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High-dimensional data

Let x1, x2 . . . ∈ CN be independently drawn from an N-variate process of mean zero and
covariance R = E [x1xH

1 ].

From the law of large numbers, as n→∞,

1

n

n∑
i=1

xi x
H
i =

1

n
XXH a.s.−→ R

with X = [x1, . . . , xn] ∈ CN×n.
In reality, one cannot afford n→∞.

I if n� N,

Rn =
1

n

n∑
i=1

xi x
H
i

is a “good” estimator of R.

I if N/n = O(1), and if both (n, N) are large, we can still say, for all (i , j),

(Rn)ij
a.s.−→ (R)ij

What about the global behaviour? What about the eigenvalue distribution?

Assume R = IN and draw the eigenvalues of Rn for n, N large.
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Empirical and limit spectra of Wishart matrices
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Figure: Histogram of the eigenvalues of Rn for n = 2000, N = 500, R = IN
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Definitions

Definition
Let Ω be some probability space, and let ω ∈Ω. A random matrix X = X(ω) is a random
variable whose value lies in some matrix space.

Note:

I the probability space Ω is often neglected; it is e.g. the propagation environment for MIMO
channel matrices.

I for asymptotic considerations, ω ∈Ω will be the realization of an infinite sequence
X1(ω), X2(ω), . . . of size 1, 2, . . . random matrices.

In practice, we are mostly interested into Hermitian matrices and especially in the distribution of
their eigenvalues.

Definition
The distribution function FN of the eigenvalues of the N ×N random Hermitian matrix
XN = XN(ω) is called the empirical spectrum distribution (e.s.d.) of XN . If FN has a limit F
when N →∞, this limit is called the limit spectral distribution of XN .
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Finite size and asymptotic considerations

The field of random matrices is often segmented into
I Finite-size random matrices:

I of interest are: joint entry distributions, ordered eigenvalue distributions, e.s.d., expectation of
functionals

I particularly suitable to small size matrices
I however, much problems arise for models more involved than i.i.d. Gaussian

I Limiting results:
I of interest are: limit spectral distributions (l.s.d.), functionals of l.s.d., central limit theorems etc.
I suitable to large matrices, but often good approximation to smaller matrices
I much easier to work with than finite size, more flexible (i.i.d., Kronecker, variance profile models,

structured matrices)
I possesses a variety of powerful tools: Stieltjes transform, free probability

Remark: This course will mainly focus on limiting results and almost no finite size considerations.
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Why is this useful to wireless communications?

I increasing number of parameters: multi-user systems, multiple concurrent cells, multiple
antennas

I matrices with random entries are the basis for MIMO channels, CDMA codes

I it is no longer possible to treat large dimensional problems with classical probability
approaches

I random matrices answer a widening panel of problems: system performance, detection,
estimation. . .

Example
MIMO channel capacity Call H ∈ Cn×N the realization of a MIMO channel matrix whose entries
and distributed according to some random process. We have the per-antenna mutual information

C(σ2) =
1

N
log det

[
IN +

1

σ2
HHH

]

Note that, with hi the i th column of H, HHH =
∑N

i=1 hi h
H
i . If H has i.i.d. entries, then, as both

n, N →∞, n/N → c,

C(σ2)→
∫

log

[
1 +

t

σ2

]
dFc(t)

with Fc the Marc̆enko-Pastur law with parameter c.
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Wishart matrices

J. Wishart, “The generalized product moment distribution in samples from a normal multivariate
population”, Biometrika, vol. 20A, pp. 32-52, 1928.

I First random matrix considerations date back to Wishart (1928) who studies the joint
distribution of Gaussian sample covariance matrices Rn = XXH =

∑n
i=1 xi x

H
i ,

xi ∈ CN ∼ N(0, R),

PRn(B) =
πN(N−1)/2

det Rn
∏N

i=1(n − i)!
e−tr (R−1B) det Bn−N

I Subsequent work provide expressions of the joint and marginal eigenvalue distributions,

P(λi )
(λ1, . . . ,λN) =

det({e
−r−1

j λi }N)

∆(R−1)
∆(L)

N∏
j=1

λn−N
j

j!(n − j)!

with r1 > . . . > rN the eigenvalues of R and L = diag(λ1 > . . . > λN) and

pλ(λ) =
1

M

N−1∑
k=0

k!

(k + n − N)!
[Ln−N

k ]2λn−N e−λ

where Lk
n are the Laguerre polynomials defined as

Lk
n(λ) =

eλ

k!λn

dk

dλk
(e−λλn+k)
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Marc̆enko-Pastur law, Semi-circle law, Full circle law...

V. A. Marc̆enko, L. A. Pastur, “Distributions of eigenvalues for some sets of random matrices”,
Math USSR-Sbornik, vol. 1, no. 4, pp. 457-483, 1967.

I If XN ∈ CN×n has i.i.d. entries of mean 0, variance 1/n, then (almost surely) F XN XH
N ⇒ Fc

as N, n→∞, N/n→ c, with Fc the Marc̆enko-Pastur law with density

fc(x) = (1 − c−1)+δ(x) +
1

2πcx

√
(x − a)+(b − x)+, a = (1 −

√
c)2, b = (1 +

√
c)2.

E. Wigner, “Characteristic vectors of bordered matrices with infinite dimensions,” The annals of
mathematics, vol. 62, pp. 546-564, 1955.

I If XN ∈ CN×N is Hermitian with i.i.d. entries of mean 0, variance 1/N, then (almost surely)
F XN ⇒ F where F has density f the semi-circle law

f (x) =
1

2π

√
(4 − x2)+.

I If XN ∈ CN×N has with i.i.d. 0 mean, variance 1/N entries, then asymptotically its complex
eigenvalues distribute uniformly on the complex unit circle.
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Marc̆enko-Pastur law
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Figure: Histogram of the eigenvalues of Rn for n = 2000, N = 500, R = IN
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Semi-circle law
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Figure: Histogram of the eigenvalues of Wigner matrices and the semi-circle law, for N = 500
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Wigner’s proof

I Proof based on the limiting moment of the eigenvalue distribution.

I For X ∈ CN×N Hermitian with Xij ∼ CN(0, 1/N), the limiting density f of the eigenvalues

lim
N→∞ 1

N
tr (X2k+1) = 0

lim
N→∞ 1

N
tr (X2k) =

1

k + 1
C 2k

k

known as the Catalan numbers.

I These are exactly the moments of a semi-cicle distribution!

α2k =
1

π

∫2

−2
x2k
√

4 − x2dx = −
1

2π

∫2

−2

−x√
4 − x2

x2k−1(4 − x2)dx

=
1

2π

∫2

−2

√
4 − x2(x2k−1(4 − x2)) ′dx = 4(2k − 1)α2k−2 − (2k + 1)α2k .

which gives the recursive relation

α2k =
2(2k − 1)

k + 1
α2k−2, defining the Catalan numbers.

