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Uplink random CDMA

Uplink Random CDMA Network
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Capacity of uplink random CDMA

I System model conditions,
I uplink random CDMA
I K mobile users, 1 base station
I N chips per CDMA spreading code.
I User k, k ∈ {1, . . . , K} has code wk ∼ CN(0, IN)
I User k transmits the symbol sk .
I User k’s channel is hk

√
Pk , with Pk the power of user k

I The base station receives

y =

K∑
k=1

hk wk

√
Pk sk + n

I This can be written in the more compact form

y = WHP
1
2 s + n

with
I s = [s1, . . . , sK ]T ∈ CK ,
I W = [w1, . . . , wK ] ∈ CN×K ,
I P = diag(P1, . . . , PK ) ∈ CK×K ,
I H = diag(h1, . . . , hK ) ∈ CK×K .



CDMA and point-to-point MIMO capacity/Performance of CDMA systems 7/75

MMSE decoder

I Consists into decoding symbol of user k as

rk = wH
k

(
WHPHHWH +σ2IN

)−1
y.

I The SINR for user’s k signal is

γ
(MMSE)
k = Pk |hk |

2wH
k (

∑
16i6K

i 6=k

Pi |hi |
2wi w

H
i +σ2IN)−1wk

= Pk |hk |
2wH

k (WHPHHWH − Pk |hk |
2wk wH

k +σ2IN)−1wk .

Lemma (Trace Lemma)
If x ∈ CN has i.i.d. entries of zero mean, variance 1/N, and A ∈ CN×N is independent of x with
‖A‖ bounded,

xHAx −
1

N
trA

a.s.−→ 0.

I Then, for N large,

wH
k (WHPHHWH−Pk |hk |

2wk wH
k +σ

2IN)−1wk−
1

N
tr (WHPHHWH−Pk |hk |

2wk wH
k +σ

2IN)−1 a.s.−→ 0.
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MMSE decoder

wH
k (WHPHHWH−Pk |hk |

2wk wH
k +σ

2IN)−1wk−
1

N
tr (WHPHHWH−Pk |hk |

2wk wH
k +σ

2IN)−1 a.s.−→ 0.

I From the rank-1 perturbation lemma,

1

N
tr
(

WHPHHWH − Pk |hk |
2wk wH

k +σ2IN

)−1
−

1

N
tr
(

WHPHHWH +σ2IN

)−1
→ 0,

I The RHS is the Stieltjes transform of WHPHHWH in z = −σ2!

mWHPHHWH(−σ
2)

SINR and Stieltjes transform
Physical interpretation of the Stieltjes transform: SINR at the output of MMSE receiver!
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MMSE decoder

I From previous result,
mWHPHHWH(−σ

2) − mN(−σ2)
a.s.−→ 0

with mN(−σ2) the unique positive solution of

m =

[
1

N
trHPHH

(
mHPHH + IK

)−1
+σ2

]−1

independent of k, or equivalently

m =


σ2 +

1

N

∑
16i6K

Pi |hi |
2

1 + mPi |hi |
2



−1

I Finally,

γ
(MMSE)
k − Pk |hk |

2mN(−σ2)
a.s.−→ 0

and the mutual information reads

C (MMSE)(σ2) −
1

K

K∑
k=1

log2(1 + Pk |hk |
2mN(−σ2))

a.s.−→ 0.
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MMSE decoder

C (MMSE)(σ2) −
1

K

K∑
k=1

log2(1 + Pk |hk |
2mN(−σ2))

a.s.−→ 0.

I AWGN channel, Pk = P, hk = 1,

C (MMSE)(σ2)
a.s.−→ c log2

(
1 +

−(σ2 + (c − 1)P) +
√
(σ2 + (c − 1)P)2 + 4Pσ2

2σ2

)

I Rayleigh channel, Pk = P, |hk | Rayleigh,

m =

[
σ2 + c

∫
Pt

1 + Ptm
e−t dt

]−1

and

CMMSE(σ
2)

a.s.−→ c

∫
log2

(
1 + Ptm(−σ2)

)
e−t dt.
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Matched-Filter and Optimal decoder

I Similarly, we can compute deterministic equivalents for the matched-filter performance,

CMF(σ
2) −

1

N

K∑
k=1

log2

(
1 +

Pk |hk |
2

1
N

∑K
i=1 Pi |hi |

2 +σ2

)
a.s.−→ 0

I AWGN case,

CMF(σ
2)

a.s.−→ c log2

(
1 +

P

Pc +σ2

)

I Rayleigh case,

CMF(σ
2)

a.s.−→ −c log2(e)e
Pc+σ2

P Ei

(
−

Pc +σ2

P

)

I ... and the optimal joint-decoder performance

Copt(σ
2) − log2

(
1 +

1

σ2N

K∑
k=1

Pk |hk |
2

1 + cPk |hk |
2mN(−σ2)

)
−

1

N

K∑
k=1

log2

(
1 + cPk |hk |

2mN(−σ2)
)

− log2(e)
(
σ2mN(−σ2) − 1

)
a.s.−→ 0.

with mN(−σ2) defined as previously.

