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Problem formulation

I We consider the model

y(m) =

{
σw(m) , (H0)√

PHx(m) +σw(m) , (H1)

I We wish to confront the hypotheses H0 and H1 given the data matrix
Y , [y(1), . . . , y(M)] ∈ CN×M .

I We consider, in a Bayesian framework, the Neyman-Pearson test ratio

C(Y) ,
PH1|Y,I (Y)

PH0|Y,I (Y)

with prior information I on H, x(m),σ, . . ..
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A Bayesian framework for cognitive radios

I We assume prior statistical and deterministic knowledge I on H,σ, P

I Using the maximum entropy principle (MaxEnt), a prior P(H,σ,P)(H,σ, P) can be derived

PY|Hi ,I (Y) =

∫
(H,σ,P)

PY|Hi ,I ,H,σ,P(Y)P(H,σ,P)(H,σ, P)d(H,σ, P)

I In the following,
I we derive the case P = 1, σ known and the knowledge about H conveys unitary invariance

I E [tr HHH] known: this is what we assume here;
I E [HHH] = Q unknown but such that E [tr Q] is known;
I rank(HHH) known.

I we compare alternative methods when P = 1 and σ are unknown.
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Evaluation of PY|Hi ,I (Y)

I Using maximum entropy arguments, X and W are standard Gaussian matrix with
Xij , Wij ∼ CN(0, 1).

I Under H0:
I Y = σW

PY|H0,I (Y) =
1

(πσ2)NM
e
− 1

σ2 tr YYH

.

I Under H1:

I Y =
[√

PH σIN

] [X
W

]
PY|H1

(Y) =

∫
Σ>0

PY|Σ,H1
(Y,Σ)PΣ(Σ)dΣ

with Σ = E [y(1)y(1)H] = HHH +σ2IN .
From unitary invariance of H, denoting Σ = UGUH, diag(G) = (g1, . . . , gn,σ2, . . . ,σ2)

PY|H1
(Y) =

∫
U(N)×(σ2,∞)n

PY|UGUH,H1
(Y, U, G)PU(U)P(g1,...,gn)(g1, . . . , gn)dUdg1 . . . dgn

where
I PY|UGUH,H1

is Gaussian with zero mean and variance UGUH;

I PU is a constant (dU is a Haar measure);

I if H is Gaussian, P(g1−σ2,...,gn−σ2) is the joint eigenvalue distribution of a central Wishart;
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Result in the Gaussian case, n = 1

R. Couillet, M. Debbah, “A Bayesian Framework for Collaborative Multi-Source Signal Sensing”,
IEEE Transactions on Signal Processing, vol. 58, no. 10, pp. 5186-5195, 2010.

Theorem (Neyman-Pearson test)
The ratio C(Y) when the receiver knows n = 1, P = 1, E [ 1

N tr HHH] = 1 and σ2, reads

C(Y) =
1

N

N∑
l=1

σ2(N+M−1)e
σ2+

λl
σ2∏N

i=1
i 6=l

(λl − λi )
JN−M−1(σ

2,λl)

with λ1, . . . ,λN the eigenvalues of YYH and where

Jk(x , y) ,
∫+∞

x
tk e−t− y

t dt.

I non trivial dependency on λ1, . . . ,λN

I contrary to energy detector,
∑

i λi is not a sufficient statistic;

I integration over σ2 (or P when P 6= 1) is difficult.
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Comparison to energy detector
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Figure: ROC curve for single-source detection, K = 1, N = 4, M = 8, SNR = −3 dB, FAR range of practical
interest, with signal power E = 0 dBm, either known or unknown at the receiver.
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Unknown power and noise variances

I Bayesian approaches:

PY|Hi ,I (Y) =

∫
R2
+

PY|Hi ,σ,P(Y)P(σ,P)(σ, P)d(σ, P)

I limited by computational complexity (two-dimension numerical integration);
I inconsistence in MaxEnt uninformative priors on σ, P.

I instead, we will explore nonparametric methods based on large dimensional RMT.
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Reminder of the hypothesis testing problem

I Reminder: we want to test the hypothesis H0 against H1,

Y =




h1 σ · · · 0
...

...
. . . · · ·

hN 0 · · · σ




x1 · · · xn

w11 · · · w1n

... · · ·
...

wN1 · · · wNn

 , information plus noise, hypothesis H1


σ · · · 0
...

