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Why go beyond the spectrum?

I Limiting spectral results only say where the “mass” of eigenvalues lies asymptotically. Say

FN ⇒ F , with fN(x) = 1
N

∑N
k=1 δ(x − ak).

I f (0)
N (x) = 1

N δ(x) + 1
N

∑N−1
k=1 δ(x − ak) also converges to F .

I if FN and F(0)
N are discrete and differ by o(N) bounded masses, F(0)

N ⇒ F .

I We know that, for XN ∈ CN×n with i.i.d. zero mean variance 1/n,

FXNXH
N ⇒ Fc

with Fc is the compactly supported Marc̆enko-Pastur law of parameter c = limN
N
n .

Question: for very large N, where are the eigenvalues of XNXH
N ?
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Are there eigenvalues outside the support ?
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Figure: Histogram of the eigenvalues of Rn for n = 2000, N = 500
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No eigenvalue outside the support of sample covariance matrices

Z. D. Bai, J. W. Silverstein, “No eigenvalues outside the support of the limiting spectral
distribution of large-dimensional sample covariance matrices,” The Annals of Probability, vol. 26,
no.1 pp. 316-345, 1998.

Theorem
Let XN ∈ CN×n with i.i.d. entries with zero mean, variance 1/n and 4th order moment of order
O(1/n2). Let TN ∈ CN×N be nonrandom and bounded in norm and with FTN ⇒ H. We know
that

FBN ⇒ F almost surely, BN = T
1
2
NXNXH

NT
1
2
N .

Let FN be the distribution with mN(z) solution of

mN = −

(
z −

N

n

∫
τ

1 + τmN
dFTN (τ)

)−1

, mN(z) =
N

n
mN(z) +

N − n

n

1

z
.

Choose N0 ∈ N and [a, b], a > 0, outside the union of the supports of F and FN for all N > N0.
Denote LN the set of eigenvalues of BN . Then,

P(LN ∩ [a, b] 6= ∅ i.o.) = 0.
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How to read the result?

I If TN = IN for all N, then this result is equivalent to

“For [a, b] outside the support of the Marc̆enko-Pastur law, with probability 1, BN has no
eigenvalue in [a, b] for all large N”

I If TN is not identity,
I call S the support of the limiting F .
I for some N0, take the l.s.d. of BN as if limN FTN = F

TN0 , and call its support SN0
.

I do the previous for all N > N0. Call A = S ∪
⋂

N>N0
SN .

I take [a, b] outside A, and pick a random sequence B1,B2, . . .. The result shows that, for all N large,
there is no eigenvalue of BN in [a, b].

I this is very different from taking [a, b] only outside the support of F only!

I this is essential to understand spiked models, discussed later.
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No eigenvalue outside the support: which models?

J. W. Silverstein, P. Debashis, “No eigenvalues outside the support of the limiting empirical
spectral distribution of a separable covariance matrix,” J. of Multivariate Analysis vol. 100, no. 1,
pp. 37-57, 2009.

I It has already been shown that (for all large N) there is no eigenvalues outside the support of
I Marc̆enko-Pastur law: XXH, X i.i.d. with zero mean, variance 1/N, finite 4th order moment.

I Sample covariance matrix: T
1
2 XXHT

1
2 and XHTX, X i.i.d. with zero mean, variance 1/N, finite 4th

order moment.
I Doubly-correlated matrix: R

1
2 XTXHR

1
2 , X with i.i.d. zero mean, variance 1/N, finite 4th order

moment.

J. W. Silverstein, Z.D. Bai, Y.Q. Yin, “A note on the largest eigenvalue of a large dimensional
sample covariance matrix,” Journal of Multivariate Analysis, vol. 26, no. 2, pp. 166-168, 1988.

I If 4th order moment is infinite,

lim sup
N
λXX

H

max = ∞
J. Silverstein, Z. Bai, “No eigenvalues outside the support of the limiting spectral distribution of
information-plus-noise type matrices” to appear in Random Matrices: Theory and Applications.

I Only recently, information plus noise models, X with i.i.d. zero mean, variance 1/N, finite
4th order moment.

(X+A)(X+A)H
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Sketch of Proof
I Proof entirely relies on the Stieltjes transform.
I Up to now, we know |mBN

(z) − mN(z)|
a.s.−→ 0 for z ∈ C \ R−.

I This is not enough, we need in fact to show: for z = x + i
√

kvN , vN = N−1/68, k = 1, . . . , 34,

max
16k634

sup
x∈[a,b]

∣∣∣mBN
(x + ik

1
2 vN) − mN((x + ik

1
2 vN)

∣∣∣ = o(v67
N ).

I Expanding the Stieltjes transforms and considering only the imaginary parts, this is

max
16k634

sup
x∈[a,b]

∣∣∣∣∣
∫

d(FBN (λ) − FN(λ))

(x − λ)2 + kv2
N

∣∣∣∣∣ = o(v66
N )

almost surely. Taking successive differences over the 34 values of k, we end up with

sup
x∈[a,b]

∣∣∣∣∣
∫
(v2

N)33d(FBN (λ) − FN(λ))∏34
k=1((x − λ)2 + kv2

N)

∣∣∣∣∣ = o(v66
N )

Consider a ′ < a and b ′ > b such that [a ′, b ′] is outside the support of F . We then have

sup
x∈[a,b]

∣∣∣∣∣∣
∫

1R+\[a′,b ′](λ)d(FBN(λ) − FN(λ))∏34
k=1((x − λ)2 + kv2

N)
+

∑
λj∈[a′,b ′]

v68
N∏34

k=1((x − λj)2 + kv2
N)

∣∣∣∣∣∣ = o(1)

almost surely. If, there is one eigenvalue of all Bφ(N) in [a, b], then one term of the sum is
1/34! > 0. So the integral must away from zero. But the integral tends to 0. Contradiction.
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What’s the link with wireless communications?