Proof impractical for more involved models
Difficult in general to move from moments to distributions / to compute the moments directly.
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Circular law
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Figure: Eigenvalues of XN with i.i.d. standard Gaussian entries, for N = 500.
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More involved matrix models

I much study has surrounded the Marc̆enko-Pastur law, the Wigner semi-circle law etc.
I for practical purposes, we often need more general matrix models

I products and sums of random matrices
I i.i.d. models with correlation/variance profile
I distribution of inverses etc.

I for these models, it is often impossible to have an expression of the limiting distribution.

I sometimes we do not have a limiting convergence.

Tools for random matrix theory
To study these models, a consistent powerful mathematical framework is required.
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Tools for RMT

Various approaches used to deal with random matrices.
I Asymptotic spectrum:

I Method of moments: identify eigenvalue distribution through its moments [e.g. Wigner]
I Free probability theory: study spectrum of random matrix operations through moments of limiting

distributions [e.g. Petz, Biane, Benaych-Georges]
I Stieltjes transform method: study spectrum of random matrix operations through Stieltjes transform

[e.g. Bai, Silverstein, Pastur]
I Gaussian tools on resolvents: study spectrum of Gaussian random matrix operations through

Gaussian tricks on the resolvent [e.g. Pastur, Loubaton, Hachem]
I Replica method: Non-rigorous physical tools to study deterministic equivalents [e.g. Tanaka,

Moustakas, Riegler]
I Orthogonal polynomials and Fredholm determinants: study hole probability, e.g. extreme eigenvalue

distribution through determinantal equations [e.g. Johnstone, Tracy, Widom, Guionnet]
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I Free probability theory: study spectrum of random matrix operations through moments of limiting

distributions [e.g. Petz, Biane, Benaych-Georges]
I Stieltjes transform method: study spectrum of random matrix operations through Stieltjes transform

[e.g. Bai, Silverstein, Pastur]
I Gaussian tools on resolvents: study spectrum of Gaussian random matrix operations through

Gaussian tricks on the resolvent [e.g. Pastur, Loubaton, Hachem]
I Replica method: Non-rigorous physical tools to study deterministic equivalents [e.g. Tanaka,

Moustakas, Riegler]

I Orthogonal polynomials and Fredholm determinants: study hole probability, e.g. extreme eigenvalue
distribution through determinantal equations [e.g. Johnstone, Tracy, Widom, Guionnet]



From Small to Large Dimensional Random Matrices/ 18/78

Tools for RMT

Various approaches used to deal with random matrices.
I Asymptotic spectrum:

I Method of moments: identify eigenvalue distribution through its moments [e.g. Wigner]
I Free probability theory: study spectrum of random matrix operations through moments of limiting

distributions [e.g. Petz, Biane, Benaych-Georges]
I Stieltjes transform method: study spectrum of random matrix operations through Stieltjes transform

[e.g. Bai, Silverstein, Pastur]
I Gaussian tools on resolvents: study spectrum of Gaussian random matrix operations through

Gaussian tricks on the resolvent [e.g. Pastur, Loubaton, Hachem]
I Replica method: Non-rigorous physical tools to study deterministic equivalents [e.g. Tanaka,

Moustakas, Riegler]
I Orthogonal polynomials and Fredholm determinants: study hole probability, e.g. extreme eigenvalue

distribution through determinantal equations [e.g. Johnstone, Tracy, Widom, Guionnet]



From Small to Large Dimensional Random Matrices/ 19/78

Outline of the course

I DAY 1 – Morning:
I Overview free probability theory and moment operations on spectra of random matrices.
I Introduce the Stieltjes transform method and its link to wireless communication and signal

processing quantities.
I Introduce deterministic equivalents as a generalization of limiting spectral distribution analysis.

I DAY 1 – Afternoon:
I Apply the Stieltjes transform method and deterministic equivalents to wireless communications.
I Study of communication performance of CDMA, MIMO, relay channels, and optimization.
I Study of inference methods based on deterministic equivalents for cognitive radios.

I DAY 2 – Morning:
I Extend spectrum analysis and study individual eigenvalue behaviour.
I Introduce eigen-inference methods to extend classical signal processing methods to random matrices.
I Discuss the specific spiked model in which a few eigenvalues escape the spectrum support.

I DAY 2 – Afternoon:
I Apply eigenspectrum analysis and eigen-inference methods to signal processing.
I Study of hypothesis tests in small/large dimensional random matrix scenarios.
I Study of eigen-inference methods to extend subspace methods: distance/DoA estimation.
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Outline

General Introduction to the Course

From Small to Large Dimensional Random Matrices

Moment Methods and Free Probability

The Stieltjes Transform Method
Definition and results
Proof of the Marc̆enko-Pastur law

Deterministic Equivalents
Definition and method
Toy example: Sum of doubly-correlated i.i.d. matrices
A Central Limit Theorem

Research Today: Iterative Deterministic Equivalents
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Eigenvalue distribution and moments
I Moments of eigenvalue distributions,

I The e.s.d. of an N×N Hermitian matrix XN(ω) has successive empirical moments M̂k , k = 1, 2, . . .,

M̂k =
1

N

N∑
i=1

λk
i

I if FN denotes the e.s.d. of XN(ω), Mk is

M̂k =

∫
λk dF(λ)

I In classical probability theory, if A and B are independent, the moments of A + B are
functions of the moments of A and those of B. In particular, for A, B independent,

ck(A + B) = ck(A) + ck(B)

with ck(X) the cumulants of X (polynomial functions of the moments mk of X ).
I The cumulants cn are connected to the moments mn through formulas invoking partitions,

mn =
∑

π∈P(n)

∏
V∈π

c|V |

I If A, B are Hermitian matrices, we feel that, if they have independent entries, there should
exist a relationship between the eigenvalue distribution moments
Mk(A + B) = Eω[M̂k(A(ω) + B(ω))]

Free probability
An extension to non-commutative random variables exists: Free probability.
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Free probability

D. V. Voiculescu, K. J. Dykema, A. Nica, “Free random variables,” American Mathematical
Society, 1992.

Free probability applies to asymptotically large random matrices. We assume here all matrices
have infinite size

I To connect the moments of A + B to those of A and B, independence is not enough. One
needs for A = A(ω) and B(ω) to be realizations of free sub-algebras of random matrices.
Roughly speaking, A and B need to be independent and to have “disconnected
eigen-directions”.

I two Gaussian matrices are free
I a Gaussian matrix and any deterministic matrix are free
I unitary (Haar distributed) matrices are free
I a Haar matrix and a Gaussian matrix are free etc.

I Similarly as in classical probability, we define free cumulants Ck ,

C1 = M1

C2 = M2 − M2
1

C3 = M3 − 3M1M2 + 2M2
1

I A combinatorial description of the relation moments-cumulants invokes non-crossing
partitions,

Mn =
∑

π∈NC(n)

∏
V∈π

C|V |
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Non-crossing partitions

1

2

3

4

5

6

7

8

Figure: Non-crossing partition π = {{1, 3, 4}, {2}, {5, 6, 7}, {8}} of NC(8).
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Moments of sums and products of random matrices

R. Speicher, “Combinatorial theory of the free product with amalgamation and operator-valued
free probability theory,” Mem. A.M.S., vol. 627, 1998.

