Crash Course on Random Matrix Theory
 Part II: Advanced notions and applications to signal processing Morning Session: Advanced notions of RMT

Romain Couillet and Mérouane Debbah

SUPELEC

27-01-2012

Outline

Spectrum Analysis of Large Matrices

Absence of eigenvalues outside the support
Further details on the asymptotic spectrum
Exact spectrum separation
Distribution of extreme eigenvalues: the Tracy-Widom law

G-estimation and Eigeninference
Free deconvolution
The Stieltjes transform approach

The Spiked Model

Research today: Advanced Statistic Inference
Eigeninference in spiked models
Central limit theorems for Mestre's estimates

Outline

```
Spectrum Analysis of Large Matrices
    Absence of eigenvalues outside the support
    Further details on the asymptotic spectrum
    Exact spectrum separation
    Distribution of extreme eigenvalues: the Tracy-Widom law
G-estimation and Eigeninference
    Free deconvolution
    The Stieltjes transform approach
The Spiked Model
Research today: Advanced Statistic Inference
    Eigeninference in spiked models
    Central limit theorems for Mestre's estimates
```


Outline

Spectrum Analysis of Large Matrices

Absence of eigenvalues outside the support
Further details on the asymptotic spectrum
Exact spectrum separation
Distribution of extreme eigenvalues: the Tracy-Widom law

G-estimation and Eigeninference
Free deconvolution
The Stieltjes transform approach

The Spiked Model

Research today: Advanced Statistic Inference
Eigeninference in spiked models
Central limit theorems for Mestre's estimates

Why go beyond the spectrum?

- Limiting spectral results only say where the "mass" of eigenvalues lies asymptotically. Say $F_{N} \Rightarrow F$, with $f_{N}(x)=\frac{1}{N} \sum_{k=1}^{N} \delta\left(x-a_{k}\right)$.

Why go beyond the spectrum?

- Limiting spectral results only say where the "mass" of eigenvalues lies asymptotically. Say $F_{N} \Rightarrow F$, with $f_{N}(x)=\frac{1}{N} \sum_{k=1}^{N} \delta\left(x-a_{k}\right)$.
- $f_{N}^{(0)}(x)=\frac{1}{N} \delta(x)+\frac{1}{N} \sum_{k=1}^{N-1} \delta\left(x-a_{k}\right)$ also converges to F.

Why go beyond the spectrum?

- Limiting spectral results only say where the "mass" of eigenvalues lies asymptotically. Say $F_{N} \Rightarrow F$, with $f_{N}(x)=\frac{1}{N} \sum_{k=1}^{N} \delta\left(x-a_{k}\right)$.
- $f_{N}^{(0)}(x)=\frac{1}{N} \delta(x)+\frac{1}{N} \sum_{k=1}^{N-1} \delta\left(x-a_{k}\right)$ also converges to F.
- if F_{N} and $F_{N}^{(0)}$ are discrete and differ by $o(N)$ bounded masses, $F_{N}^{(0)} \Rightarrow F$.

Why go beyond the spectrum?

- Limiting spectral results only say where the "mass" of eigenvalues lies asymptotically. Say $F_{N} \Rightarrow F$, with $f_{N}(x)=\frac{1}{N} \sum_{k=1}^{N} \delta\left(x-a_{k}\right)$.
- $f_{N}^{(0)}(x)=\frac{1}{N} \delta(x)+\frac{1}{N} \sum_{k=1}^{N-1} \delta\left(x-a_{k}\right)$ also converges to F.
- if F_{N} and $F_{N}^{(0)}$ are discrete and differ by $o(N)$ bounded masses, $F_{N}^{(0)} \Rightarrow F$.
- We know that, for $\mathbf{X}_{N} \in \mathbb{C}^{N \times n}$ with i.i.d. zero mean variance $1 / n$,

$$
F^{\mathbf{x}_{N} \mathbf{x}_{N}^{H}} \Rightarrow F_{c}
$$

with F_{c} is the compactly supported Marčenko-Pastur law of parameter $c=\lim _{N} \frac{N}{n}$.
Question: for very large N, where are the eigenvalues of $\mathbf{X}_{N} \mathbf{X}_{N}^{H}$?

Are there eigenvalues outside the support ?

Figure: Histogram of the eigenvalues of \mathbf{R}_{n} for $n=2000, N=500$

No eigenvalue outside the support of sample covariance matrices

Z. D. Bai, J. W. Silverstein, "No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices," The Annals of Probability, vol. 26, no. 1 pp . 316-345, 1998.

Theorem

Let $\mathbf{X}_{N} \in \mathbb{C}^{N \times n}$ with i.i.d. entries with zero mean, variance $1 / n$ and $4^{\text {th }}$ order moment of order $O\left(1 / n^{2}\right)$. Let $\mathbf{T}_{N} \in \mathbb{C}^{N \times N}$ be nonrandom and bounded in norm and with $F^{\mathbf{T}_{N}} \Rightarrow H$. We know that

$$
F^{\mathbf{B}_{N}} \Rightarrow F \text { almost surely, } \quad \mathbf{B}_{N}=\mathbf{T}_{N}^{\frac{1}{2}} \mathbf{X}_{N} \mathbf{X}_{N}^{H} \mathbf{T}_{N}^{\frac{1}{2}}
$$

Let F_{N} be the distribution with $m_{N}(z)$ solution of

$$
\underline{m}_{N}=-\left(z-\frac{N}{n} \int \frac{\tau}{1+\tau \underline{m}_{N}} d F^{\top_{N}}(\tau)\right)^{-1}, \quad \underline{m}_{N}(z)=\frac{N}{n} m_{N}(z)+\frac{N-n}{n} \frac{1}{z} .
$$

Choose $N_{0} \in \mathbb{N}$ and $[a, b], a>0$, outside the union of the supports of F and F_{N} for all $N \geqslant N_{0}$. Denote \mathcal{L}_{N} the set of eigenvalues of \mathbf{B}_{N}. Then,

$$
P\left(\mathcal{L}_{N} \cap[a, b] \neq \emptyset \text { i.o. }\right)=0 .
$$

How to read the result?

- If $\mathbf{T}_{N}=\mathbf{I}_{N}$ for all N, then this result is equivalent to
"For $[a, b]$ outside the support of the Marčenko-Pastur law, with probability $1, \mathbf{B}_{N}$ has no eigenvalue in $[a, b]$ for all large $N^{\prime \prime}$

How to read the result?

- If $\mathbf{T}_{N}=\mathbf{I}_{N}$ for all N, then this result is equivalent to
"For $[a, b]$ outside the support of the Marčenko-Pastur law, with probability $1, \mathbf{B}_{N}$ has no eigenvalue in $[a, b]$ for all large $N^{\prime \prime}$
- If \mathbf{T}_{N} is not identity,
- call S the support of the limiting F.
- for some N_{0}, take the I.s.d. of \mathbf{B}_{N} as if $\lim _{N} F^{\boldsymbol{\top}} N=F^{\top} N_{0}$, and call its support $S_{N_{0}}$.
- do the previous for all $N \geqslant N_{0}$. Call $\mathcal{A}=S \cup \bigcap_{N \geqslant N_{0}} S_{N}$.
- take $[a, b]$ outside \mathcal{A}, and pick a random sequence $\mathbf{B}_{1}, \mathbf{B}_{2}, \ldots$. The result shows that, for all N large, there is no eigenvalue of \mathbf{B}_{N} in $[a, b]$.

How to read the result?

- If $\mathbf{T}_{N}=\mathbf{I}_{N}$ for all N, then this result is equivalent to
"For $[a, b]$ outside the support of the Marčenko-Pastur law, with probability $1, \mathbf{B}_{N}$ has no eigenvalue in $[a, b]$ for all large $N^{\prime \prime}$
- If \mathbf{T}_{N} is not identity,
- call S the support of the limiting F.
- for some N_{0}, take the I.s.d. of \mathbf{B}_{N} as if $\lim _{N} F^{\boldsymbol{\top}} N=F^{\top} N_{0}$, and call its support $S_{N_{0}}$.
- do the previous for all $N \geqslant N_{0}$. Call $\mathcal{A}=S \cup \bigcap_{N \geqslant N_{0}} S_{N}$.
- take $[a, b]$ outside \mathcal{A}, and pick a random sequence $\mathbf{B}_{1}, \mathbf{B}_{2}, \ldots$. The result shows that, for all N large, there is no eigenvalue of \mathbf{B}_{N} in $[a, b]$.
- this is very different from taking $[a, b]$ only outside the support of F only!
- this is essential to understand spiked models, discussed later.

No eigenvalue outside the support: which models?

J. W. Silverstein, P. Debashis, "No eigenvalues outside the support of the limiting empirical spectral distribution of a separable covariance matrix," J. of Multivariate Analysis vol. 100, no. 1, pp. 37-57, 2009.

- It has already been shown that (for all large N) there is no eigenvalues outside the support of - Marčenko-Pastur law: $\mathbf{X X}{ }^{H}, \mathbf{X}$ i.i.d. with zero mean, variance $1 / N$, finite $4^{\text {th }}$ order moment.
- Sample covariance matrix: $\mathbf{T}^{\frac{1}{2}} \mathbf{X} \mathbf{X}^{H} \mathbf{T}^{\frac{1}{2}}$ and $\mathbf{X}^{H} \mathbf{T X}, \mathbf{X}$ i.i.d. with zero mean, variance $1 / N$, finite $4^{\text {th }}$ order moment.
- Doubly-correlated matrix: $\mathbf{R}^{\frac{1}{2}} \mathbf{X} \mathbf{X X}^{H} \mathbf{R}^{\frac{1}{2}}, \mathbf{X}$ with i.i.d. zero mean, variance $1 / N$, finite $4^{\text {th }}$ order moment.

No eigenvalue outside the support: which models?

J. W. Silverstein, P. Debashis, "No eigenvalues outside the support of the limiting empirical spectral distribution of a separable covariance matrix," J. of Multivariate Analysis vol. 100, no. 1, pp. 37-57, 2009.

- It has already been shown that (for all large N) there is no eigenvalues outside the support of
- Marčenko-Pastur law: $\mathbf{X X}{ }^{H}, \mathbf{X}$ i.i.d. with zero mean, variance $1 / N$, finite $4^{\text {th }}$ order moment.
- Sample covariance matrix: $\mathbf{T}^{\frac{1}{2}} \mathbf{X} \mathbf{X}^{H} \mathbf{T}^{\frac{1}{2}}$ and $\mathbf{X}^{H} \mathbf{T X}, \mathbf{X}$ i.i.d. with zero mean, variance $1 / N$, finite $4^{\text {th }}$ order moment.
- Doubly-correlated matrix: $\mathbf{R}^{\frac{1}{2}} \mathbf{X} \mathbf{X X}^{H} \mathbf{R}^{\frac{1}{2}}, \mathbf{X}$ with i.i.d. zero mean, variance $1 / N$, finite $4^{\text {th }}$ order moment.
J. W. Silverstein, Z.D. Bai, Y.Q. Yin, "A note on the largest eigenvalue of a large dimensional sample covariance matrix," Journal of Multivariate Analysis, vol. 26, no. 2, pp. 166-168, 1988.
- If $4^{\text {th }}$ order moment is infinite,

$$
\lim \sup _{N} \lambda_{\max }^{\mathrm{xx}}=\infty
$$

No eigenvalue outside the support: which models?

J. W. Silverstein, P. Debashis, "No eigenvalues outside the support of the limiting empirical spectral distribution of a separable covariance matrix," J. of Multivariate Analysis vol. 100, no. 1, pp. 37-57, 2009.

- It has already been shown that (for all large N) there is no eigenvalues outside the support of
- Marčenko-Pastur law: $\mathbf{X X}{ }^{H}, \mathbf{X}$ i.i.d. with zero mean, variance $1 / N$, finite $4^{\text {th }}$ order moment.
- Sample covariance matrix: $\mathbf{T}^{\frac{1}{2}} \mathbf{X} \mathbf{X}^{H} \mathbf{T}^{\frac{1}{2}}$ and $\mathbf{X}^{H} \mathbf{T X}, \mathbf{X}$ i.i.d. with zero mean, variance $1 / N$, finite $4^{\text {th }}$ order moment.
- Doubly-correlated matrix: $\mathbf{R}^{\frac{1}{2}} \mathbf{X} \mathbf{X X}^{H} \mathbf{R}^{\frac{1}{2}}, \mathbf{X}$ with i.i.d. zero mean, variance $1 / N$, finite $4^{\text {th }}$ order moment.
J. W. Silverstein, Z.D. Bai, Y.Q. Yin, "A note on the largest eigenvalue of a large dimensional sample covariance matrix," Journal of Multivariate Analysis, vol. 26, no. 2, pp. 166-168, 1988.
- If $4^{\text {th }}$ order moment is infinite,

$$
\lim \sup _{N} \lambda_{\max }^{\mathrm{xx}}=\infty
$$

J. Silverstein, Z. Bai, "No eigenvalues outside the support of the limiting spectral distribution of information-plus-noise type matrices" to appear in Random Matrices: Theory and Applications.

- Only recently, information plus noise models, \mathbf{X} with i.i.d. zero mean, variance $1 / N$, finite $4^{\text {th }}$ order moment.

$$
(\mathbf{X}+\mathbf{A})(\mathbf{X}+\mathbf{A})^{\mathrm{H}}
$$

Sketch of Proof

- Proof entirely relies on the Stieltjes transform.
- Up to now, we know $\left|m_{\mathbf{B}_{N}}(z)-m_{N}(z)\right| \xrightarrow{\text { a.s. }} 0$ for $z \in \mathbb{C} \backslash \mathbb{R}^{-}$.

Sketch of Proof

- Proof entirely relies on the Stieltjes transform.
- Up to now, we know $\left|m_{B_{N}}(z)-m_{N}(z)\right| \xrightarrow{\text { a.s. }} 0$ for $z \in \mathbb{C} \backslash \mathbb{R}^{-}$.
- This is not enough, we need in fact to show: for $z=x+i \sqrt{k} v_{N}, v_{N}=N^{-1 / 68}, k=1, \ldots, 34$,

$$
\max _{1 \leqslant k \leqslant 34} \sup _{x \in[a, b]} \left\lvert\, m_{\mathbf{B}_{N}}\left(x+i k^{\frac{1}{2}} v_{N}\right)-m_{N}\left(\left.\left(x+i k^{\frac{1}{2}} v_{N}\right) \right\rvert\,=o\left(v_{N}^{67}\right) .\right.\right.
$$

Sketch of Proof

- Proof entirely relies on the Stieltjes transform.
- Up to now, we know $\left|m_{\mathbf{B}_{N}}(z)-m_{N}(z)\right| \xrightarrow{\text { a.s. }} 0$ for $z \in \mathbb{C} \backslash \mathbb{R}^{-}$.
- This is not enough, we need in fact to show: for $z=x+i \sqrt{k} v_{N}, v_{N}=N^{-1 / 68}, k=1, \ldots, 34$,

$$
\max _{1 \leqslant k \leqslant 34} \sup _{x \in[a, b]} \left\lvert\, m_{\mathbf{B}_{N}}\left(x+i k^{\frac{1}{2}} v_{N}\right)-m_{N}\left(\left.\left(x+i k^{\frac{1}{2}} v_{N}\right) \right\rvert\,=o\left(v_{N}^{67}\right) .\right.\right.
$$

- Expanding the Stieltjes transforms and considering only the imaginary parts, this is

$$
\max _{1 \leqslant k \leqslant 34} \sup _{x \in[a, b]}\left|\int \frac{d\left(F^{\mathbf{B}_{N}}(\lambda)-F_{N}(\lambda)\right)}{(x-\lambda)^{2}+k v_{N}^{2}}\right|=o\left(v_{N}^{66}\right)
$$

almost surely. Taking successive differences over the 34 values of k, we end up with

$$
\sup _{x \in[a, b]}\left|\int \frac{\left(v_{N}^{2}\right)^{33} d\left(F^{\mathbf{B}_{N}}(\lambda)-F_{N}(\lambda)\right)}{\prod_{k=1}^{34}\left((x-\lambda)^{2}+k v_{N}^{2}\right)}\right|=o\left(v_{N}^{66}\right)
$$

Consider $a^{\prime}<a$ and $b^{\prime}>b$ such that $\left[a^{\prime}, b^{\prime}\right]$ is outside the support of F. We then have

$$
\sup _{x \in[a, b]}\left|\int \frac{1_{\mathbb{R}^{+} \backslash\left[a^{\prime}, b^{\prime}\right]}(\lambda) d\left(F \mathbf{B}_{N}(\lambda)-F_{N}(\lambda)\right)}{\prod_{k=1}^{34}\left((x-\lambda)^{2}+k v_{N}^{2}\right)}+\sum_{\lambda_{j} \in\left[a^{\prime}, b^{\prime}\right]} \frac{v_{N}^{68}}{\prod_{k=1}^{34}\left(\left(x-\lambda_{j}\right)^{2}+k v_{N}^{2}\right)}\right|=o(1)
$$

almost surely. If, there is one eigenvalue of all $\mathbf{B}_{\phi(N)}$ in $[a, b]$, then one term of the sum is $1 / 34$! >0. So the integral must away from zero. But the integral tends to 0 . Contradiction.

What's the link with wireless communications?

Assume N sensors wish to detect the presence of a signal. They scan successive samples $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$. Then

What's the link with wireless communications?

Assume N sensors wish to detect the presence of a signal. They scan successive samples $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$. Then

- if $\mathbf{R}_{n}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{H}$ has eigenvalues outside the support: with high probability, a signal was transmitted.

What's the link with wireless communications?

Assume N sensors wish to detect the presence of a signal. They scan successive samples $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$. Then

- if $\mathbf{R}_{n}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{H}$ has eigenvalues outside the support: with high probability, a signal was transmitted.
- if \mathbf{R}_{n} has all eigenvalues inside the expected noise support, what can we say?
- we cannot conclude so far
- we need to further study the spectrum

Outline

```
Spectrum Analysis of Large Matrices
    Absence of eigenvalues outside the support
    Further details on the asymptotic spectrum
    Exact spectrum separation
    Distribution of extreme eigenvalues: the Tracy-Widom law
G-estimation and Eigeninference
    Free deconvolution
    The Stieltjes transform approach
The Spiked Model
Research today: Advanced Statistic Inference
    Eigeninference in spiked models
    Central limit theorems for Mestre's estimates
```


Stieltjes transform inversion for covariance matrix models

J. W. Silverstein, S. Choi, "Analysis of the limiting spectral distribution of large dimensional random matrices," Journal of Multivariate Analysis, vol. 54, no. 2, pp. 295-309, 1995.