I Similar expressions are obtained for the AWGN and Rayleigh cases.
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Simulation results: AWGN case
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Figure: Spectral efficiency of random CDMA decoders, AWGN channels. Comparison between simulations and
deterministic equivalents (det. eq.), for the matched-filter, the MMSE decoder and the optimal decoder,
K = 16 users, N = 32 chips per code. Rayleigh channels. Error bars indicate two standard deviations.
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Simulation results: Rayleigh case
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Figure: Spectral efficiency of random CDMA decoders, Rayleigh fading channels. Comparison between
simulations and deterministic equivalents (det. eq.), for the matched-filter, the MMSE decoder and the optimal
decoder, K = 16 users, N = 32 chips per code. Rayleigh channels. Error bars indicate two standard deviations.
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Simulation results: Performance as a function of K/N
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Figure: Spectral efficiency of random CDMA decoders, for different asymptotic ratios c = K/N, SNR=10 dB,
AWGN channels. Deterministic equivalents for the matched-filter, the MMSE decoder and the optimal decoder.
Rayleigh channels.
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I S. Shamai and S. Verdú, “The impact of frequency-flat fading on the spectral efficiency of CDMA,” IEEE Trans. on Information Theory, vol. 47, no.
4, pp. 1302-1327, 2001.
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Point-to-point MIMO

Point-to-Point MIMO
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Quasi-static channels
I Assume nr × nt MIMO channel H

I Performance measures of interest:
I quasi-static mutual information / capacity
I ergodic mutual information / capacity
I rate vs. outage mutual information / capacity

I Quasi-static capacity:
C (nr ,nt )(σ2) = max

P
1

nt
trP6P

I(nr ,nt )(σ2; P)

with I(nr ,nt )(σ2; P) the mutual information

I(nr ,nt )(σ2; P) , log2 det

(
Inr +

1

σ2
HPHH

)

and P the Gaussian signal covariance.

I Capacity achieved by water-filling algorithm for all finite nr , nt .

I For H such that F HHH ⇒ F ,

1

nr
C (nr ,nt )(σ2)

a.s.−→
∫

log

(
1 +

1

σ2
λ

[
µ−

σ2

λ

]+)
dF(λ)

with µ such that ∫ [
µ−

σ2

λ

]+
dF(λ) = P.
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Ergodic capacity

I Ergodic mutual information and capacity:

C
(nr ,nt )
ergodic(σ

2) = max
P

1
nt

trP6P

E
[
I(nr ,nt )(σ2; P)

]
.

I Capacity unknown in closed form! (solution given by convex optimization algo)

I For classical channel models (Gaussian i.i.d., Kronecker, Rice, etc.), deterministic equivalent
optimization can be solved!

I Example: Kronecker channel model H = R
1
2 XT

1
2 , X ∈ Cnr×nt i.i.d. Gaussian, entries (0, 1

nt
).

I For all covariance P bounded,

1

nr
E
[
I (nr ,nt )(σ2; P)

]
−

1

nr
Ī (nr ,nt )(σ2; P)→ 0

with

1

nr
Ī (nr ,nt )(σ2; P) ,

1

nr
log det (Inr + ēR) +

1

nr
log det (Int + ceTP) −σ2ēe

where c = nr/nt and

e =
1

σ2nr
trR (Inr + ē)−1 , ē =

1

σ2nt
trTP (Int + ceTP)−1 .
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Ī (nr ,nt )(σ2; P) ,

1

nr
log det (Inr + ēR) +
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Ergodic capacity: Capacity achieving covariance matrix
I We wish to determine P◦ such that

P◦ = arg max
P

Ī (nr ,nt )(σ2; P).

I Under some conditions, and with convexity arguments,

E
[
I (nr ,nt )(σ2; P?)

]
−E

[
I (nr ,nt )(σ2; P◦)

]
→ 0

with P? the capacity maximizing precoder.
I To determine P◦, we use the differentiation chain rule

d

dP
Ī (nr ,nt )(σ2; P) =

[
∂V

∂P
+
∂V

∂f

∂f

∂P
+
∂V

∂f̄

∂f̄

∂P

]
(e, ē, P)

with

V : (f , f̄ , P) 7→ 1

nr
log det

(
Inr + f̄ R

)
+

1

nr
log det (Int + cf TP) −σ2 f̄ f .

I We now observe that

∂V

∂f
(e, ē, P) =

1

nt
trTP (Int + ceTP) −σ2ē = 0

∂V

∂f̄
(e, ē, P) =

1

nr
trR (Inr + ēR) −σ2e = 0.
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Ergodic capacity: Capacity achieving covariance matrix (2)

I Therefore

d

dP
Ī (nr ,nt )(σ2; P) =

∂V

∂P
(e, ē, P) =

∂

∂P

[
1

nr
log det (Int + ceTP)

]

whose zero corresponds to the water-filling solution when e = e◦ (e◦ = e(P◦)).

