Random Matrices in Wireless Communications
 Course 4: Inverse problems and random matrices: parameter estimation

Romain Couillet
ST-Ericsson, Supélec, FRANCE romain.couillet@supelec.fr

Supélec
(1) Problem introduction
(2) Free deconvolution
(3) The Stieltjes transform approach
(4) Case study: comparison of moment vs. Stieltjes transform approach for blind transmit power infer

5 General summary of open problems worth being studied

Outline

(1) Problem introduction
(2) Free deconvolution
(3) The Stieltjes transform approach
(4) Case study: comparison of moment vs. Stieltjes transform approach for blind transmit power infer
(5) General summary of open problems worth being studied

- Reminder: for a sequence $\mathbf{x}_{1}, \ldots, x_{n} \in \mathbb{C}^{N}$ of independent random variables,

$$
\mathbf{R}_{n}=\frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{k} \mathbf{x}_{k}^{H}
$$

is an n-consistent estimator of $\mathbf{R}=\mathrm{E}\left[\mathbf{x}_{1} \mathbf{x}_{1}^{\mathrm{H}}\right]$.

- If n, N have comparable sizes, this no longer holds.
- Typically, n, N-consistent estimators of the full \mathbf{R} matrix perform very badly.
- If only the eigenvalues of \mathbf{R} are of interest, things can be done. The process of retrieving the eigenvalues (or in fact retrieving anything based on eigenvalues and eigenvectors) is called eigen-inference.
- If the distinct population eigenvalues, i.e. the distinct eigenvalues of \mathbf{R}, are small compared to N, much more can be done. This is the purpose of this course.
- Reminder: for a sequence $\mathbf{x}_{1}, \ldots, x_{n} \in \mathbb{C}^{N}$ of independent random variables,

$$
\mathbf{R}_{n}=\frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{k} \mathbf{x}_{k}^{H}
$$

is an n-consistent estimator of $\mathbf{R}=\mathrm{E}\left[\mathbf{x}_{1} \mathbf{x}_{1}^{\mathrm{H}}\right]$.

- If n, N have comparable sizes, this no longer holds.
- Typically, n, N-consistent estimators of the full R matrix perform very badly.
- If only the eigenvalues of \mathbf{R} are of interest, things can be done. The process of retrieving the eigenvalues (or in fact retrieving anything based on eigenvalues and eigenvectors) is called eigen-inference.
- If the distinct population eigenvalues, i.e. the distinct eigenvalues of \mathbf{R}, are small compared to N, much more can be done. This is the purpose of this course.
- Reminder: for a sequence $\mathbf{x}_{1}, \ldots, x_{n} \in \mathbb{C}^{N}$ of independent random variables,

$$
\mathbf{R}_{n}=\frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{k} \mathbf{x}_{k}^{H}
$$

is an n-consistent estimator of $\mathbf{R}=\mathrm{E}\left[\mathbf{x}_{1} \mathbf{x}_{1}^{\mathrm{H}}\right]$.

- If n, N have comparable sizes, this no longer holds.
- Typically, n, N-consistent estimators of the full \mathbf{R} matrix perform very badly.
- If only the eigenvalues of \mathbf{R} are of interest, things can be done. The process of retrieving the eigenvalues (or in fact retrieving anything based on eigenvalues and eigenvectors) is called eigen-inference.
- If the distinct population eigenvalues, i.e. the distinct eigenvalues of \mathbf{R}, are small compared to N, much more can be done. This is the purpose of this course.
- Reminder: for a sequence $\mathbf{x}_{1}, \ldots, x_{n} \in \mathbb{C}^{N}$ of independent random variables,

$$
\mathbf{R}_{n}=\frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{k} \mathbf{x}_{k}^{H}
$$

is an n-consistent estimator of $\mathbf{R}=\mathrm{E}\left[\mathbf{x}_{1} \mathbf{x}_{1}^{\mathrm{H}}\right]$.