. . . · · ·
0 · · · σ




w11 · · · w1n

... · · ·
...

wN1 · · · wNn

 , pure noise, hpothesis H0

I we wish now to simplify the previous results using asymptotic compact-form results.
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Exploiting the conditioning number

L. S. Cardoso, M. Debbah, P. Bianchi, J. Najim, “Cooperative spectrum sensing using random
matrix theory,” International Symposium on Wireless Pervasive Computing, pp. 334-338 , 2008.

I under either hypothesis,
I if H0, for N large, we expect FYYH close to the Marc̆enko-Pastur law, of support

[σ2
(
1 −
√

c
)2

,σ2
(
1 +
√

c
)2
].

I if H1, if population spike more than 1 +
√

N
n , largest eigenvalue is further away.

I the conditioning number of YYH is therefore asymptotically, as N, n→∞, N/n→ c,
I if H0,

cond(Y) ,
λmax

λmin
→

(
1 −
√

c
)2(

1 +
√

c
)2

I if H1,

cond(Y)→ t1 +
ct1

t1 − 1
>

(
1 −
√

c
)2(

1 +
√

c
)2

with t1 =
∑N

k=1 |hk |
2 +σ2

I the conditioning number is independent of σ. We then have the decision criterion, whether
or not σ is known,

decide


H0 : if cond(YYH) 6

(
1−
√

N
n

)2

(
1+
√

N
n

)2 + ε

H1 : otherwise.

for some security margin ε.
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Comments on the method

I Advantages:
I much simpler than finite size analysis
I ratio independent of σ, so σ needs not be known

I Drawbacks:
I only stands for very large N (dimension N for which asymptotic results arise function of σ!)
I ad-hoc method, does not rely on performance criterion.



Hypothesis testing in large data sets/Large dimensional considerations 14/61

Comments on the method

I Advantages:
I much simpler than finite size analysis
I ratio independent of σ, so σ needs not be known

I Drawbacks:
I only stands for very large N (dimension N for which asymptotic results arise function of σ!)

I ad-hoc method, does not rely on performance criterion.



Hypothesis testing in large data sets/Large dimensional considerations 14/61

Comments on the method

I Advantages:
I much simpler than finite size analysis
I ratio independent of σ, so σ needs not be known

I Drawbacks:
I only stands for very large N (dimension N for which asymptotic results arise function of σ!)
I ad-hoc method, does not rely on performance criterion.



Hypothesis testing in large data sets/Large dimensional considerations 15/61

Generalized likelihood ratio test

P. Bianchi, M. Debbah, M. Maida, J. Najim, “Performance of Statistical Tests for Source
Detection using Random Matrix Theory,” IEEE Trans. on Information Theory, vol. 57, no. 4, pp.
2400-2419, 2011.

I Alternative generalized likelihood ratio test (GLRT) decision criterion, i.e.

C(Y) =
supσ2,h PY|h,σ2(Y, h,σ2)

supσ2 PY|σ2(Y|σ2)
.

I Denote

TN =
λmax(YYH)

1
N tr YYH

To guarantee a maximum false alarm ratio of α,

decide

{
H1 : if

(
1 − 1

N

)(1−N)n
T−n

N

(
1 −

TN
N

)(1−N)n
> ξN

H0 : otherwise.

for some threshold ξN that can be explicitly given as a function of α.

I Optimal test with respect to GLR.

I Performs better than conditioning number test.
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2400-2419, 2011.

I Alternative generalized likelihood ratio test (GLRT) decision criterion, i.e.

C(Y) =
supσ2,h PY|h,σ2(Y, h,σ2)

supσ2 PY|σ2(Y|σ2)
.

I Denote

TN =
λmax(YYH)

1
N tr YYH

To guarantee a maximum false alarm ratio of α,

decide

{
H1 : if

(
1 − 1

N

)(1−N)n
T−n

N

(
1 −

TN
N

)(1−N)n
> ξN

H0 : otherwise.

for some threshold ξN that can be explicitly given as a function of α.

I Optimal test with respect to GLR.

I Performs better than conditioning number test.
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Performance comparison for unknown σ2, P
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Figure: ROC curve for a priori unknown σ2 of the Neyman-Pearson test, conditioning number method and
GLRT, K = 1, N = 4, M = 8, SNR = 0 dB. For the Neyman-Pearson test, both uniform and Jeffreys prior,
with exponent β = 1, are provided.
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Generic inference scenario

Figure: Signal sensing and angle of arrival detection
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Problem Statement

I Consider the model

y(m) =

K∑
k=1

√
Pk Hk x(m)

k +σw(m)

and wish to infer P1, . . . , PK .