I Combinatorial calculus of all moments

Theorem
For free random matrices A and B, we have the relationship,

Ck(A + B) = Ck(A) + Ck(B)

Mn(AB) =
∑

(π1,π2)∈NC(n)

∏
V1∈π1
V2∈π2

C|V1|
(A)C|V2|

(B)

in conjunction with free moment-cumulant formula, gives all moments of sum and product.

I Denote mF (z) the moment-generating function of the l.s.d. F of a random Hermitian matrix
X, also called Stieltjes transform,

mF (z) = −

∞∑
k=0

Mk z−k−1

I If F is a compactly supported distribution function, then mF above exists for all z ∈ C∗ and
gives access to F through an inverse Stieltjes-transform formula.
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Free convolution

I In classical probability theory, for independent A, B,

fA+B(x) = fA(x) ∗ fB(x) ,
∫

fA(t)fB(x − t)dt

I In free probability, for free A, B, we use the notations

µA+B = µA �µB, µA = µA+B �µB, µAB = µA �µB, µA = µA+B �µB

Ø. Ryan, M. Debbah, “Multiplicative free convolution and information-plus-noise type matrices,”
Arxiv preprint math.PR/0702342, 2007.

Theorem
Convolution of the information-plus-noise model Let XN ∈ CN×n have i.i.d. Gaussian entries of
mean 0 and variance 1, RN ∈ CN×n, such that µ 1

n RN RH
N
⇒ µΓ , as n/N → c. Then the e.s.d. of

BN =
1

n
(RN +σXN) (RN +σXN)H

converges weakly and almost surely to µB such that

µB =
(
(µΓ �µc)� δσ2

)
�µc

with µc the Marc̆enko-Pastur law.
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Similarities between classical and free probability

Classical Probability Free probability

Moments mk =

∫
xk dF(x) Mk =

∫
xk dF(x)

Cumulants mn =
∑

π∈P(n)

∏
V∈π

c|V | Mn =
∑

π∈NC(n)

∏
V∈π

C|V |

Independence classical independence freeness
Additive convolution fA+B = fA ∗ fB µA+B = µA �µB

Multiplicative convolution fAB µAB = µA �µB

Sum Rule ck(A + B) = ck(A) + ck(B) Ck(A + B) = Ck(A) + Ck(B)

Central Limit
1√
n

n∑
i=1

xi →N(0, 1)
1√
n

n∑
i=1

Xi ⇒ semi-circle law
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Bibliography on Free Probability related work
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Outline

General Introduction to the Course

From Small to Large Dimensional Random Matrices

Moment Methods and Free Probability

The Stieltjes Transform Method
Definition and results
Proof of the Marc̆enko-Pastur law

Deterministic Equivalents
Definition and method
Toy example: Sum of doubly-correlated i.i.d. matrices
A Central Limit Theorem

Research Today: Iterative Deterministic Equivalents
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The Stieltjes transform

Definition
Let F be a probability distribution function. The Stieltjes transform mF of F is the function
defined, for z ∈ C+, as

mF (z) =

∫
1

λ− z
dF(λ)

For a < b real, denoting z = x + iy , we have the inverse formula

F(b) − F(a) = lim
y→0

1

π

∫b

a
=[mF (x + iy)]dx

If F has a density f , then

f (x) = lim
y→0

1

π
=[mF (x + iy)]



The Stieltjes Transform Method/Definition and results 30/78

The Stieltjes transform

Definition
Let F be a probability distribution function. The Stieltjes transform mF of F is the function
defined, for z ∈ C+, as

mF (z) =

∫
1

λ− z
dF(λ)

For a < b real, denoting z = x + iy , we have the inverse formula

F(b) − F(a) = lim
y→0

1

π

∫b

a
=[mF (x + iy)]dx

If F has a density f , then

f (x) = lim
y→0

1

π
=[mF (x + iy)]



The Stieltjes Transform Method/Definition and results 31/78

Remark on the Stieltjes transform

I If F is the e.s.d. of a Hermitian matrix X ∈ CN×N , we might denote mX , mF , and

mX(z) =

∫
1

λ− z
dF(λ) =

1

N

N∑
i=1

1

λi − z
=

1

N
tr
(

diag({λi }
N
i=1) − zIN

)−1
=

1

N
tr (XN − zIN)−1

I For compactly supported F , mF (z) is linked to the moments Mk = E [ 1
N tr (Xk)]

mF (z) = −

∞∑
k=0

Mk z−k−1

The Stieltjes transform is more powerful than the moment approach!
I conveys more information than any K -finite sequence M1, . . . , MK .
I is not handicapped by the support compactness constraint.

I However, Stieltjes transform methods, while stronger, are more painful to work with.
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Properties of the Stieltjes transform

I mF defined in general on C+ but exists everywhere outside the support of F .

I if X ∈ CN×n, the spectral distribution of XXH and XHX only differ by a mass of |N − n|
zeros. Say N > n,

mXXH(z) =
1

N

N∑
i=1

1

λi − z
=

1

N

n∑
i=1

1

λi − z
+

1

N
(N − n)

−1

z

hence

mXXH(z) =
n

N
mXHX −

N − n

N

1

z
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Asymptotic results using the Stieltjes transform

J. W. Silverstein, Z. D. Bai, “On the empirical distribution of eigenvalues of a class of large
dimensional random matrices,” Journal of Multivariate Analysis, vol. 54, no. 2, pp. 175-192,
1995.

Theorem
Let BN = XN TN XH

N ∈ CN×N , where XN ∈ CN×n has i.i.d. entries of mean 0 and variance 1/N,

F TN ⇒ F T and n/N → c. Then, F BN converges weakly and almost surely to F with Stieltjes
transform

mF (z) =

(
c

∫
t

1 + tmF (z)
dF T (t) − z

)−1

whose solution is unique in the set {z ∈ C+, mF (z) ∈ C+}.

The proof of a more general theorem will be given later in this course.

I in general, no explicit expression for F .

I the theorem above characterizes also the Stieltjes transform of BN = T
1
2
N XH

N XN T
1
2
N with

asymptotic distribution F ,

mF = cmF + (c − 1)
1

z

This gives access to the spectrum of the sample covariance matrix model of y, when

yi = T
1
2
N xi , xi i.i.d., TN = E [yyH].
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Getting F ′ from mF

I Remember that, for a < b real,

F ′(x) = lim
y→0

1

π
=[mF (x + iy)]

where mF is (up to now) only defined on C+.
(we will show in Part 3 that it can be somehow extended to C∗)

I to plot the density F ′,
I first approach: span z = x + iy on the line {x ∈ R, y = ε} parallel but close to the real axis, solve

mF (z) for each z, and plot =[mF (z)].
I refined approach: see second part of the course.