- We know for the model $\mathbf{T}_{N}^{\frac{1}{2}} \mathbf{X}_{N}, \mathbf{X}_{N} \in \mathbb{C}^{N \times n}$ that, if $F^{\mathbf{T}} N \Rightarrow H$, the Stieltjes transform of the e.s.d. of $\underline{\mathbf{B}}_{N}=\mathbf{X}_{N}^{\mathrm{H}} \mathbf{T}_{N} \mathbf{X}_{N}$ satisfies $m_{\underline{\underline{B}}_{N}}(\boldsymbol{z}) \xrightarrow{\text { a.s. }} m_{\underline{E}}(z)$, with

$$
m_{\underline{E}}(z)=\left(-z-c \int \frac{t}{1+t m_{\underline{E}}(z)} d H(t)\right)^{-1}
$$

which is unique on the set $\left\{z \in \mathbb{C}^{+}, m_{\underline{E}}(z) \in \mathbb{C}^{+}\right\}$.

Stieltjes transform inversion for covariance matrix models

J. W. Silverstein, S. Choi, "Analysis of the limiting spectral distribution of large dimensional random matrices," Journal of Multivariate Analysis, vol. 54, no. 2, pp. 295-309, 1995.

- We know for the model $\mathbf{T}_{N}^{\frac{1}{2}} \mathbf{X}_{N}, \mathbf{X}_{N} \in \mathbb{C}^{N \times n}$ that, if $F^{\mathbf{T}} N \Rightarrow H$, the Stieltjes transform of the e.s.d. of $\underline{\mathbf{B}}_{N}=\mathbf{X}_{N}^{\mathrm{H}} \mathbf{T}_{N} \mathbf{X}_{N}$ satisfies $m_{\underline{B}_{N}}(\boldsymbol{z}) \xrightarrow{\text { a.s. }} m_{\underline{F}}(z)$, with

$$
m_{\underline{E}}(z)=\left(-z-c \int \frac{t}{1+t m_{\underline{E}}(z)} d H(t)\right)^{-1}
$$

which is unique on the set $\left\{z \in \mathbb{C}^{+}, m_{\underline{E}}(z) \in \mathbb{C}^{+}\right\}$.

- This can be inverted into

$$
z_{\underline{E}}(m)=-\frac{1}{m}-c \int \frac{t}{1+t m} d H(t)
$$

for $m \in \mathbb{C}^{+}$.

Stieltjes transform inversion and spectrum characterization

Remember that we can evaluate the spectrum density by taking a complex line close to \mathbb{R} and evaluating $\mathfrak{J}\left[m_{\underline{E}}(z)\right]$ along this line. Now we can do better.

Stieltjes transform inversion and spectrum characterization

Remember that we can evaluate the spectrum density by taking a complex line close to \mathbb{R} and evaluating $\mathfrak{I}\left[m_{E}(z)\right]$ along this line. Now we can do better.

It is shown that

$$
\lim _{\substack{z \rightarrow x \in \mathbb{R}^{*} \\ z \in \mathbb{C}^{+}}} m_{\underline{E}}(z)=m_{0}(x) \quad \text { exists. }
$$

We also have,

- for x_{0} inside the support, the density $\underline{f}(x)$ of \underline{F} in x_{0} is $\frac{1}{\pi} \mathfrak{I}\left[m_{0}\right]$ with m_{0} the unique solution $m \in \mathbb{C}^{+}$of

$$
\left[z_{\underline{E}}(m)=\right] x_{0}=-\frac{1}{m}-c \int \frac{t}{1+t m} d H(t)
$$

- let $m_{0} \in \mathbb{R}^{*}$ and $x_{\underline{E}}$ the equivalent to $z_{\underline{E}}$ on the real line. Then " x_{0} outside the support of \underline{E} " is equivalent to " $x_{\underline{E}}^{\prime}\left(m_{\underline{E}}\left(x_{0}\right)\right)>0, m_{\underline{E}}\left(x_{0}\right) \neq 0,-1 / m_{\underline{E}}\left(x_{0}\right)$ outside the support of $H^{\text {" }}$.

Stieltjes transform inversion and spectrum characterization

Remember that we can evaluate the spectrum density by taking a complex line close to \mathbb{R} and evaluating $\mathfrak{I}\left[m_{\underline{E}}(z)\right]$ along this line. Now we can do better.

It is shown that

$$
\lim _{\substack{z \rightarrow x \in \mathbb{R}^{*} \\ z \in \mathbb{C}^{+}}} m_{\underline{E}}(z)=m_{0}(x) \quad \text { exists. }
$$

We also have,

- for x_{0} inside the support, the density $\underline{f}(x)$ of \underline{F} in x_{0} is $\frac{1}{\pi} \mathfrak{I}\left[m_{0}\right]$ with m_{0} the unique solution $m \in \mathbb{C}^{+}$of

$$
\left[z_{\underline{E}}(m)=\right] x_{0}=-\frac{1}{m}-c \int \frac{t}{1+t m} d H(t)
$$

- let $m_{0} \in \mathbb{R}^{*}$ and x_{F} the equivalent to z_{F} on the real line. Then " x_{0} outside the support of \underline{F} " is equivalent to " $x_{\underline{E}}^{\prime}\left(m_{\underline{E}}\left(x_{0}\right)\right)>0, m_{\underline{E}}\left(x_{0}\right) \neq 0,-1 / m_{\underline{E}}\left(x_{0}\right)$ outside the support of $H^{\text {" }}$.

This provides another way to determine the support!. For $m \in(-\infty, 0)$, evaluate $x_{\underline{\underline{F}}}(m)$. Whenever $x_{\underline{F}}$ decreases, the image is outside the support. The rest is inside.

Another way to determine the spectrum: spectrum to analyze

Eigenvalues
Figure: Histogram of the eigenvalues of $\mathbf{B}_{N}=\mathbf{T}_{N}^{\frac{1}{2}} \mathbf{X}_{N} \mathbf{X}_{N}^{H} \mathbf{T}_{N}^{\frac{1}{2}}, N=300, n=3000$, with \mathbf{T}_{N} diagonal composed of three evenly weighted masses in 1, 3 and 7 .

Another way to determine the spectrum: inverse function method

Figure: Stieltjes transform of $\mathbf{B}_{N}=\mathbf{T}_{N}^{\frac{1}{2}} \mathbf{X}_{N} \mathbf{X}_{N}^{\mathrm{H}} \mathbf{T}_{N}^{\frac{1}{2}}, N=300, n=3000$, with \mathbf{T}_{N} diagonal composed of three evenly weighted masses in 1,3 and 7 . The support of F is read on the vertical axis, whenever m_{F} is decreasing.

Cluster boundaries in sample covariance matrix models

Xavier Mestre, "Improved estimation of eigenvalues of covariance matrices and their associated subspaces using their sample estimates," IEEE Transactions on Information Theory, vol. 54, no. 11, Nov. 2008.

Theorem

Let $\mathbf{X}_{N} \in \mathbb{C}^{N \times n}$ have i.i.d. entries of zero mean, variance $1 / n$, and \mathbf{T}_{N} be diagonal such that $F^{\mathbf{\top}_{N}} \Rightarrow H$, as $n, N \rightarrow \infty, N / n \rightarrow c$, where H^{\prime} has K masses in t_{1}, \ldots, t_{K} with multiplicity n_{1}, \ldots, n_{K} respectively. Then the l.s.d. of $\mathbf{B}_{N}=\mathbf{T}_{N}^{\frac{1}{2}} \mathbf{X}_{N} \mathbf{X}_{N}^{H} \mathbf{T}_{N}^{\frac{1}{2}}$ has support \mathcal{S} given by

$$
\mathcal{S}=\left[x_{1}^{-}, x_{1}^{+}\right] \cup\left[x_{2}^{-}, x_{2}^{+}\right] \cup \ldots \cup\left[x_{Q}^{-}, x_{Q}^{+}\right]
$$

with $x_{q}^{-}=x_{F}\left(m_{q}^{-}\right), x_{q}^{+}=x_{F}\left(m_{q}^{+}\right)$, and

$$
x_{F}(m)=-\frac{1}{m}-c \frac{1}{n} \sum_{k=1}^{K} n_{k} \frac{t_{k}}{1+t_{k} m}
$$

with $2 Q$ the number of real-valued solutions counting multiplicities of $x_{F}^{\prime}(m)=0$ denoted in order $m_{1}^{-}<m_{1}^{+} \leqslant m_{2}^{-}<m_{2}^{+} \leqslant \ldots \leqslant m_{Q}^{-}<m_{Q}^{+}$.

Comments on spectrum characterization

Previous results allows to determine

- the spectrum boundaries
- the number Q of clusters
- as a consequence, the total separation or not of the spectrum in K clusters.

Comments on spectrum characterization

Previous results allows to determine

- the spectrum boundaries
- the number Q of clusters
- as a consequence, the total separation or not of the spectrum in K clusters.

Mestre goes further: to determine local separability of the spectrum,

- identify the K inflexion points, i.e. the K solutions m_{1}, \ldots, m_{K} to

$$
x_{F}^{\prime \prime}(m)=0
$$

- check whether $x_{F}^{\prime}\left(m_{i}\right)>0$ and $x_{F}^{\prime}\left(m_{i+1}\right)>0$
- if so, the cluster in between corresponds to a single population eigenvalue.

Outline

```
Spectrum Analysis of Large Matrices
    Absence of eigenvalues outside the support
    Further details on the asymptotic spectrum
```


Exact spectrum separation

```
Distribution of extreme eigenvalues: the Tracy-Widom law
G-estimation and Eigeninference
Free deconvolution
The Stieltjes transform approach
The Spiked Model
Research today: Advanced Statistic Inference
Eigeninference in spiked models
Central limit theorems for Mestre's estimates
```


Further than the "no eigenvalues" result

Z. D. Bai, J. W. Silverstein, "Exact Separation of Eigenvalues of Large Dimensional Sample Covariance Matrices," The Annals of Probability, vol. 27, no. 3, pp. 1536-1555, 1999.

- The result on "no eigenvalue outside the support"
- says where eigenvalues are not to be found
- does not say, as we feel, that (if cluster separation) in cluster k, there are exactly n_{k} eigenvalues.

Further than the "no eigenvalues" result

Z. D. Bai, J. W. Silverstein, "Exact Separation of Eigenvalues of Large Dimensional Sample Covariance Matrices," The Annals of Probability, vol. 27, no. 3, pp. 1536-1555, 1999.

- The result on "no eigenvalue outside the support"
- says where eigenvalues are not to be found
- does not say, as we feel, that (if cluster separation) in cluster k, there are exactly n_{k} eigenvalues.
- This is in fact the case,

Theorem

Let $\mathbf{B}_{N}=\mathbf{T}_{N}^{\frac{1}{2}} \mathbf{X}_{N} \mathbf{X}_{N}^{H} \mathbf{T}_{N}^{\frac{1}{2}}$ with l.s.d. F, \mathbf{X}_{N} i.i.d., zero mean, variance $1 / n$, finite $4^{\text {th }}$ moment, $F^{\mathbf{\top}_{N}} \Rightarrow H$, and $\frac{N}{n} \rightarrow c$. Consider $0<a<b$ such that $[a, b]$ is outside the support of F. Denote additionally λ_{k} 's and τ_{k} 's the ordered eigenvalues of B_{N} and T_{N}. Then we have

1. If $c(1-H(0))>1$, then the smallest eigenvalue x_{0} of the support of F is positive and $\lambda_{N} \rightarrow x_{0}$ almost surely, as $N \rightarrow \infty$.
2. If $c(1-H(0)) \leqslant 1$, or $c(1-H(0))>1$ but $[a, b]$ is not contained in $\left[0, x_{0}\right]$, then, almost surely, there exists N_{0} such that for all $N \geqslant N_{0}$,

$$
\lambda_{i_{N}}>b, \quad \lambda_{i_{N}+1}<a
$$

where i_{N} is the unique integer such that

$$
\begin{aligned}
\tau_{i_{N}} & >-1 / m_{F}(b) \\
\tau_{i_{N}+1} & <-1 / m_{F}(a) .
\end{aligned}
$$

Consequence of exact separation

- If eigenvalues are found outside the expected clusters, some extra "signal" must have been transmitted.
- The quantity of eigenvalues in each cluster gives an exact estimate of the multiplicity of the population!
- This is essential for eigen-inference.

Consequence of exact separation

- If eigenvalues are found outside the expected clusters, some extra "signal" must have been transmitted.
- The quantity of eigenvalues in each cluster gives an exact estimate of the multiplicity of the population!
- This is essential for eigen-inference.
- Exact separation is only known for the sample covariance matrix model so far.
- Recently, extension to information-plus-noise model.

Outline

```
Spectrum Analysis of Large Matrices
    Absence of eigenvalues outside the support
    Further details on the asymptotic spectrum
    Exact spectrum separation
```

Distribution of extreme eigenvalues: the Tracy-Widom law

```
G-estimation and Eigeninference
    Free deconvolution
    The Stieltjes transform approach
```

The Spiked Model
Research today: Advanced Statistic Inference
Eigeninference in spiked models
Central limit theorems for Mestre's estimates

Deeper into the spectrum

- In order to derive statistical detection tests, we need more information on the extreme eigenvalues.

Deeper into the spectrum

- In order to derive statistical detection tests, we need more information on the extreme eigenvalues.
- We will study the fluctuations of the extreme eigenvalues (second order statistics)
- However, the Stieltjes transform method is not adapted here!

Distribution of the largest eigenvalues of $\mathbf{X X} \mathbf{X}^{H}$

C. A. Tracy, H. Widom, "On orthogonal and symplectic matrix ensembles," Communications in Mathematical Physics, vol. 177, no. 3, pp. 727-754, 1996.
K. Johansson, "Shape Fluctuations and Random Matrices," Comm. Math. Phys. vol. 209, pp. 437-476, 2000.

Theorem

Let $\mathrm{X} \in \mathbb{C}^{N \times n}$ have i.i.d. Gaussian entries of zero mean and variance $1 / n$. Denoting λ_{N}^{+}the largest eigenvalue of $\mathbf{X X}{ }^{\mathrm{H}}$, then

$$
N^{\frac{2}{3}} \frac{\lambda_{N}^{+}-(1+\sqrt{c})^{2}}{(1+\sqrt{c})^{\frac{4}{3}} c^{\frac{1}{2}}} \Rightarrow X^{+} \sim F^{+}
$$

with $c=\lim _{N} N / n$ and F^{+}the Tracy-Widom distribution given by

$$
F^{+}(t)=\exp \left(-\int_{t}^{\infty}(x-t)^{2} q^{2}(x) d x\right)
$$

with q the Painlevé II function that solves the differential equation

$$
\begin{aligned}
q^{\prime \prime}(x) & =x q(x)+2 q^{3}(x) \\
q(x) & \sim_{x \rightarrow \infty} \operatorname{Ai}(x)
\end{aligned}
$$

in which $\operatorname{Ai}(x)$ is the Airy function.

The law of Tracy-Widom

Figure: Distribution of $N^{\frac{2}{3}} C^{-\frac{1}{2}}(1+\sqrt{c})^{-\frac{4}{3}}\left[\lambda_{N}^{+}-(1+\sqrt{c})^{2}\right]$ against the distribution of X^{+}(distributed as Tracy-Widom law) for $N=500, n=1500, c=1 / 3$, for the covariance matrix model XX ${ }^{\mathrm{H}}$. Empirical distribution taken over 10,000 Monte-Carlo simulations.

Techniques of proof

Method of proof requires very different tools:

- orthogonal (Laguerre) polynomials: to write joint unordered eigenvalue distribution as a kernel determinant.

$$
\rho_{N}\left(\lambda_{1}, \ldots, \lambda_{p}\right)=\operatorname{det}_{i, j=1}^{p} K_{N}\left(\lambda_{i}, \lambda_{j}\right)
$$

with $K(x, y)$ the kernel Laguerre polynomial.

Techniques of proof

Method of proof requires very different tools:

- orthogonal (Laguerre) polynomials: to write joint unordered eigenvalue distribution as a kernel determinant.

$$
\rho_{N}\left(\lambda_{1}, \ldots, \lambda_{p}\right)=\operatorname{det}_{i, j=1}^{p} K_{N}\left(\lambda_{i}, \lambda_{j}\right)
$$

with $K(x, y)$ the kernel Laguerre polynomial.

- Fredholm determinants: we can write hole probability as a Fredholm determinant.

$$
\begin{aligned}
P\left(N^{2 / 3}\left(\lambda_{i}-(1+\sqrt{c})^{2}\right) \in A, i=1, \ldots, N\right) & =1+\sum_{k \geqslant 1} \frac{(-1)^{k}}{k!} \int_{A^{c}} \cdots \int_{A^{c}} \operatorname{det}_{i, j=1}^{k} K_{N}\left(x_{i}, x_{j}\right) \prod d x_{i} \\
& \triangleq \operatorname{det}\left(\mathbf{I}_{N}-\mathcal{K}_{N}\right)
\end{aligned}
$$

Techniques of proof

Method of proof requires very different tools:

- orthogonal (Laguerre) polynomials: to write joint unordered eigenvalue distribution as a kernel determinant.

$$
\rho_{N}\left(\lambda_{1}, \ldots, \lambda_{p}\right)=\operatorname{det}_{i, j=1}^{p} K_{N}\left(\lambda_{i}, \lambda_{j}\right)
$$

with $K(x, y)$ the kernel Laguerre polynomial.

- Fredholm determinants: we can write hole probability as a Fredholm determinant.

$$
\begin{aligned}
P\left(N^{2 / 3}\left(\lambda_{i}-(1+\sqrt{c})^{2}\right) \in A, i=1, \ldots, N\right) & =1+\sum_{k \geqslant 1} \frac{(-1)^{k}}{k!} \int_{A^{c}} \cdots \int_{A^{c}} \operatorname{det}_{i, j=1}^{k} K_{N}\left(x_{i}, x_{j}\right) \prod d x_{i} \\
& \triangleq \operatorname{det}\left(\mathbf{I}_{N}-\mathcal{K}_{N}\right)
\end{aligned}
$$

- kernel theory: show that K_{N} converges to a Airy kernel.

$$
K_{N}(x, y) \rightarrow K_{\text {Airy }}(x, y)=\frac{\operatorname{Ai}(x) \mathrm{Ai}^{\prime}(y)-\mathrm{Ai}^{\prime}(x) \mathrm{Ai}(y)}{x-y}
$$

Techniques of proof

Method of proof requires very different tools:

- orthogonal (Laguerre) polynomials: to write joint unordered eigenvalue distribution as a kernel determinant.

$$
\rho_{N}\left(\lambda_{1}, \ldots, \lambda_{p}\right)=\operatorname{det}_{i, j=1}^{p} K_{N}\left(\lambda_{i}, \lambda_{j}\right)
$$

with $K(x, y)$ the kernel Laguerre polynomial.