I This gives information on transmit power / source distance.

I Applications in localization (radar, sensor network).

I With Y = [y(1), . . . , y(M)], this can be rewritten

Y =

K∑
k=1

√
Pk Hk Xk +σW =

[√
P1H1 · · ·

√
PK HK

]︸ ︷︷ ︸
,HP

1
2


X1

...
XK


︸ ︷︷ ︸
,X

+σW =
[
HP

1
2 σIN

] [X
W

]
.

I If H, (XT WT) are unitarily invariant, Y is unitarily invariant.

Most information about P1, . . . , PK is contained in the eigenvalues of BN ,
1
M YYH.
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From small to large system analysis
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YYH

The classical approach requires to evaluate PP1,...,PK |Y

I assuming Gaussian parameters, this is similar to previous calculus

I leads to a sum of two-dimensional integrals

I prohibitively expensive to evaluate even for small N, nk , M
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From small to large system analysis
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Limiting spectrum of BN

Assuming dimensions N, nk , M grow large, large dimensional random matrix theory provides
I a link between:

I the “observation”: the limiting spectral distribution (l.s.d.) of BN ;
I the “hidden parameters”: the powers P1, . . . , PK , i.e. the l.s.d. of P.

I consistent estimators of the hidden parameters.
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Free deconvolution approach

I one can infer the moment of F P from those of F YYH
.

I one can deconvolve YYH in three steps,

I an information-plus-noise model with “deterministic matrix” HP
1
2 XXHP

1
2 HH,

YYH = (HP
1
2 X +σW)(HP

1
2 X +σW)H

(the “deterministic” matrix can be taken random as long as it has a l.s.d.)

I from HP
1
2 XXHP

1
2 HH, up to a Gram matrix commutation, we can deconvolve the signal X,

P
1
2 HHHP

1
2 XXH

I from P
1
2 HHHP

1
2 , a new matrix commutation allows one to deconvolve HHH

PHHH
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Free deconvolution operations

In terms of free probability operations, this is

I noise deconvolution

µ
1
M HP

1
2 XXHP

1
2 HH

=
(
(µ 1

M YYH �µc)� δσ2

)
�µc

with µc the Marc̆enko-Pastur law and c = N/M.

I signal deconvolution

µ
1
M P

1
2 HHHP

1
2 XXH

=
N

n
µ

1
M HP

1
2 XXHP

1
2 HH

+

(
1 −

N

n

)
δ0

I channel deconvolution
µP = µP 1

n HHH �µηc1

with c1 = n/N
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Free deconvolution: moments

I from the three previous steps (plus addition of null eigenvalues), the moments of µP can be
computed from those of µYYH .

I this process can be automatized by combinatorics softwares

I finite size formulas are also available
I the first moments mk of µ 1

M YYH as a function of the first moments dk of µP read

m1 = N−1nd1 + 1

m2 =
(
N−2M−1n + N−1n

)
d2 +

(
N−2n2 + N−1M−1n2

)
d2

1

+
(
2N−1n + 2M−1n

)
d1 +

(
1 + NM−1

)
m3 =

(
3N−3M−2n + N−3n + 6N−2M−1n + N−1M−2n + N−1n

)
d3

+
(
6N−3M−1n2 + 6N−2M−2n2 + 3N−2n2 + 3N−1M−1n2

)
d2d1

+
(
N−3M−2n3 + N−3n3 + 3N−2M−1n3 + N−1M−2n3

)
d3

1

+
(
6N−2M−1n + 6N−1M−2n + 3N−1n + 3M−1n

)
d2

+
(
3N−2M−2n2 + 3N−2n2 + 9N−1M−1n2 + 3M−2n2

)
d2

1

+
(
3N−1M−2n + 3N−1n + 9M−1n + 3NM−2n

)
d1
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Free deconvolution: inferring powers

I For practical finite size applications, the deconvolved moments will exhibit errors. Different
strategies are available,

I direct inversion with Newton-Girard formulas. Assuming perfect evaluation of 1
K

∑K
k=1 Pm

k ,
P1, . . . , PK are given by the K solutions of the polynomial

X K −Π1X K−1 +Π2X K−2 − . . . + (−1)KΠK

where the Πm’s (known as the elementary symmetric polynomials) are iteratively defined as

(−1)k kΠk +

k∑
i=1

(−1)k+i SiΠk−i = 0

where Sk =
∑k

i=1 Pk
i .