Assume N sensors wish to detect the presence of a signal. They scan successive samples
x1, . . . , xn. Then

I if Rn = 1
n

∑n
i=1 xix

H
i has eigenvalues outside the support: with high probability, a signal was

transmitted.
I if Rn has all eigenvalues inside the expected noise support, what can we say?

I we cannot conclude so far
I we need to further study the spectrum
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Stieltjes transform inversion for covariance matrix models

J. W. Silverstein, S. Choi, “Analysis of the limiting spectral distribution of large dimensional
random matrices,” Journal of Multivariate Analysis, vol. 54, no. 2, pp. 295-309, 1995.

I We know for the model T
1
2
NXN , XN ∈ CN×n that, if FTN ⇒ H, the Stieltjes transform of the

e.s.d. of BN = XH
NTNXN satisfies mBN

(z)
a.s.−→ mF (z), with

mF (z) =

(
−z − c

∫
t

1 + tmF (z)
dH(t)

)−1

which is unique on the set {z ∈ C+, mF (z) ∈ C+}.

I This can be inverted into

zF (m) = −
1

m
− c

∫
t

1 + tm
dH(t)

for m ∈ C+.
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Stieltjes transform inversion and spectrum characterization

Remember that we can evaluate the spectrum density by taking a complex line close to R and
evaluating =[mF (z)] along this line. Now we can do better.

It is shown that
lim

z→x∈R∗
z∈C+

mF (z) = m0(x) exists.

We also have,

I for x0 inside the support, the density f (x) of F in x0 is 1
π=[m0] with m0 the unique solution

m ∈ C+ of

[zF (m) =] x0 = −
1

m
− c

∫
t

1 + tm
dH(t)

I let m0 ∈ R∗ and xF the equivalent to zF on the real line. Then “x0 outside the support of F ”
is equivalent to “x ′F (mF (x0)) > 0, mF (x0) 6= 0, −1/mF (x0) outside the support of H”.

This provides another way to determine the support!. For m ∈ (−∞, 0), evaluate xF (m).
Whenever xF decreases, the image is outside the support. The rest is inside.
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Another way to determine the spectrum: spectrum to analyze

1 3 7
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Figure: Histogram of the eigenvalues of BN = T
1
2
N XNXH

NT
1
2
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Another way to determine the spectrum: inverse function method
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Cluster boundaries in sample covariance matrix models

Xavier Mestre, “Improved estimation of eigenvalues of covariance matrices and their associated
subspaces using their sample estimates,” IEEE Transactions on Information Theory, vol. 54, no.
11, Nov. 2008.

Theorem
Let XN ∈ CN×n have i.i.d. entries of zero mean, variance 1/n, and TN be diagonal such that
FTN ⇒ H, as n, N →∞, N/n→ c, where H ′ has K masses in t1, . . . , tK with multiplicity

n1, . . . , nK respectively. Then the l.s.d. of BN = T
1
2
NXNXH

NT
1
2
N has support S given by

S = [x−
1 , x+

1 ]∪ [x−
2 , x+

2 ]∪ . . .∪ [x−
Q , x+

Q ]

with x−
q = xF (m−

q ), x+
q = xF (m+

q ), and

xF (m) = −
1

m
− c

1

n

K∑
k=1

nk
tk

1 + tk m

with 2Q the number of real-valued solutions counting multiplicities of x ′F (m) = 0 denoted in
order m−

1 < m+
1 6 m−

2 < m+
2 6 . . . 6 m−

Q < m+
Q .
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Comments on spectrum characterization

Previous results allows to determine

I the spectrum boundaries

I the number Q of clusters

I as a consequence, the total separation or not of the spectrum in K clusters.

Mestre goes further: to determine local separability of the spectrum,

I identify the K inflexion points, i.e. the K solutions m1, . . . , mK to

x ′′F (m) = 0

I check whether x ′F (mi ) > 0 and x ′F (mi+1) > 0

I if so, the cluster in between corresponds to a single population eigenvalue.
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Further than the “no eigenvalues” result

Z. D. Bai, J. W. Silverstein, “Exact Separation of Eigenvalues of Large Dimensional Sample
Covariance Matrices,” The Annals of Probability, vol. 27, no. 3, pp. 1536-1555, 1999.

I The result on “no eigenvalue outside the support”
I says where eigenvalues are not to be found
I does not say, as we feel, that (if cluster separation) in cluster k, there are exactly nk eigenvalues.

I This is in fact the case,

Theorem
Let BN = T

1
2
NXNXH

NT
1
2
N with l.s.d. F , XN i.i.d., zero mean, variance 1/n, finite 4th moment,

FTN ⇒ H, and N
n → c. Consider 0 < a < b such that [a, b] is outside the support of F . Denote

additionally λk ’s and τk ’s the ordered eigenvalues of BN and TN . Then we have
1. If c(1 − H(0)) > 1, then the smallest eigenvalue x0 of the support of F is positive and λN → x0

almost surely, as N →∞.
2. If c(1 − H(0)) 6 1, or c(1 − H(0)) > 1 but [a, b] is not contained in [0, x0], then, almost surely,

there exists N0 such that for all N > N0,

λiN
> b, λiN+1 < a

where iN is the unique integer such that

τiN
> −1/mF (b)

τiN+1 < −1/mF (a).
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Consequence of exact separation

I If eigenvalues are found outside the expected clusters, some extra “signal” must have been
transmitted.

I The quantity of eigenvalues in each cluster gives an exact estimate of the multiplicity of the
population!

I This is essential for eigen-inference.

I Exact separation is only known for the sample covariance matrix model so far.

I Recently, extension to information-plus-noise model.
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Deeper into the spectrum

I In order to derive statistical detection tests, we need more information on the extreme
eigenvalues.

