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Reminders: The sample covariance matrix model

The SCM model:

I Xn = (Xij) = [x1, . . . ,xn] ∈ CN×n (or RN×n) with i.i.d. zero mean unit
variance entries and

Σn =
1
√
n

[s1, . . . , sn] =
1
√
n

[R
1/2
N x1, · · · , R1/2

N xn]

with RN ∈ CN×N � 0, so that

nEs1s
∗
1 = R

1/2
N Ex1x

∗
1R

1/2
N = RN .

I RN is the population covariance of the samples (
√
ns1, · · · ,

√
nsn).

I the matrix

R̂N =
1

n
R

1/2
N XnX

∗
nR

1/2
N = ΣnΣ∗n =

1

n

n∑
i=1

sis
∗
i

is the sample covariance matrix.
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Reminders: Limiting eigenvalue distribution

Further notations:

I for λ1(A) ≥ . . . λN (A) the eigenvalues of Hermitian (symmetric) A:

LN ≡
1

N

N∑
i=1

δλi(R̂N ) (random)

LRN ≡
1

N

N∑
i=1

δλi(RN ) (deterministic)

I we further denote the Stieltjes transform

gn(z) =

∫
(λ− z)−1LN (dλ) =

1

N
tr
(
R̂N − zIN

)−1
.

Asymptotics: We suppose that, as n,N →∞,

I N/n ≡ cn → c > 0

I LRN → LR∞ in distribution.
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Reminders: Limiting spectral measure

Theorem (Limiting spectral distribution)
For z ∈ C+ = {w ∈ C, =[w] > 0}, as n,N →∞,

gn(z)
a.s.−→ t(z)

where t(z) is the unique solution in C+ of

t(z) =

∫
LR∞(du)

−z(1 + uct(z)) + (1− c)u
.

As a consequence,

LN
a.s.−→ F

with F the unique probability measure such that t(z) =
∫

(t− z)−1F(dt).
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Reminders: Limiting spectral measure
Plotting F : Numerically, we evaluate

t(x+ ıε)

for some ε� 1 (e.g., ε = 10−3)

and use the approximation

dF(x) '
1

π
=[t(x+ ıε)]dx

Remark: This strongly assumes F has a density !!!
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Figure: In red, limiting density for c = .1, c = .3, c = .6. In blue, 3 population eigenvalues of
RN , each of equal multiplicity.
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Restating the theorem

The co-resolvent result: In the following it will be more convenient to work with
Σ∗nΣn ∈ Cn×n than ΣnΣ∗n ∈ CN×N .

I for L̃N = 1
n

∑n
i=1 δλi(Σ∗nΣn),

L̃N =
n−N
n

δ0 +
N

n
LN

I in particular, as LRN → LR∞,

L̃N → F̃ = (1− c)δ0 + cF .

Theorem (Reexpressing the SCM limit)
For z ∈ C+, t̃(z) =

∫
(λ− z)−1F̃(dλ) is the unique solution in C+ of

t̃(z) =

(
−z + c

∫
uLR∞(du)

1 + ut̃(z)

)−1

.

Remark. t(z), t̃(z) are linked by czt(z) = 1− c+ zt̃(z) (from F̃ = (1− c)δ0 + cF).
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Restating the theorem

Proof. Starting from the result (inverted on both sides):

1

t̃(z)
= −z + c

∫
uLR∞(du)

1 + ut̃(z)

multiply by t̃(z) (6= 0) to get

1 = −zt̃(z) + c

(
1−

∫
LR∞(du)

1 + ut̃(z)

)
so that, using czt(z) = 1− c+ zt̃(z),

t(z) = −
1

z

∫
LR∞(du)

1 + ut̃(z)
=

∫
LR∞(du)

−z − zut̃(z)

and finally, again with czt(z) = 1− c+ zt̃(z),

t(z) =

∫
LR∞(du)

−z(1 + uct(z)) + (1− c)u
.

Both results are thus equivalent.
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General results
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Motivation

Results so far: LN
a.s.−→ F defined by Stieltjes transform t(z) for all z ∈ C+:

I how to plot F? is it a continuous measure?

I most importantly in practice: how to estimate RN from ΣnΣ∗n ?

I we only have the link

RN ↔ LRN ↔ gn(z)→ t(z)↔ F ↔ LN

how to go backwards?

LN
?→ . . .

?→ RN

Follow-up of the class: this is the objective of what follows!

I from ΣnΣ∗n, estimate eigenvalues λ1(RN ), . . . , λN (RN ) ?

I from ΣnΣ∗n, estimate eigenvectors u1(RN ), . . . , uN (RN ) ?
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From Stieltjes transform to measure

Proposition (Condition on density measure)
For gµ Stieltjes transform of µ with real support and finite mass. Assume

1

π
lim
y↓0
= [gµ(x0 + ıy)] ≡ I(x0) exists

for all x ∈ V(x0). Then µ has a density in x0 equal to I(x0).

Proof. See course notes.
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Application to the SCM model

Objective: The goal here is to show:

I that the limit law F has a density

I that F can be plotted exactly (not only approximately through 1
π
=[t(x+ ıε)])

I that the support supp(F) is well identified

Beyond the spectrum: Most importantly, this is a required first step to:

I create a strong link between RN and ΣnΣ∗n
I provide new statistical inference tools on RN (eigenvalues and eigenvectors).
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Application to the SCM model

Starting point:

t̃(z) =

(
−z + c

∫
uLR∞(du)

1 + ut̃(z)

)−1

.

Two fundamental identities: for all z1, z2 ∈ C \ R,

(?)
(
t̃(z1)− t̃(z2)

)(
1− c

∫
t̃(z1)t̃(z2)u2LR∞(du)

(1 + ut̃(z1))(1 + ut̃(z2))

)
= (z1 − z2)t̃(z1)t̃(z2)

(??)
(
z1 t̃(z1)− z2 t̃(z2)

)(
1− c

∫
t̃(z1)t̃(z2)u2LR∞(du)

(1 + ut̃(z1))(1 + ut̃(z2))

)
= (z1 − z2)c

∫
t̃(z1)t̃(z2)uLR∞(du)

(1 + ut̃(z1))(1 + ut̃(z2))
.

Elements of proof.

I follows immediately from the “scalar resolvent identity”:
a−1 − b−1 = a−1b−1(b− a) (remember the matrix form
A−1 −B−1 = A−1(B −A)B−1).

I applied to the scalar inverse t̃(z) = (−z + c
∫
u/(1 + ut̃(z))LR∞(du))−1.
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)(
1− c

∫
t̃(z1)t̃(z2)u2LR∞(du)

(1 + ut̃(z1))(1 + ut̃(z2))

)
= (z1 − z2)t̃(z1)t̃(z2)

(??)
(
z1 t̃(z1)− z2 t̃(z2)

)(
1− c

∫
t̃(z1)t̃(z2)u2LR∞(du)

(1 + ut̃(z1))(1 + ut̃(z2))

)
= (z1 − z2)c

∫
t̃(z1)t̃(z2)uLR∞(du)

(1 + ut̃(z1))(1 + ut̃(z2))
.