I may lead to non-real solutions!
I does not minimize any conventional error criterion
I convenient for one-shot power inference
I when multiple realizations are available, statistical solutions are preferable
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Free deconvolution: inferring powers
I alternative approach: estimators that minimize conventional error metrics

Z. D. Bai, J. W. Silverstein, “CLT of linear spectral statistics of large dimensional sample
covariance matrices,” Annals of Probability, vol. 32, no. 1A, pp. 553-605, 2004.

I for the model Y = T
1
2 X, an asymptotic central limit result is known for the moments, i.e. for

m
(N)
k the order k empirical moment of 1

N YYH and m
◦(N)
k its deterministic equivalent, as

N →∞,

N
(

m
(N)
k − m

◦(N)
k

)
⇒ X

where X is a central Gaussian random variable.

I for the model under consideration, no such result is known.

I if a given model turns out to be Gaussian, then maximum-likelihood or MMSE estimators are
of order. Denoting p = (P1, . . . , PK ),

p̂ML = arg minp log det(C(p)) + (m − m◦(p))TC(p)−1(m − m◦(p))

with, for some p, m = (m
(N)
1 , . . . , m

(N)
p ), m◦(p) = (m

◦(N)
1 , . . . , m

◦(N)
p ), and C(p) the

covariance matrix of the Gaussian moment vector assuming powers p.

I and for the MMSE,

p̂MMSE =

∫
p det(C−1(p))e−(m−m◦(p))TC(p)−1(m−m◦(p))dp∫
det(C−1(p))e−(m−m◦(p))TC(p)−1(m−m◦(p))dp
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Remarks on free deconvolution approach

I convenient approach, computationally not expensive

I necessarily suboptimal when finitely many moments are considered

I problem to move from moments to estimates: Newton-Girard method may lead to non real
solutions.

I more elaborate methods, e.g. ML, MMSE, are prohibitively expensive
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Stieltjes transform method
I Reminder: Method consists in:

I Step 1: link between Stieltjes transform mP of P and limiting Stieltjes transform mF of BN .
I Step 2: Cauchy integral of the parameter to estimate.
I Step 3: Using mBN

as an approximation of mF , residue calculus provides estimator.

I Extending Y with zeros, our model is a “double sample covariance matrix”

Y︸︷︷︸
(N+n)×M

=

[
HP

1
2 σIN

0 0

]
︸ ︷︷ ︸
(N+n)×(N+n)

[
X
W

]
︸ ︷︷ ︸

(N+n)×M

.

I Limiting distribution of 1
M YYH

Theorem (Spectral analysis of BN)
Let BN = 1

M YYH with eigenvalues λ1, . . . ,λN . Denote mBN
(z) , 1

M

∑M
k=1

1
λk−z , with λi = 0 for

i > N. Then, for M/N → c, N/nk → ck , N/n→ c0, for any z ∈ C+,

mBN
(z)

a.s.−→ mF (z)

with mF (z) the unique solution in C+ of

1

mF (z)
= −σ2 +

1

f (z)

[
c0 − 1

c0
+ mP

(
−

1

f (z)

)]
, with f (z) = (c − 1)mF (z) − czmF (z)2.
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Stieltjes transform method (2)

R. Couillet, J. W. Silverstein, Z. Bai, M. Debbah, “Eigen-Inference for Energy Estimation of
Multiple Sources,” to appear in IEEE Trans. on Inf. Theory, 2010.

I estimator calculus

Theorem (Estimator of P1, . . . ,PK )
Let BN ∈ CN×N be defined as in Theorem 2, and λ = (λ1, . . . ,λN), λ1 < . . . < λN . Assume that
asymptotic cluster separability condition is fulfilled for some k. Then, as N, n, M →∞,

P̂k − Pk
a.s.−→ 0,

where

P̂k =
NM

nk(M − N)

∑
i∈Nk

(ηi −µi )

with Nk the set indexing the eigenvalues in cluster k of F , η1 < . . . < ηN the eigenvalues of

diag(λ) − 1
N

√
λ
√
λ

T
and µ1 < . . . < µN the eigenvalues of diag(λ) − 1

M

√
λ
√
λ

T
.
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Remarks
I solution is computationally simple, explicit, and the final formula compact.