I Therefore, for T = UTΛT UH
T ,

P◦ = UT QUH
T , Qij = δ

j
i

(
µ−

1

ce◦Tii

)+

with µ such that 1
nt

∑nt
i=1

(
µ− 1

ce◦Tii

)+
= P.

I Solution can be found by the iterative water-filling algorithm.

I It is known that, upon convergence, the algorithm convergences to the correct solution.
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Mutual information vs. outage

I We wish to evaluate, for given R,

P
(

I (nr ,nt )(σ2; P) < R
)

.

I For this, we use central limit theorems of the type

1

θnr

(
I (nr ,nt )(σ2; P) − E

[
I (nr ,nt )(σ2; P)

])
⇒N(0, 1).

I In the case of i.i.d. Gaussian channel,

θ2
nr

= θ2 = log


1 −

σ4

16c

(√
(1 +

√
c)2

σ2
+ 1 −

√
(1 −

√
c)2

σ2
+ 1

)4

 .

I Many results exist for the CLT of more generic models.

I This is outside the scope of this lecture.
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MIMO-MAC

Uplink MIMO-MAC Network
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MIMO-MAC, SINR of the MMSE receiver

R. Couillet, M. Debbah, J. W. Silverstein, “A Deterministic Equivalent for the Analysis of
Correlated MIMO Multiple Access Channels”, IEEE Transactions on Information Theory, vol. 57,
no. 6, pp. 3493-3514, 2011.

BN =

K∑
k=1

Hk HH
k , with Hk = R

1
2
k Xk T

1
2
k

with Xk ∈ CN×nk with i.i.d. entries of zero mean, variance 1/nk , Rk Hermitian nonnegative
definite, Tk diagonal. Denote ck = N/nk . Then, as all N and nk grow large, with ratio ck ,

1

N
tr (BN +σ2IN)−1 −

1

σ2

1

N
tr

(
IN +

K∑
k=1

ēk Rk

)−1

a.s.−→ 0

where the set of {ei } form the unique positive solution to the K equations

ei =
1

σ2

1

N
trRi

(
IN +

K∑
k=1

ēk Rk

)−1

, ēi =
1

σ2

1

ni
trTi

(
Ini

+ ci ei (z)Ti

)−1
.

Hence, the SINR at the output of the MMSE receiver for user stream i of user k, γik , satisfies

γik = hH
k,i

(
BN − hk,i h

H
k,i +σ

2IN
)−1

− tk,i ei
a.s.−→ 0.



Multi-user multi-cell performance/Sum rate performance and capacity region of MIMO-MAC 27/75

MIMO-MAC, SINR of the MMSE receiver

R. Couillet, M. Debbah, J. W. Silverstein, “A Deterministic Equivalent for the Analysis of
Correlated MIMO Multiple Access Channels”, IEEE Transactions on Information Theory, vol. 57,
no. 6, pp. 3493-3514, 2011.

BN =

K∑
k=1

Hk HH
k , with Hk = R

1
2
k Xk T

1
2
k

with Xk ∈ CN×nk with i.i.d. entries of zero mean, variance 1/nk , Rk Hermitian nonnegative
definite, Tk diagonal. Denote ck = N/nk . Then, as all N and nk grow large, with ratio ck ,

1

N
tr (BN +σ2IN)−1 −

1

σ2

1

N
tr

(
IN +

K∑
k=1
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MIMO-MAC, sum-rate

I Under the previous model for BN , as N, nk grow large,

E

[
1

N
log det

(
IN +

1

σ2
BN

)]

−

[
1

N
log det

(
IN +

K∑
k=1

ēk Rk

)
+

K∑
k=1

1

N
log det

(
Ink

+ ck ek Tk Pk

)
−σ2

K∑
k=1

ēk ek

]
→ 0.

I The deterministic-equivalent maximizing precoders P◦1, . . . , P◦K satisfy

P◦k = Uk diag(p◦k,1, . . . , p◦k,nk
)UH

k , where Tk = Uk diag(tk,1, . . . , tk,nk
)UH

k

and pk,i defined by iterative water-filling as

p◦k,i =

(
µk −

1

ck e◦k tk,i

)+

with µk such that 1
nk

trP◦k = Pk , and e◦k defined as ek for (P1, . . . , PK ) = (P◦1, . . . , P◦K ).

I Moreover, under some conditions,

‖P?
k − P◦k‖ → 0.
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Linearly precoded broadcast channels

Deterministic equivalents of sum-rate capacity for linearly precoded broadcast channels,

I K users, N antennas at the base station, c = N/K , MISO channels h1, . . . , hK ,
H = [h1, . . . , hK ].

I accounting for base station antenna correlation Rk to user k, user path loss tk ,

hk =
√

tk R
1
2
k xk , xk ∼ CN(0, 1

N IN).