Elements of proof.

I follows immediately from the “scalar resolvent identity”:
a−1 − b−1 = a−1b−1(b− a) (remember the matrix form
A−1 −B−1 = A−1(B −A)B−1).

I applied to the scalar inverse t̃(z) = (−z + c
∫
u/(1 + ut̃(z))LR∞(du))−1.
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Application to the SCM model

Important corollary: taking z1 = z ∈ C+ and z2 = z̄ in (?),

2ı=[t̃(z)]

(
1− c|t̃(z)|2

∫
u2LR∞(du)

|1 + ut̃(z)|2

)
= 2ı=[z]|t̃(z)|2

so that, since =[z] > 0 and =[t̃(z)] > 0 (Stieltjes transform of real supported
measure),

(? ? ?) ∀z ∈ C+, 1− c|t̃(z)|2
∫

u2LR∞(du)

|1 + ut̃(z)|2
> 0.
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Application to the SCM model

Theorem (Existence of a density)
For all x ∈ R \ {0},

lim
z∈C+→x

t̃(z) = t̃◦(x) exists.

This implies that F̃ has a density f in all R \ {0} equal to

f(x) ≡
1

π
=[t̃◦(x)].

Proof. Two steps:

Step 1. Show that t̃(z) bounded in a neighborhood B(x) ⊂ C+ of x ∈ R.

Step 2. Extract converging subsequences (zn, t̃(zn))→ (x, t̃) and show that t̃ is unique.
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Application to the SCM model
Step 1. By contradiction: assume |t̃(zn)| → ∞ for zn ∈ B(x)→ x ∈ R \ {0}, B

bounded.

For z0 ∈ C+ fixed, from (??),(
zn t̃(zn)− z0 t̃(z0)

)(
1− c

∫
t̃(zn)t̃(z0)u2LR∞(du)

(1 + ut̃(zn))(1 + ut̃(z0))

)
= (zn − z0)c

∫
t̃(zn)t̃(z0)uLR∞(du)

(1 + ut̃(zn))(1 + ut̃(z0))
.

Goal: show that |t̃(zn)| → ∞ induces contradiction!

I By Cauchy-Swcharz’s inequality,∣∣∣∣∫ t̃(zn)t̃(z0)u2LR∞(du)

(1 + ut̃(zn))(1 + ut̃(z0))

∣∣∣∣ ≤
√∫ |t̃(zn)|2u2LR∞(du)

|1 + ut̃(zn)|2

√∫ |t̃(z0)|2u2LR∞(du)

|1 + ut̃(z0)|2∣∣∣∣∫ t̃(zn)t̃(z0)uLR∞(du)

(1 + ut̃(zn))(1 + ut̃(z0))

∣∣∣∣ ≤
√∫ |t̃(zn)|2u2LR∞(du)

|1 + ut̃(zn)|2

√∫ |t̃(z0)|2LR∞(du)

|1 + ut̃(z0)|2
.

so that, from (? ? ?), as n→∞,

lim sup
n
c

∣∣∣∣∫ t̃(zn)t̃(z0)u2LR∞(du)

(1 + ut̃(zn))(1 + ut̃(z0))

∣∣∣∣ < 1, lim sup
n
c

∣∣∣∣∫ t̃(zn)t̃(z0)uLR∞(du)

(1 + ut̃(zn))(1 + ut̃(z0))

∣∣∣∣ <∞.
I Careful! left inequality is strict because

∫ |t̃(z0)|2u2LR∞(du)

|1+ut̃(z0)|2 < 1 but

limn
∫ |t̃(zn)|2u2LR∞(du)

|1+ut̃(zn)|2 ≤ 1 only!
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Application to the SCM model
Step 1. As a consequence, we find

lim sup
n
|zn t̃(zn)− z0 t̃(z0)| <∞.

But we assumed

lim sup
n
|zn t̃(zn)− z0 t̃(z0)| ≥ lim sup

n
|zn| · |t̃(zn)| − |z0| · |t̃(z0)| → ∞

(recall zn 6→ 0). This is a contradiction!

Step 2. Since t̃(zn) bounded for zn ∈ B(x), let z1,n, z2,n → x with t̃(z1,n)→ t̃1 and
t̃(z2,n)→ t̃2. By (?),(

t̃(z1,n)− t̃(z2,n)
)(

1− c
∫

t̃(z1,n)t̃(z2,n)u2LR∞(du)

(1 + ut̃(z1,n))(1 + ut̃(z2,n))

)
= (z1,n−z2,n)t̃(z1,n)t̃(z2,n)

n→∞−→ 0.

To show that t̃1 = t̃2, it suffices to show that

lim inf
n

∣∣∣∣1− c∫ t̃(z1,n)t̃(z2,n)u2LR∞(du)

(1 + ut̃(z1,n))(1 + ut̃(z2,n))

∣∣∣∣ > 0.

This is again “in spirit” the strict inequality case of cauchy-Schwarz, but
z1,n, z2,n are not fixed!

An option is to use a polarization method on <
[
c
∫ t̃(z1,n)t̃(z2,n)u2LR∞(du)

(1+ut̃(z1,n))(1+ut̃(z2,n))

]
.

(see details in course notes)

This concludes the proof. �
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Application to the SCM model

Important Remark. Recall that

t̃(z) =

(
−z + c

∫
uLR∞(du)

1 + ut̃(z)

)−1

⇔ z = −
1

t̃(z)
+ c

∫
uLR∞(du)

1 + ut̃(z)

with

I t̃(z) defined on C+ with image t̃(C+), and so with explicit inverse

z(·) : t̃(C+)→ C+

t̃ 7→ −
1

t̃
+ c

∫
uLR∞(du)

1 + ut̃
.

I tempting to extend z(·) to C \ {t̃ ∈ R,−1/t̃ ∈ supp(LR∞)}, where z(·) is “valid”.

I in particular, the restriction to R∗ \ {t̃ ∈ R,−1/t̃ ∈ supp(LR∞)} of this
“extension” defines

x(·) : R∗ \ {t̃ ∈ R,−1/t̃ ∈ supp(LR∞)} → R

t̃ 7→ −
1

t̃
+ c

∫
uLR∞(du)

1 + ut̃
.
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Application to the SCM model

The function x(·):

I coincides on t̃(R∗ \ supp(F)) with the restriction of (the extension of) t̃ on
R∗ \ supp(F)

I on the rest, is an extension of z(·) with no physical interpretation.

The intuition: recall that t̃(x) =
∫

(v − x)−1F̃(dv) is increasing on all connected

components of R \ supp(F̃).

As such, we expect that:

I on t̃(R∗ \ supp(F)), x(t̃) is (well defined and) increasing (local inverse of
increasing function!)