I cluster separability condition is fundamental. This requires
I for all other parameters fixed, the Pk cannot be too close top one another: source separation

problem.
I for all other parameters fixed, σ2 must be kept low: low SNR undecidability problem.
I for all other parameters fixed, M/N cannot be too low: sample deficiency issue (not such an issue

though).
I for all other parameters fixed, N/n cannot be too low: diversity issue.

I exact spectrum separability is an essential ingredient (known for very few models to this day).
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Simulations
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Figure: Histogram of the cluster-mean approach and of P̂k for k ∈ {1, 2, 3}, P1 = 1/16, P2 = 1/4, P3 = 1,
n1 = n2 = n3 = 4 antennas per user, N = 24 sensors, M = 128 samples and SNR = 20 dB.



Statistical inference: improved subspace estimators/Sensor networks: distance estimation 33/61

Performance comparison
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Figure: Normalized mean square error of largest estimated power P̂3, P1 = 1/16, P2 = 1/4, P3 = 1,
n1 = n2 = n3 = 4 ,N = 24, M = 128. Comparison between classical, moment and Stieltjes transform
approaches.
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Outline

Hypothesis testing in large data sets
Finite dimensional approach
Large dimensional considerations

Statistical inference: improved subspace estimators
Sensor networks: distance estimation

Free probability approach
Stieltjes transform approach

Sensor networks: angle-of-arrival estimation

Local failure detection schemes

Research today: Robust estimation and RMT
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Position of the problem

I We consider the sensor network scenario with:
I K signal sources
I an array of N receive antennas, N > K
I line-of-sight signal sensing from angles θ1, . . . ,θK .

I Received signal y(t) ∈ CN at time t

y(t) =

K∑
k=1

s(θk)x
(t)
k +σw(t)

with E [sk ] = 0, E [|xk |
2] = Pk .

I Therefore
E [y(t)y(y)H] , R = S(Θ)PS(Θ)H +σ2IN

where S(Θ) = [s(θ1), . . . , s(θK )] ∈ CN×K , P = diag(P1, . . . , PK ).

I Objective: Based on Y , [y(1), . . . , y(M)], estimate θ1, . . . ,θK ,
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MUSIC method

I Write

R =
(
EW ES

)(σ2IN−K 0
0 LS

)(
EH

W
EH

S

)
with LS = diag(λN−K+1, . . . ,λN), ES = [eN−K+1, . . . , eN ] the signal subspace and
EW = [e1, . . . , eN−K ] the noise subspace.

I By definition,
η(θk) , s(θk)

HEW EH
W s(θk) = 0

I MUSIC algorithm consists in finding θ such that

η̂(θ) , s(θ)HÊW ÊH
W s(θ).

reaches a local minimum, with ÊW = [ê1, . . . , êN−K ] ∈ CN×(N−K) the subspace spanned by
the N − K smallest eigenvalues of

RN =
1

M

M∑
t=1

y(t)y(t)H.

Only M-consistent!
RMT will provide an (N, M)-consistent procedure.



Statistical inference: improved subspace estimators/Sensor networks: angle-of-arrival estimation 36/61

MUSIC method

I Write

R =
(
EW ES

)(σ2IN−K 0
0 LS

)(
EH

W
EH

S

)
with LS = diag(λN−K+1, . . . ,λN), ES = [eN−K+1, . . . , eN ] the signal subspace and
EW = [e1, . . . , eN−K ] the noise subspace.

I By definition,
η(θk) , s(θk)

HEW EH
W s(θk) = 0

I MUSIC algorithm consists in finding θ such that

η̂(θ) , s(θ)HÊW ÊH
W s(θ).
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W s(θ).
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Result on quadratic forms

I Contrary to power inference, we need here results on quadratic forms.

I Starting point: Cauchy integration formula

s(θk)
HEW EH

W s(θk) =
1

2πi

∮
C

s(θk) (R − zIN)−1 s(θk)dz

with C circling around σ2 only (only one pole in z = σ2).

I We then use the result:

Lemma
For a ∈ CN deterministic bounded, independent of RN ,

aH (RN − zIN)−1 a − aH

(
1

1 + ceN(z)
R − zIN

)−1

a
a.s.−→ 0

with eN(z) solution to

e =

∫
t

t
1+ce − z

dF R(t).

I By change of variable, dominated convergence arguments, and residue calculus, we conclude.
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G-MUSIC

X. Mestre, M. A. Lagunas, “Finite sample size effect on minimum variance beamformers:
Optimum diagonal loading factor for large arrays,” IEEE Trans. on Signal Processing, vol. 54, no.
1, pp. 69-82, 2006.