I assuming imperfect channel state information ĥk of hk

ĥk =
√

1 − τ2
k hk + τk wk , wk ∼ CN(0,

1

N
IN)

I focus on the output SINR γk of linear receivers Ĝ = [ĝ1, . . . , ĝK ] for each user k, with
Ĝ = f (Ĥ).
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Linearly precoded broadcast channels, system model

I Signal model for user k,

yk = hH
k

[
Ĝxt +σwt

]
= hH

k


ĝk xk,t +

∑
j 6=k

ĝj xj ,t +σwt


 .

I Output SINR

γk =
|hH

k ĝk |
2

hH
k ĜĜHhk − |hH

k ĝk |
2 +σ2

.

I Specific precoders (with ξ power normalization):

I Matched-filter: Ĝmf = ξĤ
I Zero-forcing: Ĝzf = ξĤ(ĤHĤ)−1

I Regularized zero-forcing: Ĝrzf = ξ(ĤĤH +αIN)−1Ĥ
I Optimal linear precoder: Ĝopt limiting solution of iterative formulation.
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Linearly precoded broadcast channels

S. Wagner, R. Couillet, M. Debbah, D. Slock, “Large System Analysis of Linear Precoding in
Correlated MISO Broadcast Channels under Limited Feedback”, (to appear in) IEEE Transactions
on Information Theory, arXiv Preprint 0906.3682, 2010.

Results:

I Deterministic equivalents for the output SINR, i.e. we find γ̄k such that

γk − γ̄k
a.s.−→ 0.

I for specific precoders (MF, ZF, RZF)
I requires deterministic equivalents for several terms in expression of γk
I specific problems appear for ZF due to matrix inversion

I These results allow one to characterize:
I optimal number of users to serve
I optimal parameter for specific precoders (e.g. regularizes zero-forcing)
I optimal feedback time in block-fading channel models
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SINR approximation in white setting

I Deterministic equivalents γ̄k for γk , with τ > 0, Ri = IN , ti = 1.

I MF Precoding: Gmf = ξĤ

γ̄k,mf =
1 − τ2

k

1 +σ2
c

I ZF Precoding (c > 1): Gzf = ξĤ(ĤHĤ)−1

γ̄k,zf =
1 − τ2

k

τ2
k + 1

ρ

(β− 1)

I RZF Precoding (α > 0, c > 1): Grzf (α) = ξĤ(ĤHĤ +αIN)−1

γ̄k,rmf (α) =
e(1 − τ2

k)
[
1 +αc(1 + e)2

]

1 − τ2
k [1 − (1 + e)2] +σ2(1 + e)2

with

e =
c − 1 − cα+

√
(c − 1)2 + 2(1 + c)αc +α2c2

2αc

I Optimal linear precoder: difficult to analyze due to recursive definition.
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I Optimal linear precoder: difficult to analyze due to recursive definition.
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Performance of different regularizations
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Multi-user multi-cell performance/Linearly precoded broadcast channels 34/75

Performance of different regularizations

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

SNR σ−2 [dB]

er
g

o
d

ic
su

m
ra

te
[b

it
s/

s/
H

z]

N = K = 5, Rk = IN ∀k, and τ2
k = 0.1

α = α? α = ᾱ? α = ᾱ◦
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Optimal cell loading c?

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

22

24

N =8

N =16

N =32

SNR σ−2 [dB]

o
p

ti
m

a
l

n
u

m
b

er
o

f
u

se
rs

Rk = IN ∀k, τ2 = 0.1

K̄?=N/c̄◦

K? from exhaustive search



Multi-user multi-cell performance/Linearly precoded broadcast channels 35/75

Optimal cell loading c?

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

22

24

N =16

SNR σ−2 [dB]

o
p

ti
m

a
l

n
u

m
b

er
o

f
u

se
rs

Rk = IN ∀k, τ2 = 0.1

K̄?=N/c̄◦

K? from exhaustive search

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

SNR σ−2 [dB]

er
g

o
d

ic
su

m
ra

te
[b

it
s/

s/
H

z]

N =16, Rk = IM ∀k, and τ2 =0.1

K = K?



Multi-user multi-cell performance/Linearly precoded broadcast channels 35/75

Optimal cell loading c?

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

22

24

N =16

SNR σ−2 [dB]

o
p

ti
m

a
l

n
u

m
b

er
o

f
u

se
rs

Rk = IN ∀k, τ2 = 0.1

K̄?=N/c̄◦

K? from exhaustive search

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

SNR σ−2 [dB]

er
g

o
d

ic
su

m
ra

te
[b

it
s/

s/
H

z]

N =16, Rk = IM ∀k, and τ2 =0.1

K = K?

K = K̄?



Multi-user multi-cell performance/Linearly precoded broadcast channels 35/75

Optimal cell loading c?

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

22

24

N =16

SNR σ−2 [dB]

o
p

ti
m

a
l

n
u

m
b

er
o

f
u

se
rs

Rk = IN ∀k, τ2 = 0.1

K̄?=N/c̄◦

K? from exhaustive search

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

SNR σ−2 [dB]

er
g

o
d

ic
su

m
ra

te
[b

it
s/

s/
H

z]

N =16, Rk = IM ∀k, and τ2 =0.1

K = K?