- Fredholm determinants: we can write hole probability as a Fredholm determinant.

$$
\begin{aligned}
P\left(N^{2 / 3}\left(\lambda_{i}-(1+\sqrt{c})^{2}\right) \in A, i=1, \ldots, N\right) & =1+\sum_{k \geqslant 1} \frac{(-1)^{k}}{k!} \int_{A^{c}} \cdots \int_{A^{c}} \operatorname{det}_{i, j=1}^{k} K_{N}\left(x_{i}, x_{j}\right) \prod d x_{i} \\
& \triangleq \operatorname{det}\left(\mathbf{I}_{N}-\mathcal{K}_{N}\right)
\end{aligned}
$$

- kernel theory: show that K_{N} converges to a Airy kernel.

$$
K_{N}(x, y) \rightarrow K_{\text {Airy }}(x, y)=\frac{\operatorname{Ai}(x) \mathrm{Ai}^{\prime}(y)-\mathrm{Ai}^{\prime}(x) \mathrm{Ai}(y)}{x-y}
$$

- differential equation tricks: hole probability in $[t, \infty)$ gives right-most eigenvalue distribution, which is simplified as solution of a Painelvé differential equation: the Tracy-Widom distribution.

$$
F^{+}(t)=e^{-\int_{t}^{\infty}(x-t) q(x)^{2} d x}, \quad q^{\prime \prime}=t q+2 q^{3}, q(x) \sim_{x \rightarrow \infty} \operatorname{Ai}(x)
$$

Comments on the Tracy-Widom law

- deeper result than limit eigenvalue result
- gives a hint on convergence speed
- fairly biased on the left: even fewer eigenvalues outside the support.

Comments on the Tracy-Widom law

- deeper result than limit eigenvalue result
- gives a hint on convergence speed
- fairly biased on the left: even fewer eigenvalues outside the support.
- can be shown to hold for other distributions than Gaussian under mild assumptions

Comments on the Tracy-Widom law

- deeper result than limit eigenvalue result
- gives a hint on convergence speed
- fairly biased on the left: even fewer eigenvalues outside the support.
- can be shown to hold for other distributions than Gaussian under mild assumptions
- Now, what about largest eigenvalue of a spiked model?

Related bibliography

- I. M. Johnstone, "On the distribution of the largest eigenvalue in principal components analysis," Annals of Statistics, vol. 99, no. 2, pp. 295-327, 2001.
- K. Johansson, "Shape Fluctuations and Random Matrices," Comm. Math. Phys. vol. 209, pp. 437-476, 2000.
- C. A. Tracy and H. Widom, "On orthogonal and symplectic matrix ensembles," Communications in Mathematical Physics, vol. 177, no. 3, pp. 727-754, 1996.
- G. W. Anderson, A. Guionnet, O. Zeitouni, "An introduction to random matrices", Cambridge studies in advanced mathematics, vol. 118, 2010.
- F. Bornemann, "On the numerical evaluation of distributions in random matrix theory: A review," Markov Process. Relat. Fields, vol. 16, pp. 803-866, 2010.
- Y. Q. Yin, Z. D. Bai, P. R. Krishnaiah, "On the limit of the largest eigenvalue of the large dimensional sample covariance matrix," Probability Theory and Related Fields, vol. 78, no. 4, pp. 509-521, 1988.
- J. W. Silverstein, Z.D. Bai and Y.Q. Yin, "A note on the largest eigenvalue of a large dimensional sample covariance matrix," Journal of Multivariate Analysis, vol. 26, no. 2, pp. 166-168. 1988.
- C. A. Tracy, H. Widom, "On orthogonal and symplectic matrix ensembles," Communications in Mathematical Physics, vol. 177, no. 3, pp. 727-754, 1996.
- J. W. Silverstein, S. Choi, "Analysis of the limiting spectral distribution of large dimensional random matrices," Journal of Multivariate Analysis, vol. 54, no. 2, pp. 295-309, 1995.
- Z. D. Bai, J. W. Silverstein, "No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices," The Annals of Probability, vol. 26, no. 1 pp. 316-345, 1998.
- Z. D. Bai, J. W. Silverstein, "Exact Separation of Eigenvalues of Large Dimensional Sample Covariance Matrices," The Annals of Probability, vol. 27, no. 3, pp. 1536-1555, 1999.
- J. W. Silverstein, P. Debashis, "No eigenvalues outside the support of the limiting empirical spectral distribution of a separable covariance matrix," J. of Multivariate Analysis vol. 100, no. 1, pp. 37-57, 2009.

Outline

```
Spectrum Analysis of Large Matrices
    Absence of eigenvalues outside the support
    Further details on the asymptotic spectrum
    Exact spectrum separation
    Distribution of extreme eigenvalues: the Tracy-Widom law
```


G-estimation and Eigeninference

Free deconvolution
The Stieltjes transform approach

The Spiked Model

Research today: Advanced Statistic Inference
Eigeninference in spiked models
Central limit theorems for Mestre's estimates

Introduction of the problem

- Reminder: for a sequence $\mathbf{x}_{1}, \ldots, x_{n} \in \mathbb{C}^{N}$ of independent random variables,

$$
\mathbf{R}_{n}=\frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{k} \mathbf{x}_{k}^{\mathrm{H}}
$$

is an n-consistent estimator of $\mathbf{R}=E\left[\mathbf{x}_{1} \mathbf{x}_{1}^{\mathrm{H}}\right]$.

Introduction of the problem

- Reminder: for a sequence $\mathbf{x}_{1}, \ldots, x_{n} \in \mathbb{C}^{N}$ of independent random variables,

$$
\mathbf{R}_{n}=\frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{k} \mathbf{x}_{k}^{\mathrm{H}}
$$

is an n-consistent estimator of $\mathbf{R}=E\left[\mathbf{x}_{1} \mathbf{x}_{1}^{\mathrm{H}}\right]$.

- If n, N have comparable sizes, this no longer holds.

Introduction of the problem

- Reminder: for a sequence $\mathbf{x}_{1}, \ldots, x_{n} \in \mathbb{C}^{N}$ of independent random variables,

$$
\mathbf{R}_{n}=\frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{k} \mathbf{x}_{k}^{\mathrm{H}}
$$

is an n-consistent estimator of $\mathbf{R}=E\left[\mathbf{x}_{1} \mathbf{x}_{1}^{\mathrm{H}}\right]$.

- If n, N have comparable sizes, this no longer holds.
- Typically, n, N-consistent estimators of the full \mathbf{R} matrix perform very badly.

Introduction of the problem

- Reminder: for a sequence $\mathbf{x}_{1}, \ldots, x_{n} \in \mathbb{C}^{N}$ of independent random variables,

$$
\mathbf{R}_{n}=\frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{k} \mathbf{x}_{k}^{\mathrm{H}}
$$

is an n-consistent estimator of $\mathbf{R}=E\left[\mathbf{x}_{1} \mathbf{x}_{1}^{\mathrm{H}}\right]$.

- If n, N have comparable sizes, this no longer holds.
- Typically, n, N-consistent estimators of the full \mathbf{R} matrix perform very badly.
- If only the eigenvalues of \mathbf{R} are of interest, things can be done. The process of retrieving information about eigenvalues, eigenspace projections, or functional of these is called eigen-inference.

Girko and the G-estimators

V. Girko, "Ten years of general statistical analysis,"
http://www.general-statistical-analysis.girko.freewebspace.com/chapter14.pdf

- Girko has come up with more than $50 N$, n-consistent estimators, called G-estimators (Generalized estimators). Among those, we find
- G_{1}-estimator of generalized variance. For

$$
G_{1}\left(\mathbf{R}_{n}\right)=\alpha_{n}^{-1}\left[\log \operatorname{det}\left(\mathbf{R}_{n}\right)+\log \frac{n(n-1)^{N}}{(n-N) \prod_{k=1}^{N}(n-k)}\right]
$$

with α_{n} any sequence such that $\alpha_{n}^{-2} \log (n /(n-N)) \rightarrow 0$, we have

$$
G_{1}\left(\mathbf{R}_{n}\right)-\alpha_{n}^{-1} \log \operatorname{det}(\mathbf{R}) \rightarrow 0
$$

in probability.

Girko and the G-estimators

V. Girko, "Ten years of general statistical analysis,"
http://www.general-statistical-analysis.girko.freewebspace.com/chapter14.pdf

- Girko has come up with more than $50 N$, n-consistent estimators, called G-estimators (Generalized estimators). Among those, we find
- G_{1}-estimator of generalized variance. For

$$
G_{1}\left(\mathbf{R}_{n}\right)=\alpha_{n}^{-1}\left[\log \operatorname{det}\left(\mathbf{R}_{n}\right)+\log \frac{n(n-1)^{N}}{(n-N) \prod_{k=1}^{N}(n-k)}\right]
$$

with α_{n} any sequence such that $\alpha_{n}^{-2} \log (n /(n-N)) \rightarrow 0$, we have

$$
G_{1}\left(\mathbf{R}_{n}\right)-\alpha_{n}^{-1} \log \operatorname{det}(\mathbf{R}) \rightarrow 0
$$

in probability.

- However, Girko's proofs are rarely readable, if existent.

Outline

```
Spectrum Analysis of Large Matrices
    Absence of eigenvalues outside the support
    Further details on the asymptotic spectrum
    Exact spectrum separation
    Distribution of extreme eigenvalues: the Tracy-Widom law
```

G-estimation and Eigeninference
Free deconvolution
The Stieltjes transform approach

The Spiked Model

Research today: Advanced Statistic Inference
Eigeninference in spiked models
Central limit theorems for Mestre's estimates

Position of the problem

- it has long been difficult to analytically invert the simplest $\mathbf{B}_{N}=\mathbf{T}_{N}^{\frac{1}{2}} \mathbf{X}_{N} \mathbf{X}_{N}^{H} \mathbf{T}_{N}^{\frac{1}{2}}$ model to recover the diagonal entries of \mathbf{T}_{N}. Indeed, we only have the deterministic equivalent result

$$
\underline{m}_{N}(z)=\left(-z+c \int \frac{t}{1+t \underline{m}_{N}(z)} d F^{\mathbf{T}_{N}}(t)\right)^{-1}
$$

with \underline{m}_{N} the deterministic equivalent of the Stieltjes transform for $\underline{B}_{N}=\mathbf{X}_{N}^{H} \mathbf{T}_{N} \mathbf{X}$.

Position of the problem

- it has long been difficult to analytically invert the simplest $\mathbf{B}_{N}=\mathbf{T}_{N}^{\frac{1}{2}} \mathbf{X}_{N} \mathbf{X}_{N}^{H} \mathbf{T}_{N}^{\frac{1}{2}}$ model to recover the diagonal entries of \mathbf{T}_{N}. Indeed, we only have the deterministic equivalent result

$$
\underline{m}_{N}(z)=\left(-z+c \int \frac{t}{1+t \underline{m}_{N}(z)} d F^{\mathbf{T}_{N}}(t)\right)^{-1}
$$

with \underline{m}_{N} the deterministic equivalent of the Stieltjes transform for $\underline{B}_{N}=\mathbf{X}_{N}^{H} \mathbf{T} \mathbf{X}_{N}$.

- when \mathbf{T}_{N} has eigenvalues t_{1}, \ldots, t_{K} with multiplicity n_{1}, \ldots, n_{K}, this is

$$
\underline{m}_{N}(z)=\left(-z+\frac{1}{N} \sum_{k=1}^{K} n_{k} \frac{t_{k}}{1+t_{k} \underline{m}_{N}(z)}\right)^{-1}
$$

- an N, n-consistent estimator for the t_{k} 's was never found until recently...

Position of the problem

- it has long been difficult to analytically invert the simplest $\mathbf{B}_{N}=\mathbf{T}_{N}^{\frac{1}{2}} \mathbf{X}_{N} \mathbf{X}_{N}^{H} \mathbf{T}_{N}^{\frac{1}{2}}$ model to recover the diagonal entries of \mathbf{T}_{N}. Indeed, we only have the deterministic equivalent result

$$
\underline{m}_{N}(z)=\left(-z+c \int \frac{t}{1+t \underline{m}_{N}(z)} d F^{\mathbf{T}_{N}}(t)\right)^{-1}
$$

with \underline{m}_{N} the deterministic equivalent of the Stieltjes transform for $\underline{B}_{N}=\mathbf{X}{ }_{N}^{H} \mathbf{T}_{N} \mathbf{X}$.

- when \mathbf{T}_{N} has eigenvalues t_{1}, \ldots, t_{K} with multiplicity n_{1}, \ldots, n_{K}, this is

$$
\underline{m}_{N}(z)=\left(-z+\frac{1}{N} \sum_{k=1}^{K} n_{k} \frac{t_{k}}{1+t_{k} \underline{m}_{N}(z)}\right)^{-1}
$$

- an N, n-consistent estimator for the t_{k} 's was never found until recently...
- however, moment-based methods and free probability approaches provide simple solutions to estimate consistently all moments of $F^{\mathbf{T}}$.

Reminder on moment-based approaches

- For free random matrices \mathbf{A} and \mathbf{B}, we have the cumulant/moment relationships,

$$
\begin{gathered}
C_{k}(\mathbf{A}+\mathbf{B})=C_{k}(\mathbf{A})+C_{k}(\mathbf{B}) \\
M_{n}(\mathbf{A B})=\sum_{\substack{\left(\pi_{1}, \pi_{2}\right) \in N C(n)}} \prod_{\substack{V_{1} \in \pi_{1} \\
V_{2} \in \pi_{2}}} C_{\left|V_{1}\right|}(\mathbf{A}) C_{\left|V_{2}\right|}(\mathbf{B})
\end{gathered}
$$

- this allows one to compute all moments of sum and product distributions

$$
\begin{aligned}
& \mu_{\mathbf{A}} \boxplus \mu_{\mathbf{B}} \\
& \mu_{\mathbf{A}} \boxtimes \mu_{\mathbf{B}}
\end{aligned}
$$

- in addition, we have results for the information-plus-noise model

$$
\mathbf{B}_{N}=\frac{1}{n}\left(\mathbf{R}_{N}+\sigma \mathbf{X}_{N}\right)\left(\mathbf{R}_{N}+\sigma \mathbf{X}_{N}\right)^{H}
$$

whose e.s.d. converges weakly and almost surely to μ_{B} such that

$$
\mu_{B}=\left(\left(\mu_{\Gamma} \boxtimes \mu_{c}\right) \boxplus \delta_{\sigma^{2}}\right) \boxtimes \mu_{c}
$$

with μ_{c} the Marčenko-Pastur law and $\Gamma_{N}=\mathbf{R}_{N} \mathbf{R}_{N}^{\mathrm{H}}$.

Reminder on moment-based approaches

- For free random matrices \mathbf{A} and \mathbf{B}, we have the cumulant/moment relationships,

$$
\begin{gathered}
C_{k}(\mathbf{A}+\mathbf{B})=C_{k}(\mathbf{A})+C_{k}(\mathbf{B}) \\
M_{n}(\mathbf{A B})=\sum_{\left(\pi_{1}, \pi_{2}\right) \in N C(n)} \prod_{\substack{V_{1} \in \pi_{1} \\
V_{2} \in \pi_{2}}} C_{\left|V_{1}\right|}(\mathbf{A}) C_{\left|V_{2}\right|}(\mathbf{B})
\end{gathered}
$$

- this allows one to compute all moments of sum and product distributions

$$
\begin{aligned}
& \mu_{\mathbf{A}} \boxplus \mu_{\mathbf{B}} \\
& \mu_{\mathbf{A}} \boxtimes \mu_{\mathbf{B}}
\end{aligned}
$$

- in addition, we have results for the information-plus-noise model

$$
\mathbf{B}_{N}=\frac{1}{n}\left(\mathbf{R}_{N}+\sigma \mathbf{X}_{N}\right)\left(\mathbf{R}_{N}+\sigma \mathbf{X}_{N}\right)^{\mathrm{H}}
$$

whose e.s.d. converges weakly and almost surely to μ_{B} such that

$$
\mu_{B}=\left(\left(\mu_{\Gamma} \boxtimes \mu_{c}\right) \boxplus \delta_{\sigma^{2}}\right) \boxtimes \mu_{c}
$$

with μ_{c} the Marčenko-Pastur law and $\Gamma_{N}=\mathbf{R}_{N} \mathbf{R}_{N}^{H}$.

- all basic matrix operations needed in wireless communications are accessible for convenient matrices (Gaussian, Vandermonde etc.)
- all operations are merely polynomial operations on the moments. As a consequence, for $\mathbf{B}_{N}=f\left(\mathbf{R}_{N}\right)$,

From free convolution to free deconvolution

Ø. Ryan, M. Debbah, "Multiplicative free convolution and information-plus-noise type matrices," Arxiv preprint math.PR/0702342, 2007.

- we have the further result that

Polynomial Relations

The $k^{\text {th }}$ moment of the I.s.d. of \mathbf{B}_{N} is a polynomial of the k-first moments of the I.s.d. of \mathbf{R}_{N}

From free convolution to free deconvolution

Ø. Ryan, M. Debbah, "Multiplicative free convolution and information-plus-noise type matrices," Arxiv preprint math.PR/0702342, 2007.

- we have the further result that

Polynomial Relations

The $k^{\text {th }}$ moment of the I.s.d. of \mathbf{B}_{N} is a polynomial of the k-first moments of the I.s.d. of \mathbf{R}_{N}

- we can therefore invert the problem and express the $k^{t h}$ moment of \mathbf{R}_{N} as the first k moments of B_{N}. This entails deconvolution operations,

$$
\begin{gathered}
\mu_{\mathbf{A}}=\mu_{\mathbf{A}+\mathbf{B}} \boxminus \mu_{\mathbf{B}} \\
\mu_{\mathbf{A}}=\mu_{\mathbf{A B}} \boxtimes \mu_{\mathbf{B}}
\end{gathered}
$$

and for the information-plus-noise model, $\mathbf{B}_{N}=\frac{1}{n}\left(\mathbf{R}_{N}+\sigma \mathbf{X}_{N}\right)\left(\mathbf{R}_{N}+\sigma \mathbf{X}_{N}\right)^{\mathrm{H}}$

$$
\mu_{\Gamma}=\left(\left(\mu_{B} \boxtimes \mu_{c}\right) \boxminus \delta_{\sigma^{2}}\right) \boxtimes \mu_{c}
$$

From free convolution to free deconvolution

Ø. Ryan, M. Debbah, "Multiplicative free convolution and information-plus-noise type matrices," Arxiv preprint math.PR/0702342, 2007.