I We will study the fluctuations of the extreme eigenvalues (second order statistics)

I However, the Stieltjes transform method is not adapted here!
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Distribution of the largest eigenvalues of XXH

C. A. Tracy, H. Widom, “On orthogonal and symplectic matrix ensembles,” Communications in
Mathematical Physics, vol. 177, no. 3, pp. 727-754, 1996.
K. Johansson, “Shape Fluctuations and Random Matrices,” Comm. Math. Phys. vol. 209, pp.
437-476, 2000.

Theorem
Let X ∈ CN×n have i.i.d. Gaussian entries of zero mean and variance 1/n. Denoting λ+N the

largest eigenvalue of XXH, then

N
2
3
λ+N − (1 +

√
c)2

(1 +
√

c)
4
3 c

1
2

⇒ X+ ∼ F+

with c = limN N/n and F+ the Tracy-Widom distribution given by

F+(t) = exp

(
−

∫∞
t
(x − t)2q2(x)dx

)
with q the Painlevé II function that solves the differential equation

q ′′(x) = xq(x) + 2q3(x)

q(x) ∼x→∞ Ai(x)

in which Ai(x) is the Airy function.
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The law of Tracy-Widom

−4 −2 0 2
0

0.1

0.2

0.3

0.4

0.5

Centered-scaled largest eigenvalue of XXH

D
en

si
ty

Empirical Eigenvalues

Tracy-Widom law F+

Figure: Distribution of N
2
3 c− 1

2 (1 +
√

c)−
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against the distribution of X+ (distributed as

Tracy-Widom law) for N = 500, n = 1500, c = 1/3, for the covariance matrix model XXH. Empirical
distribution taken over 10, 000 Monte-Carlo simulations.
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Techniques of proof
Method of proof requires very different tools:

I orthogonal (Laguerre) polynomials: to write joint unordered eigenvalue distribution as a
kernel determinant.

ρN(λ1, . . . ,λp) =
p

det
i ,j=1

KN(λi ,λj)

with K(x , y) the kernel Laguerre polynomial.

I Fredholm determinants: we can write hole probability as a Fredholm determinant.

P
(

N2/3
(
λi − (1 +

√
c)2
)
∈ A, i = 1, . . . , N

)
= 1 +

∑
k>1

(−1)k

k!

∫
Ac
· · ·

∫
Ac

k
det

i ,j=1
KN(xi , xj )

∏
dxi

, det(IN −KN).

I kernel theory: show that KN converges to a Airy kernel.

KN(x , y)→ KAiry(x , y) =
Ai(x)Ai ′(y) −Ai ′(x)Ai(y)

x − y
.

I differential equation tricks: hole probability in [t,∞) gives right-most eigenvalue distribution,
which is simplified as solution of a Painelvé differential equation: the Tracy-Widom
distribution.

F+(t) = e−
∫∞

t (x−t)q(x)2dx , q ′′ = tq + 2q3, q(x) ∼x→∞ Ai(x).
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Comments on the Tracy-Widom law

I deeper result than limit eigenvalue result

I gives a hint on convergence speed

I fairly biased on the left: even fewer eigenvalues outside the support.

I can be shown to hold for other distributions than Gaussian under mild assumptions

I Now, what about largest eigenvalue of a spiked model?
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Introduction of the problem

I Reminder: for a sequence x1, . . . , xn ∈ CN of independent random variables,

Rn =
1

n

n∑
k=1

xkx
H
k

is an n-consistent estimator of R = E [x1xH
1 ].

I If n, N have comparable sizes, this no longer holds.

I Typically, n, N-consistent estimators of the full R matrix perform very badly.

I If only the eigenvalues of R are of interest, things can be done. The process of retrieving
information about eigenvalues, eigenspace projections, or functional of these is called
eigen-inference.
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Girko and the G -estimators

V. Girko, “Ten years of general statistical analysis,”
http://www.general-statistical-analysis.girko.freewebspace.com/chapter14.pdf

I Girko has come up with more than 50 N, n-consistent estimators, called G -estimators
(Generalized estimators). Among those, we find

I G1-estimator of generalized variance. For

G1(Rn) = α−1
n

[
log det(Rn) + log

n(n − 1)N

(n − N)
∏N

k=1(n − k)

]

with αn any sequence such that α−2
n log(n/(n − N))→ 0, we have

G1(Rn) −α
−1
n log det(R)→ 0

in probability.

I However, Girko’s proofs are rarely readable, if existent.
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Position of the problem

I it has long been difficult to analytically invert the simplest BN = T
1
2
NXNXH

NT
1
2
N model to

recover the diagonal entries of TN . Indeed, we only have the deterministic equivalent result

mN(z) =

(
−z + c

∫
t

1 + tmN(z)
dFTN (t)

)−1

with mN the deterministic equivalent of the Stieltjes transform for BN = XH
NTNXN .

I when TN has eigenvalues t1, . . . , tK with multiplicity n1, . . . , nK , this is

mN(z) =

(
−z +

1

N

K∑
k=1

nk
tk

1 + tk mN(z)

)−1

I an N, n-consistent estimator for the tk ’s was never found until recently...

I however, moment-based methods and free probability approaches provide simple solutions to
estimate consistently all moments of FTN .
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Reminder on moment-based approaches
I For free random matrices A and B, we have the cumulant/moment relationships,

Ck(A+B) = Ck(A) + Ck(B)

Mn(AB) =
∑

(π1,π2)∈NC(n)

∏
V1∈π1
V2∈π2

C|V1|
(A)C|V2|

(B)

I this allows one to compute all moments of sum and product distributions

µA �µB

µA �µB

I in addition, we have results for the information-plus-noise model

BN =
1

n
(RN +σXN) (RN +σXN)H

whose e.s.d. converges weakly and almost surely to µB such that

µB =
(
(µΓ �µc)� δσ2

)
�µc

with µc the Marc̆enko-Pastur law and ΓN = RNRH
N .