K = K̄?

K = 8



Multi-user multi-cell performance/Linearly precoded broadcast channels 35/75

Optimal cell loading c?

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

22

24

N =16

SNR σ−2 [dB]

o
p

ti
m

a
l

n
u

m
b

er
o

f
u

se
rs

Rk = IN ∀k, τ2 = 0.1

K̄?=N/c̄◦

K? from exhaustive search

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

SNR σ−2 [dB]

er
g

o
d

ic
su

m
ra

te
[b

it
s/

s/
H

z]

N =16, Rk = IM ∀k, and τ2 =0.1

K = K?

K = K̄?

K = 8

K = 4



Multi-user multi-cell performance/Multi-hop relay channels 36/75

Outline

CDMA and point-to-point MIMO capacity
Performance of CDMA systems
Point-to-point MIMO performance

Multi-user multi-cell performance
Sum rate performance and capacity region of MIMO-MAC
Linearly precoded broadcast channels
Multi-hop relay channels

Applications to cognitive radios
Capacity inference methods

Research today: Green self-organizing small cell radios
Cell planning
3D beamforming



Multi-user multi-cell performance/Multi-hop relay channels 37/75

Amplify-and-forward Multi-hop relay channel

I A source communicates x to destination via K − 2 relays.

I Each node receives only from previous node.

I Relays amplify-and-forward to next node.

I We do not account for transmission delay
(e.g. K − 1 TDMA time slots).

Product of random matrices
The model naturally calls for the method of iterative deterministic equivalents.
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Channel model

Received signal vector yk ∈ Cnk at node k:

yk =
√
αk Hk

√
βk−1

nk−1
yk−1︸ ︷︷ ︸

Signal from node k − 1

+ wk

I Hk ∈ Cnk×nk−1 , standard complex Gaussian

I y0 = x ∼ CN(0, In0), input vector

I wk ∼ CN(0, Ink
), noise at node k

I Transmit signal scaled according to power constraint ρk :

βk =
ρk

1
nk

tr
(
E[yk yH

k ]
)

I Large system limit: n0 →∞, with

0 < lim inf
n

ck ,
nk−1

nk
6 lim sup ck <∞, ∀k.
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Mutual information

I Normalized mutual information Ik(βk) between yk and x can be written as:

Ik(βk) = Jk(1,βk) − Jk(1,β ′k)

where

Jk (x ,βk) =
1

nk
log det

(
Ink

+ x
αkβk−1

nk−1
Hk Rk−1HH

k

)

with

R0 = E
[
xxH

]
= In

Rk = E
[
yk yH

k

]
= Ink

+
αkβk−1

nk−1
Hk Rk−1HH

k , k = 1, . . . , K

and βk = [β0, · · · ,βk−1], β
′
k = [0,β1, · · · ,βk−1].

Example

I2(β2) =
1

n2
log det

(
In2 +

α2β1

n1
H2R1HH

2

)
−

1

n2
log det

(
In2 +

α2β1

n1
H2HH

2

)
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Asymptotic power normalization

I Power normalization

βk
a.s.−→ β̄k =

ρk

1 +αkρk−1
, k = 1, . . . , K − 1

where β0 = β̄0 = ρ0.

I Recursive definition of

Rk = Ink
+
αkβk−1

nk−1
Hk Rk−1HH

k

allow us to find iterative deterministic equivalents for

Jk (x ,βk) =
1

nk
log det

(
Ink

+ x
αkβk−1

nk−1
Hk Rk−1HH

k

)
.
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Deterministic equivalent for the capacity

J. Hoydis, R. Couillet, M. Debbah, “Iterative Deterministic Equivalents for the Capacity Analysis
of Communication Systems”, (submitted to) IEEE Transactions on Information Theory.

Theorem (Deterministic equivalent of Jk (x ,βk))

Jk (x ,βk) − J̄k

(
x , β̄k

) a.s.−−−→
n→∞ 0

with J̄k

(
x , β̄k

)
recursively defined for k > 2 as

J̄k

(
x , β̄k

)
= ck J̄k−1

(
xαk β̄k−1

ck + xαk β̄k−1 + ēk−1

(
x , β̄k−1

) , β̄k−1

)

+ ck log

(
1 +

xαkβk−1

ck + ēk−1

(
x , β̄k−1

)
)

+ log

(
1 +

ēk−1

(
x , β̄k−1

)

ck

)
−

ēk−1

(
x , β̄k−1

)

1 + ēk−1

(
x , β̄k−1

)

and ēk

(
x , β̄k−1

)
for k > 0 given on next slide.

Moreover,

J̄1
(
x , β̄0

)
= c1 log

(
1 +

xα1β̄0

c1 + ē0
(
x , β̄0

)
)

+ log

(
1 +

ē0
(
x , β̄0

)

c1

)
−

ē0
(
x , β̄0

)

1 + ē0
(
x , β̄0

) .
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(
x , β̄0

) .