- we have the further result that

Polynomial Relations

The $k^{\text {th }}$ moment of the I.s.d. of \mathbf{B}_{N} is a polynomial of the k-first moments of the I.s.d. of \mathbf{R}_{N}

- we can therefore invert the problem and express the $k^{\text {th }}$ moment of \mathbf{R}_{N} as the first k moments of \mathbf{B}_{N}. This entails deconvolution operations,

$$
\begin{gathered}
\mu_{\mathbf{A}}=\mu_{\mathbf{A}+\mathbf{B}} \boxminus \mu_{\mathbf{B}} \\
\mu_{\mathbf{A}}=\mu_{\mathbf{A B}} \boxtimes \mu_{\mathbf{B}}
\end{gathered}
$$

and for the information-plus-noise model, $\mathbf{B}_{N}=\frac{1}{n}\left(\mathbf{R}_{N}+\sigma \mathbf{X}_{N}\right)\left(\mathbf{R}_{N}+\sigma \mathbf{X}_{N}\right)^{\mathrm{H}}$

$$
\mu_{\Gamma}=\left(\left(\mu_{B} \boxtimes \mu_{c}\right) \boxminus \delta_{\sigma^{2}}\right) \boxtimes \mu_{c}
$$

- for more involved models, the polynomial relations can be iterated and even automatically generated.

Example of polynomial relation

- Consider the information-plus-noise model

$$
\mathbf{Y}=\mathbf{D}+\mathbf{X}
$$

with $\mathbf{Y} \in \mathbb{C}^{N \times n}, \mathbf{D} \in \mathbb{C}^{N \times n}, \mathbf{X} \in \mathbb{C}^{N \times n}$ with i.i.d. entries of mean 0 and variance 1 . Denote

$$
\begin{aligned}
M_{k} & =\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{tr}\left(\frac{1}{N} Y Y^{H}\right)^{k} \\
D_{k} & =\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{tr}\left(\frac{1}{N} \mathbf{D} D^{H}\right)^{k}
\end{aligned}
$$

Example of polynomial relation

- Consider the information-plus-noise model

$$
\mathbf{Y}=\mathbf{D}+\mathbf{X}
$$

with $\mathbf{Y} \in \mathbb{C}^{N \times n}, \mathbf{D} \in \mathbb{C}^{N \times n}, \mathbf{X} \in \mathbb{C}^{N \times n}$ with i.i.d. entries of mean 0 and variance 1 . Denote

$$
\begin{aligned}
M_{k} & =\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{tr}\left(\frac{1}{N} Y Y^{H}\right)^{k} \\
D_{k} & =\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{tr}\left(\frac{1}{N} \mathbf{D} D^{H}\right)^{k}
\end{aligned}
$$

- For that model, we have the relations

$$
\begin{aligned}
& M_{1}=D_{1}+1 \\
& M_{2}=D_{2}+(2+2 c) D_{1}+(1+c) \\
& M_{3}=D_{3}+(3+3 c) D_{2}+3 c D_{1}^{2}+\left(1+3 c+c^{2}\right)
\end{aligned}
$$

Example of polynomial relation

- Consider the information-plus-noise model

$$
\mathbf{Y}=\mathbf{D}+\mathbf{X}
$$

with $\mathbf{Y} \in \mathbb{C}^{N \times n}, \mathbf{D} \in \mathbb{C}^{N \times n}, \mathbf{X} \in \mathbb{C}^{N \times n}$ with i.i.d. entries of mean 0 and variance 1 . Denote

$$
\begin{aligned}
& M_{k}=\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{tr}\left(\frac{1}{N} \mathbf{Y} \mathbf{Y}^{H}\right)^{k} \\
& D_{k}=\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{tr}\left(\frac{1}{N} \mathbf{D} \mathbf{D}^{\mathrm{H}}\right)^{k}
\end{aligned}
$$

- For that model, we have the relations

$$
\begin{aligned}
& M_{1}=D_{1}+1 \\
& M_{2}=D_{2}+(2+2 c) D_{1}+(1+c) \\
& M_{3}=D_{3}+(3+3 c) D_{2}+3 c D_{1}^{2}+\left(1+3 c+c^{2}\right)
\end{aligned}
$$

hence

$$
\begin{aligned}
& D_{1}=M_{1}-1 \\
& D_{2}=M_{2}-(2+2 c) M_{1}+(1+c) \\
& D_{3}=M_{3}-(3+3 c) M_{2}-3 c M_{1}^{2}+\left(6 c^{2}+18 c+6\right) M_{1}-\left(4 c^{2}+12 c+4\right)
\end{aligned}
$$

Finite size statistical inference

A. Masucci, \varnothing. Ryan, S. Yang, M. Debbah, "Finite Dimensional Statistical Inference," IEEE Trans. on Information Theory, vol. 57, no. 4, pp. 2457-2473, 2011.

- it might happen that, instead of one large matrix realization, we have access to several smaller such matrices. In that case, we seek an estimate for

$$
E\left[\frac{1}{n} \operatorname{tr}\left(\frac{1}{N} \mathbf{Y} \mathbf{Y}^{\mathrm{H}}\right)^{k}\right]
$$

instead of their limits.

Finite size statistical inference

A. Masucci, \emptyset. Ryan, S. Yang, M. Debbah, "Finite Dimensional Statistical Inference," IEEE Trans. on Information Theory, vol. 57, no. 4, pp. 2457-2473, 2011.

- it might happen that, instead of one large matrix realization, we have access to several smaller such matrices. In that case, we seek an estimate for

$$
E\left[\frac{1}{n} \operatorname{tr}\left(\frac{1}{N} \mathbf{Y} \mathbf{Y}^{\mathrm{H}}\right)^{k}\right]
$$

instead of their limits.

- we have further combinatorics theorems for all previous elementary models.

Finite size statistical inference

A. Masucci, \varnothing. Ryan, S. Yang, M. Debbah, "Finite Dimensional Statistical Inference," IEEE Trans. on Information Theory, vol. 57, no. 4, pp. 2457-2473, 2011.

- it might happen that, instead of one large matrix realization, we have access to several smaller such matrices. In that case, we seek an estimate for

$$
E\left[\frac{1}{n} \operatorname{tr}\left(\frac{1}{N} \mathbf{Y} \mathbf{Y}^{\mathrm{H}}\right)^{k}\right]
$$

instead of their limits.

- we have further combinatorics theorems for all previous elementary models.
- example: the previous relations extend to

$$
\begin{aligned}
& M_{1}=D_{1}+1 \\
& M_{2}=D_{2}+(2+2 c) D_{1}+(1+c) \\
& M_{3}=D_{3}+(3+3 c) D_{2}+3 c D_{1}^{2}+\left(3+9 c+3 c^{2}+3 N^{-2}\right) D_{1}+\left(1+3 c+c^{2}+N^{-2}\right)
\end{aligned}
$$

Current and further studies

- in addition to estimating the average moments themselves, we can evaluate the variance of the empirical moments

$$
E\left[\frac{1}{n} \operatorname{tr}\left(\frac{1}{N} \mathbf{Y} \mathbf{Y}^{H}\right)^{k}-E\left[\frac{1}{n} \operatorname{tr}\left(\frac{1}{N} Y \mathbf{Y}^{H}\right)^{k}\right]\right]
$$

Current and further studies

- in addition to estimating the average moments themselves, we can evaluate the variance of the empirical moments

$$
E\left[\frac{1}{n} \operatorname{tr}\left(\frac{1}{N} \mathbf{Y} \mathbf{Y}^{H}\right)^{k}-E\left[\frac{1}{n} \operatorname{tr}\left(\frac{1}{N} \mathbf{Y} \mathbf{Y}^{H}\right)^{k}\right]\right]
$$

- if the moments have Gaussian distributions (left to be proven for models other than sample covariance matrix), the full behaviour of the empirical moments is known.

Current and further studies

- in addition to estimating the average moments themselves, we can evaluate the variance of the empirical moments

$$
E\left[\frac{1}{n} \operatorname{tr}\left(\frac{1}{N} \mathbf{Y} \mathbf{Y}^{H}\right)^{k}-E\left[\frac{1}{n} \operatorname{tr}\left(\frac{1}{N} Y \mathbf{Y}^{H}\right)^{k}\right]\right]
$$

- if the moments have Gaussian distributions (left to be proven for models other than sample covariance matrix), the full behaviour of the empirical moments is known.
- statistical maximum-likelihood/MMSE methods can then be used.

Related bibliography

- N. R. Rao, A. Edelman, "The polynomial method for random matrices," Foundations of Computational Mathematics, accepted for publication.
- N. R. Rao, J. A. Mingo, R. Speicher, A. Edelman, "Statistical eigen-inference from large Wishart matrices," Annals of Statistics, vol. 36, no. 6, pp. 2850-2885, 2008.
- A. Masucci, \emptyset. Ryan, S. Yang, M. Debbah, "Finite Dimensional Statistical Inference," IEEE Trans. on Information Theory, vol. 57, no. 4, pp. 2457-2473, 2011.
- \emptyset. Ryan, M. Debbah, "Multiplicative free convolution and information-plus-noise type matrices," Arxiv math.PR/0702342, 2007.
- \varnothing. Ryan, M. Debbah, "Free deconvolution for signal processing applications," IEEE International Symposium on Information Theory, pp. 1846-1850, 2007.
- \varnothing. Ryan, M. Debbah, "Asymptotic Behavior of Random Vandermonde Matrices With Entries on the Unit Circle," IEEE Trans. on Information Theory, vol. 55, no. 7, pp. 3115-3147, 2009.

Outline

Spectrum Analysis of Large Matrices
Absence of eigenvalues outside the support
Further details on the asymptotic spectrum
Exact spectrum separation
Distribution of extreme eigenvalues: the Tracy-Widom law

G-estimation and Eigeninference
Free deconvolution
The Stieltjes transform approach

The Spiked Model

Research today: Advanced Statistic Inference
Eigeninference in spiked models
Central limit theorems for Mestre's estimates

A long standing problem

X. Mestre, "Improved estimation of eigenvalues and eigenvectors of covariance matrices using their sample estimates," IEEE trans. on Information Theory, vol. 54, no. 11, pp. 5113-5129, 2008.

- Consider the model $\mathbf{B}_{N}=\mathbf{T}_{N}^{\frac{1}{2}} \mathbf{X}_{N} \mathbf{X}_{N}^{H} \mathbf{T}_{N}^{\frac{1}{2}}$, where $F^{\mathbf{T}_{N}}$ is formed of a finite number of masses t_{1}, \ldots, t_{K}.
- It has long been thought the inverse problem of estimating t_{1}, \ldots, t_{K} from the Stieltjes transform method was not possible.
- Only trials were iterative convex optimization methods.

A long standing problem

X. Mestre, "Improved estimation of eigenvalues and eigenvectors of covariance matrices using their sample estimates," IEEE trans. on Information Theory, vol. 54, no. 11, pp. 5113-5129, 2008.

- Consider the model $\mathbf{B}_{N}=\mathbf{T}_{N}^{\frac{1}{2}} \mathbf{X}_{N} \mathbf{X}_{N}^{H} \mathbf{T}_{N}^{\frac{1}{2}}$, where $F^{\mathbf{T}_{N}}$ is formed of a finite number of masses t_{1}, \ldots, t_{K}.
- It has long been thought the inverse problem of estimating t_{1}, \ldots, t_{K} from the Stieltjes transform method was not possible.
- Only trials were iterative convex optimization methods.
- The problem was partially solved by Mestre in 2008!

A long standing problem

X. Mestre, "Improved estimation of eigenvalues and eigenvectors of covariance matrices using their sample estimates," IEEE trans. on Information Theory, vol. 54, no. 11, pp. 5113-5129, 2008.

- Consider the model $\mathbf{B}_{N}=\mathbf{T}_{N}^{\frac{1}{2}} \mathbf{X}_{N} \mathbf{X}_{N}^{H} \mathbf{T}_{N}^{\frac{1}{2}}$, where $F^{\mathbf{T}_{N}}$ is formed of a finite number of masses t_{1}, \ldots, t_{K}.
- It has long been thought the inverse problem of estimating t_{1}, \ldots, t_{K} from the Stieltjes transform method was not possible.
- Only trials were iterative convex optimization methods.
- The problem was partially solved by Mestre in 2008!
- His technique uses elegant complex analysis tools. The description of this technique is the subject of this course.

Reminders

- Consider the sample covariance matrix model $\mathbf{B}_{N}=\mathbf{T}_{N}^{\frac{1}{2}} \mathbf{X}_{N} \mathbf{X}_{N}^{H} \mathbf{T}_{N}^{\frac{1}{2}}$.
- Up to now, we saw:
- that there is no eigenvalue outside the support with probability 1 for all large N.
- that for all large N, when the spectrum is divided into clusters, the number of empirical eigenvalues in each cluster is exactly as we expect.

Reminders

- Consider the sample covariance matrix model $\mathbf{B}_{N}=\mathbf{T}_{N}^{\frac{1}{2}} \mathbf{X}_{N} \mathbf{X}_{N}^{H} \mathbf{T}_{N}^{\frac{1}{2}}$.
- Up to now, we saw:
- that there is no eigenvalue outside the support with probability 1 for all large N.
- that for all large N, when the spectrum is divided into clusters, the number of empirical eigenvalues in each cluster is exactly as we expect.
- these results are of crucial importance for the following.

Inverse problem for sample covariance matrix

Figure: Empirical and asymptotic eigenvalue distribution of $\frac{1}{M} \mathbf{Y} \mathbf{Y}^{\mathrm{H}}$ when \mathbf{P} has three distinct entries $P_{1}=1$, $P_{2}=3, P_{3}=10, n_{1}=n_{2}=n_{3}, N / n=10, M / N=10, \sigma^{2}=0.1$. Empirical test: $n=60$.

Eigen-inference for the sample covariance matrix model

X. Mestre, "Improved estimation of eigenvalues and eigenvectors of covariance matrices using their sample estimates," IEEE trans. on Information Theory, vol. 54, no. 11, pp. 5113-5129, 2008.

Theorem

Consider the model $\mathbf{B}_{N}=\mathbf{T}_{N}^{\frac{1}{2}} \mathbf{X}_{N} \mathbf{X}_{N}^{H} \mathbf{T}_{N}^{\frac{1}{2}}$, with $\mathbf{X}_{N} \in \mathbb{C}^{N \times n}$, i.i.d. with entries of zero mean, variance $1 / n$, and $\mathbf{T}_{N} \in \mathbb{R}^{N \times N}$ is diagonal with K distinct entries t_{1}, \ldots, t_{K} of multiplicity N_{1}, \ldots, N_{K} of same order as n. Let $k \in\{1, \ldots, K\}$. Then, if the cluster associated to t_{k} is separated from the clusters associated to $k-1$ and $k+1$, as $N, n \rightarrow \infty, N / n \rightarrow c$,

$$
\hat{t}_{k}=\frac{n}{N_{k}} \sum_{m \in \mathcal{N}_{k}}\left(\lambda_{m}-\mu_{m}\right)
$$

is an N, n-consistent estimator of t_{k}, where $\mathcal{N}_{k}=\left\{N-\sum_{i=k}^{K} N_{i}+1, \ldots, N-\sum_{i=k+1}^{K} N_{i}\right\}$, $\lambda_{1}, \ldots, \lambda_{N}$ are the eigenvalues of \mathbf{B}_{N} and μ_{1}, \ldots, μ_{N} are the N solutions of

$$
m_{\mathbf{x}_{N}^{H}} \mathbf{T}_{N} \mathbf{x}_{N}(\mu)=0
$$

or equivalently, μ_{1}, \ldots, μ_{N} are the eigenvalues of $\operatorname{diag}(\boldsymbol{\lambda})-\frac{1}{N} \sqrt{\boldsymbol{\lambda}} \sqrt{\lambda}^{\top}$.

A trick to compute the μ_{k} 's

R. Couillet, J. W. Silverstein, Z. Bai, M. Debbah, "Eigen-Inference for Energy Estimation of Multiple Sources", IEEE Transactions on Information Theory, vol. 57, no. 4, pp. 2420-2439, 2011.

Lemma
Let $\mathbf{A} \in \mathbb{C}^{n \times N}$ be diagonal with entries $\lambda_{1}, \ldots, \lambda_{N}$ and $\mathbf{y} \in \mathbb{C}^{N}$. Then the eigenvalues of ($\mathbf{A}-\mathbf{y y}^{*}$) are the N real solutions in x of

$$
\sum_{i=1}^{N} \frac{y_{i}^{2}}{\lambda_{i}-x}=1
$$

A trick to compute the μ_{k} 's

R. Couillet, J. W. Silverstein, Z. Bai, M. Debbah, "Eigen-Inference for Energy Estimation of Multiple Sources", IEEE Transactions on Information Theory, vol. 57, no. 4, pp. 2420-2439, 2011.

Lemma

Let $\mathbf{A} \in \mathbb{C}^{n \times N}$ be diagonal with entries $\lambda_{1}, \ldots, \lambda_{N}$ and $\mathbf{y} \in \mathbb{C}^{N}$. Then the eigenvalues of ($\mathbf{A}-\mathbf{y y}^{*}$) are the N real solutions in x of

$$
\sum_{i=1}^{N} \frac{y_{i}^{2}}{\lambda_{i}-x}=1
$$

Taking $\mathbf{A}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and $y_{i}^{2}=\frac{1}{n} \lambda_{i}$, the eigenvalues of $\mathbf{A}-\mathbf{y y}^{\mathrm{H}}$ are the solutions of

$$
\frac{1}{n} \sum_{i=1}^{n} \frac{\lambda_{i}}{\lambda_{i}-x}=1
$$

which is equivalent to

$$
m_{\mathbf{x}_{N}^{H} \mathbf{T}_{N}} \mathbf{x}_{N}(x)=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{\lambda_{i}-x}=0
$$

A trick to compute the μ_{k} 's

R. Couillet, J. W. Silverstein, Z. Bai, M. Debbah, "Eigen-Inference for Energy Estimation of Multiple Sources", IEEE Transactions on Information Theory, vol. 57, no. 4, pp. 2420-2439, 2011.