Example (Sample covariance matrix)
For N multiple of 3, let F

′TN (x) = 1
3δ(x − 1) + 1

3δ(x − 3) + 1
3δ(x − K) and let

BN = T
1
2
N XH

N XN T
1
2
N with F BN → F , then

mF = cmF + (c − 1)
1

z

mF (z) =

(
c

∫
t

1 + tmF (z)
dF T (t) − z

)−1

We take c = 1/10 and alternatively K = 7 and K = 4.
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Spectrum of the sample covariance matrix
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Figure: Histogram of the eigenvalues of BN = T
1
2
N XH

N XN T
1
2
N , N = 3000, n = 300, with TN diagonal composed

of three evenly weighted masses in (i) 1, 3 and 7 on top, (ii) 1, 3 and 4 at bottom.
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The “Shannon”-transform

A. M. Tulino, S. Verdù, “Random matrix theory and wireless communications,” Now Publishers
Inc., 2004.

Definition
Let F be a probability distribution, mF its Stieltjes transform, then the Shannon-transform VF of
F is defined as

VF (x) ,
∫∞

0
log(1 + xλ)dF(λ) =

∫∞
x

(
1

t
− mF (−t)

)
dt

This quantity is fundamental to wireless communication purposes!
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The Marc̆enko-Pastur law

V. A. Marc̆enko, L. A. Pastur, “Distributions of eigenvalues for some sets of random matrices”,
Math USSR-Sbornik, vol. 1, no. 4, pp. 457-483, 1967.

The theorem to be proven is the following

Theorem
Let XN ∈ CN×n have i.i.d. zero mean variance 1/n entries with finite eighth order moments. As
n, N →∞ with N

n → c ∈ (0,∞), the e.s.d. of XN XH
N converges almost surely to a nonrandom

distribution function Fc with density fc given by

fc(x) = (1 − c−1)+δ(x) +
1

2πcx

√
(x − a)+(b − x)+

where a = (1 −
√

c)2, and b = (1 +
√

c)2.
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The Marc̆enko-Pastur density
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Figure: Marc̆enko-Pastur law for different limit ratios c = limN→∞ N/n.
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Diagonal entries of the resolvent

Since we want an expression of mF , we start by identifying the diagonal entries of the resolvent
(XN XH

N − zIN)−1 of XN XH
N . Denote

XN =

[
yH

Y

]

Now, for z ∈ C+, we have

(
XN XH

N − zIN

)−1
=

[
yHy − z yHYH

Yy YYH − zIN−1

]−1

Consider the first diagonal element of (RN − zIN)−1. From the matrix inversion lemma,(
A B
C D

)−1

=

(
(A − BD−1C)−1 −A−1B(D − CA−1B)−1

−(A − BD−1C)−1CA−1 (D − CA−1B)−1

)
which here gives [(

XN XH
N − zIN

)−1
]

11
=

1

−z − zyH(YHY − zIn)−1y
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Trace Lemma

Z. Bai, J. Silverstein, “Spectral Analysis of Large Dimensional Random Matrices”, Springer Series
in Statistics, 2009.

To go further, we need the following result,

Theorem
Let {AN } ∈ CN×N with bounded spectral norm. Let {xN } ∈ CN , be a random vector of i.i.d.
entries with zero mean, variance 1/N and finite 8th order moment, independent of AN . Then

xH
N AN xN −

1

N
tr AN

a.s.−→ 0.

For large N, we therefore have approximately[(
XN XH

N − zIN

)−1
]

11
' 1

−z − z 1
N tr (YHY − zIn)−1
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Rank-1 perturbation lemma

J. W. Silverstein, Z. D. Bai, “On the empirical distribution of eigenvalues of a class of large
dimensional random matrices,” Journal of Multivariate Analysis, vol. 54, no. 2, pp. 175-192,
1995.

It is somewhat intuitive that adding a single column to Y won’t affect the trace in the limit.

Theorem
Let A and B be N ×N with B Hermitian positive definite, and v ∈ CN . For z ∈ C \ R−,∣∣∣∣ 1

N
tr
(
(B − zIN)−1 − (B + vvH − zIN)−1

)
A

∣∣∣∣ 6 1

N

‖A‖
dist(z,R+)

with ‖A‖ the spectral norm of A, and dist(z, A) = infy∈A ‖y − z‖.
Therefore, for large N, we have approximately,[(

XN XH
N − zIN

)−1
]

11
' 1

−z − z 1
N tr (YHY − zIn)−1

' 1

−z − z 1
N tr (XH

N XN − zIn)−1

=
1

−z − z n
N mF (z)

in which we recognize the Stieltjes transform mF of the l.s.d. of XH
N XN .
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End of the proof

We have again the relation
n

N
mF (z) = mF (z) +

N − n

N

1

z

hence [(
XN XH

N − zIN

)−1
]

11
' 1

n
N − 1 − z − zmF (z)

Note that the choice (1, 1) is irrelevant here, so the expression is valid for all pair (i , i). Summing
over the N terms and averaging, we finally have

mF (z) =
1

N
tr
(

XN XH
N − zIN

)−1
' 1

c − 1 − z − zmF (z)

which solve a polynomial of second order. Finally

mF (z) =
c − 1

2z
−

1

2
+

√
(c − 1 − z)2 − 4z

2z
.

From the inverse Stieltjes transform formula, we then verify that mF is the Stieltjes transform of
the Marc̆enko-Pastur law.
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Reminder and scope

I In the first part of this course,
I we defined the Stieltjes transform:

Definition
Let F be a distribution function, and z ∈ C+. Then the Stieltjes transform mF (z) of F is defined as

mF (z) =

∫
1

λ− z
dF(λ)

For F the spectral distribution of an Hermitian matrix X ∈ CN×N ,

mF (z) =
1

N
tr (X − zIN)−1

I We gave limiting distribution results for some matrix models.
I We gave a sketch of the proof of the Marc̆enko-Pastur law.

I In this second part, we will
I extend the notion of limit distributions to deterministic equivalents
I provide sound mathematical techniques to prove convergence/existence/uniqueness of large N

results.
I provide first wireless communication results
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Limiting results against deterministic equivalents

I previously, we showed results of the type:

“let XN be random, TN deterministic with F TN ⇒ F T , etc. Then, when N →∞, the e.s.d.
of XN tends to F such that mF is solution of a fixed-point equation,

mXN
(z)→ mF (z) ”

I this has major drawbacks
I this assumes TN has a limiting distribution
I if it does, m

XN XH
N

can at best be approximated by mF which is a function of the limiting F T . For

finite N, F TN may be very different from F T .
I any sequence TN with l.s.d. F T engenders the same l.s.d. F .

