent result

- gy
my(z) = (_”CJHtmN(z) (t))

with my the deterministic equivalent of the Stieltjes transform for By = X','\',TNXN.
> when Ty has eigenvalues ty, ..., tx with multiplicity ni, ..., ng, this is

1 t -
N = k
m(z)—( z+ NkZ:lnklﬂkmN(ZJ

» an N, n-consistent estimator for the t,'s was never found until recently...

> however, moment-based methods and free probability approaches provide simple solutions to
estimate consistently all moments of FTn.



Reminder on moment-based approaches

> For free random matrices A and B, we have the cumulant/moment relationships,

Ck(A+B) = C(A) + C(B)

Mn(AB) = 3 [T Gu(A)Cy,(B)
(7t1,712)ENC (n) Vi €M
Vaemp

> this allows one to compute all moments of sum and product distributions
pa B pp

pa X pup

> in addition, we have results for the information-plus-noise model
By = % (Ry + oXp) (Ry + oXpy)"
whose e.s.d. converges weakly and almost surely to pg such that
g = ((nr N pe) Bo,) M

with p. the Maréenko-Pastur law and Ty = RNRn.



Reminder on moment-based approaches

> For free random matrices A and B, we have the cumulant/moment relationships,

Ck(A+B) = C(A) + C(B)

Mn(AB) = 3 [T Gu(A)Cy,(B)
(7t1,712)ENC (n) Vi €M
Vaemp

> this allows one to compute all moments of sum and product distributions
pa B pp

pa X pup
> in addition, we have results for the information-plus-noise model

1
By =~ (Ry + oXy) (Ry + XM

whose e.s.d. converges weakly and almost surely to pg such that
g = ((ur N pe) B8,2) K pe

with p. the Maréenko-Pastur law and Ty = RNRn.

» all basic matrix operations needed in wireless communications are accessible for convenient
matrices (Gaussian, Vandermonde etc.)

> all operations are merely polynomial operations on the moments. As a consequence, for

By = f(Rp),



From free convolution to free deconvolution

@. Ryan, M. Debbah, “Multiplicative free convolution and information-plus-noise type matrices,”
Arxiv preprint math.PR/0702342, 2007.
» we have the further result that

Polynomial Relations

The kth moment of the I.s.d. of By is a polynomial of the k-first moments of the l.s.d. of Ry
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@. Ryan, M. Debbah, “Multiplicative free convolution and information-plus-noise type matrices,”
Arxiv preprint math.PR/0702342, 2007.

» we have the further result that

Polynomial Relations
The kth moment of the I.s.d. of By is a polynomial of the k-first moments of the l.s.d. of Ry
> we can therefore invert the problem and express the k' moment of Ry as the first k moments of
By. This entails deconvolution operations,
KA = HaiB H g
HA = HaB N 1B
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From free convolution to free deconvolution

@. Ryan, M. Debbah, “Multiplicative free convolution and information-plus-noise type matrices,”
Arxiv preprint math.PR/0702342, 2007.

» we have the further result that

Polynomial Relations
The kth moment of the I.s.d. of By is a polynomial of the k-first moments of the l.s.d. of Ry
> we can therefore invert the problem and express the k' moment of Ry as the first k moments of
By. This entails deconvolution operations,
KA = HaiB H g
HA = HaB N 1B
1

and for the information-plus-noise model, By = ; (Ry + oXp) (Ry + oXy

ur = (ke @ pc) B o ,2) N e

)H

» for more involved models, the polynomial relations can be iterated and even automatically
generated.



Example of polynomial relation
> Consider the information-plus-noise model

Y=D+X

M, = lim 1tr(iYYH)k
n—oo N

with Y € CVxn D e CN*n X € CN*" with i.i.d. entries of mean 0 and variance 1. Denote
N

— i Lo L ppHik
D~ Jim 2w (00




Example of polynomial relation

> Consider the information-plus-noise model
Y=D+X

with Y € CVxn D e CN*n X € CN*" with i.i.d. entries of mean 0 and variance 1. Denote

o1 1 Hok
M= Jim Zor (YY)

T 1 1 Hik
Dk = [l el DI

» For that model, we have the relations
My =D;+1
My =D; + (2+2¢c)D; + (1 + ¢)
Mz = D3 + (3 +3¢)Ds + 3cD1? + (1 + 3¢ + c?)