Multi-user multi-cell performance/Multi-hop relay channels 42/75

Deterministic equivalent for the capacity (2)

Theorem (Recursive definition of ēk )

I ēk

(
x , β̄k

)
is the unique positive solution to

ēk

(
x , β̄k

)
= ck+1

(
ck+1 + ēk

(
x , β̄k

))

−
ck+1

(
ck+1 + ēk

(
x , β̄k

))2

xαk+1β̄k
m̄k−1

(
xαk+1β̄k

ck+1 + xαk+1β̄k + ēk

(
x , β̄k

) , β̄k−1

)

where

m̄k

(
x , β̄k

)
=

xck+1

ck+1 + ēk

(
x , β̄k

) .

I Initial values m̄0(x , β̄0) and ē0(x , β̄0) given in closed-form:

m̄0(x , β̄0) =
c1

α1β̄0
c1+ē0(x ,β̄0)

+ 1
x

+ (1 − c1)x

ē0
(
x , β̄0

)
= −

xα1β̄0(1 − c1) + c1

2
+

√(
xα1β̄0(1 − c1) + c1

)2
+ 4xα1β̄0c2

1

2
.
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(
x , β̄k

) , β̄k−1

)

where

m̄k

(
x , β̄k

)
=

xck+1

ck+1 + ēk
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Numerical example: Amplify-and-forward Multi-hop relay channel
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Rate inference

Rate inference under interference
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Rate inference setting

I System setting:
I Known own-channel H ∈ CN×s

I Unknown co-channels G1, . . . , GK , collected as G = [G1, . . . , GK ] ∈ CN×n, n unknown
I Additive noise with variance σ2IN .

I Received signals
ȳt = Hst︸︷︷︸

Signal of interest

+ Gxt︸︷︷︸
Interference

+σwt

collected for t = 1, . . . , M, as
Ȳ = HS + GX +σW.

I Objective is to infer the rate

C ,
1

N
log det

(
HHH + GGH +σ2IN

)
−

1

N
log det

(
GGH +σ2IN

)

I Flexible radio setting: exploration phase after free bandwidth detection, bands f1, . . . , fB .

I Choice of preferred bandwidth based on fast rate estimation.
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Random matrix context and traditional estimator

I Use G-estimation to infer on C assuming M, N, n, s →∞ with nontrivial ratios.

I Two approaches:
I either based on contour integration and the Stieltjes transform (see Part 2-B of the lecture)
I or based on direct inference from the deterministic equivalents
I we use here the second approach.

I Recall the model
ȲN×M = HS + GX +σW

I Since H is known and S can be decoded, one can access:

Y = GX +σW.

I Traditional estimator of C :

ĈT =
1

N
log det(YYH + HHH) −

1

N
log det(YYH).

shows low performance when M, N of similar dimensions.
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Bias of the traditional estimator

I ĈT is biased.

I bias can be determined using deterministic equivalents.

Lemma
Let T =

(
HHH +

GGH+σ2IN
1+κ

)−1
where κ is the unique solution of:

κ =
1

M
tr



(

GGH +σ2IN

)(
HHH +

(
GGH +σ2IN

)

1 + κ

)−1

 ,

then

ĈT −
1

N
VT

a.s.−→ 0

with VT given by

VT = − log det(T) + M log(1 + κ) − M
κ

1 + κ
− log det(GGH +σ2IN) + (M − N) log(1 −

N

M
) + N
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G-estimator
I Note that − log det(T) is similar in form to the desired quantity C .

I In order for C to appear in the limit, we consider a parametrization of ĈT :

ĈT (y) =
1

N
log det(YYH + yHHH) −

1

N
log det(YYH).

I We then prove

ĈT (y) −
1

N
VT (y)

a.s.−→ 0

where VT (y) is defined by:

VT (y) = − log det(T(y)) + M log(1 + κ(y)) − M
κ(y)

1 + κ(y)

− log det(GGH +σ2IN) + (M − N) log

(
M − N

M

)
+ N

with

T(y) =

(
yHHH +

GGH +σ2IN

1 + κ(y)

)−1

and κ(y) solution of

κ(y) =
1

M
tr



(

GGH +σ2IN

)(
yHHH +

(
GGH +σ2IN

)

1 + κ(y)

)−1

 .
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G-estimator (2)

I Key idea is to choose y so that C appears in the deterministic equivalent.

I In our case, y is set to

y =
1

1 + κ(y)
.

I We have moreover the uniqueness result

Lemma
There exists a unique y?

N verifying:

y?
N =

1

1 + κ(y?
N)

Moreover y?
N is given by:

y?
N = 1 −

1

M
tr

(
(GGH +σ2IN)

(
HHH + GGH +σ2IN

)−1
)

.
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G-estimator (3)

I Unfortunately y?
N depends on the unknown GGH +σ2IN .

I We need to estimate it consistently.

Lemma
Let ŷN the unique solution of

y =
1

M
tr yHHH

(
yHHH +

1

M
YYH

)−1

+
M − N

M
.