I instead, we shall use results of the type

“let XN be random, TN deterministic with F TN ⇒ F T , etc. Then the e.s.d. of XN tends to
F such that mF is solution of a fixed-point equation has Stieltjes transform mXN

well
approximated by the deterministic mN , which is the unique solution of a fixed-point equation

and such that

mXN
(z) − mN(z)

a.s.−→ 0 ”

In this case, mN is a function of TN , for fixed N and does not require any convergence of
F TN .
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Outline of the proofs

It will often be the case that the deterministic equivalent mN(z) satisfies an implicit equation.
The steps are then:

1. find a suitable function f , such that the true Stieltjes transform mXN
(z) satisfies, for fixed

z ∈ C+,
mXN

(z) = f (mXN
(z)) + εN

where εN
a.s.−→ 0 as N →∞.

This can be done
I using Pastur’s method (see proof of Marc̆enko-Pastur law)
I using guess-work (see Bai and Silverstein’s proofs)

Remark: This is as far as we went in the first part.

2. For fixed N, prove the existence of a solution to

m = f (m)

This is often based on extracting a converging subsequence of mN , m2N , . . . such that mjN

“has the same properties as mXN
(z) for all j”.

3. For this fixed N, prove the uniqueness of the solution. This involves finding a contradiction if
two solutions exist.

4. Calling mN(z) the solution, prove finally that

mXN
(z) − mN(z)

a.s.−→ 0
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Stieltjes transform of a sum of doubly-correlated matrices

R. Couillet, M. Debbah, J. W. Silverstein, “A deterministic equivalent for the capacity analysis of
correlated multi-user MIMO channels,” vol. 57, no. 6, pp. 3493-3514, 2011.

Theorem

BN =

K∑
k=1

Hk HH
k , with Hk = R

1
2
k Xk T

1
2
k

Xk ∈ CN×nk with i.i.d. entries of zero mean, variance 1/nk , Rk Hermitian nonnegative definite,
Tk diagonal nonnegative, lim supN max(‖Rk‖,‖Tk‖) <∞. Denote ck = N/nk . Then, as all N
and nk grow large, with bounded ratio ck , for z ∈ C \ R−,

mBN
(z) − mN(z)

a.s.−→ 0, mN(z) =
1

N
tr

(
−zIN +

K∑
k=1

ēk(z)Rk

)−1

with e1(z), . . . , eK (z) the unique solutions in {z ∈ C+, ei (z) ∈ C+} or {z ∈ R−, ei (z) ∈ R+} of

ei (z) =
1

N
tr Ri

(
−zIN +

K∑
k=1

ēk(z)Rk

)−1

ēi (z) =
1

ni
tr Ti

(
Ini

+ ci ei (z)Ti

)−1
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Pastur’s method

Pastur’s method is not applicable here, unless all Rk ’s are diagonal.

Consider K = 2 and denote Hk = R
1
2
k Xk T

1
2
k , with diagonal Rk . By block-matrix inversion, we have

(
H1HH

1 + H2HH
2 − zIN

)−1

11
=

([
hH

1 hH
2

U1 U2

] [
h1 UH

1

h2 UH
2

]
− zIN

)−1

11

=

[
−z − z[hH

1 hH
2 ]

([
UH

1
UH

2

]
[U1U2] − zIn1+n2

)−1 [
h1

h2

]]−1

with the definition HH
i = [hi U

H
i ].

The inner inverse matrix is([
UH

1
UH

2

]
[U1U2] − zIn1+n2

)−1

=

[
UH

1 U1 − zIn1 UH
1 U2

UH
2 U1 UH

2 U2 − zIn2

]−1

on which we apply another block matrix inverse lemma. The upper-left (n1 × n1) entry equals(
−zUH

1 (U2UH
2 − zIN−1)

−1U1 − zIn1

)−1

For the second block diagonal entry, it suffices to revert all 1’s in 2’s and vice-versa.
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Pastur’s method

Pastur’s method is not applicable here, unless all Rk ’s are diagonal.

Consider K = 2 and denote Hk = R
1
2
k Xk T

1
2
k , with diagonal Rk . By block-matrix inversion, we have

(
H1HH
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2 − zIN
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11
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([
hH

1 hH
2

U1 U2

] [
h1 UH

1

h2 UH
2
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=
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1 hH
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1
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2
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Pastur’s method (2)

(
H1HH

1 + H2HH
2 − zIN

)−1

11
=[

−z − z[hH
1 hH

2 ]

[(
−zUH

1 (U2UH
2 − zIN−1)

−1U1 − zIn1

)−1
?

?
(
−zUH

2 (U1UH
1 − zIN−1)

−1U2 − zIn2

)−1

][
h1

h2

]]−1

The other two terms do not depend on h1, h2. We now use both results,

For x ∈ CN , y ∈ CN i.i.d. with zero mean, variance 1/N, A ∈ CN×N Hermitian with bounded
spectral norm,

xHAx −
1

N
tr A

a.s.−→ 0

xHAy
a.s.−→ 0

Since R1, R2 are diagonal, hi =
√

ri1Ti
1
2 xi , with the notation Ri = diag(ri1, . . . , riN). Therefore,

using the trace and rank-1 perturbation lemma,(
H1HH

1 + H2HH
2 − zIN

)−1

11
→[

−z − zr11
1

n1
tr T1

(
−zHH

1 (H2HH
2 − zIN)−1H1 − zIn1

)−1
− zr21

1

n2
tr T2

(
−zHH

2 (H1HH
1 − zIN)−1H1 − zIn2

)−1
]−1
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Pastur’s method (3)

Now, denoting Hi = [h̃i Ũi ] (column selection instead of row),

T1

(
−zHH

1 (H2HH
2 − zIN)−1H1 − zIn1

)−1

11
= τ11

[
−z − z h̃H

1

(
Ũ1ŨH

1 + H2HH
2 − zIN

)−1
h̃1

]−1

→ τ11

[
−z − zc1τ11

1

N
tr R1

(
H1HH

1 + H2HH
2 − zIN

)−1
]−1

with τij the j th diagonal entry of Ti . A similar result holds when changing 1’s in 2’s. Call now

fi =
1

N
tr Ri

(
H1HH

1 + H2HH
2 − zIN

)−1

and

f̄i =
1

ni
tr Ti

(
HH

1 (H2HH
2 − zIN)−1H1 + In1

)−1
.

We have shown

fi = lim
N→∞ 1

N
tr Ri

(
f̄1R1 + f̄2R2 − zIN

)−1

f̄i = lim
N→∞ 1

ni
tr Ti

(
ci fi Ti i + Ini

)−1
.
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Deterministic equivalent approach: guess work

We will use here the “guess-work” method to find the deterministic equivalent. Consider the
simpler case K = 1.
Back to the original notations, we seek a matrix D such that

1

N
tr (BN − zIN)−1 −

1

N
tr D−1 a.s.−→ 0

as N →∞.