Example of polynomial relation

> Consider the information-plus-noise model
Y=D+X

with Y € CVxn D e CN*n X € CN*" with i.i.d. entries of mean 0 and variance 1. Denote

o1 1 Hok
M= Jim Zor (YY)

T 1 1 Hik
Dk = [l el DI

» For that model, we have the relations
My =D;+1
My =D; + (2+2¢c)D; + (1 + ¢)
Mz = D3 + (3 +3¢)Ds + 3cD1? + (1 + 3¢ + c?)

hence

Dy =M, —1
Dy =My, — (24 2c)M; + (1 +¢)
D3 = M3 — (34 3¢)My — 3cM;? + (6¢2 + 18¢ + 6) My — (4¢? + 12¢ + 4)
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Finite size statistical inference

A. Masucci, @. Ryan, S. Yang, M. Debbah, “Finite Dimensional Statistical Inference,” |IEEE
Trans. on Information Theory, vol. 57, no. 4, pp. 2457-2473, 2011.

> it might happen that, instead of one large matrix realization, we have access to several
smaller such matrices. In that case, we seek an estimate for

1. (1yun\”
E {;tr (NYY ) }
instead of their limits.
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Finite size statistical inference

A. Masucci, @. Ryan, S. Yang, M. Debbah, “Finite Dimensional Statistical Inference,” |IEEE
Trans. on Information Theory, vol. 57, no. 4, pp. 2457-2473, 2011.

> it might happen that, instead of one large matrix realization, we have access to several
smaller such matrices. In that case, we seek an estimate for

E [%tr (%YYHH

» we have further combinatorics theorems for all previous elementary models.

instead of their limits.

» example: the previous relations extend to
My =D;+1
M2:D2—|— (2+2€)D1—|— (1+C)
Mz = D3 + (34 3¢)Ds +3cD? + (3+9c +3c2 + 3N 2)Dy + (1 +3c + 2 + N 2)



Current and further studies

the empirical moments

> in addition to estimating the average moments themselves, we can evaluate the variance of
1. (1yun\” 1. (1yun\”
E [;tr (NYY ) —E [;tr (NYY
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> if the moments have Gaussian distributions (left to be proven for models other than sample
covariance matrix), the full behaviour of the empirical moments is known.




Current and further studies

> in addition to estimating the average moments themselves, we can evaluate the variance of
the empirical moments
1. (1yun\” 1 (1yun\”
E [;tr (NYY ) —E [;tr (NYY

> if the moments have Gaussian distributions (left to be proven for models other than sample
covariance matrix), the full behaviour of the empirical moments is known.

> statistical maximum-likelihood/MMSE methods can then be used.
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Related bibliography

> N. R. Rao, A. Edelman, “The polynomial method for random matrices,” Foundations of Computational Mathematics,
accepted for publication.

> N. R. Rao, J. A. Mingo, R. Speicher, A. Edelman, “Statistical eigen-inference from large Wishart matrices,” Annals of
Statistics, vol. 36, no. 6, pp. 2850-2885, 2008.

> A. Masucci, @. Ryan, S. Yang, M. Debbah, “Finite Dimensional Statistical Inference,” IEEE Trans. on Information Theory,
vol. 57, no. 4, pp. 2457-2473, 2011.

» @. Ryan, M. Debbah, “Multiplicative free convolution and information-plus-noise type matrices,” Arxiv math.PR/0702342,
2007.

»> @. Ryan, M. Debbah, “Free deconvolution for signal processing applications,” IEEE International Symposium on
Information Theory, pp. 1846-1850, 2007.

> @. Ryan, M. Debbah, “Asymptotic Behavior of Random Vandermonde Matrices With Entries on the Unit Circle,” IEEE
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G-estimation and Eigeninference

The Stieltjes transform approach



A long standing problem

X. Mestre, “Improved estimation of eigenvalues and eigenvectors of covariance matrices using
their sample estimates,” IEEE trans. on Information Theory, vol. 54, no. 11, pp. 5113-5129,
2008.

1 1
» Consider the model By = T,%,XNXHT,%,, where FTn is formed of a finite number of masses
Blg oo op Fgo
> It has long been thought the inverse problem of estimating ti,. .., tx from the Stieltjes
transform method was not possible.

» Only trials were iterative convex optimization methods.
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A long standing problem

X. Mestre, “Improved estimation of eigenvalues and eigenvectors of covariance matrices using
their sample estimates,” IEEE trans. on Information Theory, vol. 54, no. 11, pp. 5113-5129,
2008.

1 1
» Consider the model By = T,@XNXHT,%,, where FTn is formed of a finite number of masses
Blg oo op Fgo
> It has long been thought the inverse problem of estimating ti,. .., tx from the Stieltjes
transform method was not possible.

» Only trials were iterative convex optimization methods.
> The problem was partially solved by Mestre in 2008!

> His technique uses elegant complex analysis tools. The description of this technique is the
subject of this course.