Lemma

Let $\mathbf{A} \in \mathbb{C}^{n \times N}$ be diagonal with entries $\lambda_{1}, \ldots, \lambda_{N}$ and $\mathbf{y} \in \mathbb{C}^{N}$. Then the eigenvalues of ($\mathbf{A}-\mathbf{y y}^{*}$) are the N real solutions in x of

$$
\sum_{i=1}^{N} \frac{y_{i}^{2}}{\lambda_{i}-x}=1
$$

Taking $\mathbf{A}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and $y_{i}^{2}=\frac{1}{n} \lambda_{i}$, the eigenvalues of $\mathbf{A}-\mathbf{y} \mathbf{y}^{H}$ are the solutions of

$$
\frac{1}{n} \sum_{i=1}^{n} \frac{\lambda_{i}}{\lambda_{i}-x}=1
$$

which is equivalent to

$$
m_{\mathbf{x}_{N}^{H} \mathbf{T}_{N} \mathbf{x}_{N}}(x)=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{\lambda_{i}-x}=0
$$

The μ_{k} 's are then the eigenvalues of a matrix that is function of $\lambda_{1}, \ldots, \lambda_{N}$.

Proof of the lemma

Let $\mathbf{A} \in \mathbb{C}^{N \times N}$ be Hermitian and $\mathbf{y} \in \mathbb{C}^{N}$. If μ is an eigenvalue of ($\mathbf{A}-\mathbf{y y}^{*}$) with eigenvector \mathbf{x}, we have

$$
\begin{aligned}
\left(\mathbf{A}-\mathbf{y y}^{*}\right) \mathbf{x} & =\mu \mathbf{x} \\
(\mathbf{A}-\mu /) x & =\mathbf{y}^{*} x \mathbf{y} \\
x & =\mathbf{y}^{*} \times(\mathbf{A}-\mu /)^{-1} \mathbf{y} \\
\mathbf{y}^{*} x & =\mathbf{y}^{*} x \mathbf{y}^{*}(\mathbf{A}-\mu /)^{-1} \mathbf{y} \\
1 & =\mathbf{y}^{*}(\mathbf{A}-\mu /)^{-1} \mathbf{y}
\end{aligned}
$$

Take \mathbf{A} diagonal with entries $\lambda_{1}, \ldots, \lambda_{N}$, we then have

$$
\begin{equation*}
\sum_{i=1}^{N} \frac{y_{i}^{2}}{\lambda_{i}-\mu}=1 \tag{1}
\end{equation*}
$$

Remarks on Mestre's result

Assuming cluster separation, the result consists in

- taking the empirical ordered λ_{i} 's inside the cluster (note that exact separation ensures there are N_{k} of these!)
- getting the ordered eigenvalues μ_{1}, \ldots, μ_{N} of

$$
\operatorname{diag}(\boldsymbol{\lambda})-\frac{1}{N} \sqrt{\lambda} \sqrt{\lambda}^{\top}
$$

with $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{N}\right)^{\top}$. Keep only those of index inside \mathcal{N}_{k}.

- take the difference and scale.

How to obtain this result?

- Major trick requires tools from complex analysis

How to obtain this result?

- Major trick requires tools from complex analysis
- Silverstein's Stieltjes transform identity: for the conjugate model $\underline{\mathbf{B}}_{N}=\mathbf{X}_{N}^{*} \mathbf{T}_{N} \mathbf{X}_{N}$,

$$
\underline{m}_{N}(z)=\left(-z-c \int \frac{t}{1+t \underline{m}_{N}(z)} d F^{\mathbf{T}_{N}}(t)\right)^{-1}
$$

with \underline{m}_{N} the deterministic equivalent of $m_{\underline{B}_{N}}$. This is the only random matrix result we need.

How to obtain this result?

- Major trick requires tools from complex analysis
- Silverstein's Stieltjes transform identity: for the conjugate model $\underline{\mathbf{B}}_{N}=\mathbf{X}_{N}^{*} \mathbf{T}_{N} \mathbf{X}_{N}$,

$$
\underline{m}_{N}(z)=\left(-z-c \int \frac{t}{1+t \underline{m}_{N}(z)} d F^{\mathbf{T}_{N}}(t)\right)^{-1}
$$

with \underline{m}_{N} the deterministic equivalent of $m_{\underline{B}_{N}}$. This is the only random matrix result we need.

- Before going further, we need some reminders from complex analysis.

Reminders of complex analysis

- Cauchy integration formula

Theorem

Let $U \subset \mathbb{C}$ be an open set and $f: U \rightarrow \mathbb{C}$ be holomorphic on U. Let $\gamma \subset U$ be a continuous contour (i.e. closed path). Then, for a inside the surface formed by γ, we have

$$
\frac{1}{2 \pi i} \oint_{\gamma} \frac{f(z)}{z-a} d z=f(a)
$$

while for a outside the surface formed by γ,

$$
\frac{1}{2 \pi i} \oint_{\gamma} \frac{f(z)}{z-a} d z=0
$$

Limiting spectrum of the sample covariance matrix

J. W. Silverstein, Z. D. Bai, "On the empirical distribution of eigenvalues of a class of large dimensional random matrices," J. of Multivariate Analysis, vol. 54, no. 2, pp. 175-192, 1995.

Reminder:

- If $F^{\top}{ }^{\top} \Rightarrow F^{\top}$, then $m_{\mathbf{B}_{N}}(z) \xrightarrow{\text { a.s. }} m_{F}(z)$ such that

$$
m_{\underline{E}}(z)=\left(c \int \frac{t}{1+t m_{\underline{E}}(z)} d F^{T}(t)-z\right)^{-1}
$$

Limiting spectrum of the sample covariance matrix

J. W. Silverstein, Z. D. Bai, "On the empirical distribution of eigenvalues of a class of large dimensional random matrices," J. of Multivariate Analysis, vol. 54, no. 2, pp. 175-192, 1995.

Reminder:

- If $F^{\top}{ }^{\top} \Rightarrow F^{\top}$, then $m_{\mathbf{B}_{N}}(z) \xrightarrow{\text { a.s. }} m_{F}(z)$ such that

$$
m_{\underline{E}}(z)=\left(c \int \frac{t}{1+t m_{\underline{E}}(z)} d F^{T}(t)-z\right)^{-1}
$$

or equivalently

$$
m_{F^{T}}\left(-1 / m_{\underline{E}}(z)\right)=-z m_{\underline{E}}(z) m_{F}(z)
$$

with $m_{\underline{E}}(z)=c m_{F}(z)+(c-1) \frac{1}{z}$ and $N / n \rightarrow c$.

Reminders of complex analysis (2)

- Residue calculus

Theorem

Let γ be a contour on \mathbb{C}. For f holomorphic inside γ but on a discrete number of points, to compute the expression

$$
\frac{1}{2 \pi i} \oint_{\gamma} f(z) d z
$$

one must

1. determine the poles of f lying inside the surface formed by γ, i.e. those values a such that

$$
\lim _{z \rightarrow a}|f(z)|=\infty
$$

2. determine the order of each pole, i.e. the smallest k such that

$$
\lim _{z \rightarrow a}\left|(z-a)^{k} f(z)\right|<\infty
$$

3. compute the residues of f at the poles, i.e. evaluate the value

$$
\operatorname{Res}(f, a) \triangleq \lim _{z \rightarrow a} \frac{d^{k-1}}{d z^{k-1}}\left[(z-a)^{k} f(z)\right]
$$

4. the integral is then the sum of all residues.

$$
\frac{1}{2 \pi i} \oint_{\gamma} f(z) d z=\sum_{a \in\{\text { poles of } f\}} \operatorname{Res}(f, a)
$$

Complex integration

- From Cauchy integral formula, denoting \mathcal{C}_{k} a contour enclosing only t_{k},

$$
t_{k}=\frac{1}{2 \pi i} \oint_{\mathrm{e}_{k}} \frac{\omega}{\omega-t_{k}} d \omega
$$

Complex integration

- From Cauchy integral formula, denoting \mathcal{C}_{k} a contour enclosing only t_{k},

$$
t_{k}=\frac{1}{2 \pi i} \oint_{\mathrm{C}_{k}} \frac{\omega}{\omega-t_{k}} d \omega=\frac{1}{2 \pi i} \oint_{\mathrm{C}_{k}} \frac{1}{N_{k}} \sum_{j=1}^{K} N_{j} \frac{\omega}{\omega-t_{j}} d \omega
$$

Complex integration

- From Cauchy integral formula, denoting \mathcal{C}_{k} a contour enclosing only t_{k},

$$
t_{k}=\frac{1}{2 \pi i} \oint_{\mathrm{C}_{k}} \frac{\omega}{\omega-t_{k}} d \omega=\frac{1}{2 \pi i} \oint_{\mathrm{C}_{k}} \frac{1}{N_{k}} \sum_{j=1}^{K} N_{j} \frac{\omega}{\omega-t_{j}} d \omega=\frac{N}{2 \pi i N_{k}} \oint_{\mathrm{C}_{k}} \omega m_{T}(\omega) d \omega .
$$

Complex integration

- From Cauchy integral formula, denoting \mathcal{C}_{k} a contour enclosing only t_{k},

$$
t_{k}=\frac{1}{2 \pi i} \oint_{\mathcal{C}_{k}} \frac{\omega}{\omega-t_{k}} d \omega=\frac{1}{2 \pi i} \oint_{\mathcal{C}_{k}} \frac{1}{N_{k}} \sum_{j=1}^{K} N_{j} \frac{\omega}{\omega-t_{j}} d \omega=\frac{N}{2 \pi i N_{k}} \oint_{\mathcal{C}_{k}} \omega m_{T}(\omega) d \omega
$$

- After the variable change $\omega=-1 / m_{\underline{E}}(z)$,

$$
t_{k}=\frac{N}{N_{k}} \frac{1}{2 \pi i} \oint_{\mathcal{C}_{\underline{E}, k}} z m_{F}(z) \frac{m_{\underline{E}}^{\prime}(z)}{m_{\underline{E}}^{2}(z)} d z,
$$

Complex integration

- From Cauchy integral formula, denoting \mathcal{C}_{k} a contour enclosing only t_{k},

$$
t_{k}=\frac{1}{2 \pi i} \oint_{\mathrm{C}_{k}} \frac{\omega}{\omega-t_{k}} d \omega=\frac{1}{2 \pi i} \oint_{\mathrm{C}_{k}} \frac{1}{N_{k}} \sum_{j=1}^{K} N_{j} \frac{\omega}{\omega-t_{j}} d \omega=\frac{N}{2 \pi i N_{k}} \oint_{\mathrm{C}_{k}} \omega m_{T}(\omega) d \omega .
$$

- After the variable change $\omega=-1 / m_{\underline{E}}(z)$,

$$
t_{k}=\frac{N}{N_{k}} \frac{1}{2 \pi i} \oint_{\mathcal{C}_{巨, k}} z m_{F}(z) \frac{m_{\underline{E}}^{\prime}(z)}{m_{\underline{E}}^{2}(z)} d z,
$$

- When the system dimensions are large,

$$
m_{F}(z) \simeq m_{\mathbf{B}_{N}}(z) \triangleq \frac{1}{N} \sum_{k=1}^{N} \frac{1}{\lambda_{k}-z}, \quad \text { with } \quad\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\operatorname{eig}\left(\mathbf{B}_{N}\right)=\operatorname{eig}\left(\mathbf{Y} \mathbf{Y}^{\mathbf{H}}\right)
$$

Complex integration

- From Cauchy integral formula, denoting \mathcal{C}_{k} a contour enclosing only t_{k},

$$
t_{k}=\frac{1}{2 \pi i} \oint_{\mathcal{C}_{k}} \frac{\omega}{\omega-t_{k}} d \omega=\frac{1}{2 \pi i} \oint_{\mathcal{C}_{k}} \frac{1}{N_{k}} \sum_{j=1}^{K} N_{j} \frac{\omega}{\omega-t_{j}} d \omega=\frac{N}{2 \pi i N_{k}} \oint_{\mathcal{C}_{k}} \omega m_{T}(\omega) d \omega
$$

- After the variable change $\omega=-1 / m_{\underline{E}}(z)$,

$$
t_{k}=\frac{N}{N_{k}} \frac{1}{2 \pi i} \oint_{\mathcal{C}_{巨, k}} z m_{F}(z) \frac{m_{\underline{E}}^{\prime}(z)}{m_{\underline{E}}^{2}(z)} d z,
$$

- When the system dimensions are large,

$$
m_{F}(z) \simeq m_{\mathbf{B}_{N}}(z) \triangleq \frac{1}{N} \sum_{k=1}^{N} \frac{1}{\lambda_{k}-z}, \quad \text { with } \quad\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\operatorname{eig}\left(\mathbf{B}_{N}\right)=\operatorname{eig}\left(\mathbf{Y} \mathbf{Y}^{\mathbf{H}}\right)
$$

- Dominated convergence arguments then show

$$
t_{k}-\hat{t}_{k} \xrightarrow{\text { a.s. }} 0 \quad \text { with } \quad \hat{t}_{k}=\frac{N}{N_{k}} \frac{1}{2 \pi i} \oint_{\mathrm{C}_{\underline{E}, k}} z m_{\mathbf{B}_{N}}(z) \frac{m_{\mathbf{B}_{N}}^{\prime}(z)}{m_{\underline{B}_{N}}^{2}(z)} d z
$$

Understanding the contour change

m

- IF $\mathfrak{C}_{\underline{E}, k}$ encloses cluster k with real points $m_{1}<m_{2}$
- THEN $-1 / m_{1}=x_{1}<t_{k}<x_{2}=-1 / m_{2}$ and \mathcal{C}_{k} encloses t_{k}.

Poles and residues

- we find two sets of poles (outside zeros):
- $\lambda_{1}, \ldots, \lambda_{N}$, the eigenvalues of \mathbf{B}_{N}.
- the solutions μ_{1}, \ldots, μ_{N} to $\underline{\underline{\hat{m}}}_{N}(z)=0$.

Poles and residues

- we find two sets of poles (outside zeros):
- $\lambda_{1}, \ldots, \lambda_{N}$, the eigenvalues of \mathbf{B}_{N}.
- the solutions μ_{1}, \ldots, μ_{N} to $\underline{\underline{g}}_{N}(z)=0$.
- remember that

$$
m_{\mathrm{B}_{N}}(w)=\frac{n}{N} m_{\underline{B}_{N}}(w)+\frac{n-N}{N} \frac{1}{w}
$$

Poles and residues

- we find two sets of poles (outside zeros):
- $\lambda_{1}, \ldots, \lambda_{N}$, the eigenvalues of \mathbf{B}_{N}.
- the solutions μ_{1}, \ldots, μ_{N} to $\underline{\underline{g}}_{N}(z)=0$.
- remember that

$$
m_{\mathrm{B}_{N}}(w)=\frac{n}{N} m_{\underline{B}_{N}}(w)+\frac{n-N}{N} \frac{1}{w}
$$

- residue calculus, denote $f(w)=\left(\frac{n}{N} w m_{\underline{B}_{N}}(w)+\frac{n-N}{N}\right) \frac{m_{\underline{B}_{N}}^{\prime}(w)}{m_{\underline{B}_{N}}(w)^{2}}$,
- the λ_{k} 's are poles of order 1 and

$$
\lim _{z \rightarrow \lambda_{k}}\left(z-\lambda_{k}\right) f(z)=-\frac{n}{N} \lambda_{k}
$$

- the μ_{k} 's are also poles of order 1 and by L'Hospital's rule

$$
\lim _{z \rightarrow \mu_{k}}\left(z-\lambda_{k}\right) f(z)=\lim _{z \rightarrow \mu_{k}} \frac{n}{N} \frac{\left(z-\mu_{k}\right) z m_{\underline{B}_{N}}^{\prime}(z)}{m_{\underline{B}_{N}}(z)}=\frac{n}{N} \mu_{k}
$$

Poles and residues

- we find two sets of poles (outside zeros):
- $\lambda_{1}, \ldots, \lambda_{N}$, the eigenvalues of \mathbf{B}_{N}.
- the solutions μ_{1}, \ldots, μ_{N} to $\underline{\underline{g}}_{N}(z)=0$.
- remember that

$$
m_{\mathbf{B}_{N}}(w)=\frac{n}{N} m_{\underline{B}_{N}}(w)+\frac{n-N}{N} \frac{1}{w}
$$

- residue calculus, denote $f(w)=\left(\frac{n}{N} w m_{\underline{B}_{N}}(w)+\frac{n-N}{N}\right) \frac{m_{\underline{B}_{N}}^{\prime}(w)}{m_{\underline{B}_{N}}(w)^{2}}$,
- the λ_{k} 's are poles of order 1 and

$$
\lim _{z \rightarrow \lambda_{k}}\left(z-\lambda_{k}\right) f(z)=-\frac{n}{N} \lambda_{k}
$$

- the μ_{k} 's are also poles of order 1 and by L'Hospital's rule

$$
\lim _{z \rightarrow \mu_{k}}\left(z-\lambda_{k}\right) f(z)=\lim _{z \rightarrow \mu_{k}} \frac{n}{N} \frac{\left(z-\mu_{k}\right) z m_{\underline{B}_{N}}^{\prime}(z)}{m_{\underline{B}_{N}}(z)}=\frac{n}{N} \mu_{k}
$$

- So, finally

$$
\hat{t}_{k}=\frac{n}{N_{k}} \sum_{m \in \text { contour }}\left(\lambda_{m}-\mu_{m}\right)
$$

Which poles in the contour?

- we now need to determine which poles are in the contour of interest.

Which poles in the contour?

- we now need to determine which poles are in the contour of interest.
- Since the μ_{i} are rank- 1 perturbations of the λ_{i}, they have the interleaving property

$$
\lambda_{1}<\mu_{2}<\lambda_{2}<\ldots<\mu_{N}<\lambda_{N}
$$

Which poles in the contour?

- we now need to determine which poles are in the contour of interest.
- Since the μ_{i} are rank- 1 perturbations of the λ_{i}, they have the interleaving property

$$
\lambda_{1}<\mu_{2}<\lambda_{2}<\ldots<\mu_{N}<\lambda_{N}
$$

- what about μ_{1} ? the trick is to use the fact that

$$
\frac{1}{2 \pi i} \oint_{\mathrm{C}_{k}} \frac{1}{z} d z=0
$$

which leads to

$$
\frac{1}{2 \pi i} \oint_{\partial \Gamma_{k}} \frac{m_{\underline{E}}^{\prime}(w)}{m_{\underline{E}}(w)^{2}} d w=0
$$

the empirical version of which is

$$
\#\left\{i: \lambda_{i} \in \Gamma_{k}\right\}-\#\left\{i: \mu_{i} \in \Gamma_{k}\right\}
$$

Since their difference tends to 0 , there are as many λ_{k} 's as μ_{k} 's in the contour, hence μ_{1} is asymptotically in the integration contour.