I elsewhere, x(t̃) may not be increasing (otherwise, it would have an increasing
local inverse satisfying t̃(x) equation: but this is not a proof!)
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Application to the SCM model

Theorem (Exact limiting spectrum description)
Let z(·) and x(·) as above. Then,

1. if x0 6= 0 ∈ supp(F), a positive density point of F , then t̃◦(x0) is unique
solution t̃ with =[t̃] > 0 of

z(t̃) = x0.

2. if x0 6= 0 /∈ supp(F), then

t̃◦(x0) ∈ R∗ \ {t̃,−1/t̃ ∈ supp(LR∞)}

and is the unique real solution to x(t̃) = x0 with x′(t̃) > 0.

Conversely, for t̃0 ∈ R∗ \ {t̃,−1/t̃ ∈ supp(LR∞)} such that x′(t̃0) > 0,

x(t̃0) /∈ supp(F).
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Application to the SCM model

Proof. [1. Existence] Of course 0 6= t̃◦(x0) = limy↓0 t̃(x0 + ıy) with

x0 + ıy = −
1

t̃(x0 + ıy)
+ c

∫
uLR∞(du)

1 + ut̃(x0 + ıy)
.

Besides, ∣∣∣∣∫ uLR∞(du)

1 + ut̃(x0 + ıy)

∣∣∣∣2 ≤ ∫ u2LR∞(du)

|1 + ut̃(x0 + ıy)|2
≤

1

=[t̃(x0 + ıy)]2

since |1 + ut̃(x0 + ıy)|2 ≥ t2=[t̃(x0 + ıy)]2.

But =[t̃(x0 + ıy)] converges to non-zero value, so 1
=[t̃(x0+ıy)]2

bounded for all small y.

By dominated convergence, as y ↓ 0,

x0 = −
1

t̃◦(x0)
+ c

∫
uLR∞(du)

1 + ut̃(x0)

proving existence.
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Application to the SCM model

[1. Uniqueness] Let

I t̃1 6= t̃2 ∈ C+ with z(t̃1) = z(t̃2) = x0

I B1 = B(t̃1, ε) and B2 = B(t̃2, ε) with B(t̃1, ε) ∩B(t̃2, ε) = ∅.
Then

1. x0 ∈ z(B1) ∩ z(B2) which is open by the open mapping theorem (z(·) being
analytic there)

2. so there exists z′ ∈ C+ ∩ (z(B1) ∩ z(B2)) with z′ = z(t̃′1) = z(t̃′2) for some
t′1 ∈ B1, t′2 ∈ B2

3. but this is impossible since then t′1 = t̃(z′), t′2 = t̃(z′), which breaks uniqueness
of t̃ in C+.
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Application to the SCM model
[2. Preliminary] We can show that t̃◦(x0) 6= 0 (see later).

As x0 /∈ supp(F), t̃(·)
defined in x0 as

t̃(x0) = t̃◦(x0) =

∫
1

u− x0
F̃(du)

for which, of course, t̃′(x0) > 0 (on R). Hence, t̃ complex analytic around (x0, t̃(x0)).

But, for all t̃ ∈ B(t̃(x0)) ∩ C+,

z(t̃) = −
1

t̃
+ c

∫
uLR∞(du)

1 + ut̃
= −

1

t̃
+
c

t̃

(
1−

1

t̃
r

(
−

1

t̃

))
where

r(z) =

∫
(u− z)−1LR∞(du)

is the Stieltjes transform of LR∞.

As a consequence, r(− 1
t̃
)→ ` ∈ R as t̃→ t̃(x0) (and this is also true for all x in a

neighborhood of x0). This implies that

−
1

t̃(x0)
/∈ supp(LR∞)

(since =[r(− 1
t̃
)]→ 0 for all t̃→ t̃(x0)). Equivalently,

t̃(x0) /∈
{
t̃;−

1

t̃
∈ supp(LR∞)

}
.
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Application to the SCM model

[2. Existence] This implies that

I x(t̃(x0)) well defined

I and t̃(x0) is a solution to

x(t̃(x0)) = −
1

t̃(x0)
+ c

∫
uLR∞(du)

1 + ut̃(x0)

(analytic extension of z(t̃) possible around (t̃(x0), x0)).

I As t̃′(x0) > 0, by local inverse, x′(t̃(x0)) > 0.
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Application to the SCM model

[Why t̃◦(x0) 6= 0?] Assume t̃◦(x0) = 0.

By analyticity of t̃ in B(x0),

znıεn = −1 + c

∫
uıεnLR∞(du)

1 + uıεn

for some zn → x0 and ıεn = t̃(zn) for εn → 0. By dominated convergence, in the

limit, 0 = −1! so t̃◦(x0) 6= 0.

[2. Converse] If t̃0 ∈ R∗ \ {t̃;− 1
t̃
∈ supp(LR∞)}, then for z ∈ C+ and t̃ ∈ B(t̃0),

(t̃(z)− t̃)
(

1− c
∫

u2LR∞(du)

(1 + ut̃(z))(1 + ut̃)

)
= (z − x(t̃))t̃(z)t̃.

For z ∈ C+ → x(t̃), by Cauchy–Schwarz and x′(t̃) > 0 for t̃ ∈ B(t̃0) (so that

1− c
∫ u2LR∞(du)

|1+ut̃|2 > 0),

t̃(z)→ t̃ ∈ R.

Hence x(t̃0) /∈ supp(F). �
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Motivation

Important formula: We already saw that

z = −
1

t̃(z)
+

c

t̃(z)
r

(
−

1

t̃(z)

)

, r(w) =

∫
LR∞(du)

u− w
.

I creates link between Stieltjes transforms t̃(z) and r(z)

I so indirectly between observable R̂N and hidden RN .

Question: can we estimate RN from R̂N with this link? In particular,

I the spectral measure of RN?

I the subspaces (eigenvectors) of RN?
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A few reminders of complex analysis

Proposition (Cauchy Integral)
For C a closed positively oriented contour in C+,

. if z is inside the surface described by C and f holomorphic on U ⊃ C,

1

2πı

∮
C

f(w)

w − z
dw = f(z).

. if z is outside,
1

2πı

∮
C

f(w)

w − z
dw = 0.
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A few reminders of complex analysis

Proposition (Residue calculus)
Let C as above and f holomorphic on an open set including C. Let a1, . . . , aL be the
singularities of f within the surface described by C.

Then,

1

2πı

∮
C
f(z)dz =

L∑
i=1

Res(f, ai)

where

Res(f, a) =
1

(n− 1)!
lim
z→a

dn−1

dzn−1
((z − a)nf(z))

for n ∈ {1, 2, . . .} the smallest index such that the limit is finite.
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A few reminders of complex analysis

Proposition (Vitali’s convergence theorem)
Let (fn)n∈N a series of analytic functions in D ⊂ C such that |fn(z)| ≤M for all
z ∈ D.