- If n, N have comparable sizes, this no longer holds.
- Typically, n, N-consistent estimators of the full \mathbf{R} matrix perform very badly.
- If only the eigenvalues of \mathbf{R} are of interest, things can be done. The process of retrieving the eigenvalues (or in fact retrieving anything based on eigenvalues and eigenvectors) is called eigen-inference.
- If the distinct population eigenvalues, i.e. the distinct eigenvalues of \mathbf{R}, are small compared to N, much more can be done. This is the purpose of this course.
- Reminder: for a sequence $\mathbf{x}_{1}, \ldots, x_{n} \in \mathbb{C}^{N}$ of independent random variables,

$$
\mathbf{R}_{n}=\frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{k} \mathbf{x}_{k}^{H}
$$

is an n-consistent estimator of $\mathbf{R}=\mathrm{E}\left[\mathbf{x}_{1} \mathbf{x}_{1}^{\mathrm{H}}\right]$.

- If n, N have comparable sizes, this no longer holds.
- Typically, n, N-consistent estimators of the full \mathbf{R} matrix perform very badly.
- If only the eigenvalues of \mathbf{R} are of interest, things can be done. The process of retrieving the eigenvalues (or in fact retrieving anything based on eigenvalues and eigenvectors) is called eigen-inference.
- If the distinct population eigenvalues, i.e. the distinct eigenvalues of \mathbf{R}, are small compared to N, much more can be done. This is the purpose of this course.

Girko and the G-estimators

V. Girko, "Ten years of general statistical analysis," http://www.general-statistical-analysis.girko.freewebspace.com/chapter14.pdf

- Girko has come up with more than $50 \mathrm{~N}, n$-consistent estimators, called, after himself, G-estimators. Among those, we find
- G_{1}-estimator of generalized variance. For

$$
G_{1}\left(\mathbf{R}_{n}\right)=\alpha_{n}^{-1}\left[\log \operatorname{det}\left(\mathbf{R}_{n}\right)+\log \frac{n(n-1)^{N}}{(n-N) \prod_{k=1}^{N}(n-k)}\right]
$$

with α_{n} any sequence such that $\alpha_{n}^{-2} \log (n /(n-N)) \rightarrow 0$, we have

$$
G_{1}\left(\mathbf{R}_{n}\right)-\alpha_{n}^{-1} \log \operatorname{det}(\mathbf{R}) \rightarrow 0
$$

in probability.

$$
G_{3} \text {-estimator of the inverse covariance matrix, }
$$

- and more than 50 others.

- However, Girkn's nroofs are rarely readable, if existent
- As Bai puts it
"his proofs have puzzled many who attempt to understand, without success, Girko's arguments"

Girko and the G-estimators

V. Girko, "Ten years of general statistical analysis,"

 http://www.general-statistical-analysis.girko.freewebspace.com/chapter14.pdf- Girko has come up with more than $50 \mathrm{~N}, n$-consistent estimators, called, after himself, G-estimators. Among those, we find
- G_{1}-estimator of generalized variance. For

$$
G_{1}\left(\mathbf{R}_{n}\right)=\alpha_{n}^{-1}\left[\log \operatorname{det}\left(\mathbf{R}_{n}\right)+\log \frac{n(n-1)^{N}}{(n-N) \prod_{k=1}^{N}(n-k)}\right]
$$

with α_{n} any sequence such that $\alpha_{n}^{-2} \log (n /(n-N)) \rightarrow 0$, we have

$$
G_{1}\left(\mathbf{R}_{n}\right)-\alpha_{n}^{-1} \log \operatorname{det}(\mathbf{R}) \rightarrow 0
$$

in probability.