Reminders

1 1
> Consider the sample covariance matrix model By = T/%/XNX”TEI-
» Up to now, we saw:
> that there is no eigenvalue outside the support with probability 1 for all large N.
in each cluster is exactly as we expect.

> that for all large N, when the spectrum is divided into clusters, the number of empirical eigenvalues




Reminders

1 1
> Consider the sample covariance matrix model By = T/%/XNX”TEI
» Up to now, we saw:

> that there is no eigenvalue outside the support with probability 1 for all large N.
in each cluster is exactly as we expect.

> that for all large N, when the spectrum is divided into clusters, the number of empirical eigenvalues
> these results are of crucial importance for the following.




Inverse problem for sample covariance matrix

0.1
Asymptotic spectrum
X Empirical eigenvalues
0.075 —
2
2 0.05 | =
o
[a]
0.025 —
F <
01 1 3 10

Estimated powers

Figure: Empirical and asymptotic eigenvalue distribution of %YYH when P has three distinct entries P; =1,
Py =3, P;=10, ny = ny = n3, N/n=10, M/N = 10, 0> = 0.1. Empirical test: n = 60.
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Eigen-inference for the sample covariance matrix model

X. Mestre, “Improved estimation of eigenvalues and eigenvectors of covariance matrices using
their sample estimates,” |IEEE trans. on Information Theory, vol. 54, no. 11, pp. 5113-5129,
2008.

Theorem . .
Consider the model By = TZXyXHT?, with Xy € CVX", ii.d. with entries of zero mean,
variance 1/n, and Ty € RN*N js diagonal with K distinct entries t1, ..., t of multiplicity

Ni,..., Nk of same order as n. Let k € {1,..., K}. Then, if the cluster associated to t; is
separated from the clusters associated to k —1 and k+1, as N,n — oo, N/n — c,

A~ n
bo=2 D (Am—um)
Nie meN

is an N, n-consistent estimator of t,, where Nj = {N — Z,K:k Ni+1,...,N— Z,szﬂ N;},
A1,...,Ap are the eigenvalues of By and wy, ..., uy are the N solutions of

MyBTyXy (n)=0

or equivalently, ui, ..., uy are the eigenvalues of diag(A) — k,\/X\/XT



A trick to compute the p,'s

R. Couillet, J. W. Silverstein, Z. Bai, M. Debbah, “Eigen-Inference for Energy Estimation of

Multiple Sources”, IEEE Transactions on Information Theory, vol. 57, no. 4, pp. 2420-2439,
2011.

Lemma

Let A € C"™N be diagonal with entries A1,..., Ay and y € CN. Then the eigenvalues of
(A — yy*) are the N real solutions in x of

2
Yi -1

“ 7\,'7X -
i=1
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A trick to compute the p,'s

R. Couillet, J. W. Silverstein, Z. Bai, M. Debbah, “Eigen-Inference for Energy Estimation of
Multiple Sources”, IEEE Transactions on Information Theory, vol. 57, no. 4, pp. 2420-2439,
2011.

Lemma
Let A € C"™N be diagonal with entries A1,..., Ay and y € CN. Then the eigenvalues of
(A — yy*) are the N real solutions in x of

2
Yi -1
7\,'7X

i=1

Taking A = diag(A1,...,Ap) and y,-2 = %7\;, the eigenvalues of A — yy are the solutions of

n
Pl
n “ 7\,'7X

i=1

which is equivalent to

X) = — =
NTNXN() n l)\,-—X



A trick to compute the p,'s

R. Couillet, J. W. Silverstein, Z. Bai, M. Debbah, “Eigen-Inference for Energy Estimation of
Multiple Sources”, IEEE Transactions on Information Theory, vol. 57, no. 4, pp. 2420-2439,
2011.

Lemma
Let A € C"™N be diagonal with entries A1,..., Ay and y € CN. Then the eigenvalues of
(A — yy*) are the N real solutions in x of

2
Yi -1
7\,'7X

i=1

Taking A = diag(A1,...,Ap) and y,-2 = %7\;, the eigenvalues of A — yy are the solutions of

n
Pl
n “ 7\,'7X

i=1

which is equivalent to
) = L — 1 s
i=

The py's are then the eigenvalues of a matrix that is function of Ay, ..., Ap.



B
Proof of the lemma

we have

(A —yy")x = pux

Let A € CN*N be Hermitian and y € CV. If w is an eigenvalue of (A — yy*) with eigenvector x,
(A —pl)x =y*xy

x=y'x(A—ul)ly
Y x=yxy (A—pul)ly
1=y*(A—pl)ly
Take A diagonal with entries A1,

., Ay, we then have

1




Remarks on Mestre's result

Assuming cluster separation, the result consists in

> taking the empirical ordered A;'s inside the cluster (note that exact separation ensures there
are Ny of these!)