Assume that fn(zk)→ f(zk) for all z1, z2, . . . in a set with a limit point in D.
Then fn converges uniformly on all B ⊂ D strictly and f is analytic.
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Then fn converges uniformly on all B ⊂ D strictly and f is analytic.
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Objective

Linear functional of the λi(RN ):

We want to estimate

G(f) =

∫
f(t)LR∞(dt) =

1

N

n∑
i=1

f(λi(RN ))

for extensible in a complex analytic function near supp(LR∞).

Examples:

I f(t) = t gives 1
N

tr(RN )

I f(t) = tk gives 1
N

tr(RkN )

I f(t) = log(1 + st) gives det(IN + sRN ) (up to taking exp(N ·))
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Central idea

Central idea: By Cauchy’s theorem,

G(f) =

∫ (
1

2πı

∮
C

f(w)

w − t
dw

)
LR∞(dt)

= −
1

2πı

∮
C
f(w)r(w)dw

with r(w) =
∫

(t− w)−1LR∞(dt) Stieltjes transform of LR∞.

I we then link r(z) to t̃(z) to relate G(f) to t̃(z):

z = −
1

t̃(z)
+

c

t̃(z)
r

(
−

1

t̃(z)

)

I or even better:

r

(
−

1

t̃
(z)

)
= −zt̃(z)t(z)

with −czt(z) = c− 1− zt̃(z).

I then, variable change!!!

w = −
1

t̃(z)
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Central idea

The problem . . . :

3 t̃, t and r analytic on C+ and C−, ⇒ variable change

w = −
1

t̃(z)

always possible on C+ and C−

7 but C crosses the real axis! What happens to w = − 1
t̃(z)

when crossing R ?
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Central idea

Back to x(t̃)!: Recall LR∞ = 1
3
δ1 + 1

3
δ3 + 1

3
δ10
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Main result

Consequence: not every contour C is valid!

The method: one must go backwards:

1. design CF any contour circling around supp(F)
⇒ So crossing R outside the support!

2. define C = −1/t̃(CF ), which is always defined!

3. from the drawing of x(·)↔ t̃(·), C “contains” supp(LR∞) ⇒ It is valid!

Remark: In fact, not always! e.g., estimate 1
N

tr(R−1
N ) from R̂N when n < N ?
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Going further. . .

What if we want to estimate f(1), f(3)? : in LR∞ = 1
3
δ1 + 1

3
δ3 + 1

3
δ5
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Going further. . .

0 1 3 5 10
0

1

3

5

10

λR2 /λ
R
1

λ
R 3
/
λ
R 1

Figure: Subsets of λR1 ≤ λ
R
2 ≤ λ

R
3 (hatched region) for which detectability condition over

LR∞ = 1
3 (δλR1

+ δ
λR2

+ δ
λR3

) is satisfied, c = 1/10.
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Statistical Inference
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Statistical inference
Back to the original problem:

G(f) = −
1

2πı

∮
C
f(w)r(w)dw

, r(w) =

∫
(u− w)−1LR∞(du)

now with

C = −
1

t̃(CF )

for CF any contour circling around supp(F).

The strategy: for w = − 1
t̃(z)

,

G(f) = −
1

2πı

∮
CF

f

(
−

1

t̃(z)

)
r

(
−

1

t̃(z)

)
t̃′(z)

t̃(z)2
dz.

I but we know that

r

(
−

1

t̃(z)

)
= −zt̃(z)t(z)

I so that

G(f) =
1

2πı

∮
CF

f

(
−

1

t̃(z)

)
zt(z)

t̃′(z)

t̃(z)
dz.

and we are fully in the domain of limiting observables!
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Statistical inference

From limit to observations: recall that

g̃n(z) ≡
1

n
tr(Σ∗nΣn − zIn)−1 a.s.−→ t̃(z)

for all z ∈ C+ (equivalent to gn(z) = 1
N

tr(ΣnΣ∗n − zIN )−1).

I tempting to replace t̃(z) by g̃n(z) in expression of G(f) !

I but, for this, we need a uniform convergence: (almost surely! Beware of
quantifiers!)

max
z∈CF

|g̃n(z)− t̃(z)| a.s.−→ 0.

I two problems:
1. CF crosses R!
2. does point-wise imply uniform convergence?
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g̃n(z) ≡
1

n
tr(Σ∗nΣn − zIn)−1 a.s.−→ t̃(z)

for all z ∈ C+ (equivalent to gn(z) = 1
N

tr(ΣnΣ∗n − zIN )−1).
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Statistical inference

Intermediary (but fundamental) result:

Theorem (“No eigenvalue outside the support”)
Assume that E[|Xij |4] <∞ and

max
1≤i≤N

{
dist(λi(RN ), supp(LR∞))

}
→ 0. (no spike condition)

For ε > 0, let A ⊃ supp(F) the ε-opening of supp(F). Then, for all large n almost

surely, R̂N = ΣnΣ∗n has no eigenvalue in A.
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Statistical inference

Completing the calculus: let us then suppose RN has no isolated eigenvalue,

I by the theorem, for z ∈ CF , on Ωz of proba 1, g̃n(z) bounded for all n large,
(problem of crossing R solved!)

I we now apply Vitali’s theorem to move from point-wise to uniform convergence:
let

Ω =
⋂
zi

Ωzi

for {zi}i≥1 having a limit point in CF .

⇒ This is a probability 1 set!

I On Ω, apply Vitali:
sup
z∈CF

|g̃n(z)− t̃(z)| → 0

and thus, the convergence is almost sure!

I we conclude:

G(f)−
1

2πı

∮
CF

f

(
−

1

g̃n(z)

)
zgn(z)

g̃′n(z)

g̃n(z)
dz

a.s.−→ 0.
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Statistical inference

From complex contour to exact calculus: We already have a consistent estimator of
G(f), but not intuitive, numerical evaluation!

I we can go further by noticing (with λ1 ≥ . . . ≥ λn vaps of Σ∗nΣn),

g̃n(z) =
1

n

n∑
i=1

1

λi − z

gn(z) =
n

N
g̃n(z) +

N − n
Nz

g̃′n(z) =
1

n

n∑
i=1

1

(λi − z)2

all rational functions!

I if f(w) “simple”, we can use residue calculus!
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Statistical inference

Example (f(x) = x2)
For f(x) = x2, we know, with probability 1,

G(f) =
1

2πı

∮
CF

zgn(z)
g̃′n(z)

g̃n(z)3
dz + o(1)

=
1

2πı

∮
CF

 n

N

zg̃′n(z)

g̃n(z)2
+
n−N
N

g̃′n(z)

g̃n(z)2︸ ︷︷ ︸
0

 dz + o(1)

=
1

2πı

∮
CF

n

N

zg̃′n(z)

g̃n(z)2
dz + o(1).