I all basic matrix operations needed in wireless communications are accessible for convenient
matrices (Gaussian, Vandermonde etc.)

I all operations are merely polynomial operations on the moments. As a consequence, for
BN = f (RN),
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From free convolution to free deconvolution

Ø. Ryan, M. Debbah, “Multiplicative free convolution and information-plus-noise type matrices,”
Arxiv preprint math.PR/0702342, 2007.

I we have the further result that

Polynomial Relations
The kth moment of the l.s.d. of BN is a polynomial of the k-first moments of the l.s.d. of RN

I we can therefore invert the problem and express the k th moment of RN as the first k moments of
BN . This entails deconvolution operations,

µA = µA+B �µB

µA = µAB �µB

and for the information-plus-noise model, BN = 1
n (RN +σXN) (RN +σXN)H

µΓ =
(
(µB �µc)� δσ2

)
�µc

I for more involved models, the polynomial relations can be iterated and even automatically
generated.
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Example of polynomial relation

I Consider the information-plus-noise model

Y = D+X

with Y ∈ CN×n, D ∈ CN×n, X ∈ CN×n with i.i.d. entries of mean 0 and variance 1. Denote

Mk = lim
n→∞ 1

n
tr (

1

N
YYH)k

Dk = lim
n→∞ 1

n
tr (

1

N
DDH)k

I For that model, we have the relations

M1 = D1 + 1

M2 = D2 + (2 + 2c)D1 + (1 + c)

M3 = D3 + (3 + 3c)D2 + 3cD1
2 + (1 + 3c + c2)

hence

D1 = M1 − 1

D2 = M2 − (2 + 2c)M1 + (1 + c)

D3 = M3 − (3 + 3c)M2 − 3cM1
2 + (6c2 + 18c + 6)M1 − (4c2 + 12c + 4)
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Finite size statistical inference

A. Masucci, Ø. Ryan, S. Yang, M. Debbah, “Finite Dimensional Statistical Inference,” IEEE
Trans. on Information Theory, vol. 57, no. 4, pp. 2457-2473, 2011.

I it might happen that, instead of one large matrix realization, we have access to several
smaller such matrices. In that case, we seek an estimate for

E

[
1

n
tr

(
1

N
YYH

)k
]

instead of their limits.

I we have further combinatorics theorems for all previous elementary models.

I example: the previous relations extend to

M1 = D1 + 1

M2 = D2 + (2 + 2c)D1 + (1 + c)

M3 = D3 + (3 + 3c)D2 + 3cD2
1 + (3 + 9c + 3c2 + 3N−2)D1 + (1 + 3c + c2 + N−2)
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Current and further studies

I in addition to estimating the average moments themselves, we can evaluate the variance of
the empirical moments

E

[
1

n
tr

(
1

N
YYH

)k

− E

[
1

n
tr

(
1

N
YYH

)k
]]

I if the moments have Gaussian distributions (left to be proven for models other than sample
covariance matrix), the full behaviour of the empirical moments is known.

I statistical maximum-likelihood/MMSE methods can then be used.
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A long standing problem

X. Mestre, “Improved estimation of eigenvalues and eigenvectors of covariance matrices using
their sample estimates,” IEEE trans. on Information Theory, vol. 54, no. 11, pp. 5113-5129,
2008.

I Consider the model BN = T
1
2
NXNXH

NT
1
2
N , where FTN is formed of a finite number of masses

t1, . . . , tK .

I It has long been thought the inverse problem of estimating t1, . . . , tK from the Stieltjes
transform method was not possible.

I Only trials were iterative convex optimization methods.

I The problem was partially solved by Mestre in 2008!

I His technique uses elegant complex analysis tools. The description of this technique is the
subject of this course.
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Reminders

I Consider the sample covariance matrix model BN = T
1
2
NXNXH

NT
1
2
N .

I Up to now, we saw:
I that there is no eigenvalue outside the support with probability 1 for all large N.
I that for all large N, when the spectrum is divided into clusters, the number of empirical eigenvalues

in each cluster is exactly as we expect.

I these results are of crucial importance for the following.
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Inverse problem for sample covariance matrix
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Figure: Empirical and asymptotic eigenvalue distribution of 1
M YYH when P has three distinct entries P1 = 1,

P2 = 3, P3 = 10, n1 = n2 = n3, N/n = 10, M/N = 10, σ2 = 0.1. Empirical test: n = 60.
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Eigen-inference for the sample covariance matrix model

X. Mestre, “Improved estimation of eigenvalues and eigenvectors of covariance matrices using
their sample estimates,” IEEE trans. on Information Theory, vol. 54, no. 11, pp. 5113-5129,
2008.

Theorem
Consider the model BN = T

1
2
NXNXH

NT
1
2
N , with XN ∈ CN×n, i.i.d. with entries of zero mean,

variance 1/n, and TN ∈ RN×N is diagonal with K distinct entries t1, . . . , tK of multiplicity
N1, . . . , NK of same order as n. Let k ∈ {1, . . . , K}. Then, if the cluster associated to tk is
separated from the clusters associated to k − 1 and k + 1, as N, n→∞, N/n→ c,

t̂k =
n

Nk

∑
m∈Nk

(λm −µm)

is an N, n-consistent estimator of tk , where Nk = {N −
∑K

i=k Ni + 1, . . . , N −
∑K

i=k+1 Ni },
λ1, . . . ,λN are the eigenvalues of BN and µ1, . . . ,µN are the N solutions of

mXH
NTNXN

(µ) = 0

or equivalently, µ1, . . . ,µN are the eigenvalues of diag(λ) − 1
N

√
λ
√
λ

T
.
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A trick to compute the µk ’s

R. Couillet, J. W. Silverstein, Z. Bai, M. Debbah, “Eigen-Inference for Energy Estimation of
Multiple Sources”, IEEE Transactions on Information Theory, vol. 57, no. 4, pp. 2420-2439,
2011.