Theorem
Under the above conditions,

η(θ) − η̄(θ)
a.s.−→ 0

as N, M →∞ with 0 < lim N/M <∞, where

η̄(θ) = s(θ)H

(
N∑

n=1

φ(n)ênêH
n

)
s(θ)

with φ(n) defined as

φ(n) =

 1 +
∑N

k=N−K+1

(
λ̂k

λ̂n−λ̂k
−

µ̂k

λ̂n−µ̂k

)
, n 6 N − K

−
∑N−K

k=1

(
λ̂k

λ̂n−λ̂k
−

µ̂k

λ̂n−µ̂k

)
, n > N − K

and with µ1 6 . . . 6 µN the eigenvalues of diag(λ̂) − 1
M

√
λ̂
√
λ̂

T
, λ̂ = (λ̂1, . . . , λ̂N)T.
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Simulation results
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Figure: MUSIC against G-MUSIC for DoA detection of K = 3 signal sources, N = 20 sensors, M = 150
samples, SNR of 10 dB. Angles of arrival of 10◦, 35◦, and 37◦.
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Simulation results (2)
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Figure: MUSIC against G-MUSIC for DoA detection of K = 3 signal sources, N = 20 sensors, M = 150
samples, SNR of 10 dB. Angles of arrival of 10◦, 35◦, and 37◦.
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I Localize local failures based on observations from a sensor network.

I Focus on failures modeled as small rank perturbations of large random matrices.
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Target

I Systems with failures modeled by small rank perturbations

I Observation matrix Σ = [s1, . . . , sn] ∈ CN×n modeled by

Σ = (IN + Pk)
1
2 X

with Pk ∈ CN×N of rank rk � N, X with independent CN(0, 1/n) entries.

I Failure scenarios:
I (H0): no failure, E [ssH] = IN .
I (Hk): 1 6 k 6 K , failure of type k, E [ssH] = IN + Pk .

I Subspace approach for:
I detecting a failure: decide between H0 and H̄0
I diagnosing a failure: upon failure detection, decide on the most probable Hk .
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Example 1

Node failure in sensor networks

I Consider the model
y = Hθ+σw

with H ∈ CN×p deterministic, θ ∼ CN(0, Ip), w ∼ CN(0, IN).

I In particular E [y] = 0 and E [yyH] = R , HHH +σ2IN

I With s = R− 1
2 y, E [ssH] = IN .

I Upon failure of sensor k, y becomes

y ′ = (IN − ek eH
k )Hθ+σk ek eH

k θ
′ +σw

for some noise variance σ2
k .

I Now E [y ′] = 0 and E [y ′y′H] = (IN − ek eH
k )HHH(IN − ek eH

k ) +σ
2
k ek eH

k +σ2IN .

I With now s = R− 1
2 y ′,

E [ssH] = IN + Pk

with

Pk = −R− 1
2 HHHek eH

k R− 1
2 + R− 1

2 ek

[
(eH

k HHHek +σ2
k)eH

k R− 1
2 − eH

k HHHR− 1
2

]
of rank-2 (image of Pk in Span(R− 1

2 ek , R− 1
2 HHHek))
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Example 2

Sudden parameter change detection in sensor networks

I Upon sudden change of parameter θk ,

y ′ = H(Ip +αk ek e∗k)θ+µk Hek +σw

I Then
E [y ′y′H] = H(Ip + [µ2

k + (1 +αk)
2 − 1]ek eH

k )HH +σ2IN .

I With R = HHH +σ2IN and s = R− 1
2 y ′,

E [ssH] = IN + Pk

with
Pk = [µ2

k + (1 +αk)
2 − 1]R− 1

2 Hek eH
k HHR− 1

2 .

of rank-1.
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Eigenvalue and eigenvectors statistics: Method

I Consider the model
Σ = (IN + P)

1
2 X

with, for simplicity
I X standard Gaussian
I P = UΩUH, U = [u1, . . . , ur ] ∈ CN×r , Ω = diag(ω1, . . . ,ωr ), ω1 > . . . >ωr > 0.

I Convergence properties of
I λ1 > . . . > λr , the r largest eigenvalues of ΣΣH

I uH
i ûi ûH

i ui , with ûi the eigenvector associated to λi .