Resolvent lemma
For invertible A, B matrices,

A−1 − B−1 = −A−1(A − B)B−1

Taking the matrix differences,

D−1 − (BN − zIN)−1 = D−1(R
1
2 XTXHR

1
2 − zIN − D)(BN − zIN)−1

It seems convenient to take D = −zIN + ēBN
R with ēBN

left to be defined (the notation BN in
ēBN

reminds that we do not look yet for a deterministic quantity).
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Deterministic equivalent approach: guess work (2)
With D = −zIN + ēBN

R,

D−1 − (BN − zIN)−1 = D−1(R
1
2 XTXHR

1
2 − zIN − D)(BN − zIN)−1

= D−1R
1
2

(
XTXH

)
R

1
2 (BN − zIN)−1 − ēBN

D−1R(BN − zIN)−1XTXH =

n∑
j=1

τi xj x
H
j

 = D−1
n∑

j=1

τj R
1
2 xj x

H
j R

1
2 (BN − zIN)−1 − ēBN

D−1R(BN − zIN)−1

Taking the trace, we notice that

tr D−1
n∑

j=1

τj R
1
2 xj x

H
j R

1
2 (BN − zIN)−1 =

n∑
j=1

τj x
H
j R

1
2 (BN − zIN)−1D−1R

1
2 xj

and we want to apply the trace lemma! But BN is NOT independent of xj . We need a further
step:

A matrix inversion lemma (MIL)
Let A be Hermitian invertible, then for any vector x and scalar τ such that A + τxxH is invertible

xH(A + τxxH)−1 =
xHA−1

1 + τxA−1xH
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D−1R(BN − zIN)−1XTXH =

n∑
j=1

τi xj x
H
j

 = D−1
n∑

j=1

τj R
1
2 xj x

H
j R

1
2 (BN − zIN)−1 − ēBN
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Deterministic equivalent approach: guess work (2b)

Applying the MIL on A = BN − τj R
1
2 xj x

H
j R

1
2 and A + τxxH = BN (τ = τj , x = R

1
2 xj ),

D−1 − (BN − zIN)−1 =

n∑
j=1

τj

D−1R
1
2 xj x

H
j R

1
2 (B(j) − zIN)−1

1 + τj xHR
1
2 (B(j) − zIN)−1R

1
2 xj

− ēBN
D−1R(BN − zIN)−1

with B(j) = BN − τj R
1
2 xj x

H
j R

1
2 .

Choice of ēBN
:

ēBN
=

1

n

n∑
j=1

τj

1 + τj c
1
N tr R(BN − zIN)−1

,
1

n
tr T

(
In + TceBN

)−1

1

N
tr RD−1 −

1

N
tr R(BN − zIN)−1

=
1

N
tr R

(
ēBN

R − zIN

)−1
− eBN

=
1

N

n∑
j=1

τj

 xH
j R

1
2 (B(j) − zIN)−1RD−1R

1
2 xj

1 + τj xHR
1
2 (B(j) − zIN)−1R

1
2 xj

−
1
n tr R

1
2 (BN − zIN)−1RD−1R

1
2

1 + cτj
1
N tr R

1
2 (BN − zIN)−1R

1
2


a.s.−→ 0.
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Deterministic equivalent approach: guess work (3)

I We now use the trace lemma and standard inequalities to show

∑
N

E

[∣∣∣∣ 1

N
tr (BN − zIN)−1 −

1

N
tr (ēBN

R − zIN)−1

∣∣∣∣p] <∞.

for some integer p, imposing that xi has entries of finite moments of order 2p.
The same can be done for 1

N tr R(BN − zIN)−1 and we get

∑
N

E

[∣∣∣∣ 1

N
tr R(BN − zIN)−1 −

1

N
tr RD−1

∣∣∣∣p] <∞.

Applying Markov inequality and the Borel-Cantelli lemma, we finally have the almost-sure
convergence.

I to extend to more generic conditions on xi (only finite variance requirement), truncation
steps may be applied.
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Truncation tool

J. W. Silverstein, Z. D. Bai, “On the empirical distribution of eigenvalues of a class of large
dimensional random matrices,” Journal of Multivariate Analysis, vol. 54, no. 2, pp. 175-192,
1995.

Truncation and centralization
Replace XN , TN and RN by X̄N , T̄N and R̄N in the following fashion(

X̄N

)
ij = (XN)ij · I{(XN )ij<gN }

for gN that grows

I fast enough to ensure F BN − F B̄N ⇒ 0

I slow enough to ensure 1
N tr (B̄N − zIN)−1 − 1

N tr R̄D̄−1 a.s.−→ 0
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Deterministic equivalent approach: existence and uniqueness

R. D. Yates, “A framework for uplink power control in cellular radio systems”, IEEE Journal on
Selected Areas in Communications, vol. 13, no. 7, pp. 1341-1347, 1995.

To prove existence and uniqueness, we use a constructive approach based on results on standard
interference functions:

Definition
A function h(x1, . . . , xK ) ∈ RK , h = (h1, . . . , hK ), with x1, . . . , xK ∈ R+, is a standard function or
a standard interference function if

1. Positivity: for all j , hj(x1, . . . , xK ) > 0,

2. Monotonicity: if x1 > x ′1, . . . , xK > x ′K , then hj(x1, . . . , xK ) > hj(x ′1, . . . , x ′K ), for all j ,

3. Scalability: for all α > 1 and j , αhj(x1, . . . , xK ) > hj(αx1, . . . ,αxK ).

Theorem
If h(x1, . . . , xK ) is a standard interference function and there exists (x1, . . . , xK ) such that, for all
j , xj > hj(x1, . . . , xK ), then the iteration

x
(t+1)
j = hj(x

(t)
1 , . . . , x

(t)
K ), x

(0)
1 , . . . , x

(0)
K > 0

converges to the unique solution of xj = hj(x1, . . . , xK ), j ∈ {1, . . . , K}.
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Deterministic equivalent approach: existence and uniqueness (2)

We proceed as follows:

I we fix z < 0, and show that the function

h : e 7→ 1

N
tr R (ēR − zIN)−1 , ē =

1

n
tr T (In + ce(z)T)−1

is a standard function.

I we conclude that et(z) = h(et−1(z)), e0(z) = 0, converge to e(z).

I standard holomorphicity arguments (Vitali’s convergence theorem) then show that e(z) is
defined and holomorphic on C \ R+.
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Deterministic equivalent approach: termination of the proof

I It then suffices to show that 1
N tr R(BN − zIN)−1 − e

a.s.−→ 0
This exploits the fact that, for some ω in a probability one space,

1

N
tr R(BN(ω) − zIN)−1 −

1

N
tr R

(
ēBN

R − zIN

)−1
= wN(ω)→ 0.

For z ∈ C \ R+, we have in particular

e(z) −
1

N
tr R(BN(ω) − zIN)−1 = γ(z)

(
e −

1

N
tr R(BN(ω) − zIN)−1

)
+ wN(ω)

where γ(z)→ 0 as |z |→∞. Taking z such that γ(z) < 1 for all N, n,ω, we have

e(z) −
1

N
tr R(BN(ω) − zIN)−1 =

wN

1 −γ(z)
→ 0.