> getting the ordered eigenvalues py, ..., uy of

diag(A) — %ﬁ\/f

with A = (A1,...,An)T. Keep only those of index inside N.

> take the difference and scale.



How to obtain this result?

> Major trick requires tools from complex analysis
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How to obtain this result?

> Major trick requires tools from complex analysis

mpy(z) =

,(_Z_CJ ‘

> Silverstein’s Stieltjes transform identity: for the conjugate model By = X}, Ty Xy,

-1
.
T tmy @ N(”)

with my the deterministic equivalent of mg, . This is the only random matrix result we need.




How to obtain this result?

> Major trick requires tools from complex analysis
> Silverstein’s Stieltjes transform identity: for the conjugate model By = X}, Ty Xy,

(2) = _t )
mpy(z 7<_Z_CJ1+tmN(Z) )

with my the deterministic equivalent of mg, . This is the only random matrix result we need.

» Before going further, we need some reminders from complex analysis.



Reminders of complex analysis

» Cauchy integration formula

Theorem
Let U C C be an open set and f : U — C be holomorphic on U. Let v C U be a continuous
contour (i.e. closed path). Then, for a inside the surface formed by 'y, we have

! jﬁ A2 4y — f(a)
;

27i |, z— a

while for a outside the surface formed by vy,

i,jﬁ fl2) 4, o,
2ni J, z—a




Limiting spectrum of the sample covariance matrix

Reminder:

J. W. Silverstein, Z. D. Bai, “On the empirical distribution of eigenvalues of a class of large
dimensional random matrices,” J. of Multivariate Analysis, vol. 54, no. 2, pp. 175-192, 1995

> If FTv = F7, then mg, (z) 2 mg(z) such that

me(z) = (CJ’;

1
.
Tremez) o () _Z)




Limiting spectrum of the sample covariance matrix

J. W. Silverstein, Z. D. Bai, “On the empirical distribution of eigenvalues of a class of large
dimensional random matrices,” J. of Multivariate Analysis, vol. 54, no. 2, pp. 175-192, 1995.
Reminder:

> If FTv = F7, then mg, (z) 2 mg(z) such that

= L— B
mete)= (¢ T 70 =)

or equivalently
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Reminders of complex analysis (2)

» Residue calculus

Theorem

Let 'y be a contour on C. For f holomorphic inside 'y but on a discrete number of points, to
compute the expression
1

P ﬁ/ f(z)dz
one must

1. determine the poles of f lying inside the surface formed by vy, i.e. those values a such that
lim |f(z)| = o0
z—a

2. determine the order of each pole, i.e. the smallest k such that

zlig\a\(Z—a)kf(Z)l < o0

3. compute the residues of f at the poles, i.e. evaluate the value

k—1
Res(f,a) £ lim g

zora dzk—1 {(Z - a)kf(z)

4. the integral is then the sum of all residues.

&
27

ﬂg f(z)dz = Z Res(f, a)
-

a€{ poles of f}



Complex integration

» From Cauchy integral formula, denoting ©, a contour enclosing only ¢,
1
t)

w
el o
2ni Jo, w — t

N



Complex integration

» From Cauchy integral formula, denoting ©, a contour enclosing only ¢,
1

s =
k_27'[i Cy

1 1 w
w_tkd“’=ﬁj£ekmj§"’fiw_tjd

w

N



Complex integration

» From Cauchy integral formula, denoting ©, a contour enclosing only ¢,
1

L LiN.de_L§
K= 2mi C W — ty T 27 Je, Nkj:1 Tw—t; © 27Ny Je,

wmr(w)dw




e
Complex integration

» From Cauchy integral formula, denoting ©, a contour enclosing only ¢,
1

s =
k_27Ti Cy

1 i w N
w—t ¥ = ﬁjgek M & N —gde mik e
> After the variable change w = —1/mg(z),

Lo L

KT N 2mi

2me(2)TED 4y
Cr mZ(z)




Complex integration

» From Cauchy integral formula, denoting ©, a contour enclosing only ¢,

K
1 w 1 1 w N
te = ﬁik prv—— T dw = ﬁiﬂk N—kazll\ljiw — tjdw = 727'[iNk ﬁ)@k wmr(w)dw.

> After the variable change w = —1/mg(z),
“TNeami Je, T mE ()

> When the system dimensions are large,

N
1 . . .
me(z) ~ mg, (z) £ § . with  (Aq,...,Ay) = eig(By) = eig(YYM).




Complex integration

» From Cauchy integral formula, denoting ©, a contour enclosing only ¢,

K
1 w 1 1 w N
te = %ik prv—— T dw = ﬁi}k N—kazll\ljiw — tjdw = 727'[ka ﬁ)@k wmr(w)dw.