Related bibliography

- X. Mestre, "On the asymptotic behavior of the sample estimates of eigenvalues and eigenvectors of covariance matrices," IEEE Transactions on Signal Processing, vol. 56, no.11, 2008.
- X. Mestre, "Improved estimation of eigenvalues and eigenvectors of covariance matrices using their sample estimates," IEEE trans. on Information Theory, vol. 54, no. 11, pp. 5113-5129, 2008.
- R. Couillet, J. W. Silverstein, Z. Bai, M. Debbah, "Eigen-Inference for Energy Estimation of Multiple Sources", IEEE Transactions on Information Theory, vol. 57, no. 4, pp. 2420-2439, 2011.
- P. Vallet, P. Loubaton and X. Mestre, "Improved subspace estimation for multivariate observations of high dimension: the deterministic signals case," arxiv preprint 1002.3234, 2010.

Outline

```
Spectrum Analysis of Large Matrices
    Absence of eigenvalues outside the support
    Further details on the asymptotic spectrum
    Exact spectrum separation
    Distribution of extreme eigenvalues: the Tracy-Widom law
G-estimation and Eigeninference
    Free deconvolution
    The Stieltjes transform approach
```

The Spiked Model

Research today: Advanced Statistic Inference
Eigeninference in spiked models
Central limit theorems for Mestre's estimates

Spiked models

- We can create sample covariance matrix models $\mathbf{T}_{N}^{\frac{1}{2}} \mathbf{X}_{N} \mathbf{X}_{N}^{H} \mathbf{T}_{N}^{\frac{1}{2}}$ with l.s.d. $F\left(\mathbf{X}_{N}\right.$ as usual) for which
- some sample eigenvalues are found outside the support of F
- the I.s.d. H of \mathbf{T}_{N} is a Dirac in 1 .

Spiked models

- We can create sample covariance matrix models $\mathbf{T}_{N}^{\frac{1}{2}} \mathbf{X}_{N} \mathbf{X}_{N}^{H} \mathbf{T}_{N}^{\frac{1}{2}}$ with l.s.d. $F\left(\mathbf{X}_{N}\right.$ as usual) for which
- some sample eigenvalues are found outside the support of F
- the l.s.d. H of \mathbf{T}_{N} is a Dirac in 1.
- No contradiction with "no eigenvalue" theorem, since the finitely numerous eigenvalues of \mathbf{T}_{N} will form additional clusters of positive measure in F_{N}.

Spiked models

- We can create sample covariance matrix models $\mathbf{T}_{N}^{\frac{1}{2}} \mathbf{X}_{N} \mathbf{X}_{N}^{H} \mathbf{T}_{N}^{\frac{1}{2}}$ with l.s.d. $F\left(\mathbf{X}_{N}\right.$ as usual) for which
- some sample eigenvalues are found outside the support of F
- the l.s.d. H of \mathbf{T}_{N} is a Dirac in 1.
- No contradiction with "no eigenvalue" theorem, since the finitely numerous eigenvalues of \mathbf{T}_{N} will form additional clusters of positive measure in F_{N}.
- However, for practical purposes, the presence of "spikes" determines the presence of a signal!

Spiked models

- We can create sample covariance matrix models $\mathbf{T}_{N}^{\frac{1}{2}} \mathbf{X}_{N} \mathbf{X}_{N}^{H} \mathbf{T}_{N}^{\frac{1}{2}}$ with l.s.d. $F\left(\mathbf{X}_{N}\right.$ as usual) for which
- some sample eigenvalues are found outside the support of F
- the l.s.d. H of \mathbf{T}_{N} is a Dirac in 1.
- No contradiction with "no eigenvalue" theorem, since the finitely numerous eigenvalues of \mathbf{T}_{N} will form additional clusters of positive measure in F_{N}.
- However, for practical purposes, the presence of "spikes" determines the presence of a signal!

What about the absence of spikes?

Absence of spikes $\stackrel{?}{\Rightarrow}$ No signal

J. Baik, J. W. Silverstein, "Eigenvalues of large sample covariance matrices of spiked population models," Journal of Multivariate Analysis, vol. 97, no. 6, pp. 1382-1408, 2006.

Theorem

Let $\mathbf{B}_{N}=\mathbf{T}_{N}^{\frac{1}{2}} \mathbf{X}_{N} \mathbf{X}_{N}^{H} \mathbf{T}_{N}^{\frac{1}{2}}$, where $\mathbf{X}_{N} \in \mathbb{C}^{N \times n}$ has i.i.d., zero mean and variance $1 / n$ entries, and $\mathbf{T}_{N} \in \mathbb{R}^{N \times N}$ diagonal given by

$$
\mathbf{T}_{N}=\operatorname{diag}(\underbrace{1+\omega_{1}, \ldots, 1+\omega_{1}}_{k_{1}}, \ldots, \underbrace{1+\omega_{M}, \ldots, 1+\omega_{M}}_{k_{M}}, \underbrace{1, \ldots, 1}_{N-\sum_{i=1}^{M} k_{i}})
$$

with $\omega_{1}>\ldots>\omega_{M}>-1, c=\lim _{N} N / n$. We then have

- if $\omega_{j}>\sqrt{c}, \lambda_{k_{1}+\ldots+k_{j-1}+i} \xrightarrow{\text { a.s. }} 1+\omega_{j}+c \frac{1+\omega_{j}}{\omega_{j}}$
- if $\omega_{k_{j}} \in(0, \sqrt{c}], \lambda_{k_{1}+\ldots+k_{j-1}+i} \xrightarrow{\text { a.s. }}(1+\sqrt{c})^{2}$
- if $\omega_{k_{j}} \in[-\sqrt{c}, 0), \lambda_{k_{1}+\ldots+k_{j-1}+i} \xrightarrow{\text { a.s. }}(1-\sqrt{c})^{2}$

Absence of spikes $\stackrel{?}{\Rightarrow}$ No signal

J. Baik, J. W. Silverstein, "Eigenvalues of large sample covariance matrices of spiked population models," Journal of Multivariate Analysis, vol. 97, no. 6, pp. 1382-1408, 2006.

Theorem

Let $\mathbf{B}_{N}=\mathbf{T}_{N}^{\frac{1}{2}} \mathbf{X}_{N} \mathbf{X}_{N}^{H} \mathbf{T}_{N}^{\frac{1}{2}}$, where $\mathbf{X}_{N} \in \mathbb{C}^{N \times n}$ has i.i.d., zero mean and variance $1 / n$ entries, and $\mathbf{T}_{N} \in \mathbb{R}^{N \times N}$ diagonal given by

$$
\mathbf{T}_{N}=\operatorname{diag}(\underbrace{1+\omega_{1}, \ldots, 1+\omega_{1}}_{k_{1}}, \ldots, \underbrace{1+\omega_{M}, \ldots, 1+\omega_{M}}_{k_{M}}, \underbrace{1, \ldots, 1}_{N-\sum_{i=1}^{M} k_{i}})
$$

with $\omega_{1}>\ldots>\omega_{M}>-1, c=\lim _{N} N / n$. We then have

- if $\omega_{j}>\sqrt{c}, \lambda_{k_{1}+\ldots+k_{j-1}+i} \xrightarrow{\text { a.s. }} 1+\omega_{j}+c \frac{1+\omega_{j}}{\omega_{j}}$
- if $\omega_{k_{j}} \in(0, \sqrt{c}], \lambda_{k_{1}+\ldots+k_{j-1}+i} \xrightarrow{\text { a.s. }}(1+\sqrt{c})^{2}$
- if $\omega_{k_{j}} \in[-\sqrt{c}, 0), \lambda_{k_{1}+\ldots+k_{j-1}+i} \xrightarrow{\text { a.s. }}(1-\sqrt{c})^{2}$
- for the other eigenvalues, we discriminate over c :
- if $\omega_{k_{j}}<-\sqrt{c}, c<1, \lambda_{k_{1}+\ldots+k_{j-1}+i} \xrightarrow{\text { a.s. }} 1+\omega_{j}+c \frac{1+\omega_{j}}{\omega_{j}}$
- if $\omega_{k_{j}}<-\sqrt{c}, c>1, \lambda_{k_{1}+\ldots+k_{j-1}+i} \xrightarrow{\text { a.s. }}(1-\sqrt{c})^{2}$

Absence of spikes $\stackrel{?}{\Rightarrow}$ No signal

J. Baik, J. W. Silverstein, "Eigenvalues of large sample covariance matrices of spiked population models," Journal of Multivariate Analysis, vol. 97, no. 6, pp. 1382-1408, 2006.

Theorem

Let $\mathbf{B}_{N}=\mathbf{T}_{N}^{\frac{1}{2}} \mathbf{X}_{N} \mathbf{X}_{N}^{H} \mathbf{T}_{N}^{\frac{1}{2}}$, where $\mathbf{X}_{N} \in \mathbb{C}^{N \times n}$ has i.i.d., zero mean and variance $1 / n$ entries, and $\mathbf{T}_{N} \in \mathbb{R}^{N \times N}$ diagonal given by

$$
\mathbf{T}_{N}=\operatorname{diag}(\underbrace{1+\omega_{1}, \ldots, 1+\omega_{1}}_{k_{1}}, \ldots, \underbrace{1+\omega_{M}, \ldots, 1+\omega_{M}}_{k_{M}}, \underbrace{1, \ldots, 1}_{N-\sum_{i=1}^{M} k_{i}})
$$

with $\omega_{1}>\ldots>\omega_{M}>-1, c=\lim _{N} N / n$. We then have

- if $\omega_{j}>\sqrt{c}, \lambda_{k_{1}+\ldots+k_{j-1}+i} \xrightarrow{\text { a.s. }} 1+\omega_{j}+c \frac{1+\omega_{j}}{\omega_{j}}$
- if $\omega_{k_{j}} \in(0, \sqrt{c}], \lambda_{k_{1}+\ldots+k_{j-1}+i} \xrightarrow{\text { a.s. }}(1+\sqrt{c})^{2}$
- if $\omega_{k_{j}} \in[-\sqrt{c}, 0), \lambda_{k_{1}+\ldots+k_{j-1}+i} \xrightarrow{\text { a.s. }}(1-\sqrt{c})^{2}$
- for the other eigenvalues, we discriminate over c :
- if $\omega_{k_{j}}<-\sqrt{c}, c<1, \lambda_{k_{1}+\ldots+k_{j-1}+i} \xrightarrow{\text { a.s. }} 1+\omega_{j}+c \frac{1+\omega_{j}}{\omega_{j}}$
- if $\omega_{k_{j}}<-\sqrt{c}, c>1, \lambda_{k_{1}+\ldots+k_{j-1}+i} \xrightarrow{\text { a.s. }}(1-\sqrt{c})^{2}$

Proof: See Section "Research Today: Advanced Statistic Inference",

Eigenvalues outside the support

Eigenvalues
Figure: Eigenvalues of $\mathbf{B}_{N}=\mathbf{T}_{N}{ }^{\frac{1}{2}} \mathbf{X}_{N} \mathbf{X}_{N}{ }^{\mathrm{H}} \mathbf{T}_{N} \frac{1}{2}$, where $F^{\mathbf{T}} N \Rightarrow 1_{[1, \infty)}, \ldots$. Dimensions: $N=500, n=1500$.

Eigenvalues outside the support

Eigenvalues
Figure: Eigenvalues of $\mathbf{B}_{N}=\mathbf{T}_{N}{ }^{\frac{1}{2}} \mathbf{X}_{N} \mathbf{X}_{N}{ }^{\mathrm{H}} \mathbf{T}_{N} \frac{1}{2}$, where $F^{\mathbf{T}} N \Rightarrow 1_{[1, \infty)}$, but \mathbf{T}_{N} is a diagonal of ones but for the first four entries set to $\left\{1+\omega_{1}, 1+\omega_{1}, 1+\omega_{2}, 1+\omega_{2}\right\}, \omega_{1}=1, \omega_{2}=2$. Dimensions: $N=500, n=1500$.

Interpretation of the result

- if c is large, or alternatively, if some "population spikes" are small, part to all of the population spikes are attracted by the support!

Interpretation of the result

- if c is large, or alternatively, if some "population spikes" are small, part to all of the population spikes are attracted by the support!
- if so, no way to decide on the existence of the spikes from looking at the largest eigenvalues
- in telecommunication words, signals might be missed using largest eigenvalues methods.

Interpretation of the result

- if c is large, or alternatively, if some "population spikes" are small, part to all of the population spikes are attracted by the support!
- if so, no way to decide on the existence of the spikes from looking at the largest eigenvalues
- in telecommunication words, signals might be missed using largest eigenvalues methods.
- as a consequence,
- the more the sensors (N),
- the larger $c=\lim N / n$,
- the more probable we miss a spike

Interpretation of the result

- if c is large, or alternatively, if some "population spikes" are small, part to all of the population spikes are attracted by the support!
- if so, no way to decide on the existence of the spikes from looking at the largest eigenvalues
- in telecommunication words, signals might be missed using largest eigenvalues methods.
- as a consequence,
- the more the sensors (N),
- the larger $c=\lim N / n$,
- the more probable we miss a spike
- THAT LOOKS LIKE A PARADOX

Generalization of the Tracy-Widom law

J. Baik, G. Ben Arous, S. Péché, "Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices," The Annals of Probability, vol. 33, no. 5, pp. 1643-1697, 2005.

Theorem

Let $\mathbf{X} \in \mathbb{C}^{N \times n}$ have i.i.d. Gaussian entries of zero mean and variance $1 / n$ and $\mathbf{T}_{N}=\operatorname{diag}\left(t_{1}, \ldots, t_{N}\right)$. Assume, for some fixed $r, t_{r+1}=\ldots=t_{N}=1$ and $t_{1}=\ldots=t_{k}$ while t_{k+1}, \ldots, t_{r} lie in a compact subset of $\left(0, t_{1}\right)$.
Assume further $c=\lim N / n<1$. Denoting λ_{N}^{+}the largest eigenvalue of $\mathbf{T}^{\frac{1}{2}} \mathbf{X} \mathbf{X}^{H} \mathbf{T}^{\frac{1}{2}}$, we have

- If $t_{1}<1+\sqrt{\frac{N}{n}}$,

$$
N^{\frac{2}{3}} \frac{\lambda_{N}^{+}-(1+\sqrt{c})^{2}}{(1+\sqrt{c})^{\frac{4}{3}} c^{\frac{1}{2}}} \Rightarrow X^{+} \sim F^{+}
$$

with F^{+}the Tracy-Widom distribution.

- If $t_{1}>1+\sqrt{\frac{N}{n}}$,

$$
\left(t_{1}^{2}-\frac{t_{1}^{2} c}{\left(t_{1}-1\right)^{2}}\right)^{\frac{1}{2}} n^{\frac{1}{2}}\left[\lambda_{N}^{+}-\left(t_{1}+\frac{t_{1} c}{t_{1}-1}\right)\right] \Rightarrow X_{k} \sim G_{k}
$$

for some function G_{k} that is the distribution of the largest eigenvalue of the $k \times k$ GUE.

$$
G_{k}(x)=\frac{1}{Z_{k}} \int_{-\infty}^{x} \ldots \int_{-\infty}^{x} \prod_{1 \leqslant i<j \leqslant k}\left|\xi_{i}-\xi_{j}\right|^{2} \prod_{i=1}^{k} e^{-\frac{1}{2} \xi_{i}^{2}} d \xi_{1} \ldots d \xi_{k}
$$

In particular, $G_{1}(x)=\operatorname{erf}(x)$

Comments on the result

- there exists a "phase transition" when the largest population eigenvalues move from inside to outside $(0,1+\sqrt{c})$.

Comments on the result

- there exists a "phase transition" when the largest population eigenvalues move from inside to outside $(0,1+\sqrt{c})$.
- more importantly, for $t_{1}<1+\sqrt{c}$, we still have the same Tracy-Widom,
- no way to see the spike even when zooming in
- in fact, simulation suggests that convergence rate to the Tracy-Widom is slower with spikes.

Presence of a spike in previous model

Figure: Distribution of $N^{\frac{2}{3}} c^{-\frac{1}{2}}(1+\sqrt{c})^{-\frac{4}{3}}\left[\lambda_{N}^{+}-(1+\sqrt{c})^{2}\right]$ against the distribution of X^{+}(distributed as Tracy-Widom law) for $N=500, n=1500, c=1 / 3$, for the covariance matrix model $\mathbf{T}^{\frac{1}{2}} \mathbf{X} \mathbf{X}^{H} \mathbf{T}^{\frac{1}{2}}$ with \mathbf{T} diagonal with all entries 1 but for $T_{11}=1.5$. Empirical distribution taken over 10,000 Monte-Carlo simulations.

Related bibliography

- J. W. Silverstein, J. Baik, "Eigenvalues of large sample covariance matrices of spiked population models" Journal of Multivariate Analysis, vol. 97, no. 6, pp. 1382-1408, 2006.
- J. Baik, G. Ben Arous, S. Péché, "Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices," The Annals of Probability, vol. 33, no. 5, pp. 1643-1697, 2005.
- W. Hachem, P. Loubaton, X. Mestre, J. Najim, P. Vallet, "A Subspace Estimator for Fixed Rank Perturbations of Large Random Matrices," arxiv preprint 1106.1497, 2011.
- R. Couillet, W. Hachem, "Local failure detection and diagnosis in large sensor networks", (submitted to) IEEE Transactions on Information Theory, arXiv preprint 1107.1409.
- F. Benaych-Georges, R. Rao, "The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices," Advances in Mathematics, vol. 227, no. 1, pp. 494-521, 2011.

Outline

```
Spectrum Analysis of Large Matrices
    Absence of eigenvalues outside the support
    Further details on the asymptotic spectrum
    Exact spectrum separation
    Distribution of extreme eigenvalues: the Tracy-Widom law
G-estimation and Eigeninference
    Free deconvolution
    The Stieltjes transform approach
```

The Spiked Model

Research today: Advanced Statistic Inference
Eigeninference in spiked models
Central limit theorems for Mestre's estimates

Outline

```
Spectrum Analysis of Large Matrices
    Absence of eigenvalues outside the support
    Further details on the asymptotic spectrum
    Exact spectrum separation
    Distribution of extreme eigenvalues: the Tracy-Widom law
G-estimation and Eigeninference
    Free deconvolution
    The Stieltjes transform approach
```

The Spiked Model

Research today: Advanced Statistic Inference
Eigeninference in spiked models
Central limit theorems for Mestre's estimates

Eigenvalue and eigenvectors statistics: Method

- Consider the model

$$
\boldsymbol{\Sigma}=\left(\mathbf{I}_{N}+\mathbf{P}\right)^{\frac{1}{2}} \mathbf{X}
$$

with, for simplicity

- X standard Gaussian
- $\mathbf{P}=\mathbf{U} \boldsymbol{\Omega} \mathbf{U}^{\mathrm{H}}, \mathbf{U}=\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right] \in \mathbb{C}^{N \times r}, \boldsymbol{\Omega}=\operatorname{diag}\left(\omega_{1}, \ldots, \omega_{r}\right), \omega_{1}>\ldots>\omega_{r}>0$.
- We study the convergence properties of
- $\lambda_{1}>\ldots>\lambda_{r}$, the r largest eigenvalues of $\Sigma \Sigma^{H}$
- $\mathbf{u}_{i}^{\mathrm{H}} \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i}^{\mathrm{H}} \mathbf{u}_{i}$, with $\hat{\mathbf{u}}_{i}$ the eigenvector associated to λ_{i}.