- G_{3}-estimator of the inverse covariance matrix,

$$
G_{3}\left(\mathbf{R}_{n}\right)=\mathbf{R}_{n}^{-1}[1-N / n]
$$

- and more than 50 others.
- However, Girkn's nroofs are rarely readable, if existent
- As Bai puts it
"his proofs have puzzled many who attempt to understand, without success, Girko's arguments"

Girko and the G-estimators

V. Girko, "Ten years of general statistical analysis,"

 http://www.general-statistical-analysis.girko.freewebspace.com/chapter14.pdf- Girko has come up with more than $50 \mathrm{~N}, n$-consistent estimators, called, after himself, G-estimators. Among those, we find
- G_{1}-estimator of generalized variance. For

$$
G_{1}\left(\mathbf{R}_{n}\right)=\alpha_{n}^{-1}\left[\log \operatorname{det}\left(\mathbf{R}_{n}\right)+\log \frac{n(n-1)^{N}}{(n-N) \prod_{k=1}^{N}(n-k)}\right]
$$

with α_{n} any sequence such that $\alpha_{n}^{-2} \log (n /(n-N)) \rightarrow 0$, we have

$$
G_{1}\left(\mathbf{R}_{n}\right)-\alpha_{n}^{-1} \log \operatorname{det}(\mathbf{R}) \rightarrow 0
$$

in probability.

- G_{3}-estimator of the inverse covariance matrix,

$$
G_{3}\left(\mathbf{R}_{n}\right)=\mathbf{R}_{n}^{-1}[1-N / n]
$$

- and more than 50 others...
- However, Girko's proofs are rarely readable, if existent.
- As Bai puts it
"his proofs have puzzled many who attempt to understand, without success, Girko's arguments"

Girko and the G-estimators

V. Girko, "Ten years of general statistical analysis," http://www.general-statistical-analysis.girko.freewebspace.com/chapter14.pdf

- Girko has come up with more than $50 \mathrm{~N}, n$-consistent estimators, called, after himself, G-estimators. Among those, we find
- G_{1}-estimator of generalized variance. For

$$
G_{1}\left(\mathbf{R}_{n}\right)=\alpha_{n}^{-1}\left[\log \operatorname{det}\left(\mathbf{R}_{n}\right)+\log \frac{n(n-1)^{N}}{(n-N) \prod_{k=1}^{N}(n-k)}\right]
$$

with α_{n} any sequence such that $\alpha_{n}^{-2} \log (n /(n-N)) \rightarrow 0$, we have

$$
G_{1}\left(\mathbf{R}_{n}\right)-\alpha_{n}^{-1} \log \operatorname{det}(\mathbf{R}) \rightarrow 0
$$

in probability.

- G_{3}-estimator of the inverse covariance matrix,

$$
G_{3}\left(\mathbf{R}_{n}\right)=\mathbf{R}_{n}^{-1}[1-N / n]
$$

- and more than 50 others...
- However, Girko's proofs are rarely readable, if existent.
- As Bai puts it
"his proofs have puzzled many who attempt to understand, without success, Girko's arguments"

Outline

(1) Problem introduction

2. Free deconvolution

(3) The Stieltjes transform approach
(4) Case study: comparison of moment vs. Stieltjes transform approach for blind transmit power infer
(5) General summary of open problems worth being studied

Position of the problem

- it has long been difficult to analytically invert the simplest $\mathbf{B}_{N}=\mathbf{T}_{N}^{\frac{1}{2}} \mathbf{X}_{N} \mathbf{X}_{N}^{H} \mathbf{T}_{N}^{\frac{1}{2}}$ model to recover the diagonal entries of \mathbf{T}_{N}. Indeed, we only have the deterministic equivalent result

$$
\underline{m}_{N}(z)=\left(-z+c \int \frac{t}{1+t \underline{m}_{N}(z)} d F^{\mathbf{T}_{N}}(t)\right)^{-1}
$$

with \underline{m}_{N} the deterministic equivalent of the Stieltjes transform for $\underline{\mathbf{B}}_{N}=\mathbf{X}_{N}^{\mathrm{H}} \mathbf{T}_{N} \mathbf{X}_{N}$.