By integration by parts, this is, with probability 1:

G(f) = −
1

2πı

∮
CF

n

N

1

g̃n(z)
dz + o(1).
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Statistical inference

Example (f(x) = x2 (continued))
Expand g̃n(z) as a rational function: the poles inside CF are such that g̃n(z) = 0.

Useful lemma:

Lemma
Let Λ ∈ Rn×n diagonal and a ∈ Rn. Then, the eigenvalues of Λ− aa∗ are either
eigenvalues of Λ or the roots of 1 = a∗(Λ− xIn)−1a.

Proof.
Let x not an eigenvalue of Λ, then by Sylverster’s identity,

det(Λ−aa∗−xIn) = det(Λ− xIn)︸ ︷︷ ︸
6=0

det(In−aa∗(Λ−xIn)−1) ∝ 1−a∗(Λ−xIn)−1a.

Calculus continuation: apply the lemma for Λ = diag(λi) and a =
√
λ/n with λ the

vector of λi’s.
⇒ The eigenvalues of

Λ−
1

n

√
λ
√
λ

are the roots xj of 1 = 1
n

∑n
i=1 λi(λi − x)−1, or equivalently of

0 = 1
n

∑n
i=1(λi − x)−1 = g̃n(x).
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Statistical inference

Example (f(x) = x2 (continued))
Position of the roots? By Weyl’s interlacing lemma, the λi’s are interlaced with the
roots xi of 0 = gn(x).

⇒ They are all inside the contour CF !

Final step, the residue calculus:

Res(xi) = lim
z→xi

n

N

z − xi
g̃n(z)

.

By Taylor (or l’Hospital rule),

Res(xi) = lim
z→xi

n

N

1

g̃′n(z)
=

n

N

1

g̃′n(xi)
.

And we conclude, with probability 1,

G(f) =
∑
i∈S

n

N

1

g̃′n(xi)
+ o(1)

with S = {i | λi inside CF}.
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roots xi of 0 = gn(x).
⇒ They are all inside the contour CF !

Final step, the residue calculus:

Res(xi) = lim
z→xi

n

N

z − xi
g̃n(z)

.

By Taylor (or l’Hospital rule),
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Statistical inference

Some consequences: evaluating the eigenvalues of
RN = diag(1, . . . , 1, 3, . . . , 3, 7, . . . , 7) ?

I same idea but contour CF only around corresponding “hump” in spectrum of R̂N .

I only works if spectrum is “disjoint”!
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Statistical inference

I This all depends on c! Remember...

Limiting density for c = .1, c = .3, c = .6
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can evaluate 1, 3, 7 can evaluate 1 cannot evaluate any.

I or can’t we ??? (see lab session)
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Outline

Application to machine learning: spectral clustering
Reminders on spectral clustering
From Gaussian Mixtures to Real Data
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Position of the problem
Setup:

I data x1, . . . , xn ∈ Rp (for us, n, p� 1)

I k classes (for us, k � n, p):
x1, . . . , xn1 ∈ C1

...
xn−nk+1, . . . , xn ∈ Ck.

I affinity metric: for x, y ∈ Rp,

κ(x, y) ∈ R+ e.g., κ(x, y) = f

(
1

p
‖x− y‖2

)
(we will see later why 1

p
useful)

Example: MNIST data

I xi = “pixels of images” ?

I xi = “smart features” ? (HOG, SURF, neural-net type [VGG, ResNet, etc.])
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Position of the problem
Objective: perform clustering (i.e., unsupervised classification)!

I metric to minimize:

min
Ĉ1...Ĉk

∪ki=1Ĉi={1,...,n}
Ĉi∩Ĉj=∅

k∑
i=1

∑
j∈Ĉi
j̄ /∈Ĉi

κ(xj , xj̄)

|Ĉi|

I can be rewritten

min
Ĉ1...Ĉk

∪ki=1Ĉi={1,...,n}
Ĉi∩Ĉj=∅

k∑
i=1

∑
j∈Ĉi

j̄∈{1,...,n}

κ(xj , xj̄)

|Ĉi|
−

k∑
i=1

∑
j∈Ĉi
j̄∈Ĉi

κ(xj , xj̄)

|Ĉi|

I or, denoting Fji = 1√
|Ĉi|

δxj∈Ĉi
and F ⊂ Rn×k the discrete set of valid F ’s:

min
F∈F

k∑
i=1

FT
·i (D −K)F·i = min

F∈F
trFT(D −K)F

where

K = {κ(xi, xj)}ni,j=1 and D = diag({
n∑
j=1

Kij}ni=1) (degrees of the “graph” K).
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Ĉi∩Ĉj=∅

k∑
i=1

∑
j∈Ĉi
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Ĉ1...Ĉk
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Position of the problem
Relaxation into spectral clustering:

I problem is discrete, NP-complete.

I solution: relaxing F into {F ∈ Rn×k, FTF = Ik}

min
F, FTF=Ik

trFT(D −K)F

I this is an eigenvector problem!
⇒ Solution F is concatenation of k “smallest” eigenvectors of D −K.

I gives spectral clustering algorithm:

1. retrieve k smallest eigenvectors of D −K into V = [v1, . . . , vk] ∈ Rn×k
2. cluster the (small dimensional!) rows Vi· ∈ Rn with k-means
3. the k classes obtained are the estimates of C1, . . . , Ck.

Important remark: geometric interpretation

trFT(D −K)F =
1

2

k∑
i=1

∑
jj̄

Kjj̄(Fji − Fj̄i)2 (prove it!)

I we must have Fji ' Fj̄i if Kjj̄ � 1

I Fji could be distinct from Fj̄i if Kjj̄ ' 0

We will see this will be a problem in large dimensions!
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Important remark: geometric interpretation

trFT(D −K)F =
1

2

k∑
i=1

∑
jj̄

Kjj̄(Fji − Fj̄i)2 (prove it!)

I we must have Fji ' Fj̄i if Kjj̄ � 1

I Fji could be distinct from Fj̄i if Kjj̄ ' 0

We will see this will be a problem in large dimensions!
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Position of the problem

The Ng-Weiss-Jordan (wrong) intuition:

I say f(t) = exp(−t/2): the Gaussian (or heat, or RBF) kernel.

I intuition: for easy clustering tasks,

‖xi − xj‖
{
� 1, if xi, xj in different classes
� 1, if xi, xj in same class

I hence

K '

 [K1]n1×n1 [ε]n1×n2 . . .
[ε]n2×n1 [K2]n2×n2 . . .

...
...

. . .


I in particular, with ja = (0n1 , . . . , 1na , . . . , 0nk )T,

Kja ' Dja ⇒ (D −K)ja ' 0

so that ja, canonical vector of Ca eigenvector of D −K !