Eigenvalue and eigenvectors statistics: Method

- Consider the model

$$
\boldsymbol{\Sigma}=\left(\mathbf{I}_{N}+\mathbf{P}\right)^{\frac{1}{2}} \mathbf{X}
$$

with, for simplicity

- X standard Gaussian
- $\mathbf{P}=\mathbf{U} \boldsymbol{\Omega} \mathbf{U}^{\mathbf{H}}, \mathbf{U}=\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right] \in \mathbb{C}^{N \times r}, \boldsymbol{\Omega}=\operatorname{diag}\left(\omega_{1}, \ldots, \omega_{r}\right), \omega_{1}>\ldots>\omega_{r}>0$.
- We study the convergence properties of
- $\lambda_{1}>\ldots>\lambda_{r}$, the r largest eigenvalues of $\Sigma \Sigma^{H}$
- $\mathbf{u}_{i}^{H} \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i}^{H} \mathbf{u}_{i}$, with $\hat{\mathbf{u}}_{i}$ the eigenvector associated to λ_{i}.
- Systematic study based on two ingredients:
- random matrix tools (the Stieltjes transform method)
- complex analysis (complex contour integration)

First order limits: Eigenvalues

- We start with a study of the limiting extreme eigenvalues.

First order limits: Eigenvalues

- We start with a study of the limiting extreme eigenvalues.
- Let $x>0$, then

$$
\begin{aligned}
\operatorname{det}\left(\boldsymbol{\Sigma} \boldsymbol{\Sigma}^{H}-x \mathbf{I}_{N}\right) & =\operatorname{det}\left(\mathbf{I}_{N}+\mathbf{P}\right) \operatorname{det}\left(\mathbf{X} \mathbf{X}^{H}-x \mathbf{I}_{N}+x\left[\mathbf{I}_{N}-\left(\mathbf{I}_{N}+\mathbf{P}\right)^{-1}\right]\right) \\
& =\operatorname{det}\left(\mathbf{I}_{N}+\mathbf{P}\right) \operatorname{det}\left(\mathbf{X X} \mathbf{X}^{H}-x \mathbf{I}_{N}\right)^{-1} \operatorname{det}\left(\mathbf{I}_{N}+x \mathbf{P}\left(\mathbf{I}_{N}+\mathbf{P}\right)^{-1}\left(\mathbf{X X}^{H}-x \mathbf{I}_{N}\right)^{-1}\right)
\end{aligned}
$$

First order limits: Eigenvalues

- We start with a study of the limiting extreme eigenvalues.
- Let $x>0$, then

$$
\begin{aligned}
\operatorname{det}\left(\boldsymbol{\Sigma} \Sigma^{H}-x \mathbf{I}_{N}\right) & =\operatorname{det}\left(\mathbf{I}_{N}+\mathbf{P}\right) \operatorname{det}\left(\mathbf{X} \mathbf{X}^{H}-x \mathbf{I}_{N}+x\left[\mathbf{I}_{N}-\left(\mathbf{I}_{N}+\mathbf{P}\right)^{-1}\right]\right) \\
& =\operatorname{det}\left(\mathbf{I}_{N}+\mathbf{P}\right) \operatorname{det}\left(\mathbf{X} \mathbf{X}^{H}-x \mathbf{I}_{N}\right)^{-1} \operatorname{det}\left(\mathbf{I}_{N}+x \mathbf{P}\left(\mathbf{I}_{N}+\mathbf{P}\right)^{-1}\left(\mathbf{X X}^{H}-x \mathbf{I}_{N}\right)^{-1}\right)
\end{aligned}
$$

- if x eigenvalue of $\Sigma \Sigma^{H}$ but not of $\mathbf{X X} \mathbf{X}^{H}$, then for n large, $x>(1+\sqrt{c})^{2}$ (edge of MP law support) and
$\operatorname{det}\left(\mathbf{I}_{N}+x \mathbf{P}\left(\mathbf{I}_{N}+\mathbf{P}\right)^{-1}\left(\mathbf{X X} \mathbf{X}^{H}-x \mathbf{I}_{N}\right)^{-1}\right)=\operatorname{det}\left(\mathbf{I}_{r}+x \boldsymbol{\Omega} \mathbf{U}^{*}\left(\mathbf{I}_{N}+\mathbf{U} \boldsymbol{\Omega} \mathbf{U}^{H}\right)^{-1}\left(\mathbf{X} \mathbf{X}^{H}-x \mathbf{I}_{N}\right)^{-1} \mathbf{U}\right)=0$ with $\mathbf{P}=\mathbf{U} \boldsymbol{\Omega} \mathbf{U}^{\mathbf{H}}, \mathbf{U} \in \mathbb{C}^{N \times r}$.

First order limits: Eigenvalues

- We start with a study of the limiting extreme eigenvalues.
- Let $x>0$, then

$$
\begin{aligned}
\operatorname{det}\left(\boldsymbol{\Sigma} \boldsymbol{\Sigma}^{H}-x \mathbf{I}_{N}\right) & =\operatorname{det}\left(\mathbf{I}_{N}+\mathbf{P}\right) \operatorname{det}\left(\mathbf{X} \mathbf{X}^{H}-x \mathbf{I}_{N}+x\left[\mathbf{I}_{N}-\left(\mathbf{I}_{N}+\mathbf{P}\right)^{-1}\right]\right) \\
& =\operatorname{det}\left(\mathbf{I}_{N}+\mathbf{P}\right) \operatorname{det}\left(\mathbf{X X} \mathbf{X}^{H}-x \mathbf{I}_{N}\right)^{-1} \operatorname{det}\left(\mathbf{I}_{N}+x \mathbf{P}\left(\mathbf{I}_{N}+\mathbf{P}\right)^{-1}\left(\mathbf{X X}^{H}-x \mathbf{I}_{N}\right)^{-1}\right)
\end{aligned}
$$

- if x eigenvalue of $\Sigma \Sigma^{H}$ but not of $\mathbf{X X} \mathbf{X}^{H}$, then for n large, $x>(1+\sqrt{c})^{2}$ (edge of MP law support) and
$\operatorname{det}\left(\mathbf{I}_{N}+x \mathbf{P}\left(\mathbf{I}_{N}+\mathbf{P}\right)^{-1}\left(\mathbf{X X} \mathbf{X}^{\mathrm{H}}-x \mathbf{I}_{N}\right)^{-1}\right)=\operatorname{det}\left(\mathbf{I}_{r}+x \boldsymbol{\Omega} \mathbf{U}^{*}\left(\mathbf{I}_{N}+\mathbf{U} \boldsymbol{\Omega} \mathbf{U}^{\mathrm{H}}\right)^{-1}\left(\mathbf{X} \mathbf{X}^{H}-x \mathbf{I}_{N}\right)^{-1} \mathbf{U}\right)=0$ with $\mathbf{P}=\mathbf{U} \boldsymbol{\Omega} \mathbf{U}^{\mathrm{H}}, \mathbf{U} \in \mathbb{C}^{N \times r}$.
- due to unitary invariance of \mathbf{X},

$$
\mathbf{U}^{\mathrm{H}}\left(\mathbf{X} \mathbf{X}^{\mathrm{H}}-x \mathbf{I}_{N}\right)^{-1} \mathbf{U} \xrightarrow{\text { a.s. }} \int(t-x)^{-1} d F^{M P}(t) \mathbf{I}_{r} \triangleq m(x) \mathbf{I}_{r}
$$

with $F^{M P}$ the MP law, and $m(x)$ the Stieltjes transform of the MP law (often known for $r=1$ as trace lemma).

First order limits: Eigenvalues

- We start with a study of the limiting extreme eigenvalues.
- Let $x>0$, then

$$
\begin{aligned}
\operatorname{det}\left(\boldsymbol{\Sigma} \boldsymbol{\Sigma}^{H}-x \mathbf{I}_{N}\right) & =\operatorname{det}\left(\mathbf{I}_{N}+\mathbf{P}\right) \operatorname{det}\left(\mathbf{X} \mathbf{X}^{H}-x \mathbf{I}_{N}+x\left[\mathbf{I}_{N}-\left(\mathbf{I}_{N}+\mathbf{P}\right)^{-1}\right]\right) \\
& =\operatorname{det}\left(\mathbf{I}_{N}+\mathbf{P}\right) \operatorname{det}\left(\mathbf{X X} \mathbf{X}^{H}-x \mathbf{I}_{N}\right)^{-1} \operatorname{det}\left(\mathbf{I}_{N}+x \mathbf{P}\left(\mathbf{I}_{N}+\mathbf{P}\right)^{-1}\left(\mathbf{X X}^{H}-x \mathbf{I}_{N}\right)^{-1}\right)
\end{aligned}
$$

- if x eigenvalue of $\Sigma \Sigma^{H}$ but not of $\mathbf{X X} \mathbf{X}^{H}$, then for n large, $x>(1+\sqrt{c})^{2}$ (edge of MP law support) and
$\operatorname{det}\left(\mathbf{I}_{N}+x \mathbf{P}\left(\mathbf{I}_{N}+\mathbf{P}\right)^{-1}\left(\mathbf{X X} \mathbf{X}^{\mathrm{H}}-x \mathbf{I}_{N}\right)^{-1}\right)=\operatorname{det}\left(\mathbf{I}_{r}+x \boldsymbol{\Omega} \mathbf{U}^{*}\left(\mathbf{I}_{N}+\mathbf{U} \boldsymbol{\Omega} \mathbf{U}^{\mathrm{H}}\right)^{-1}\left(\mathbf{X} \mathbf{X}^{H}-x \mathbf{I}_{N}\right)^{-1} \mathbf{U}\right)=0$ with $\mathbf{P}=\mathbf{U} \boldsymbol{\Omega} \mathbf{U}^{\mathrm{H}}, \mathbf{U} \in \mathbb{C}^{N \times r}$.
- due to unitary invariance of \mathbf{X},

$$
\mathbf{U}^{\mathrm{H}}\left(\mathbf{X} \mathbf{X}^{\mathrm{H}}-x \mathbf{I}_{N}\right)^{-1} \mathbf{U} \xrightarrow{\text { a.s. }} \int(t-x)^{-1} d F^{M P}(t) \mathbf{I}_{r} \triangleq m(x) \mathbf{I}_{r}
$$

with $F^{M P}$ the MP law, and $m(x)$ the Stieltjes transform of the MP law (often known for $r=1$ as trace lemma).

- finally, we have that the limiting solutions ρ_{k} satisfy $\rho_{k} m\left(\rho_{k}\right)+\left(1+\omega_{k}\right) \omega_{k}^{-1}=0$.
- replacing $m(x)$, this is finally:

$$
\lambda_{k} \xrightarrow{\text { a.s. }} \rho_{k} \triangleq 1+\omega_{k}+c\left(1+\omega_{k}\right) \omega_{k}^{-1}, \text { if } \omega_{k}>\sqrt{c}
$$

First order limits: Eigenvector projections (2)

- We now study the limiting behaviour of eigenvector projections.

First order limits: Eigenvector projections (2)

- We now study the limiting behaviour of eigenvector projections.
- Consider ω_{i} and its corresponding eigenvector \mathbf{u}_{i}, then, from Cauchy-integration formula

$$
\begin{aligned}
\mathbf{u}_{i}^{\mathrm{H}} \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i}^{\mathrm{H}} \mathbf{u}_{i} & =\frac{-1}{2 \pi \imath} \oint_{\mathrm{C}_{i}} \mathbf{u}_{i}^{\mathrm{H}}\left(\Sigma \Sigma^{\mathrm{H}}-z \mathbf{I}_{N}\right)^{-1} \mathbf{u}_{i} d z \\
& =\frac{-1}{2 \pi \imath} \oint_{\mathrm{C}_{i}} \mathbf{u}_{i}^{\mathrm{H}}\left(\mathbf{I}_{N}+\mathbf{P}\right)^{-\frac{1}{2}}\left(\mathbf{X} \mathbf{X}^{H}-z \mathbf{I}_{N}\right)^{-1}\left(\mathbf{I}_{N}+\mathbf{P}\right)^{-\frac{1}{2}} \mathbf{u}_{i} d z+\frac{1}{2 \pi \imath} \oint_{\mathcal{C}_{i}} \hat{\mathbf{a}}_{1}^{H} \widehat{\mathbf{H}}^{-1} \hat{\mathbf{a}}_{2} d z
\end{aligned}
$$

with \mathcal{C}_{i} enclosing ρ_{i} only and

$$
\left\{\begin{aligned}
\hat{H} & =\mathbf{I}_{r}+z \boldsymbol{\Omega}\left(\mathbf{I}_{r}+\boldsymbol{\Omega}\right)^{-1} \mathbf{U}^{H}\left(\mathbf{X} \mathbf{X}^{H}-z \mathbf{I}_{N}\right)^{-1} \mathbf{U} \\
\hat{a}_{1}^{H} & \left.=\mathbf{z} \mathbf{u}_{1}^{*} \mathbf{I}_{N}+\mathbf{P}\right)^{-\frac{1}{2}}\left(\mathbf{X X}^{H}-z \mathbf{I}_{N}\right)^{-1} \mathbf{U} \\
\hat{a}_{2} & =\boldsymbol{\Omega}\left(\mathbf{I}_{r}+\boldsymbol{\Omega}\right)^{-1} \mathbf{U}^{H}\left(\mathbf{X X} \mathbf{X}^{H}-z \mathbf{I}_{N}\right)^{-1}\left(\mathbf{I}_{N}+\mathbf{P}\right)^{-\frac{1}{2}} \mathbf{u}_{i} .
\end{aligned}\right.
$$

First order limits: Eigenvector projections (2)

- We now study the limiting behaviour of eigenvector projections.
- Consider ω_{i} and its corresponding eigenvector \mathbf{u}_{i}, then, from Cauchy-integration formula

$$
\begin{aligned}
\mathbf{u}_{i}^{\mathrm{H}} \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i}^{\mathrm{H}} \mathbf{u}_{i} & =\frac{-1}{2 \pi \imath} \oint_{\mathrm{C}_{i}} \mathbf{u}_{i}^{\mathrm{H}}\left(\Sigma \Sigma^{\mathrm{H}}-z \mathbf{I}_{N}\right)^{-1} \mathbf{u}_{i} d z \\
& =\frac{-1}{2 \pi \imath} \oint_{\mathrm{C}_{i}} \mathbf{u}_{i}^{\mathrm{H}}\left(\mathbf{I}_{N}+\mathbf{P}\right)^{-\frac{1}{2}}\left(\mathbf{X X} \mathbf{X}^{\mathrm{H}}-z \mathbf{I}_{N}\right)^{-1}\left(\mathbf{I}_{N}+\mathbf{P}\right)^{-\frac{1}{2}} \mathbf{u}_{i} d z+\frac{1}{2 \pi \imath} \oint_{\mathcal{C}_{i}} \hat{\mathbf{a}}_{1}^{\mathrm{H}} \widehat{\mathbf{H}}^{-1} \hat{\mathbf{a}}_{2} d z
\end{aligned}
$$

with \mathcal{C}_{i} enclosing ρ_{i} only and

$$
\left\{\begin{aligned}
\hat{H} & =\mathbf{I}_{r}+z \boldsymbol{\Omega}\left(\mathbf{I}_{r}+\boldsymbol{\Omega}\right)^{-1} \mathbf{U}^{H}\left(\mathbf{X} \mathbf{X}^{H}-z \mathbf{I}_{N}\right)^{-1} \mathbf{U} \\
\hat{a}_{1}^{H} & \left.=\mathbf{z} \mathbf{u}_{1}^{*} \mathbf{I}_{N}+\mathbf{P}\right)^{-\frac{1}{2}}\left(\mathbf{X X}^{H}-z \mathbf{I}_{N}\right)^{-1} \mathbf{U} \\
\hat{a}_{2} & =\boldsymbol{\Omega}\left(\mathbf{I}_{r}+\boldsymbol{\Omega}\right)^{-1} \mathbf{U}^{H}\left(\mathbf{X X} \mathbf{X}^{H}-z \mathbf{I}_{N}\right)^{-1}\left(\mathbf{I}_{N}+\mathbf{P}\right)^{-\frac{1}{2}} \mathbf{u}_{i} .
\end{aligned}\right.
$$

- For large n, the first term has no pole, while the second converges to

$$
T_{i} \triangleq \frac{1}{2 \pi \imath} \oint_{\mathcal{C}_{i}} \mathbf{a}_{1}^{\mathrm{H}} \mathbf{H}^{-1} \mathbf{a}_{2} d z \text {, with }\left\{\begin{aligned}
\mathbf{H} & =\mathbf{I}_{r}+z m(z) \boldsymbol{\Omega}\left(\mathbf{I}_{r}+\boldsymbol{\Omega}\right)^{-1} \\
\mathbf{a}_{1}^{\mathrm{H}} & =z m(z) \mathbf{u}_{1}^{z}\left(\mathbf{I}_{N}+\mathbf{P}\right)^{-\frac{1}{2}} \mathbf{U} \\
\mathbf{a}_{2} & =m(z) \boldsymbol{\Omega}\left(\mathbf{I}_{r}+\boldsymbol{\Omega}\right)^{-1} \mathbf{U}^{\mathrm{H}}\left(\mathbf{I}_{N}+\mathbf{P}\right)^{-\frac{1}{2}} \mathbf{u}_{i}
\end{aligned}\right.
$$

which after development is $T_{i}=\sum_{\ell=1}^{r} \frac{1}{1+\omega_{\ell}} \frac{1}{2 \pi \imath} \oint_{\mathcal{C}_{i}} \frac{z m^{2}(z)}{\frac{1+\omega_{\ell}}{\omega_{\ell}}+z m(z)} d z$.