> After the variable change w = —1/mg(z),
. N 1 ( )m’F(z)
=5 mg(z) ———dz,
T Ne2miJe,, ST m2(2)
> When the system dimensions are large,
N
me(z) ~ mg Z . with  (Aq,...,Ay) = eig(By) = eig(YYM).
wl = )\kfz
» Dominated convergence arguments then show
5 as. . N 13@ mg,, (2)
ty —t — 0 with & =-—-—"— (z)—=N—dz
b= K= Ng 2 Je By mg (2)



Understanding the contour change

I | I
xp(m), meB V
e Support of F

7|= i
E
w
3

- 72

37 ]

- e = AT

| 1

| |

-1 1 1 0

> IF Cg x encloses cluster k with real points m; < mp

» THEN —1/m; = x; < t, < xp = —1/my and € encloses .
[m] = =




Poles and residues
> we find two sets of poles (outside zeros):

> A1,...,Ap, the eigenvalues of By.
> the solutions i,

iy to iy (z) = 0.

N



Poles and residues
> we find two sets of poles (outside zeros):

> A1,...,Ap, the eigenvalues of By.
> the solutions pi,..., uy to My (z) =0.
> remember that

n—N1
me,, (W) = me, (W) + —y——




Poles and residues

> we find two sets of poles (outside zeros):

..... An, the eigenvalues of By.
> the solutions pi,..., uy to My (z) =0.
> remember that

n— N
N

mg, (W) = £ mg,, (W) +

1
w

» residue calculus, denote f(w) = (ﬁmeN(w) +

n7N> méN(W]
N ) mg,, ()2’
> the Ay's are poles of order 1 and

Zin}\"k(zf)\k)f(z] ==

n
—A
Nk

> the py's are also poles of order 1 and by L'Hospital’s rule
n (z—wdzmg (z2) 4
li —A)f(z) = lim — —N =

Hlmuk(z K f(z) Jm N ey (2) T



Poles and residues

> we find two sets of poles (outside zeros):

..... An, the eigenvalues of By.
> the solutions pi,..., uy to My (z) =0.
> remember that

n— N
N

mg, (W) = £ mg,, (W) +

1
w

» residue calculus, denote f(w) = (ﬁmeN(w) +

n7N> méN(W]
N ) mg,, ()2’
> the Ay's are poles of order 1 and

Zin}\"k(zf)\k)f(z] ==

n
—A
Nk

> the py's are also poles of order 1 and by L'Hospital’s rule
(z—m)zmg (2)
lim (z—Ag)f(z) = lim 2 By
Z— g

n
2= N mg,, (2) Vet
> So, finally

tk:m Z (Am — Hm)

me&contour



Which poles in the contour?

> we now need to determine which poles are in the contour of interest.

N
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> we now need to determine which poles are in the contour of interest.

» Since the p; are rank-1 perturbations of the A;, they have the interleaving property
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Which poles in the contour?

> we now need to determine which poles are in the contour of interest.
» Since the p; are rank-1 perturbations of the A;, they have the interleaving property

M<H<A<...<uy <Ay

» what about p;? the trick is to use the fact that

2mi Je, z
which leads to

1 mg(w)
f, mhon o

ﬁ T I'I‘IE(W)2
the empirical version of which is
#{i N € Tut —#{i 1 1y € T}

Since their difference tends to 0, there are as many A, 's as s in the contour, hence u; is
asymptotically in the integration contour.
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Spiked models

1 1
> We can create sample covariance matrix models TE,XNXHTEI with I.s.d. F (Xp as usual) for
which

> some sample eigenvalues are found outside the support of F
> the l.s.d. H of Ty is a Dirac in 1.

> No contradiction with “no eigenvalue” theorem, since the finitely numerous eigenvalues of
Ty will form additional clusters of positive measure in Fy.

» However, for practical purposes, the presence of “spikes” determines the presence of a signal!

What about the absence of spikes?



0 ? o
Absence of spikes = No signal
J. Baik, J. W. Silverstein, “Eigenvalues of large sample covariance matrices of spiked population
models,” Journal of Multivariate Analysis, vol. 97, no. 6, pp. 1382-1408, 2006.
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0 ? o
Absence of spikes = No signal
J. Baik, J. W. Silverstein, “Eigenvalues of large sample covariance matrices of spiked population
models,” Journal of Multivariate Analysis, vol. 97, no. 6, pp. 1382-1408, 2006.