Refinement: implies also

D−
1
2KD−

1
2 (D

1
2 ja) = D

1
2 ja

more stable in practice.
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Position of the problem
From theory to practice: not at all what was expected!!
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Figure: 4 dominant eigenvectors of L = D−
1
2KD−
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2 (red); MNIST data (0, 1, 2).
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Position of the problem
What’s wrong with Ng-Weiss-Jordan?

their small dimensional intuition!

A detour to Bayes’ optimality: assume Rp 3 xi ∈ Ca ⇔ xi ∼ N (µa, Ca) (Gaussian
mixture model)

I as n, p→∞, we need to control growth rate of µ1, . . . , µk and C1, . . . , Ck to
have a non-trivial/degenerate problem!

I how to control µa, Ca evolution? ⇒ find worst case scenario when µi’s, Ci’s
perfectly known!

Neyman-Pearson test: assume (temporarily) k = 2, µ1, µ2, C1, C2 known

I µi evolution: say µ1 = −µ2 = µ and C1 = C2 = Ip. Then by Neyman-Pearson,

P(x→ C1 | x ∈ C2) = P
(

(2π)−p/2 exp
(
−‖x− µ1‖2/2

)
> (2π)−p/2 exp

(
−‖x− µ2‖2/2

))
or equivalently

P
(
xTµ > xT(−µ) | x ∈ C2

)
⇔ P

(
xTµ > 0 | x ∈ C2

)
.

But x ∈ C2 ⇔ x ∼ N (−µ, Ip), so xTµ ∼ N (−‖µ‖2, ‖µ‖2), i.e.,

P(x→ C1 | x ∈ C2) =

∫ ∞
0

1
√

2π
exp(−(t+ ‖µ‖2)2/(2‖µ‖2))dt = ‖µ‖Q(‖µ‖)

with Q(u) =
∫∞
u

1√
2π

exp(−u2/2)du.

Only non-trivial if ‖µ1 − µ2‖ = 2‖µ‖ = O(1)! (with respect to p)
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)
> (2π)−p/2 exp

(
−‖x− µ2‖2/2
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Position of the problem
Neyman-Pearson test:

I Ci evolution: assume now µ1 = µ2 = 0 and C1 = Ip, C2 = (1 + ε)Ip. (so that
trC1 − trC2 = εp)

P(x→ C2 | x ∈ C1) = P
(

(1 + ε)−p/2 exp
(
−‖x‖2/2(1 + ε)

)
> exp

(
−‖x‖2/2

))
or equivalently

P
(
‖x‖2/p > log(1 + ε)(1 + ε)/ε | x ∈ C1

)
By the CLT, ‖x‖2/p→ N (1, 3/p) (we used E[|xj |4] = 3 for x ∈ Rp) so, for
p� 1,

P(x→ C2 | x ∈ C1) ' PN (0,1)

(
w >

√
p/3(log(1 + ε)(1 + ε)/ε− 1)

)
Only non-trivial if ε→ 0!, and then, by Taylor,

P(x→ C2 | x ∈ C1) ' P(w >
√
p/3ε)

Only non-trivial if ε = O(p−
1
2 )!

I Conclusion: non-trivial conditions:

‖µ1 − µ2‖ = O(1), tr(C1 − C2) = O(
√
p)
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trC1 − trC2 = εp)

P(x→ C2 | x ∈ C1) = P
(

(1 + ε)−p/2 exp
(
−‖x‖2/2(1 + ε)

)
> exp

(
−‖x‖2/2

))
or equivalently

P
(
‖x‖2/p > log(1 + ε)(1 + ε)/ε | x ∈ C1

)
By the CLT, ‖x‖2/p→ N (1, 3/p) (we used E[|xj |4] = 3 for x ∈ Rp) so, for
p� 1,

P(x→ C2 | x ∈ C1) ' PN (0,1)

(
w >

√
p/3(log(1 + ε)(1 + ε)/ε− 1)

)
Only non-trivial if ε→ 0!, and then, by Taylor,

P(x→ C2 | x ∈ C1) ' P(w >
√
p/3ε)

Only non-trivial if ε = O(p−
1
2 )!
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Position of the problem

Neyman-Pearson test: the question of tr((Ca − Cb)2)

I from Neyman-Pearson (so with Ci’s known), non-triviality when

tr((Ca − Cb)2) = O(1)

I for spectral clustering (so with Ci’s unknown), we will see:

tr((Ca − Cb)2) = O(p) for standard methods! (e.g., Gaussian kernel)

I but can be dramatically improved with random matrix-tuned kernel into

tr((Ca − Cb)2) = O(
√
p)

Can we do better???

64



Position of the problem

Neyman-Pearson test: the question of tr((Ca − Cb)2)

I from Neyman-Pearson (so with Ci’s known), non-triviality when

tr((Ca − Cb)2) = O(1)

I for spectral clustering (so with Ci’s unknown), we will see:

tr((Ca − Cb)2) = O(p) for standard methods! (e.g., Gaussian kernel)

I but can be dramatically improved with random matrix-tuned kernel into

tr((Ca − Cb)2) = O(
√
p)

Can we do better???

64



Position of the problem

Neyman-Pearson test: the question of tr((Ca − Cb)2)

I from Neyman-Pearson (so with Ci’s known), non-triviality when

tr((Ca − Cb)2) = O(1)

I for spectral clustering (so with Ci’s unknown), we will see:

tr((Ca − Cb)2) = O(p) for standard methods! (e.g., Gaussian kernel)

I but can be dramatically improved with random matrix-tuned kernel into

tr((Ca − Cb)2) = O(
√
p)

Can we do better???

64



Position of the problem

Neyman-Pearson test: the question of tr((Ca − Cb)2)

I from Neyman-Pearson (so with Ci’s known), non-triviality when

tr((Ca − Cb)2) = O(1)

I for spectral clustering (so with Ci’s unknown), we will see:

tr((Ca − Cb)2) = O(p) for standard methods! (e.g., Gaussian kernel)

I but can be dramatically improved with random matrix-tuned kernel into

tr((Ca − Cb)2) = O(
√
p)

Can we do better???

64



Position of the problem

Neyman-Pearson test: the question of tr((Ca − Cb)2)

I from Neyman-Pearson (so with Ci’s known), non-triviality when

tr((Ca − Cb)2) = O(1)

I for spectral clustering (so with Ci’s unknown), we will see:

tr((Ca − Cb)2) = O(p) for standard methods! (e.g., Gaussian kernel)

I but can be dramatically improved with random matrix-tuned kernel

into

tr((Ca − Cb)2) = O(
√
p)

Can we do better???

64



Position of the problem

Neyman-Pearson test: the question of tr((Ca − Cb)2)

I from Neyman-Pearson (so with Ci’s known), non-triviality when

tr((Ca − Cb)2) = O(1)

I for spectral clustering (so with Ci’s unknown), we will see:

tr((Ca − Cb)2) = O(p) for standard methods! (e.g., Gaussian kernel)

I but can be dramatically improved with random matrix-tuned kernel into

tr((Ca − Cb)2) = O(
√
p)

Can we do better???