Vitali’s convergence theorem extends this result to z ∈ C \ R+. The result is proved.

I The same argument then applies to mBN
(z) − mN(z).

I We have proved F BN − FN ⇒ 0, almost surely.
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Result on the Shannon transform of BN

Remember now that ∫
log(1 + xt)dF(t) =

∫∞
1/x

(
1

t
− mF (−t)

)
dt.

R. Couillet, M. Debbah, J. W. Silverstein, “A deterministic equivalent for the capacity analysis of
correlated multi-user MIMO channels,” IEEE Trans. on Information Theory, vol. 57, no. 6, pp.
3493-3514, 2011..

Theorem
Under the previous model for BN , as N, nk grow large,

E

[
1

N
log det(xBN + IN)

]
−

[
1

N
log det

(
IN +

K∑
k=1

ēk(−1/x)Rk

)

+

K∑
k=1

1

N
log det

(
Ink

+ ck ek(−1/x)Tk

)
−

1

x

K∑
k=1

ēk(−1/x)ek(−1/x)

]
a.s.−→ 0



Deterministic Equivalents/Toy example: Sum of doubly-correlated i.i.d. matrices 63/78

Result on the Shannon transform of BN

Remember now that ∫
log(1 + xt)dF(t) =

∫∞
1/x

(
1

t
− mF (−t)

)
dt.

R. Couillet, M. Debbah, J. W. Silverstein, “A deterministic equivalent for the capacity analysis of
correlated multi-user MIMO channels,” IEEE Trans. on Information Theory, vol. 57, no. 6, pp.
3493-3514, 2011..

Theorem
Under the previous model for BN , as N, nk grow large,

E

[
1

N
log det(xBN + IN)

]
−

[
1

N
log det

(
IN +

K∑
k=1
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N
log det

(
IN +

K∑
k=1

ēk(−1/x)Rk

)

+

K∑
k=1

1

N
log det

(
Ink

+ ck ek(−1/x)T
1
2
k Pk T

1
2
k

)

−
1

x

K∑
k=1

ēk(−1/x)ek(−1/x)

]
a.s.−→ 0
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Variance profile

W. Hachem, Ph. Loubaton, J. Najim, “Deterministic equivalents for certain functionals of large
random matrices,” Annals of Applied Probability, vol. 17, no. 3, pp. 875-930, 2007.

Theorem
Let XN ∈ CN×n have independent entries with (i , j)th entry of zero mean and variance 1

nσ
2
ij . Let

AN ∈ RN×n be deterministic with uniformly bounded column norm. Then

1

N
tr
(
(XN + AN)(XN + AN)H − zIN

)−1
−

1

N
tr TN(z)

a.s.−→ 0

where TN(z) is the unique function that solves

TN(z) =
(
Ψ−1(z) − zAN Ψ̃(z)AT

N

)−1
, T̃N(z) =

(
Ψ̃−1(z) − zAT

NΨ(z)AN

)−1

with Ψ(z) = diag(ψi (z)), Ψ̃(z) = diag(ψ̃i (z)), with entries defined as

ψi (z) = −

(
z(1 +

1

n
tr D̃i T̃(z))

)−1

, ψ̃j(z) = −

(
z(1 +

1

n
tr Dj T(z))

)−1

and Dj = diag(σ2
ij , 1 6 i 6 N), D̃i = diag(σ2

ij , 1 6 j 6 n)
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Variance profile

W. Hachem, Ph. Loubaton, J. Najim, “Deterministic equivalents for certain functionals of large
random matrices,” Annals of Applied Probability, vol. 17, no. 3, pp. 875-930, 2007.

Theorem
For the previous model, we also have that

1

N
E log det

(
IN +

1

σ2
(XN + AN)(XN + AN)H

)
has deterministic equivalent

1

N
log det

[
1

σ2
Ψ(−σ2)−1 + AN Ψ̃(−σ2)AT

N

]
+

1

N
log det

1

σ2
Ψ(−σ2)−1 −

σ2

nN

∑
i ,j

σ2
ij Tii (−σ

2)T̃jj(−σ
2).
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Haar random matrices

M. Debbah, W. Hachem, P. Loubaton, M. de Courville, “MMSE analysis of certain large
isometric random precoded systems”, IEEE Transactions on Information Theory, vol. 49, no. 5,
pp. 1293-1311, 2003.

I Recent results were proposed when the matrices XN are unitary and unitarily invariant (Haar
matrices).

I The central result is the trace lemma

Lemma
Let W ∈ CN×n be n < N columns of a Haar matrix and w a column of W. Let BN ∈ CN×N a
random matrix, function of all columns of W except w. Then, assuming that, for growing N,
c = supn n/N < 1 and B = supN ‖BN‖ <∞, we have:

wHBN w −
1

N − n
tr (IN − WWH)BN

a.s.−→ 0.
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Haar random matrices

M. Debbah, W. Hachem, P. Loubaton, M. de Courville, “MMSE analysis of certain large
isometric random precoded systems”, IEEE Transactions on Information Theory, vol. 49, no. 5,
pp. 1293-1311, 2003.

I Recent results were proposed when the matrices XN are unitary and unitarily invariant (Haar
matrices).

I The central result is the trace lemma

Lemma
Let W ∈ CN×n be n < N columns of a Haar matrix and w a column of W. Let BN ∈ CN×N a
random matrix, function of all columns of W except w. Then, assuming that, for growing N,
c = supn n/N < 1 and B = supN ‖BN‖ <∞, we have:

wHBN w −
1

N − n
tr (IN − WWH)BN

a.s.−→ 0.
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Haar random matrices (2)

R. Couillet, J. Hoydis, M. Debbah, “Random beamforming over quasi-static and fading channels:
a deterministic equivalent approach”, to appear in IEEE Trans. on Inf. Theory.

Theorem
Let Ti ∈ Cni×ni be nonnegative diagonal and let Hi ∈ CN×Ni . Define Ri , Hi H

H
i ∈ CN×N ,

ci =
ni
Ni

and c̄i =
Ni
N . Denote

BN =

K∑
i=1

Hi Wi Ti W
H
i HH

i .

Then, as N, N1, . . . , NK , n1, . . . , nK →∞ with ratios bounded c̄i and 0 6 ci 6 1 for all i , almost
surely

F BN − FN ⇒ 0, with mN(z) =
1

N
tr

(
K∑

i=1

ēi (z)Ri − zIN

)−1

where (ē1(z), . . . , ēK (z)) are the solutions (conditionally unique) of

ei (z) =
1

N
tr Ri

 K∑
j=1

ēj(z)Rj − zIN

−1

ēi (z) =
1

N
tr Ti

(
ei (z)Ti + [c̄i − ei (z)ēi (z)]Ini

)−1
(compare to i.i.d. case!)
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Alternative strategies

There exists alternative proof strategies for specific models.
I The Gaussian method:

I this technique is meant for random Gaussian X matrices
I based on two ingredients: a Gaussian integration by parts formula, and the Nash-Poincaré inequality.
I advantages:

I sequential method, easy to use
I give results on convergence speed: N(E mBN

− mN )→ 0
I goes beyond the Stieltjes transform method for quadratic forms.