Theorem

1 1
Let By = TKIXNXHT,%,, where Xy, € CNX" has i.i.d., zero mean and variance 1/n entries, and
Ty € RVXN diagonal given by

Ty =diag(l+ wiy,..., 1+ wi,...., 1 +wp,..., 1 +wpy, 1,...,1)
———

ke km N-Y Mk

with w1 > ... > wpy > —1, c =limy N/n. We then have

14w

> if w;j > Ve, Ak1+...+kj,1+/' 251+ wj+c w;
. a.s.
> if wi € (0,vEl, Mgy kg i = (L++/€)?
> if wi € [=vE,0), Mgy gk i — (1—+/€)?
» for the other eigenvalues, we discriminate over c:
5 s, 1+w;
> ifwg < —=VE e <L Mg kgt =21+ wj+ CTJ-J

> if i < —VE € > 1, Mgy 4 2D (1= V/E)?

Proof: See Section “Research Today: Advanced Statistic Inference”



Eigenvalues outside the support
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Maréenko-Pastur law, ¢ = 1/3

0.8 |- X

Empirical Eigenvalues

Density

Eigenvalues

Figure: Eigenvalues of By = TN%XNXNHTN%, where FTN = 11,00, --..Dimensions: N =500, n = 1500.
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Eigenvalues outside the support

Maréenko-Pastur law, ¢ = 1/3

X Empirical Eigenvalues

Density

R N

Eigenvalues

1 1
Figure: Eigenvalues of By = Tn2XuXyH Ty 2, where FTV = 1(1,00), but Ty is a diagonal of ones but for the
first four entries set to {1 + wi,1+ w1,1+ w3,1+ ws}, w; =1, wy = 2.Dimensions: N = 500, n = 1500.
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Interpretation of the result

> if c is large, or alternatively, if some “population spikes” are small, part to all of the
population spikes are attracted by the support!

> if so, no way to decide on the existence of the spikes from looking at the largest eigenvalues
> in telecommunication words, signals might be missed using largest eigenvalues methods.

> as a consequence,
> the more the sensors (N),
» the larger c =limN/n,
> the more probable we miss a spike
» THAT LOOKS LIKE A PARADOX.
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Generalization of the Tracy-Widom law

J. Baik, G. Ben Arous, S. Péché, “Phase transition of the largest eigenvalue for nonnull complex
sample covariance matrices,” The Annals of Probability, vol. 33, no. 5, pp. 1643-1697, 2005.

Theorem
Let X € CN*" have i.i.d. Gaussian entries of zero mean and variance 1/n and Ty = diag(ty, ..., ty). Assume,
for some fixed r, t, 11 =... =ty =1and t; = ... =ty while ty 4,..., t, lie in a compact subset of (0, t1).

Assume further ¢ =lim N/n < 1. Denoting Ay the largest eigenvalue ofT% XXHT%, we have
> i <14,/8,
+ _ 2
N3 M = Xt ~Ft
(1++/c)3c2
with F+ the Tracy-Widom distribution.

>t >1+ /8,

1
>, e 2 1, tic R
<t1 7“_1 —1)2 n 7\N (t1 + o 1] = Xi ~ G

for some function Gy that is the distribution of the largest eigenvalue of the k x k GUE.

k
1 x —
G=5 | o I le-gre de.. de
i i=1

T®aLi<igk

In particular, Gy(x) = erf(x)
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Comments on the result

outside (0,1 + /c).

> there exists a “phase transition” when the largest population eigenvalues move from inside to

» more importantly, for t; < 1+ +/c, we still have the same Tracy-Widom,
> no way to see the spike even when zooming in

> in fact, simulation suggests that convergence rate to the Tracy-Widom is slower with spikes.




Presence of a spike in previous model

0.5 ‘ ‘ : :

I l Empirical Eigenvalues

Tracy-Widom law F+

Density

—4 —2 0 2

Centered-scaled largest eigenvalue of XXH

Figure: Distribution of P (1+ ﬁ)_% [Af — (14 /<)?] against the distribution of X (distributed as

Tracy-Widom law) for N = 500, n = 1500, ¢ = 1/3, for the covariance matrix model TIXXHT? with T
diagonal with all entries 1 but for T1; = 1.5. Empirical distribution taken over 105900 Monte-Carlo sin\glati@r&.@
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Eigenvalue and eigenvectors statistics: Method

> Consider the model

with, for simplicity

1
Z=(Iy+P)2X
> X standard Gaussian
> P=UQU" U=1u,..., u,] € CV*r, Q = diag(w1, ...,
» We study the convergence properties of
> A1 >...> A, the r largest eigenvalues of ZxH
> u:"ﬁ,ﬁ:"

u;, with @i; the eigenvector associated to A;.