Lemma
Let A ∈ Cn×N be diagonal with entries λ1, . . . ,λN and y ∈ CN . Then the eigenvalues of
(A− yy∗) are the N real solutions in x of

N∑
i=1

y2
i

λi − x
= 1

Taking A = diag(λ1, . . . ,λn) and y2
i = 1

nλi , the eigenvalues of A− yyH are the solutions of

1

n

n∑
i=1

λi

λi − x
= 1

which is equivalent to

mXH
NTNXN

(x) =
1

n

n∑
i=1

1

λi − x
= 0

The µk ’s are then the eigenvalues of a matrix that is function of λ1, . . . ,λN .
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Proof of the lemma

Let A ∈ CN×N be Hermitian and y ∈ CN . If µ is an eigenvalue of (A− yy∗) with eigenvector x,
we have

(A− yy∗)x = µx

(A−µI)x = y∗xy

x = y∗x(A−µI)−1y

y∗x = y∗xy∗(A−µI)−1y

1 = y∗(A−µI)−1y

Take A diagonal with entries λ1, . . . ,λN , we then have

N∑
i=1

y2
i

λi −µ
= 1 (1)
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Remarks on Mestre’s result

Assuming cluster separation, the result consists in

I taking the empirical ordered λi ’s inside the cluster (note that exact separation ensures there
are Nk of these!)

I getting the ordered eigenvalues µ1, . . . ,µN of

diag(λ) −
1

N

√
λ
√
λ

T

with λ = (λ1, . . . ,λN)T. Keep only those of index inside Nk .

I take the difference and scale.
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How to obtain this result?

I Major trick requires tools from complex analysis

I Silverstein’s Stieltjes transform identity: for the conjugate model BN = X∗NTNXN ,

mN(z) =

(
−z − c

∫
t

1 + tmN(z)
dFTN (t)

)−1

with mN the deterministic equivalent of mBN
. This is the only random matrix result we need.

I Before going further, we need some reminders from complex analysis.
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Reminders of complex analysis

I Cauchy integration formula

Theorem
Let U ⊂ C be an open set and f : U → C be holomorphic on U. Let γ ⊂ U be a continuous
contour (i.e. closed path). Then, for a inside the surface formed by γ, we have

1

2πi

∮
γ

f (z)

z − a
dz = f (a)

while for a outside the surface formed by γ,

1

2πi

∮
γ

f (z)

z − a
dz = 0.
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Limiting spectrum of the sample covariance matrix

J. W. Silverstein, Z. D. Bai, “On the empirical distribution of eigenvalues of a class of large
dimensional random matrices,” J. of Multivariate Analysis, vol. 54, no. 2, pp. 175-192, 1995.

Reminder:

I If FTN ⇒ F T , then mBN
(z)

a.s.−→ mF (z) such that

mF (z) =

(
c

∫
t

1 + tmF (z)
dF T (t) − z

)−1

or equivalently
mF T

(
−1/mF (z)

)
= −zmF (z)mF (z)

with mF (z) = cmF (z) + (c − 1) 1
z and N/n→ c.
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Reminders of complex analysis (2)

I Residue calculus

Theorem
Let γ be a contour on C. For f holomorphic inside γ but on a discrete number of points, to
compute the expression

1

2πi

∮
γ

f (z)dz

one must
1. determine the poles of f lying inside the surface formed by γ, i.e. those values a such that

lim
z→a

|f (z)| = ∞
2. determine the order of each pole, i.e. the smallest k such that

lim
z→a

|(z − a)k f (z)| <∞
3. compute the residues of f at the poles, i.e. evaluate the value

Res(f , a) , lim
z→a

dk−1

dzk−1

[
(z − a)k f (z)

]
4. the integral is then the sum of all residues.

1

2πi

∮
γ

f (z)dz =
∑

a∈{ poles of f }

Res(f , a)
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Complex integration

I From Cauchy integral formula, denoting Ck a contour enclosing only tk ,

tk =
1

2πi

∮
Ck

ω

ω− tk
dω

=
1

2πi

∮
Ck

1

Nk

K∑
j=1

Nj
ω

ω− tj
dω =

N

2πiNk

∮
Ck

ωmT (ω)dω.

I After the variable change ω = −1/mF (z),

tk =
N

Nk

1

2πi

∮
CF ,k

zmF (z)
m ′F (z)

m2
F (z)

dz,

I When the system dimensions are large,

mF (z) ' mBN
(z) ,

1

N

N∑
k=1

1

λk − z
, with (λ1, . . . ,λN) = eig(BN) = eig(YYH).

I Dominated convergence arguments then show

tk − t̂k
a.s.−→ 0 with t̂k =

N

Nk

1

2πi

∮
CF ,k

zmBN
(z)

m ′BN
(z)

m2
BN

(z)
dz
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Understanding the contour change

−1 − 1
3 − 1

7
0

1

3

7

m1

m2

−1/x1−1/x2

m

x F
(m

)

xF (m), m ∈ B

Support of F

I IF CF ,k encloses cluster k with real points m1 < m2

I THEN −1/m1 = x1 < tk < x2 = −1/m2 and Ck encloses tk .
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Poles and residues

I we find two sets of poles (outside zeros):
I λ1, . . . ,λN , the eigenvalues of BN .
I the solutions µ1, . . . ,µN to m̂N(z) = 0.

I remember that

mBN
(w) =

n

N
mBN

(w) +
n − N

N

1

w

I residue calculus, denote f (w) =
(

n
N wmBN

(w) + n−N
N

) m′BN
(w)

mBN
(w)2 ,

I the λk ’s are poles of order 1 and

lim
z→λk

(z − λk)f (z) = −
n

N
λk

I the µk ’s are also poles of order 1 and by L’Hospital’s rule

lim
z→µk

(z − λk)f (z) = lim
z→µk

n

N

(z −µk)zm ′BN
(z)

mBN
(z)

=
n

N
µk

I So, finally

t̂k =
n

Nk

∑
m∈contour

(λm −µm)
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Which poles in the contour?