I Study based on two ingredients
I the Stieltjes transform method
I complex analysis
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First order limits: Reminder

I The limiting ρk are given by:

λk
a.s.−→ ρk , 1 +ωk + c(1 +ωk)ω

−1
k , if ωk >

√
c

I Consider ωi and its corresponding eigenvector ui , then

uH
i ûi û

H
i ui

a.s.−→ ζi ,
1 − cω−2

i

1 + cω−1
i

.
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Fluctuations

Second order behaviour for the joint variable((√
N(λi − ρi )

)r

i=1
,
(√

N(uH
i ûi û

H
i ui − ζi )

)r

i=1

)

R. Couillet, W. Hachem, “Local failure detection and diagnosis in large sensor networks”,
(submitted to) IEEE Transactions on Information Theory, arXiv Preprint 1107.1409.

Theorem
Under the conditions above, assuming ωi >

√
c for each i ∈ {1, . . . , r},

((√
N(λi − ρi )

)r

i=1
,
(√

N(uH
i ûi û

H
i ui − ζi )

)r

i=1

)
⇒N

0,


C(ρ1)

. . .

C(ρr )




where

C(ρi ) ,

 c2(1+ωi )
2

(c+ωi )
2(ω2

i −c)

(
c (1+ωi )

2

(c+ωi )
2 + 1

)
(1+ωi )

3c2

(ωi+c)2ωi

(1+ωi )
3c2

(ωi+c)2ωi

c(1+ωi )
2(ω2

i −c)

ω2
i

 .
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Reminder: Fluctuations at the edge of the bulk

I The previous theorem holds for ωi >
√

c, i.e. “strong perturbations”

I For ωi <
√

c, the eigenvalue fluctuations are:

Theorem
If 0 6ωi <

√
c,

N
2
3 (1 +

√
c)−

4
3 c− 1

2 (λi − (1 +
√

c)2)⇒ T2

where T2 is the complex Tracy-Widom distribution function.
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Failure detection and localization

I The proposed subspace procedure is a two-step approach:
I Failure detection procedure, H0 vs. H̄0: We evaluate the statistics of λ1 against the Tracy-Widom

law for a false alarm rate η,

λ′1

H0
≶
H̄0

(T2)
−1(1 − η)

where λ′1 , N
2
3 (1 +

√
cN)−

4
3 c

− 1
2

N (λ1 − (1 +
√

cN)2).

I Failure diagnosis, selection of Hk : We evaluate the joint statistics of λi , ûH
i uk,i for each

k ∈ {1, . . . , K}, and obtain the maximum-likelihood test,

k̂ = arg max
16k6K

r∏
i=1

f
(((√

N(λi − ρk,i )
)r

i=1
,
(√

N(uH
k,i ûi û

H
i uk,i − ζk,i )

)r

i=1

)
; C(ρk,i )

)
with f (x ; R) the Gaussian density with zero mean and variance R, and indices k corresponding to
hypothesis Hk .



Local failure detection schemes/ 51/61

Failure detection and localization

I The proposed subspace procedure is a two-step approach:
I Failure detection procedure, H0 vs. H̄0: We evaluate the statistics of λ1 against the Tracy-Widom

law for a false alarm rate η,

λ′1

H0
≶
H̄0

(T2)
−1(1 − η)

where λ′1 , N
2
3 (1 +

√
cN)−

4
3 c

− 1
2

N (λ1 − (1 +
√

cN)2).
I Failure diagnosis, selection of Hk : We evaluate the joint statistics of λi , ûH
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Results
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Figure: Simulation of sensor failure in an N = 10 node network. Correct detection (CDR) and localization
(CLR) rates for different false alarm rates (FAR) and different n.
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Problem statement

R. A. Maronna, “Robust M-estimators of multivariate location and scatter”, The annals of
statistics, pp. 51-67, 1976.

I Observations x1, . . . , xn ∈ CN of a random vector x with zero mean, variance C.

I Asymptotic behaviour slow to arise for heavy-tailed distributions.
I Stability issues with outliers.
I Statistical inference methods using sample covariance matrix Ŝn (SCM) not appropriate,

ŜN =
1

n

n∑
i=1

xi x
H
i .

I Instead, one uses robust M-estimators, such as fixed-point SCM ĈN , solution to

ĈN =
1

n

n∑
i=1

u

(
1

N
xH

i Ĉ−1
N xi

)
xi x

H
i

for some well-chosen u(x).
I Typically,

I Tyler: u(x) = 1/x (but ĈN non-unique)
I Maronna: u(x) continuous on [0,∞) nonincreasing, φ(x) = xu(x) nondecreasing bounded.