Eigenvalue and eigenvectors statistics: Method

> Consider the model .
Z=(Ily+P)2X

with, for simplicity
> X standard Gaussian
>» P=UQU"Y, U=1uy,..., u,] € CV*r, Q = diag(wy, ..., w,), wy >...>w, >0.
» We study the convergence properties of
> Ay >...> A, the r largest eigenvalues of ZxM
> ul'G;0u;, with @; the eigenvector associated to A;.
» Systematic study based on two ingredients:
> random matrix tools (the Stieltjes transform method)
> complex analysis (complex contour integration)
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First order limits: Eigenvalues

» We start with a study of the limiting extreme eigenvalues.
> Let x > 0, then

det(ZZH — x1y) = det(ly + P) det(XXH — xIy + x[ly — (Iy + P)~1])
=det(ly + P) det(XX" — xly) " Ldet(ly + xP(ly + P) 1 (XXH — x1y)~1).

> if x eigenvalue of ZZM but not of XXH, then for n large, x > (1 + +/c)? (edge of MP law
support) and

det(Iy+xP(Iy+P) 1 (XXH—xly) 1) = det (I, +xQU* (Iy+UQU™) 1 (XXH —x1y)~TU) = 0
with P = UQUM, U e cNVxr.
> due to unitary invariance of X,

UH (XXH — x1p)~Tu 23 J(t—x)_ldFMP(t)lr 2 m(x)l,

with FMP the MP law, and m(x) the Stieltjes transform of the MP law (often known for
r =1 as trace lemma).

> finally, we have that the limiting solutions p satisfy pym(pyx) + (1 + wk]w;1 =0.
> replacing m(x), this is finally:

M ED pe 21+ wp+c(l+ wp)wl, if wy > /e
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> We now study the limiting behaviour of eigenvector projections.
» Consider w; and its corresponding eigenvector u;, then, from Cauchy-integration formula

u,-"ﬁ,-ﬁ,-"u,- = 2;7't];.£3 UE-I(ZZH —ZlN)ilu,'dZ
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> We now study the limiting behaviour of eigenvector projections.
» Consider w; and its corresponding eigenvector u;, then, from Cauchy-integration formula

u,-"ﬁ;ﬁ,-"u,- = %%@ u}"(ZZH — ZlN)ilu,'dZ
—1 H _1 H — _1 1 AHGO—14
= %i; ul (ly +P)72 (XXM — z14) LIy + P) " 2u;dz + %iialH laydz

with €; enclosing p; only and
H  =1,+2z0(, + Q) 1U"(XXH — zIy)—1U
= zui (Ily + P)~% (XXH — zIy) U

AH
a
=Q(, + Q) U (XXH — zIy) LIy + P)*% u;.

3
» For large n, the first term has no pole, while the second converges to

H =l +zmz)Ql,+Q)!
Ho = zm(z)uj (Iy + P)f% U

T2 L& atH-laydz, with { af
2m Je. 1
j a  =m2)Q(, +Q) UM (ly +P) y

2
i s To—Sr 1 1 __zm7(z)
which after development is T; =Y ;_; TTog 2m §e,~ 14;!/;14 i dz.



First order limits: Eigenvector projections (2)
> We now study the limiting behaviour of eigenvector projections.

» Consider w; and its corresponding eigenvector u;, then, from Cauchy-integration formula

—1 _
,-"u,- = %i u:-"(ZZH — zly) tujdz

—1 1 _ _1 1 AHGI—14
%ﬂg&u,ﬂ(l,\ﬁp) 2(XXH — zIp) LIy + P) 2u,dz+%jﬁeia§'H 13,dz

with €; enclosing p; only and

H  =1,+2z0(, + Q) 1U"(XXH — zIy)—1U
M = zuj(ly +P)" 3 (XXH — zly) U
5 = Ol + Q) LUH(XXH — zly) LIy + P) 2 u;.

» For large n, the first term has no pole, while the second converges to

1 H =l +zmz)Ql,+Q)!
= %a{'Hflazdz, with { al'  =zm(z)ui(ly+P) 2U

T 2m Je, —1yH -3
i a =mz2)Q, +Q) U Iy +P) 2u;

2
: . N T 1 1 zm*(z)

which after development is T; =Y ;_; oy 2m j;@r 711‘;% i dz.