- when T_{N} has eigenvalues t_{1}

- an N, n-consistent estimator for the t_{k} 's was never found until recently..
- however, moment-based methods and free probability approaches provide simple solutions to estimate consistently all moments of $F^{\top} N$.

Position of the problem

- it has long been difficult to analytically invert the simplest $\mathbf{B}_{N}=\mathbf{T}_{N}^{\frac{1}{2}} \mathbf{X}_{N} \mathbf{X}_{N}^{H} \mathbf{T}_{N}^{\frac{1}{2}}$ model to recover the diagonal entries of \mathbf{T}_{N}. Indeed, we only have the deterministic equivalent result

$$
\underline{m}_{N}(z)=\left(-z+c \int \frac{t}{1+t \underline{m}_{N}(z)} d F^{\mathbf{\top}_{N}}(t)\right)^{-1}
$$

with \underline{m}_{N} the deterministic equivalent of the Stieltjes transform for $\underline{\mathbf{B}}_{N}=\mathbf{X}_{N}^{\mathrm{H}} \mathbf{T}_{N} \mathbf{X}_{N}$.

- when \mathbf{T}_{N} has eigenvalues t_{1}, \ldots, t_{K} with multiplicity n_{1}, \ldots, n_{K}, this is

$$
\underline{m}_{N}(z)=\left(-z+\frac{1}{N} \sum_{k=1}^{k} n_{k} \frac{t_{k}}{1+t_{k} \underline{m}_{N}(z)}\right)^{-1}
$$

- an N, n-consistent estimator for the t_{k} 's was never found until recently...
- however, moment-based methods and free probability approaches provide simple solutions to estimate consistently all moments of F^{\top}.

Position of the problem

- it has long been difficult to analytically invert the simplest $\mathbf{B}_{N}=\mathbf{T}_{N}^{\frac{1}{2}} \mathbf{X}_{N} \mathbf{X}_{N}^{H} \mathbf{T}_{N}^{\frac{1}{2}}$ model to recover the diagonal entries of \mathbf{T}_{N}. Indeed, we only have the deterministic equivalent result

$$
\underline{m}_{N}(z)=\left(-z+c \int \frac{t}{1+t \underline{m}_{N}(z)} d F^{\mathbf{\top}_{N}}(t)\right)^{-1}
$$

with \underline{m}_{N} the deterministic equivalent of the Stieltjes transform for $\underline{\mathbf{B}}_{N}=\mathbf{X}_{N}^{H} \mathbf{T}_{N} \mathbf{X}_{N}$.

- when \mathbf{T}_{N} has eigenvalues t_{1}, \ldots, t_{K} with multiplicity n_{1}, \ldots, n_{K}, this is

$$
\underline{m}_{N}(z)=\left(-z+\frac{1}{N} \sum_{k=1}^{k} n_{k} \frac{t_{k}}{1+t_{k} \underline{m}_{N}(z)}\right)^{-1}
$$

- an N, n-consistent estimator for the t_{k} 's was never found until recently...
- however, moment-based methods and free probability approaches provide simple solutions to estimate consistently all moments of $F^{\mathbf{\top}}$.

Reminder on moment-based approaches

- For free random matrices \mathbf{A} and \mathbf{B}, we have the cumulant/moment relationships,

$$
M_{n}(\mathbf{A B})=\sum_{\substack{\left(\pi_{1}, \pi_{2}\right) \in N C(n) \\ C_{k}(\mathbf{A}+\mathbf{B})=C_{k}(\mathbf{A})+C_{k}(\mathbf{B}) \\ \prod_{1} \in \pi_{1} \\ V_{2} \in \pi_{2}}} C_{\left|V_{1}\right|}(\mathbf{A}) C_{\left|V_{2}\right|}(\mathbf{B})
$$