I we now need to determine which poles are in the contour of interest.

I Since the µi are rank-1 perturbations of the λi , they have the interleaving property

λ1 < µ2 < λ2 < . . . < µN < λN

I what about µ1? the trick is to use the fact that

1

2πi

∮
Ck

1

z
dz = 0

which leads to
1

2πi

∮
∂Γk

m ′F (w)

mF (w)2
dw = 0

the empirical version of which is

#{i : λi ∈ Γk }− #{i : µi ∈ Γk }

Since their difference tends to 0, there are as many λk ’s as µk ’s in the contour, hence µ1 is
asymptotically in the integration contour.
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Spiked models

I We can create sample covariance matrix models T
1
2
NXNXH

NT
1
2
N with l.s.d. F (XN as usual) for

which
I some sample eigenvalues are found outside the support of F
I the l.s.d. H of TN is a Dirac in 1.

I No contradiction with “no eigenvalue” theorem, since the finitely numerous eigenvalues of
TN will form additional clusters of positive measure in FN .

I However, for practical purposes, the presence of “spikes” determines the presence of a signal!

What about the absence of spikes?
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Absence of spikes
?⇒ No signal

J. Baik, J. W. Silverstein, “Eigenvalues of large sample covariance matrices of spiked population
models,” Journal of Multivariate Analysis, vol. 97, no. 6, pp. 1382-1408, 2006.

Theorem
Let BN = T

1
2
NXNXH

NT
1
2
N , where XN ∈ CN×n has i.i.d., zero mean and variance 1/n entries, and

TN ∈ RN×N diagonal given by

TN = diag(1 +ω1, . . . , 1 +ω1︸ ︷︷ ︸
k1

, . . . , 1 +ωM , . . . , 1 +ωM︸ ︷︷ ︸
kM

, 1, . . . , 1︸ ︷︷ ︸
N−

∑M
i=1 ki

)

with ω1 > . . . >ωM > −1, c = limN N/n. We then have

I if ωj >
√

c, λk1+...+kj−1+i
a.s.−→ 1 +ωj + c

1+ωj
ωj

I if ωkj
∈ (0,

√
c], λk1+...+kj−1+i

a.s.−→ (1 +
√

c)2

I if ωkj
∈ [−

√
c, 0), λk1+...+kj−1+i

a.s.−→ (1 −
√

c)2

I for the other eigenvalues, we discriminate over c:

I if ωkj
< −
√

c, c < 1, λk1+...+kj−1+i
a.s.−→ 1 +ωj + c

1+ωj
ωj

I if ωkj
< −
√

c, c > 1, λk1+...+kj−1+i
a.s.−→ (1 −

√
c)2

Proof: See Section “Research Today: Advanced Statistic Inference”
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Eigenvalues outside the support
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Figure: Eigenvalues of BN = TN
1
2 XNXN

HTN
1
2 , where FTN ⇒ 1[1,∞), ....Dimensions: N = 500, n = 1500.
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Figure: Eigenvalues of BN = TN
1
2 XNXN

HTN
1
2 , where FTN ⇒ 1[1,∞), but TN is a diagonal of ones but for the

first four entries set to {1 +ω1, 1 +ω1, 1 +ω2, 1 +ω2}, ω1 = 1,ω2 = 2.Dimensions: N = 500, n = 1500.
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Interpretation of the result

I if c is large, or alternatively, if some “population spikes” are small, part to all of the
population spikes are attracted by the support!

I if so, no way to decide on the existence of the spikes from looking at the largest eigenvalues

I in telecommunication words, signals might be missed using largest eigenvalues methods.
I as a consequence,

I the more the sensors (N),
I the larger c = lim N/n,
I the more probable we miss a spike
I THAT LOOKS LIKE A PARADOX.
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Generalization of the Tracy-Widom law

J. Baik, G. Ben Arous, S. Péché, “Phase transition of the largest eigenvalue for nonnull complex
sample covariance matrices,” The Annals of Probability, vol. 33, no. 5, pp. 1643-1697, 2005.

Theorem
Let X ∈ CN×n have i.i.d. Gaussian entries of zero mean and variance 1/n and TN = diag(t1, . . . , tN). Assume,
for some fixed r, tr+1 = . . . = tN = 1 and t1 = . . . = tk while tk+1, . . . , tr lie in a compact subset of (0, t1).

Assume further c = lim N/n < 1. Denoting λ+N the largest eigenvalue of T
1
2 XXHT

1
2 , we have

I If t1 < 1 +
√

N
n ,

N
2
3
λ+N − (1 +

√
c)2

(1 +
√

c)
4
3 c

1
2

⇒ X+ ∼ F+

with F+ the Tracy-Widom distribution.

I If t1 > 1 +
√

N
n , (

t2
1 −

t2
1 c

(t1 − 1)2

) 1
2

n
1
2

[
λ+N − (t1 +

t1c

t1 − 1
)

]
⇒ Xk ∼ Gk

for some function Gk that is the distribution of the largest eigenvalue of the k × k GUE.

Gk(x) =
1

Zk

∫ x

−∞ · · ·
∫ x

−∞
∏

16i<j6k

|ξi − ξj |
2

k∏
i=1

e− 1
2ξ

2
i dξ1 . . . dξk

In particular, G1(x) = erf(x)
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Comments on the result

I there exists a “phase transition” when the largest population eigenvalues move from inside to
outside (0, 1 +

√
c).