Then
ŷN − y?

N
a.s.−→ 0.
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G-estimator (4)

A. Kammoun, R. Couillet, J. Najim, M. Debbah, “Performance of Capacity Inference Methods
under Colored Interference”, (submitted to) IEEE Transactions on Information Theory, arXiv
Preprint 1105.5305.

Using previous results, a consistent estimator of C is then given by the following result.

Theorem
As M, N →∞ with nontrivial ratio

C − Ĉ
a.s.−→ 0

where

Ĉ =
1

N
log det

(
IN + ŷN HHH

(
1

M
YYH

)−1
)

+
(M − N)

N

[
log

(
M

M − N
ŷN

)
+ 1

]
−

M

N
ŷN

and ŷN is the unique positive solution of

y =
1

M
tr yHHH

(
yHHH +

1

M
YYH

)−1

+
M − N

M
.
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Fluctuations

We moreover have the following fluctuations of the estimator Ĉ .

Theorem
The G-estimator Ĉ satisfies:

N

θN
(Ĉ − C)

L−−−→
N→∞ N(0, 1)

where θN is given by:

θN = log

(
M2y∗N
M − N

)
− log

[
M − tr

(
IN + HHH

(
GGH +σ2IN

)−1
)−2

]
.
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G-estimator, simulation
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Deterministic equivalents: Cooperation with fixed user terminals

y =




y1

.

.

.
yB


 = Hs + n =




G1T
1
2
1

.

.

.

GB T
1
2
B







s1

.

.

.
sK


+




n1

.

.

.
nB




I sk ∼ NC(0,ρ): transmit symbol of UT K

I nb ∼ NC(0, INb
): noise at BS b

I Gb ∈ CNb×K , [Gb]i ,j ∼ NC
(
0, 1

K

)
: fast fading

I Tb = diag (fb(xk))
K
k=1 where fb(x) is a path loss function, e.g.

fb(x) =
1

(1 + |Rb − x |)β
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Deterministic equivalents: Mutual information and MMSE sum-rate

Theorem
Denote c = N

K , ci =
Ni
K ∀i . For Ni , K →∞ at the same speed,

1

N
log det

(
IN + ρHHH

)
− V̄N(ρ)

a.s.−→ 0

where

V̄N(ρ) =

B∑
i=1

ci log

(
ρ

Ψi

)
+

1

N

K∑
k=1

log

(
1 +

B∑
i=1

ci fi (xk)Ψi

)
−

1

N

K∑
k=1

∑B
i=1 ci fi (xk)Ψi

1 +
∑B

i=1 ci fi (xk)Ψi

and Ψ1, . . . ,ΨB are given as the unique positive solution to

Ψi =

(
1

ρ
+

1

K

K∑
k=1

fi (xk)

1 +
∑B

i=1 ci fi (xk)Ψi

)−1

, i = 1, . . . , B.

Remark
SINR with MMSE detection: γk = hH

k

(
HHH − hk hH

k + 1
ρ IN

)−1
hk �

∑B
i=1 ci fi (xk)Ψi .

Thus:

Rsum = 1
N

∑K
k=1 log (1 +γk) � 1

N

∑K
k=1 log

(
1 +

∑B
i=1 ci fi(xk)Ψi

)
.
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Deterministic equivalents: Random user locations

Assume that the positions xk of the UTs are i.i.d. with distribution F . Then,

1

N

K∑
k=1

log

(
1 +

B∑
i=1

ci fi (xk)Ψi

)
≈ 1

c

∫
log

(
1 +

B∑
i=1

ci fi (x)Ψi

)
dF(x).

Similarly,

Ψi =

(
1

ρ
+

1

K

K∑
k=1

fi (xk)

1 +
∑B

i=1 ci fi (xk)Ψi

)−1

≈

(
1

ρ
+

∫
fi (x)

1 +
∑B

i=1 ci fi (x)Ψi

dF(x)

)−1

.
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Deterministic equivalents: Random user locations

Corollary
Let xk , k = 1, . . . , K , be i.i.d. with distribution F . Then,

1

N
log det

(
IN + ρHHH

)
− ĪN(ρ)

a.s.−→ 0

ĪN(ρ) =

B∑
i=1

ci log

(
ρ

ψi

)
+

1

c

∫
log

(
1 +

B∑
i=1

ci fi (x)ψi

)
dF(x) −

1

c

∫ ∑B
i=1 ci fi (x)ψi

1 +
∑B

i=1 ci fi (x)ψi

dF(x)

where ψ1, . . . ,ψB are given as the unique positive solution to

ψi =

(
1

ρ
+

∫
fi (x)

1 +
∑B

i=1 ci fi (x)ψi

dF(x)

)−1

, i = 1, . . . , B.
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Application: Optimal BS-placement

I K
2 UTs uniformly distributed on the intervals [0, D

2 ] and [D
2 , D], respectively.