I For elliptical distributions with density

f (x) = Kg
(
(x − x̄)HΣ−1(x − x̄)

)
Ĉn is an n-consistent estimator of the scatter matrix Σ.

I Objective is to study ĈN in large dimensional RMT setting.
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ĈN =
1

n

n∑
i=1

u

(
1

N
xH

i Ĉ−1
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Stieltjes transform approach

R. Couillet, F. Pascal, (on-going work).

Theorem
Assume u(x) of Maronna-type. As N, n→∞ with N/n→ c, for almost every sequence
x1, . . . , xn ∈ CN ,

F ĈN − F u(1)ŜN ⇒ 0.

I Proof based on relaxation of Ĉn into

Ĉn(z) =
1

u
(

eN (z)
1+ceN (z)

) 1

n

n∑
i=1

u

(
1

N
xH

i (Ĉn(z) − zIN)−1xi

)
xi x

H
i

with eN(z) solution to

e =

∫
t

t
1+ce − z

dF CN (t).

I In particular, ĈN(0) = 1
u(1) ĈN .

I We show that:
I Ĉn(z) exists and is unique for z 6 0
I 1

N tr (ŜN − z ′IN)−1 − 1
N tr (ĈN(z) − z ′IN)−1 → 0 for all z, z ′

I Extension to ĈN done by analytic continuation arguments.
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Sketch of proof

Some reminders:

I Limiting spectrum of ŜN
1

N
tr (ŜN − zIN)−1 − mn(z)

a.s.−→ 0

where

mn(z) =

∫
1

1
1+ceN (z) t − z

dF CN (t)

with eN(z) solution to

e =

∫
t

1
1+ce t − z

dF CN (t).

I Restriction of eN(z) to R− is an increasing function, so eN (z)
1+ceN (z) is increasing and has image

on (0, 1].

I For all i ,

xH
i (ŜN − zIN)−1xi −

eN(z)

1 + ceN(z)
a.s.−→ 0.
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i (ŜN − zIN)−1xi −

eN(z)

1 + ceN(z)
a.s.−→ 0.



Research today: Robust estimation and RMT/ 56/61

Sketch of proof

Some reminders:

I Limiting spectrum of ŜN
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Sketch of proof (2)

I Identification of asymptotic equivalence between ŜN and ĈN(z).

Lemma
Denote

Qz
S = (ŜN − zIN)−1.

For z 6 0 and z ′ ∈ C \ R+,

(I)
1

N
tr Qz ′

S =
1

N
tr

 1

u
(

eN (z)
1+ceN (z)

) 1

n

n∑
i=1

u

(
1

N
xH

i Qz
S xi

)
xi x

H
i − z ′IN

−1

+ εn(z)

(II)
1

N
xH

j Qz
S xj =

1

N
xH

j

 1

u
(

eN (z)
1+ceN (z)

) 1

n

n∑
i=1

u

(
1

N
xH

i Qz
S xi

)
xi x

H
i − zIN

−1

xj + ε
j
n(z)

where εn(z)
a.s.−→ 0 and supj |ε

j
n(z)|

a.s.−→ 0 as N, n grow large.
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Sketch of proof (3)

I Securing the spectrum of ĈN(z) for z → 0.

Lemma
There exists ĉ−, ĉ+ > 0 such that, with probability one, for all large N,

ĉ− 6 λmin(ĈN(z)) < λmax(ĈN(z)) 6 ĉ+.

I In order for this to hold, continuity of u(x) in x = 0 is fundamental!

I u(x) = 1/x does not work here. . . This is a major limitation to generalization to Tyler-type!
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Sketch of proof (4)

I Under the above conditions, one can then show

For all z 6 0, z ′ ∈ C \ R+,

1

N
xH

i

(
ŜN − zIN

)−1
xi −

1

N
xH

i

(
ĈN(z) − zIN

)−1
xi

a.s.−→ 0

1

N
tr
(

ŜN − zIN

)−1
−

1

N
tr
(

ĈN(z) − z ′IN

)−1 a.s.−→ 0.

which gives the final result.

Conclusions:

I Most methods of statistical inference for SCM carry over to FP-SCM!

I CLT results should provide efficiency of these statistical tests.
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ŜN − zIN

)−1
xi −

1

N
xH

i

(
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To know more about all this
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The end

Thank you
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