64



Position of the problem

Neyman-Pearson test: the question of tr((Ca − Cb)2)

I from Neyman-Pearson (so with Ci’s known), non-triviality when

tr((Ca − Cb)2) = O(1)

I for spectral clustering (so with Ci’s unknown), we will see:

tr((Ca − Cb)2) = O(p) for standard methods! (e.g., Gaussian kernel)

I but can be dramatically improved with random matrix-tuned kernel into

tr((Ca − Cb)2) = O(
√
p)

Can we do better???

64



Position of the problem

The (non-trivial) setup:

I data x1, . . . , xn ∈ Rp (for us, n, p� 1)

I k classes (for us, k � n, p):
x1, . . . , xn1 ∈ C1

...
xn−nk+1, . . . , xn ∈ Ck.

I affinity metric: for x, y ∈ Rp,

κ(x, y) ∈ R+ e.g., κ(x, y) = f

(
1

p
‖x− y‖2

)
(we will see later why 1

p
useful)

I asymptotic non-triviality conditions: for µ◦ =
∑k
a=1

na
n
µa and

C◦ =
∑k
a=1

na
n
Ca

‖µa − µ◦‖ = O(1) tr(Ca − Ca) = O(
√
p) ‖Ca‖ = O(1)
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Position of the problem

Fundamental result:

(really, really fundamental!!!)
Under the above conditions, for τp ≡ (2/p)trC◦,

max
1≤i,j≤n

∣∣∣∣1p‖xi − xj‖2 − τp
∣∣∣∣ a.s.−→ 0

In fact, precisely,
1

p
‖xi − xj‖2 = τp +Op(p−

1
2 )

and in particular
1

p
xT
i xj = 0 +Op(p−

1
2 )

I does this mean K ' f(τp)1n1T
n ?, clustering impossible ?

I yes and no!!

I Careful: same error as Marc̆enko-Pastur theorem:

max
i,j

∣∣∣∣[ 1

p
XXT]ij − [Ip]ij

∣∣∣∣ a.s.−→ 0 but
1

p
XXT 6→ Ip!!

Key idea: Taylor expansion of Kij around f(τp)!
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Position of the problem

In image: Kernel Kij = exp(− 1
2p
‖xi − xj‖2) and second eigenvector v2

(xi ∼ N (±µ, Ip), µ = (2, 0, . . . , 0)T ∈ Rp).
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Position of the problem

And for real data?
MNIST ImageNet 20NewsGroup

raw VGG-features BERT embedding
p = 784, n = 500 p = 3084, n = 500 p = 300, n = 500

↓ ↓ ↓
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Taylor expansion
The Taylor expansion: For simplicity, consider the simpler case (with ‖µi‖ = O(1))

K =

{
1

p
xT
i xj

}n
i,j=1

(so we forget the terms ‖xi‖2/p and ‖xj‖2/p)

Taylor expansion now around f(0):

I just develop (for, say, xi ∼ N (µa, Ca) and xj ∼ N (µb, Cb)):

f

(
1

p
xT
i xj

)
= f(0) + f ′(0)

1

p
xT
i xj +

1

2
f ′′(0)

(
1

p
xT
i xj

)2

+ . . .

Hence:

K = f(0)1n1T
n + f ′(0)

1

p
XTX +

1

2
f ′′(0)

{(
xT
i xj/p

)2
}n
i,j=1

+ . . .

I key difficulty: moving from entries Taylor expansion to matrix Taylor expansion!
See here why: what are the spectral norms of?

1
√
n
X ∈ Rn×n Xij = Xji ∼ N (0, 1) = O(1)? ⇒ O(1)! (semi-circle law)

1
√
n
X ∈ Rn×n Xij = Xji = 1? ⇒ O(

√
p)! (rank-1 matrix)
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Taylor expansion
Continuing the expansion: with Ca 3 xi = µa + wi,

I while ‖µa‖ = O(1) and ‖wi‖ = O(
√
p)...,

X = W +MJT, M = [µ1, . . . , µk], J = [j1, . . . , jk]

in which

‖
1

p
WTW‖ = O(1) (SCM model!) and ‖

1

p
(MJT)T(MJT)‖ = ‖

1

p
J MTM︸ ︷︷ ︸

=O(1)

JT‖ = O(1)

so finally
1

p
XTX = O‖·‖(1)

I in addition, writing (xT
i xj)

2 = E[(xT
i xj)

2] + Zij , and with tr(CaCb) = O(p)

1

p2

{
(xT
i xj)

2
}p
i,j=1

=
1

p2




trC2
11n11T

n1
trC1C21n11T

n2
. . .

trC1C21n21T
n1

trC2
21n21T

n2
. . .

...
...

. . .



p

i,j=1

+ Z︸︷︷︸
EZij=0

VarZij=O(p−2)

+ . . .

= O‖·‖(1) +O‖·‖(p
− 1

2 )
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Main result

Summing up:

K = f(0) 1n1T
n︸ ︷︷ ︸

=O‖·‖(n)

+f ′(0)
1

p
(W +MJT)T(W +MJT)︸ ︷︷ ︸

=O‖·‖(1)

+
f ′′(0)

2

1

p
JTJT

︸ ︷︷ ︸
=O‖·‖(1)

+o‖·‖(1)

for T = { 1
p

trCaCb}ka,b=1.

I this is ... a spiked model!!
I as a consequence, we can anticipate:

1. phase transition phenomena: below some threshold g(M,T ), clustering impossible!
2. beyond the threshold, eigenvector alignment known

⇒ Exact performance !

Back to D−
1
2KD−

1
2 : can be studied similarly, just more painful!
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2. beyond the threshold, eigenvector alignment known

⇒ Exact performance !
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1
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71



Main result

Summing up:

K = f(0) 1n1T
n︸ ︷︷ ︸

=O‖·‖(n)

+f ′(0)
1

p
(W +MJT)T(W +MJT)︸ ︷︷ ︸

=O‖·‖(1)

+
f ′′(0)

2

1

p
JTJT

︸ ︷︷ ︸
=O‖·‖(1)

+o‖·‖(1)

for T = { 1
p

trCaCb}ka,b=1.

I this is ... a spiked model!!
I as a consequence, we can anticipate:

1. phase transition phenomena: below some threshold g(M,T ), clustering impossible!
2. beyond the threshold, eigenvector alignment known

⇒ Exact performance !

Back to D−
1
2KD−

1
2 : can be studied similarly, just more painful!

71



Main result

Summing up:

K = f(0) 1n1T
n︸ ︷︷ ︸

=O‖·‖(n)

+f ′(0)
1

p
(W +MJT)T(W +MJT)︸ ︷︷ ︸

=O‖·‖(1)

+
f ′′(0)

2

1

p
JTJT

︸ ︷︷ ︸
=O‖·‖(1)

+o‖·‖(1)

for T = { 1
p

trCaCb}ka,b=1.