First order limits: Eigenvector projections (2)

- We now study the limiting behaviour of eigenvector projections.
- Consider ω_{i} and its corresponding eigenvector \mathbf{u}_{i}, then, from Cauchy-integration formula

$$
\begin{aligned}
\mathbf{u}_{i}^{\mathrm{H}} \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i}^{\mathrm{H}} \mathbf{u}_{i} & =\frac{-1}{2 \pi \imath} \oint_{\mathcal{C}_{i}} \mathbf{u}_{i}^{\mathrm{H}}\left(\Sigma \Sigma^{\mathrm{H}}-z \mathbf{I}_{N}\right)^{-1} \mathbf{u}_{i} d z \\
& =\frac{-1}{2 \pi \imath} \oint_{\mathcal{C}_{i}} \mathbf{u}_{i}^{\mathrm{H}}\left(\mathbf{I}_{N}+\mathbf{P}\right)^{-\frac{1}{2}}\left(\mathbf{X} \mathbf{X}^{H}-z \mathbf{I}_{N}\right)^{-1}\left(\mathbf{I}_{N}+\mathbf{P}\right)^{-\frac{1}{2}} \mathbf{u}_{i} d z+\frac{1}{2 \pi \imath} \oint_{\mathcal{C}_{i}} \hat{\mathbf{a}}_{1}^{H} \widehat{\mathbf{H}}^{-1} \hat{\mathbf{a}}_{2} d z
\end{aligned}
$$

with \mathcal{C}_{i} enclosing ρ_{i} only and

$$
\begin{cases}\hat{H} & =\mathbf{I}_{r}+z \boldsymbol{\Omega}\left(\mathbf{I}_{r}+\boldsymbol{\Omega}\right)^{-1} \mathbf{U}^{\mathrm{H}}\left(\mathbf{X} \mathbf{X}^{\mathrm{H}}-z \mathbf{I}_{N}\right)^{-1} \mathbf{U} \\ \hat{a}_{1}^{H} & =z \mathbf{u}_{1}^{*}\left(\mathbf{I}_{N}+\mathbf{P}\right)^{-\frac{1}{2}}\left(\mathbf{X} \mathbf{X}^{H}-z \mathbf{I}_{N}\right)^{-1} \mathbf{U} \\ \hat{a}_{2} & =\boldsymbol{\Omega}\left(\mathbf{I}_{r}+\boldsymbol{\Omega}\right)^{-1} \mathbf{U}^{\mathrm{H}}\left(\mathbf{X} \mathbf{X}^{\mathrm{H}}-z \mathbf{I}_{N}\right)^{-1}\left(\mathbf{I}_{N}+\mathbf{P}\right)^{-\frac{1}{2}} \mathbf{u}_{i}\end{cases}
$$

- For large n, the first term has no pole, while the second converges to

$$
T_{i} \triangleq \frac{1}{2 \pi \imath} \oint_{\mathcal{C}_{i}} \mathbf{a}_{1}^{\mathrm{H}} \mathbf{H}^{-1} \mathbf{a}_{2} d z, \text { with } \begin{cases}\mathbf{H} & =\mathbf{I}_{r}+z m(z) \boldsymbol{\Omega}\left(\mathbf{I}_{r}+\boldsymbol{\Omega}\right)^{-1} \\ \mathbf{a}_{1}^{\mathrm{H}} & =z m(z) \mathbf{u}_{1}^{*}\left(\mathbf{I}_{N}+\mathbf{P}\right)^{-\frac{1}{2}} \mathbf{U} \\ \mathbf{a}_{2} & =m(z) \boldsymbol{\Omega}\left(\mathbf{I}_{r}+\boldsymbol{\Omega}\right)^{-1} \mathbf{U}^{\mathrm{H}}\left(\mathbf{I}_{N}+\mathbf{P}\right)^{-\frac{1}{2}} \mathbf{u}_{i}\end{cases}
$$

which after development is $T_{i}=\sum_{\ell=1}^{r} \frac{1}{1+\omega_{\ell}} \frac{1}{2 \pi \ell} \oint_{\mathcal{C}_{i}} \frac{z m^{2}(z)}{\frac{1+\omega_{\ell}}{\omega_{\ell}}+z m(z)} d z$.

- Using residue calculus, the sole pole is in ρ_{i} and we find $\mathbf{u}_{i}^{\mathrm{H}} \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i}^{\mathrm{H}} \mathbf{u}_{i} \xrightarrow{\text { a.s. }} \zeta_{i} \triangleq \frac{1-c \omega_{i}^{-2}}{1+c \omega_{i}^{-1}}$.

Fluctuations

- The objective is to find second order behaviour for the joint variable

$$
\left(\left(\sqrt{N}\left(\lambda_{i}-\rho_{i}\right)\right)_{i=1}^{r},\left(\sqrt{N}\left(\mathbf{u}_{i}^{H} \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i}^{H} \mathbf{u}_{i}-\zeta_{i}\right)\right)_{i=1}^{r}\right)
$$

Fluctuations

- The objective is to find second order behaviour for the joint variable

$$
\left(\left(\sqrt{N}\left(\lambda_{i}-\rho_{i}\right)\right)_{i=1}^{r},\left(\sqrt{N}\left(\mathbf{u}_{i}^{H} \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i}^{H} \mathbf{u}_{i}-\zeta_{i}\right)\right)_{i=1}^{r}\right)
$$

- Outline of the method:
- Complex integration framework for the quantities $\sqrt{N}\left(\lambda_{i}-\rho_{i}\right)$ and $\sqrt{N}\left(\mathbf{u}_{i}^{\mathrm{H}} \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i}^{\mathrm{H}} \mathbf{u}_{i}-\zeta_{i}\right)$:

$$
\begin{aligned}
\sqrt{N}\left(\lambda_{i}-\rho_{i}\right)- & {\left[-\frac{\rho_{i}}{h^{\prime}\left(\rho_{i}\right)} \mathbf{u}_{i}^{\mathrm{H}}\left(m\left(\rho_{i}\right) \mathbf{I}_{N}-\left(\mathbf{X} \mathbf{X}^{\mathrm{H}}-\rho_{i} \mathbf{I}_{N}\right)^{-1}\right) \mathbf{u}_{i}\right] \xrightarrow{\text { a.s. }} 0 } \\
\sqrt{N}\left(\mathbf{u}_{i}^{\mathrm{H}} \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i}^{\mathrm{H}} \mathbf{u}_{i}-\zeta_{i}\right)- & {\left[\frac{h\left(\rho_{i}\right)\left(1+h\left(\rho_{i}\right)\right) h^{\prime \prime}\left(\rho_{i}\right)}{h^{\prime}\left(\rho_{i}\right)^{3}} \mathbf{u}_{i}^{\mathrm{H}}\left(m\left(\rho_{i}\right) \mathbf{I}_{N}-\left(\mathbf{X} \mathbf{X}^{\mathrm{H}}-\rho_{i} \mathbf{I}_{N}\right)^{-1}\right) \mathbf{u}_{i}\right.} \\
& \left.-\frac{h\left(\rho_{i}\right)\left(1+h\left(\rho_{i}\right)\right)}{h^{\prime}\left(\rho_{i}\right)^{2}} \mathbf{u}_{i}^{\mathrm{H}}\left(m^{\prime}\left(\rho_{i}\right) \mathbf{I}_{N}-\left(\mathbf{X} \mathbf{X}^{\mathrm{H}}-\rho_{i} \mathbf{I}_{N}\right)^{-2}\right) \mathbf{u}_{i}\right] \xrightarrow{\text { a.s. }} 0
\end{aligned}
$$

with $h(x)=x m(x)$.

- Joint fluctuations of Stieltjes transforms:

$$
\left(\mathbf{u}_{i}^{\mathrm{H}}\left(m\left(\rho_{i}\right) \mathbf{I}_{N}-\left(\mathbf{X} \mathbf{X}^{\mathrm{H}}-\rho_{i} \mathbf{I}_{N}\right)^{-1}\right) \mathbf{u}_{i}, \mathbf{u}_{j}^{\mathrm{H}}\left(m^{\prime}\left(\rho_{j}\right) \mathbf{I}_{N}-\left(\mathbf{X} \mathbf{X}^{H}-\rho_{j} \mathbf{I}_{N}\right)^{-2}\right) \mathbf{u}_{j}\right) \Rightarrow \mathcal{N}\left(0, R\left(\rho_{i}\right) \delta_{i}^{j}\right)
$$

with

$$
R(\rho)=\left[\begin{array}{cc}
m^{\prime}(\rho)-m(\rho)^{2} & m^{\prime \prime}(\rho) / 2-m(\rho) m^{\prime}(\rho) \\
m^{\prime \prime}(\rho) / 2-m(\rho) m^{\prime}(\rho) & m^{(3)}(\rho) / 6-m^{\prime}(\rho)^{2}
\end{array}\right]
$$

Joint fluctuations

R. Couillet, W. Hachem, "Local failure detection and diagnosis in large sensor networks", (submitted to) IEEE Transactions on Information Theory, arXiv preprint 1107.1409.

- Replacing $m\left(\rho_{i}\right)$, this finally proves the following theorem:

Theorem

Under the conditions above, assuming $\omega_{i}>\sqrt{c}$ for each $i \in\{1, \ldots, r\}$,

$$
\left(\left(\sqrt{N}\left(\lambda_{i}-\rho_{i}\right)\right)_{i=1}^{r},\left(\sqrt{N}\left(\mathbf{u}_{i}^{\mathrm{H}} \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i}^{\mathrm{H}} \mathbf{u}_{i}-\zeta_{i}\right)\right)_{i=1}^{r}\right) \Rightarrow \mathcal{N}\left(0,\left[\begin{array}{lll}
C\left(\rho_{1}\right) & & \\
& \ddots & \\
& & C\left(\rho_{r}\right)
\end{array}\right]\right)
$$

where

$$
C\left(\rho_{i}\right) \triangleq\left[\begin{array}{cc}
\frac{c^{2}\left(1+\omega_{i}\right)^{2}}{\left(c+\omega_{i}\right)^{2}\left(\omega_{i}^{2}-c\right)}\left(c \frac{\left(1+\omega_{i}\right)^{2}}{\left(c+\omega_{i}\right)^{2}}+1\right) & \frac{\left(1+\omega_{i}\right)^{3} c^{2}}{\left(\omega_{i}+c\right)^{2} \omega_{i}} \\
\frac{\left(1+\omega_{i}\right)^{3} c^{2}}{\left(\omega_{i}+c\right)^{2} \omega_{i}} & \frac{c\left(1+\omega_{i}\right)^{2}\left(\omega_{i}^{2}-c\right)}{\omega_{i}^{2}}
\end{array}\right] .
$$

Simulation

Figure: Empirical and theoretical distribution of the fluctuations of $\hat{\mathbf{u}}_{1}$ with $r=1, X_{i j} \sim \mathcal{C} \mathcal{N}(0,1 / n)$, $N / n=1 / 8, N=64$ and $\omega_{1}=1$.

Outline

```
Spectrum Analysis of Large Matrices
    Absence of eigenvalues outside the support
    Further details on the asymptotic spectrum
    Exact spectrum separation
    Distribution of extreme eigenvalues: the Tracy-Widom law
G-estimation and Eigeninference
    Free deconvolution
    The Stieltjes transform approach
```

The Spiked Model

Research today: Advanced Statistic Inference
Eigeninference in spiked models
Central limit theorems for Mestre's estimates

Reminder: fluctuations of functionals of the spectrum

J. W. Silverstein, Z. D. Bai, "CLT of linear spectral statistics of large dimensional sample covariance matrices" Annals of Probability 32(1A) (2004), pp. 553-605.

Theorem

$$
\mathbf{B}_{N}=\mathbf{T}_{N}^{\frac{1}{2}} \mathbf{X}_{N} \mathbf{x}_{N}^{\mathrm{H}} \mathbf{T}_{N}^{\frac{1}{2}}, \quad \underline{\mathbf{B}}_{N}=\mathbf{X}_{N}^{\mathrm{H}} \mathbf{T}_{N} \mathbf{X}_{N}
$$

as usual with \mathbf{X}_{N} Gaussian, $F^{\mathbf{T}_{N}}=\operatorname{diag}\left(\left\{\tau_{i}\right\}\right) \Rightarrow H,\left|\mathbf{T}_{N}\right|, \tau_{1} \geqslant \ldots \geqslant \tau_{N}$. Denote F and F_{N} the l.s.d. and det. eq. of $F^{\mathrm{B}_{N}}$, and

$$
G_{N} \triangleq N\left[F^{\mathbf{B}_{N}}-F_{N}\right] .
$$

For f_{1}, \ldots, f_{k} well behaved, then

$$
\left(\int f_{1}(x) d G_{N}(x), \ldots, \int f_{k}(x) d G_{N}(x)\right) \Rightarrow\left(X_{f_{1}}, \ldots, X_{f_{k}}\right)
$$

of zero mean and covariance $\operatorname{Cov}\left(X_{f}, X_{g}\right),(f, g) \in\left\{f_{1}, \ldots, f_{k}\right\}^{2}$, such that

$$
\operatorname{Cov}\left(X_{f}, X_{g}\right)=-\frac{1}{2 \pi i} \oint \oint \frac{f\left(z_{1}\right) g\left(z_{2}\right)}{\left(\underline{m}\left(z_{1}\right)-\underline{m}\left(z_{2}\right)\right)^{2}} \underline{m}^{\prime}\left(z_{1}\right) \underline{m}^{\prime}\left(z_{2}\right) d z_{1} d z_{2}
$$

for $\underline{m}(z)$ the Stieltjes transform of the I.s.d. of $\underline{\mathbf{B}}_{N}$. The integration contours are positively defined with winding number one and enclose the support of F.

The delta-method

- The central limit of random matrix-based estimates follow from basic fluctuation results, using the delta method.

The delta-method

- The central limit of random matrix-based estimates follow from basic fluctuation results, using the delta method.

Theorem
Let $X_{1}, X_{2}, \ldots \in \mathbb{R}^{n}$ be a random sequence such that

$$
a_{n}\left(X_{n}-\mu\right) \Rightarrow X \sim \mathcal{N}(0, \mathbf{V})
$$

for some sequence $a_{1}, a_{2}, \ldots \uparrow \infty$. Then for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$, a function differentiable at μ

$$
a_{n}\left(f\left(X_{n}\right)-f(\mu)\right) \Rightarrow \mathbf{J}(f) X
$$

with $\mathbf{J}(f)$ the Jacobian matrix of f.

Example of application: fluctuations of Mestre's estimator

J. Yao, R. Couillet, J. Najim, M. Debbah, "Fluctuations of an Improved Population Eigenvalue Estimator in Sample Covariance Matrix Models", (submitted to) IEEE Transactions on Information Theory.

Theorem

$$
\mathbf{B}_{N}=\mathbf{T}_{N}^{\frac{1}{2}} \mathbf{X}_{N} \mathbf{X}_{N}^{H} \mathbf{T}_{N}^{\frac{1}{2}}, \quad \mathbf{T}_{N}=\operatorname{diag}\left(\left\{t_{k}\right\}_{k=1}^{K}\right) \text { with large multiplicities. }
$$

Assume asymptotic cluster separability. Then, as N, n grow large

$$
\begin{gathered}
\left(n\left(\hat{t}_{k}-t_{k}\right)\right)_{k=1}^{K} \Rightarrow \operatorname{CN}(0, \boldsymbol{\Theta}), \text { with } \\
\Theta_{k, k^{\prime}} \triangleq-\frac{1}{4 \pi^{2} c^{2} c_{i} c_{j}} \oint_{\mathcal{C}_{k}} \oint_{\mathcal{C}_{k^{\prime}}}\left[\frac{\underline{m}^{\prime}\left(z_{1}\right) \underline{m}^{\prime}\left(z_{2}\right)}{\left(\underline{m}\left(z_{1}\right)-\underline{m}\left(z_{2}\right)\right)^{2}}-\frac{1}{\left(z_{1}-z_{2}\right)^{2}}\right] \frac{d z_{1} d z_{2}}{\underline{m}\left(z_{1}\right) \underline{m}\left(z_{2}\right)}
\end{gathered}
$$

where \mathcal{C}_{k} is the support enclosing cluster k.

Example of application: fluctuations of Mestre's estimator (2)

An estimator of the variance is also given in the following result.

Theorem

We also have

$$
\hat{\Theta}_{k, k^{\prime}}-\Theta_{k, k^{\prime}} \xrightarrow{\text { a.s. }} 0
$$

as $N, n \rightarrow \infty$, where

$$
\hat{\Theta}_{k, k^{\prime}} \triangleq \frac{n^{2}}{N_{k} N_{k^{\prime}}}\left[\sum_{\substack{i \in \mathcal{N}_{k} \\ j \in \mathcal{N}_{k^{\prime}}}} \frac{-1}{\left(\mu_{i}-\mu_{j}\right)^{2} m_{\mathbf{B}_{N}}^{\prime}\left(\mu_{i}\right) m_{\mathbf{B}_{N}}^{\prime}\left(\mu_{j}\right)}+\delta_{k k^{\prime}} \sum_{i \in \mathcal{N}_{k}}\left(\frac{m_{\mathbf{B}_{N}}^{\prime \prime \prime}\left(\mu_{i}\right)}{6 m_{\mathbf{B}_{N}}^{\prime}\left(\mu_{i}\right)^{3}}-\frac{m_{\mathbf{B}_{N}}^{\prime \prime}\left(\mu_{i}\right)^{2}}{4 m_{\mathbf{B}_{N}}^{\prime}\left(\mu_{i}\right)^{4}}\right)\right]
$$

μ_{i}, ordered eigenvalues of $\operatorname{diag}(\boldsymbol{\lambda})-\frac{1}{N} \sqrt{\boldsymbol{\lambda}} \sqrt{\boldsymbol{\lambda}}^{\top} ; \boldsymbol{\lambda}$, ordered vector of eigenvalues of \mathbf{B}_{N}.

Related bibliography

- J. Yao, R. Couillet, J. Najim, M. Debbah, "Fluctuations of an Improved Population Eigenvalue Estimator in Sample Covariance Matrix Models", (submitted to) IEEE Transactions on Information Theory.
- J. W. Silverstein, Z. D. Bai, "CLT of linear spectral statistics of large dimensional sample covariance matrices" Annals of Probability, vol. 32, no. 1A, pp. 553-605, 2004.
- R. Couillet, W. Hachem, "Local failure detection and diagnosis in large sensor networks", (submitted to) IEEE Transactions on Information Theory, arXiv Preprint 1107.1409.
- F. Benaych-Georges, R. Rao, "The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices," Advances in Mathematics, vol. 227, no. 1, pp. 494-521, 2011.
- J. Baik, G. Ben Arous, S. Péché, "Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices," The Annals of Probability, vol. 33, no. 5, pp. 1643-1697, 2005.