I Path loss functions: fi (x) = (1 + |Ri − x ||)−β , i = 1, 2.

I Decompose the channel matrix as H =

(
H1,1 H1,2

H2,1 H2,2

)
, where Hi ,j ∈ CN/2×K/2.

I Mutual information without cooperation:

I nc
N (ρ) =

1

N

2∑
i=1

log det
(

IN/2 + ρHi ,i H
H
i ,i + ρHi ,̄i H

H
i ,̄i

)
− log det

(
IN/2 + ρHi ,̄i H

H
i ,̄i

)

where ī = 1 + i mod 2.
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Optimal BS-placement: Numerical results (I)
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Optimal BS-placement: Numerical results (II)
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Optimal BS-placement: Numerical results (II)
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Some remarks

I We can optimize system parameters with respect to random channel realizations and user
distributions, without simulations.

I The same results could be also applied for a variety of other detectors.

I One can also account for imperfect CSI and limited backhaul capacity.

I Extensions to two- or three-dimensional models are possible.
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Downlink: Regularized Zero-forcing

Cooperative regularized Zero-forcing: received signal at UT k:

yk =
√
ρλhH

k wk sk +
√
ρλhH

k

∑
j 6=k

wj sj + nk

I Symbol for UT K : sk ∼ NC(0, 1)

I Precoding matrix : W = [w1, . . . , wK ] ∈ CN×K ,

W =
(

HHH +αIN

)−1
H

I Regularization factor : α > 0

I Power normalization: λ = 1
trWWH

I Total transmit power ρ > 0

I SINR of UT k :

γk =

(
hH

k Qk hk

)2

1
ρλ

(
1 + hH

k Qk hk

)2
+ hH

k Qk hk −αhH
k Q2

k hk

where Qk =
(
HHH − hk hH

k +αIN

)−1
.
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Regularized Zero-forcing: Asymptotic analysis

I Using the same approach, we can find asymptotic approximations of

hH
k Qk hk , hH

k Q2
k hk , λ.

I We can consider partial and no cooperation: (each BS serves K/2 UTs with half the
transmit power):

Wi ,pc =


Hi ,i H

H
i ,i + Hi ,̄i H

H
i ,̄i︸ ︷︷ ︸

interference to other UTs

+αi IN/2




−1

Hi ,i

Wi ,nc =
(

Hi ,i H
H
i ,i ++αi IN/2

)−1
Hi ,i

I Focus on sum-rate:

Rsum =
1

N

K∑
k=1

log (1 +γk)

I Goal: Find the asymptotically optimal regularization parameters and BS-positions.
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Downlink: RZF with full cooperation

Theorem (Deterministic equivalent of the sum-rate with full cooperation)

R̄ full coop., DL =
1

cD

∫D

0
log (1 +γ(x))dx

where

γ(x) =

(
c
2

∑2
i=1 fi (x)ψi

)2

1
ρλ̄

(
1 + c

2

∑2
i=1 fi (x)ψi

)2
+ c

2

∑2
i=1 fi (x)ψi −α

c
2

∑2
i=1 fi (x)ψ′i

with ψ = [ψ1,ψ2]T given as the unique solution to

ψi =

(
α+

1

D

∫D

0

fi (x)

1 +
∑2

b=1 cbfb(x)ψb

dx

)−1

, i = 1, 2

and ψ′ = [ψ′1,ψ′2]T given as

ψ′ = (I2 − J)−1
(
ψ2

1
ψ2

2

)
, [J]k,l =

1

D

∫D

0

c
2 fk(x)fl (x)ψ2

k(
1 +

∑2
b=1 cbfb(x)ψb

)2 dx

and

λ̄ =
1

N
(

1
2 (ψ1 +ψ2) −α

1
2 (ψ

′
1 +ψ′2)

) .
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Downlink: Numerical results (I)
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Optimal Downlink BS-placement: Numerical results (II)
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3D analog beamforming application

N
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3D analog beamforming model

Model properties:

I uplink, multi-cell, full base station cooperation

I blue macro and red micro-cells on different bands

I tilting-capable base stations

I users distributed uniformly in patches

I antenna power radiation pattern: truncated cos2-beam, single beam, no sidelobe (no
backside radiation), fixed azimuth angle.
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Simulation results: Single cell 3D-BF
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Figure: Sum rate gain w.r.t. 90◦-tilt with 3D beamforming for a single base station in macro-cell or micro-cell,
constant azimuth angle, uniform user distribution over central square.
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Simulation results: Coordinated 3D-BF

40
60

80
100 40

60
80

100
0

2

4

6

BS1: Tilt w.r.t. ground BS2: Tilt w.r.t. ground
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Figure: SumRateGain3D-2BS-unipatches-DE: Two small cells, patches user distribution, 3dB
opening angles: (T:30/E:20) and (T:30/E:30) respectively

Jakob Hoydis (Supélec) Random Matrix Theory and Stochastic Geometry GDR Workshop 22 / 24

Figure: Achievable sum rate for different tilting scenarios of the small cell BSs.
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