I this is ... a spiked model!!
I as a consequence, we can anticipate:

1. phase transition phenomena: below some threshold g(M,T ), clustering impossible!
2. beyond the threshold, eigenvector alignment known

⇒ Exact performance !

Back to D−
1
2KD−

1
2 : can be studied similarly, just more painful!

71



Main result

Summing up:

K = f(0) 1n1T
n︸ ︷︷ ︸

=O‖·‖(n)

+f ′(0)
1

p
(W +MJT)T(W +MJT)︸ ︷︷ ︸

=O‖·‖(1)

+
f ′′(0)

2

1

p
JTJT

︸ ︷︷ ︸
=O‖·‖(1)

+o‖·‖(1)

for T = { 1
p

trCaCb}ka,b=1.

I this is ... a spiked model!!
I as a consequence, we can anticipate:

1. phase transition phenomena: below some threshold g(M,T ), clustering impossible!
2. beyond the threshold, eigenvector alignment known

⇒ Exact performance !

Back to D−
1
2KD−

1
2 : can be studied similarly, just more painful!

71



Main result: comparison to simulations

0 1 2 3 4

Eigenvalues of L

0 1 2 3 4

Eigenvalues of L̂

Figure: Eigenvalues of L = D−
1
2KD−

1
2 versus Taylor expansion L̂, k = 3, p = 2048,

n = 512, c1 = c2 = 1/4, c3 = 1/2, [µa]j = 4δaj , Ca = (1 + 2(a− 1)/
√
p)Ip,

f(x) = exp(−x/2) (Gaussian kernel).
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Main result: comparison to real data simulations
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Figure: Eigenvalues of L (red) and (equivalent Gaussian model) L̂ (white), MNIST data,
p = 784, n = 192.
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Main result: comparison to real data simulations

Figure: Leading four eigenvectors of D−
1
2KD−

1
2 for MNIST data (red) and theoretical findings

(blue).
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Main result: comparison to real data simulations
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Figure: 2D representation of eigenvectors of L, for the MNIST dataset. Theoretical means and 1-
and 2-standard deviations in blue. Class 1 in red, Class 2 in black, Class 3 in green.
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Going further: the surprising f ′(τ) = 0 case
Remember:

K = f(0) 1n1T
n︸ ︷︷ ︸

=O‖·‖(n)
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=O‖·‖(1)

+
f ′′(0)

2

1

p
JTJT

︸ ︷︷ ︸
=O‖·‖(1)

+o‖·‖(1)

I what if f ′(0) = 0 ? ⇒ noise W disappears! ⇒ K deterministic !!
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Figure: Kernel with f(τ) = 4, f ′′(τ) = 2, xi ∼ N (0, Ca), C1 = Ip, [C2]i,j = .4|i−j|,
c0 = 1

4 .

I Trivial classification when M = 0 and ‖T‖ = O(1).
I this means we can reduce 1

p
tr((Ca − Cb)2) at least by 1/

√
p !

I Key remark: what is the shape of this “optimal” f(t) ???
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Outline

Application to machine learning: spectral clustering
Reminders on spectral clustering
From Gaussian Mixtures to Real Data
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Notion of Concentrated Vectors
I Observation: RMT seems to predict ML performances for real data even under

Gaussian assumptions!

I But real data badly modelled by Gaussian vectors

I Fundamental remark: Gaussian vectors are special instances of concentrated
random vectors!

Definition (Concentrated random vectors)
Given a normed space (E, ‖ · ‖E) and q ∈ R, a random vector z ∈ E is q-exponentially
concentrated if for any 1-Lipschitz function1 F : Rp → R, there exists C, c > 0 s.t.

P {|F(z)− EF(z)| > t} ≤ Ce−c t
q

denoted z ∈ O(e−·
q
).

(P1) X ∼ N (0, Ip) is 2-exponentially concentrated.

(P2) If X ∈ O(e−·
q
) and G is ‖G‖lip-Lipschitz, then

G(X) ∈ O
(
e−(·/‖G‖lip)q

)
.

“Concentrated vectors are stable through Lipschitz maps.”

1Reminder: F : E → F is ‖F‖lip-Lipschitz if ∀(x, y) ∈ E2 : ‖F(x)−F(y)‖F ≤ ‖F‖lip ‖x− y‖E .
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concentrated if for any 1-Lipschitz function1 F : Rp → R, there exists C, c > 0 s.t.

P {|F(z)− EF(z)| > t} ≤ Ce−c t
q

denoted z ∈ O(e−·
q
).

(P1) X ∼ N (0, Ip) is 2-exponentially concentrated.

(P2) If X ∈ O(e−·
q
) and G is ‖G‖lip-Lipschitz, then

G(X) ∈ O
(
e−(·/‖G‖lip)q

)
.

“Concentrated vectors are stable through Lipschitz maps.”

1Reminder: F : E → F is ‖F‖lip-Lipschitz if ∀(x, y) ∈ E2 : ‖F(x)−F(y)‖F ≤ ‖F‖lip ‖x− y‖E .
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GAN data: An Example of Concentrated Vectors

Generated image = G(Gaussian) (with G Lipschitz!)
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GAN data: An Example of Concentrated Vectors

Figure: Images generated by the BigGAN model [Brock et al, ICLR’19].
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Mixture of Concentrated Vectors

New assumption: k concentrated random vector classes,

X = [x1, . . . , xn1︸ ︷︷ ︸
∈O(e−·

q1 )

, xn1+1, . . . , xn2︸ ︷︷ ︸
∈O(e−·

q2 )

, . . . , xn−nk+1, . . . , xn︸ ︷︷ ︸
∈O(e−·

qk )

] ∈ Rp×n

with

µ` = Exi∈C` [xi], C` = Exi∈C` [xix
ᵀ
i ]

Examples:

I Gaussian mixture xi ∼ N (µa, Ca)

I mixture of Lipschitz functionals of Gaussians xi = φa(zi), zi ∼ N (0, Ip)

I GAN images!
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Behavior of Gram Matrices for Concentrated Vectors

Theorem (Universality result)
Under the non-trivial growth rate assumptions,

Q(z) ∈ O(e−(
√
p ·)q ) in (Rn×n, ‖ · ‖)

and, most importantly,

∥∥E[Q(z)]− Q̄(z)
∥∥ = O

(√
log p

p

)

where Q̄(z) only depends on µ1, . . . , µk, C1, . . . , Ck.

I Exactly the same result as for Gaussian mixture!

⇒ universality

I Careful (again!): does NOT mean that Gaussian mixture models real data!

I only means (but this is huge!) that ML algorithms treat GAN data as if
Gaussian
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Application to CNN Representations of GAN Images

I CNN representations correspond to the one before last layer.
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Application to CNN representations of GAN Images
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Takeaway message

Random matrix theory explains the inner working of practical ML algorithms

and this is provably valid for real data!
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