I more importantly, for t1 < 1 +
√

c, we still have the same Tracy-Widom,
I no way to see the spike even when zooming in
I in fact, simulation suggests that convergence rate to the Tracy-Widom is slower with spikes.
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Presence of a spike in previous model
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c)−
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]

against the distribution of X+ (distributed as

Tracy-Widom law) for N = 500, n = 1500, c = 1/3, for the covariance matrix model T
1
2 XXHT

1
2 with T

diagonal with all entries 1 but for T11 = 1.5. Empirical distribution taken over 10, 000 Monte-Carlo simulations.
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I J. Baik, G. Ben Arous, S. Péché, “Phase transition of the largest eigenvalue for nonnull complex sample covariance
matrices,” The Annals of Probability, vol. 33, no. 5, pp. 1643-1697, 2005.

I W. Hachem, P. Loubaton, X. Mestre, J. Najim, P. Vallet, “A Subspace Estimator for Fixed Rank Perturbations of Large
Random Matrices,” arxiv preprint 1106.1497, 2011.

I R. Couillet, W. Hachem, “Local failure detection and diagnosis in large sensor networks”, (submitted to) IEEE Transactions
on Information Theory, arXiv preprint 1107.1409.

I F. Benaych-Georges, R. Rao, “The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices,”
Advances in Mathematics, vol. 227, no. 1, pp. 494-521, 2011.



Research today: Advanced Statistic Inference/ 66/79

Outline

Spectrum Analysis of Large Matrices
Absence of eigenvalues outside the support
Further details on the asymptotic spectrum
Exact spectrum separation
Distribution of extreme eigenvalues: the Tracy-Widom law

G-estimation and Eigeninference
Free deconvolution
The Stieltjes transform approach

The Spiked Model

Research today: Advanced Statistic Inference
Eigeninference in spiked models
Central limit theorems for Mestre’s estimates



Research today: Advanced Statistic Inference/Eigeninference in spiked models 67/79

Outline

Spectrum Analysis of Large Matrices
Absence of eigenvalues outside the support
Further details on the asymptotic spectrum
Exact spectrum separation
Distribution of extreme eigenvalues: the Tracy-Widom law

G-estimation and Eigeninference
Free deconvolution
The Stieltjes transform approach

The Spiked Model

Research today: Advanced Statistic Inference
Eigeninference in spiked models
Central limit theorems for Mestre’s estimates



Research today: Advanced Statistic Inference/Eigeninference in spiked models 68/79

Eigenvalue and eigenvectors statistics: Method

I Consider the model
Σ = (IN + P)

1
2 X

with, for simplicity
I X standard Gaussian
I P = UΩUH, U = [u1, . . . ,ur ] ∈ CN×r , Ω = diag(ω1, . . . ,ωr ), ω1 > . . . >ωr > 0.

I We study the convergence properties of
I λ1 > . . . > λr , the r largest eigenvalues of ΣΣH

I uH
i ûi ûH

i ui , with ûi the eigenvector associated to λi .

I Systematic study based on two ingredients:
I random matrix tools (the Stieltjes transform method)
I complex analysis (complex contour integration)
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First order limits: Eigenvalues
I We start with a study of the limiting extreme eigenvalues.

I Let x > 0, then

det(ΣΣH − xIN) = det(IN +P)det(XXH − xIN + x[IN − (IN +P)−1])

= det(IN +P)det(XXH − xIN)−1 det(IN + xP(IN +P)−1(XXH − xIN)−1).

I if x eigenvalue of ΣΣH but not of XXH, then for n large, x > (1 +
√

c)2 (edge of MP law
support) and

det(IN+xP(IN+P)−1(XXH−xIN)−1) = det(Ir +xΩU∗(IN+UΩUH)−1(XXH−xIN)−1U) = 0

with P = UΩUH, U ∈ CN×r .

I due to unitary invariance of X,

UH(XXH − xIN)−1U
a.s.−→

∫
(t − x)−1dF MP(t)Ir , m(x)Ir

with F MP the MP law, and m(x) the Stieltjes transform of the MP law (often known for
r = 1 as trace lemma).

I finally, we have that the limiting solutions ρk satisfy ρk m(ρk) + (1 +ωk)ω
−1
k = 0.

I replacing m(x), this is finally:

λk
a.s.−→ ρk , 1 +ωk + c(1 +ωk)ω

−1
k , if ωk >

√
c
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First order limits: Eigenvector projections (2)
I We now study the limiting behaviour of eigenvector projections.

I Consider ωi and its corresponding eigenvector ui , then, from Cauchy-integration formula

uH
i ûi û

H
i ui =

−1

2πı

∮
Ci

uH
i (ΣΣH − zIN)−1ui dz

=
−1

2πı

∮
Ci

uH
i (IN + P)−

1
2 (XXH − zIN)−1(IN +P)−

1
2 ui dz +

1

2πı

∮
Ci

âH
1 Ĥ

−1â2dz

with Ci enclosing ρi only and
Ĥ = Ir + zΩ(Ir +Ω)−1UH(XXH − zIN)−1U

âH
1 = zu∗1 (IN + P)−

1
2 (XXH − zIN)−1U

â2 = Ω(Ir +Ω)−1UH(XXH − zIN)−1(IN + P)−
1
2 ui .

I For large n, the first term has no pole, while the second converges to

Ti ,
1

2πı

∮
Ci

aH
1 H

−1a2dz, with


H = Ir + zm(z)Ω(Ir +Ω)−1

aH
1 = zm(z)u∗1(IN +P)−

1
2 U

a2 = m(z)Ω(Ir +Ω)−1UH(IN +P)−
1
2 ui

which after development is Ti =
∑r
`=1

1
1+ω`

1
2πı

∮
Ci

zm2(z)
1+ω`
ω`

+zm(z)
dz.