- this allows one to compute all moments of sum and product distributions

$$
\begin{aligned}
& \mu_{\mathbf{A}} \boxplus \mu_{\mathbf{B}} \\
& \mu_{\mathbf{A}} \boxtimes \mu_{\mathbf{B}}
\end{aligned}
$$

- in addition, we have results for the information-plus-noise model

$$
\mathbf{B}_{N}=\frac{1}{n}\left(\mathbf{R}_{N}+\sigma \mathbf{X}_{N}\right)\left(\mathbf{R}_{N}+\sigma \mathbf{X}_{N}\right)^{\mathrm{H}}
$$

whose e.s.d. converges weakly and almost surely to μ_{B} such that

$$
\mu_{B}=\left(\left(\mu_{\Gamma} \boxtimes \mu_{C}\right) \boxplus \delta_{\sigma^{2}}\right) \boxtimes \mu_{C}
$$

with μ_{C} the Marčenko-Pastur law and $\Gamma_{N}=\mathbf{R}_{N} \mathbf{R}_{N}^{H}$.
matrices (Gaussian, Vandermonde etc.)
all operations are merely polynomial operations on the moments. As a consequence, for $\mathbf{B}_{N}=f\left(\mathbf{R}_{N}\right)$
all moments of the I.s.d. of \mathbf{B}_{N} are obtained as polynomials of those of the I.s.d. of \mathbf{R}_{N}

Reminder on moment-based approaches

- For free random matrices \mathbf{A} and \mathbf{B}, we have the cumulant/moment relationships,

$$
M_{n}(\mathbf{A B})=\sum_{\substack{ \\
\left(\pi_{1}, \pi_{2}\right) \in N C(n) \\
M_{\begin{subarray}{c}{ } }}(\mathbf{A}+\mathbf{B})=C_{k}(\mathbf{A})+C_{k}(\mathbf{B})} \\
{V_{2} \in \pi_{2}}\end{subarray}} C_{\left|V_{1}\right|}(\mathbf{A}) C_{\left|V_{2}\right|}(\mathbf{B})
$$

- this allows one to compute all moments of sum and product distributions

$$
\begin{aligned}
& \mu_{\mathbf{A}} \boxplus \mu_{\mathbf{B}} \\
& \mu_{\mathbf{A}} \boxtimes \mu_{\mathbf{B}}
\end{aligned}
$$

- in addition, we have results for the information-plus-noise model

$$
\mathbf{B}_{N}=\frac{1}{n}\left(\mathbf{R}_{N}+\sigma \mathbf{X}_{N}\right)\left(\mathbf{R}_{N}+\sigma \mathbf{X}_{N}\right)^{\mathrm{H}}
$$

whose e.s.d. converges weakly and almost surely to μ_{B} such that

$$
\mu_{B}=\left(\left(\mu_{\ulcorner } \boxtimes \mu_{C}\right) \boxplus \delta_{\sigma^{2}}\right) \boxtimes \mu_{C}
$$

with μ_{c} the Marčenko-Pastur law and $\Gamma_{N}=\mathbf{R}_{N} \mathbf{R}_{N}^{H}$.

- all basic matrix operations needed in wireless communications are accessible for convenient matrices (Gaussian, Vandermonde etc.)
- all operations are merely polynomial operations on the moments. As a consequence, for $\mathbf{B}_{N}=f\left(\mathbf{R}_{N}\right)$,
all moments of the I.s.d. of B_{N} are obtained as polynomials of those of the I.s.d. of \mathbf{R}_{N}

Reminder on moment-based approaches

- For free random matrices \mathbf{A} and \mathbf{B}, we have the cumulant/moment relationships,

$$
M_{n}(\mathbf{A B})=\sum_{\substack{ \\
\left(\pi_{1}, \pi_{2}\right) \in N C(n) \\
M_{\begin{subarray}{c}{ } }}(\mathbf{A}+\mathbf{B})=C_{k}(\mathbf{A})+C_{k}(\mathbf{B})} \\
{V_{2} \in \pi_{2}}\end{subarray}} C_{\left|V_{1}\right|}(\mathbf{A}) C_{\left|V_{2}\right|}(\mathbf{B})
$$