I drawbacks:
I somewhat painful to use, leads to much calculus, less “elegant”
I proves convergence of Gaussian-based models of type N(E mBN

− mN )→ 0 (but interpolation trick can then

be used)

I Diagrammatic approaches: moment “drawing”-based approach that uses combinatorics from
nuclear physics to infer limiting results

I Replica methods: physics-based method, non-mathematically accurate, to conjecture limiting
results.
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Fluctuations of functionals of the e.s.d.

Z. D. Bai and J. W. Silverstein, “CLT of linear spectral statistics of large dimensional sample
covariance matrices,” The Annals of Probability, vol. 32, no. 1A, pp. 553-605, 2004.

Theorem

BN = T
1
2
N XN XH

N T
1
2
N , BN = XH

N TN XN

as usual with XN Gaussian, F TN = diag({τi })⇒ H, |TN |, τ1 > . . . > τN . Denote F and FN the
l.s.d. and det. eq. of F BN , and

GN , N
[
F BN − FN

]
.

For f1, . . . , fk well behaved, then(∫
f1(x)dGN(x), . . . ,

∫
fk(x)dGN(x)

)
⇒ (Xf1 , . . . , Xfk

)

of zero mean and covariance Cov(Xf , Xg ), (f , g) ∈ {f1, . . . , fk }
2, such that

Cov(Xf , Xg ) = −
1

2πi

∮ ∮
f (z1)g(z2)

(m(z1) − m(z2))2
m ′(z1)m ′(z2)dz1dz2

for m(z) the Stieltjes transform of the l.s.d. of BN . The integration contours are positively
defined with winding number one and enclose the support of F .
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Journal of Multivariate Analysis 98(4), pp. 678-694, 2007.
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I D. Guo and S. Verdú, “Multiuser Detection and Statistical Physics,” Communications on Information and Network Security, Kluwer Academic
Publishers, 2003.



Research Today: Iterative Deterministic Equivalents/ 72/78

Outline

General Introduction to the Course

From Small to Large Dimensional Random Matrices

Moment Methods and Free Probability

The Stieltjes Transform Method
Definition and results
Proof of the Marc̆enko-Pastur law

Deterministic Equivalents
Definition and method
Toy example: Sum of doubly-correlated i.i.d. matrices
A Central Limit Theorem

Research Today: Iterative Deterministic Equivalents



Research Today: Iterative Deterministic Equivalents/ 73/78

Why iterated deterministic equivalents?

I Deterministic equivalents for very involved channel models have been established.

I Most works deal with sums of independent random matrices.

I Iterated deterministic equivalents can be used for the study of more complex combinations of
independents matrices.

I Applications extend to models that cannot be treated by free probability theory.
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Iterated deterministic equivalents: A simple example

BN = YnXnXH
n YH

n

I Xn ∈ Cn×n: [X]i ,j ∼ CN
(
0, 1

n

)
I Yn ∈ Cn×n: [Y]i ,j ∼ CN

(
0, 1

n

)
I lim supn

∥∥YnYH
n

∥∥ <∞, almost surely

Idea: YnXn looks like a random matrix Xn with random left-sided correlation Yn.

From Bai and Silverstein result and the Fubini theorem, we have

1

n
tr (Bn + xIn)

−1 −
1

n
tr

(
YnYH

n

1 + en(x)
+ xIn

)−1
a.s.−→ 0

where en(x) is the unique positive solution to

en(x) =
1

n
tr YnYH

n

(
YnYH

n

1 + en(x)
+ xIn

)−1

.
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Iterated deterministic equivalents: A simple example (2)

After straightforward calculations, we have

1

n
tr

(
YnYH

n

1 + en(x)
+ xIn

)−1

= (1 + en(x))
1

n
tr
(

YnYH
n + x (1 + en(x)) In

)−1

en(x) =

√
1

x 1
n tr

(
YnYH

n + x (1 + en(x)) In
)−1

− 1

Applying Bai and Silverstein again yields:

1

n
tr
(

YnYH
n + x (1 + en(x)) In

)−1
−

√
1 + 4

x(1+en(x)) − 1

2
a.s.−→ 0.

Thus,

en(x) −

√√√√ 2√
x2 + 4x

1+en(x) − x
+ 1

a.s.−→ 0
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Iterated deterministic equivalents: A simple example (3/3)

Putting all pieces together, one can show that:

(i)
1

n
tr
(

YnXnXH
n YH

n + xIn

)−1
−

1

n
tr

(
YnYH

n

1 + en(x)
+ xIn

)−1
a.s.−→ 0

(ii)
1

n
tr

(
YnYH

n

1 + en(x)
+ xIn

)−1

− (1 + ē(x))

√
1 + 4

x(1+ē(x)) − 1

2
a.s.−→ 0

where ē(x) is the unique positive solution to

ē(x) =

√√√√ 2√
x2 + 4x

1+ē(x) − x
− 1.

I The same result can be obtained by arguments of free probability theory.

I We did not require the asymptotic freeness of Xn,Yn in the proof.

I The same approach can be extended to more involved channel models.
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Application to other models

Multiple models can be analyzed through the iterated deterministic equivalent approach:

R. Couillet, J. Hoydis, M. Debbah, “Random beamforming over quasi-static and fading channels:
a deterministic equivalent approach”, (to appear in) IEEE Transactions on Information Theory,
arXiv Preprint 1011.3717.

I model BN = HWPWHHH, with
I W ∈ Cn×p Haar,

I H = [h1, . . . , hn] ∈ CN×n, hi = R
1
2
i xi , xi ∼ CN(0, IN),

I P Hermitian nonnegative.

J. Hoydis, R. Couillet, M. Debbah, “Asymptotic Analysis of Double-Scattering Channels ”,
Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 2011.

I model BN = H1H2HH
2 HH

1 with H1 = R1X1T1, H2 = R2X2T2
I R1, R2, T1, T2 Hermitian nonnegative
I X1, X2 independent with i.i.d. entries

J. Hoydis, R. Couillet, M. Debbah, “Iterative deterministic equivalents for the capacity analysis of
communication systems”, (submitted to) IEEE Transactions on Information Theory, 2011.

I model BN =
(∏N

i=1 Hi

)(∏N
i=1 Hi

)H
, Hi with i.i.d. entries.
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I J. Hoydis, R. Couillet, M. Debbah, “Asymptotic Analysis of Double-Scattering Channels ”, Asilomar
Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 2011.

I J. Hoydis, R. Couillet, M. Debbah, “Iterative deterministic equivalents for the capacity analysis of
communication systems”, (submitted to) IEEE Transactions on Information Theory, 2011.
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