I Using residue calculus, the sole pole is in ρi and we find uH
i ûi û

H
i ui

a.s.−→ ζi ,
1−cω−2

i

1+cω−1
i

.
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Fluctuations

I The objective is to find second order behaviour for the joint variable((√
N(λi − ρi )

)r

i=1
,
(√

N(uH
i ûi û

H
i ui − ζi )

)r

i=1

)

I Outline of the method:
I Complex integration framework for the quantities

√
N(λi − ρi ) and

√
N(uH

i ûi ûH
i ui − ζi ):

√
N(λi − ρi )−

[
−

ρi

h ′(ρi )
uH

i (m(ρi )IN − (XXH − ρi IN)−1)ui

]
a.s.−→ 0

√
N(uH

i ûi û
H
i ui − ζi )−

[
h(ρi )(1 + h(ρi ))h ′′(ρi )

h ′(ρi )3
uH

i (m(ρi )IN − (XXH − ρi IN)−1)ui

−
h(ρi )(1 + h(ρi ))

h ′(ρi )2
uH

i (m ′(ρi )IN − (XXH − ρi IN)−2)ui

]
a.s.−→ 0

with h(x) = xm(x).
I Joint fluctuations of Stieltjes transforms:(

uH
i (m(ρi )IN − (XXH − ρi IN)−1)ui ,u

H
j (m ′(ρj )IN − (XXH − ρj IN)−2)uj

)
⇒N(0, R(ρi )δ

j
i )

with

R(ρ) =

[
m ′(ρ) − m(ρ)2 m ′′(ρ)/2 − m(ρ)m ′(ρ)

m ′′(ρ)/2 − m(ρ)m ′(ρ) m(3)(ρ)/6 − m ′(ρ)2

]
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Joint fluctuations

R. Couillet, W. Hachem, “Local failure detection and diagnosis in large sensor networks”,
(submitted to) IEEE Transactions on Information Theory, arXiv preprint 1107.1409.

I Replacing m(ρi ), this finally proves the following theorem:

Theorem
Under the conditions above, assuming ωi >

√
c for each i ∈ {1, . . . , r},

((√
N(λi − ρi )

)r

i=1
,
(√

N(uH
i ûi û

H
i ui − ζi )

)r

i=1

)
⇒N

0,


C(ρ1)

. . .

C(ρr )




where

C(ρi ) ,

 c2(1+ωi )
2

(c+ωi )
2(ω2

i −c)

(
c (1+ωi )

2

(c+ωi )
2 + 1

)
(1+ωi )

3c2

(ωi+c)2ωi

(1+ωi )
3c2

(ωi+c)2ωi

c(1+ωi )
2(ω2

i −c)

ω2
i

 .
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Simulation
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Figure: Empirical and theoretical distribution of the fluctuations of û1 with r = 1, Xij ∼ CN(0, 1/n),
N/n = 1/8, N = 64 and ω1 = 1.
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Reminder: fluctuations of functionals of the spectrum

J. W. Silverstein, Z. D. Bai, “CLT of linear spectral statistics of large dimensional sample
covariance matrices” Annals of Probability 32(1A) (2004), pp. 553-605.

Theorem

BN = T
1
2
NXNXH

NT
1
2
N , BN = XH

NTNXN

as usual with XN Gaussian, FTN = diag({τi })⇒ H, |TN |, τ1 > . . . > τN . Denote F and FN the
l.s.d. and det. eq. of FBN , and

GN , N
[
FBN − FN

]
.

For f1, . . . , fk well behaved, then(∫
f1(x)dGN(x), . . . ,

∫
fk(x)dGN(x)

)
⇒ (Xf1 , . . . , Xfk

)

of zero mean and covariance Cov(Xf , Xg ), (f , g) ∈ {f1, . . . , fk }
2, such that

Cov(Xf , Xg ) = −
1

2πi

∮ ∮
f (z1)g(z2)

(m(z1) − m(z2))2
m ′(z1)m ′(z2)dz1dz2

for m(z) the Stieltjes transform of the l.s.d. of BN . The integration contours are positively
defined with winding number one and enclose the support of F .
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The delta-method

I The central limit of random matrix-based estimates follow from basic fluctuation results,
using the delta method.

Theorem
Let X1, X2, . . . ∈ Rn be a random sequence such that

an(Xn −µ)⇒ X ∼ N(0,V)

for some sequence a1, a2, . . . ↑∞. Then for f : Rn → RN , a function differentiable at µ

an(f (Xn) − f (µ))⇒ J(f )X

with J(f ) the Jacobian matrix of f .
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Example of application: fluctuations of Mestre’s estimator

J. Yao, R. Couillet, J. Najim, M. Debbah, “Fluctuations of an Improved Population Eigenvalue
Estimator in Sample Covariance Matrix Models”, (submitted to) IEEE Transactions on
Information Theory.

Theorem

BN = T
1
2
NXNXH

NT
1
2
N , TN = diag({tk }

K
k=1) with large multiplicities.

Assume asymptotic cluster separability. Then, as N, n grow large(
n(t̂k − tk)

)K
k=1 ⇒ CN(0,Θ), with

Θk,k ′ , −
1

4π2c2ci cj

∮
Ck

∮
Ck ′

[
m ′(z1)m ′(z2)

(m(z1) − m(z2))2
−

1

(z1 − z2)2

]
dz1dz2

m(z1)m(z2)

where Ck is the support enclosing cluster k.
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Example of application: fluctuations of Mestre’s estimator (2)

An estimator of the variance is also given in the following result.

Theorem
We also have

Θ̂k,k ′ −Θk,k ′
a.s.−→ 0

as N, n→∞, where

Θ̂k,k ′ ,
n2

Nk Nk ′

 ∑
i∈Nk

j∈Nk ′

−1

(µi −µj)2m ′BN
(µi )m ′BN

(µj)
+ δkk ′

∑
i∈Nk

(
m ′′′BN

(µi )

6m ′BN
(µi )3

−
m ′′BN

(µi )
2

4m ′BN
(µi )4

)
µi , ordered eigenvalues of diag(λ) − 1

N

√
λ
√
λ

T
; λ, ordered vector of eigenvalues of BN .
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