- this allows one to compute all moments of sum and product distributions

$$
\begin{aligned}
& \mu_{\mathbf{A}} \boxplus \mu_{\mathbf{B}} \\
& \mu_{\mathbf{A}} \boxtimes \mu_{\mathbf{B}}
\end{aligned}
$$

- in addition, we have results for the information-plus-noise model

$$
\mathbf{B}_{N}=\frac{1}{n}\left(\mathbf{R}_{N}+\sigma \mathbf{X}_{N}\right)\left(\mathbf{R}_{N}+\sigma \mathbf{X}_{N}\right)^{\mathrm{H}}
$$

whose e.s.d. converges weakly and almost surely to μ_{B} such that

$$
\mu_{B}=\left(\left(\mu_{\ulcorner } \boxtimes \mu_{C}\right) \boxplus \delta_{\sigma^{2}}\right) \boxtimes \mu_{C}
$$

with μ_{c} the Marčenko-Pastur law and $\Gamma_{N}=\mathbf{R}_{N} \mathbf{R}_{N}^{H}$.

- all basic matrix operations needed in wireless communications are accessible for convenient matrices (Gaussian, Vandermonde etc.)
- all operations are merely polynomial operations on the moments. As a consequence, for $\mathbf{B}_{N}=f\left(\mathbf{R}_{N}\right)$,
all moments of the l.s.d. of \mathbf{B}_{N} are obtained as polynomials of those of the I.s.d. of \mathbf{R}_{N}

From free convolution to free deconvolution

Ø. Ryan, M. Debbah, "Multiplicative free convolution and information-plus-noise type matrices," Arxiv preprint math.PR/0702342, 2007.

- we have the further result that
the $k^{\text {th }}$ moment of the I.s.d. of \mathbf{B}_{N} is a polynomial of the k-first moments of the I.s.d. of \mathbf{R}_{N}
we can therefore invert the problem and express the $k^{t h}$ moment of \mathbf{R}_{N} as the first k moments of \mathbf{B}_{N}.
This entails deconvolution operations,
and for the information-plus-noise model, $\mathbf{B}_{N}=\frac{1}{n}\left(\mathbf{R}_{N}+\sigma \mathbf{X}_{N}\right)\left(\mathbf{R}_{N}+\sigma \mathbf{X}_{N}\right)^{H}$
- for more involved models, the polynomial relations can be iterated and even automatically generated.

From free convolution to free deconvolution

Ø. Ryan, M. Debbah, "Multiplicative free convolution and information-plus-noise type matrices," Arxiv preprint math.PR/0702342, 2007.

- we have the further result that
the $k^{\text {th }}$ moment of the I.s.d. of \mathbf{B}_{N} is a polynomial of the k-first moments of the I.s.d. of \mathbf{R}_{N}
- we can therefore invert the problem and express the $k^{t h}$ moment of \mathbf{R}_{N} as the first k moments of \mathbf{B}_{N}. This entails deconvolution operations,

$$
\begin{gathered}
\mu_{\mathbf{A}}=\mu_{\mathbf{A}+\mathbf{B}} \boxminus \mu_{\mathbf{B}} \\
\mu_{\mathbf{A}}=\mu_{\mathbf{A B}} \boxtimes \mu_{\mathbf{B}}
\end{gathered}
$$

and for the information-plus-noise model, $\mathbf{B}_{N}=\frac{1}{n}\left(\mathbf{R}_{N}+\sigma \mathbf{X}_{N}\right)\left(\mathbf{R}_{N}+\sigma \mathbf{X}_{N}\right)^{\mathrm{H}}$

$$
\mu_{\Gamma}=\left(\left(\mu_{B} \boxtimes \mu_{c}\right) \boxminus \delta_{\sigma^{2}}\right) \boxtimes \mu_{c}
$$

- for more involved models, the polynomial relations can be iterated and even automatically generated.