2

T-

5 q g g A~ a.s, l1—cw;
» Using residue calculus, the sole pole is in p; and we find ufd;atu; 25 ¢; S L
! [ ! l+cw;
i




Fluctuations

> The objective is to find second order behaviour for the joint variable
r Ha
(VN(i—e0). . (VN(ula,

i ulﬁ:'—'ui - Ci))r )
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Fluctuations

> The objective is to find second order behaviour for the joint variable

(VN —pn) | (VNfaialte - ) )

> Outline of the method:

> Complex integration framework for the quantities v/N(A; — p;) and v/N(u ﬁ ﬁ — i)
VN(A; — pi)— {—ﬁ,?;) ull (m(p;)ly — (XXH — PilN]il]ui} 250
VAt — ) | PO 8 ity — (XX — i)
h(pi)(1+ h(p;)) as,
AL SO (9 — (XX~ i) 2] 250

with h(x) = xm(x).
> Joint fluctuations of Stieltjes transforms:

(ut! (m(pi)In — (XX = pjty) )y, ull (m
with

)=
ROY=1m(p)/2— mip



Joint fluctuations

R. Couillet, W. Hachem, “Local failure detection and diagnosis in large sensor networks”,
(submitted to) IEEE Transactions on Information Theory, arXiv preprint 1107.1409.

» Replacing m(p;), this finally proves the following theorem:

Theorem
Under the conditions above, assuming w; > +/c for each i € {1,...,r},
C(p1)
r
(VNi—e0) | (VNaalu - ¢). ) = o,
C(pr)
where . . s -
c*(1+w;) (1+w;) (1+w;)>c
Clon & | ErenZw=o ( (crwp? T 1) (wirc)2w;
(i) = (1+w;)3c? c(l+w;)?(w?—c)

(wj+c)2w; w



Simulation

I. Histogram of \/ﬁ(\ﬁfl‘l‘zfcl)
Gaussian N (0, C(p1)1,1)

Density
n
T

0.5 |-

—15 -1 —0.5 0 0.5 1 1.5
Centered-scaled projection Iﬁ'l"ull2
Figure: Empirical and theoretical distribution of the fluctuations of G; with r =1, Xj; ~ €N(0,1/n),
N/n=1/8, N =64 and w; =1.
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Central limit theorems for Mestre's estimates

N



Reminder: fluctuations of functionals of the spectrum

J. W. Silverstein, Z. D. Bai, “CLT of linear spectral statistics of large dimensional sample
covariance matrices” Annals of Probability 32(1A) (2004), pp. 553-605.

Theorem

1 1
By = TAXyXNTZ, By =XiTyXy

as usual with Xy Gaussian, FTN = diag({t;}) = H, |Tyl, T1 > ... > tn. Denote F and Fy the
|.s.d. and det. eq. of FBN, and

GyEN [FBN - FN] .

For fi, ..., f, well behaved, then

<Jf1(x)dGN(x), .. .,Jfk(x)dGN(x)> = (Xp, - Xg)

of zero mean and covariance Cov(X¢, Xg), (f,g) € {f,..., fi}2, such that
_ 1 f(z1)g(z2) p p
Cov(Xr, Xg) = —5 ?H)—(m(zl) —m(z)2 2 (z1)m’ (z2)dz1dz

for m(z) the Stieltjes transform of the l.s.d. of By. The integration contours are positively
defined with winding number one and enclose the support of F.
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using the delta method.

» The central limit of random matrix-based estimates follow from basic fluctuation results,




The delta-method

» The central limit of random matrix-based estimates follow from basic fluctuation results,
using the delta method.

Theorem
Let X1, X2, ... € R" be a random sequence such that

an(Xp—p) = X ~N(0,V)
for some sequence ay, as, ... T co. Then for f : R" — RN, a function differentiable at p
an(f(Xn) —f(n)) = J(AHX

with J(f) the Jacobian matrix of f.



Example of application: fluctuations of Mestre's estimator

J. Yao, R. Couillet, J. Najim, M. Debbah, “Fluctuations of an Improved Population Eigenvalue
Estimator in Sample Covariance Matrix Models”, (submitted to) IEEE Transactions on
Information Theory.
Theorem
1 1
By = T2XyXNT2, Ty = diag{ty}f_) with large multiplicities.

Assume asymptotic cluster separability. Then, as N, n grow large
(n(t — t))f_, = EN(0, ®), with

Ok A 212 % % |: m’'(z)m’(2) - 1 . dzidz,
' anccicic Je, Je,, L (m(z1) —m(2))? (21 —2)% ]| m(z1)m(z)

where C) is the support enclosing cluster k.



Example of application: fluctuations of Mestre's estimator (2)

An estimator of the variance is also given in the following result.

Theorem
We also have
Oi — O s 230

as N, n — oo, where

. 2 1 mg' (1) mf ()2
®k,k’ £ 5 + 5kk/ Y = &
Ny Nyr I.EZNk (i — wj)2mg, (ki) mg, (k) ,.GZNk 6mg, (n)3  4mg (n;)*
JEN

w;, ordered eigenvalues of diag(\) — %ﬁﬁT ; A, ordered vector of eigenvalues of By,.
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