From free convolution to free deconvolution

Ø. Ryan, M. Debbah, "Multiplicative free convolution and information-plus-noise type matrices," Arxiv preprint math.PR/0702342, 2007.

- we have the further result that
the $k^{\text {th }}$ moment of the I.s.d. of \mathbf{B}_{N} is a polynomial of the k-first moments of the I.s.d. of \mathbf{R}_{N}
- we can therefore invert the problem and express the $k^{t h}$ moment of \mathbf{R}_{N} as the first k moments of \mathbf{B}_{N}. This entails deconvolution operations,

$$
\begin{gathered}
\mu_{\mathbf{A}}=\mu_{\mathbf{A}+\mathbf{B}} \boxminus \mu_{\mathbf{B}} \\
\mu_{\mathbf{A}}=\mu_{\mathbf{A B}} \boxtimes \mu_{\mathbf{B}}
\end{gathered}
$$

and for the information-plus-noise model, $\mathbf{B}_{N}=\frac{1}{n}\left(\mathbf{R}_{N}+\sigma \mathbf{X}_{N}\right)\left(\mathbf{R}_{N}+\sigma \mathbf{X}_{N}\right)^{H}$

$$
\mu_{\Gamma}=\left(\left(\mu_{B} \boxtimes \mu_{c}\right) \boxminus \delta_{\sigma^{2}}\right) \boxtimes \mu_{c}
$$

- for more involved models, the polynomial relations can be iterated and even automatically generated.

Example of polynomial relation

- Consider the information-plus-noise model

$$
\mathbf{Y}=\mathbf{D}+\mathbf{X}
$$

with $\mathbf{Y} \in \mathbb{C}^{N \times n}, \mathbf{D} \in \mathbb{C}^{N \times n}, \mathbf{X} \in \mathbb{C}^{N \times n}$ with i.i.d. entries of mean 0 and variance 1. Denote

$$
\begin{aligned}
M_{k} & =\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{tr}\left(\frac{1}{N} \mathbf{Y} \mathbf{Y}^{H}\right)^{k} \\
D_{k} & =\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{tr}\left(\frac{1}{N} \mathbf{D} \mathbf{D}^{H}\right)^{k}
\end{aligned}
$$

- For that model, we have the relations

hence

Example of polynomial relation

- Consider the information-plus-noise model

$$
\mathbf{Y}=\mathbf{D}+\mathbf{X}
$$

with $\mathbf{Y} \in \mathbb{C}^{N \times n}, \mathbf{D} \in \mathbb{C}^{N \times n}, \mathbf{X} \in \mathbb{C}^{N \times n}$ with i.i.d. entries of mean 0 and variance 1. Denote

$$
\begin{aligned}
M_{k} & =\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{tr}\left(\frac{1}{N} \mathbf{Y} \mathbf{Y}^{H}\right)^{k} \\
D_{k} & =\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{tr}\left(\frac{1}{N} \mathbf{D} \mathbf{D}^{H}\right)^{k}
\end{aligned}
$$

- For that model, we have the relations

$$
\begin{aligned}
& M_{1}=D_{1}+1 \\
& M_{2}=D_{2}+(2+2 c) D_{1}+(1+c) \\
& M_{3}=D_{3}+(3+3 c) D_{2}+3 c D_{1}^{2}+\left(1+3 c+c^{2}\right)
\end{aligned}
$$

hence

Example of polynomial relation

- Consider the information-plus-noise model

$$
\mathbf{Y}=\mathbf{D}+\mathbf{X}
$$

with $\mathbf{Y} \in \mathbb{C}^{N \times n}, \mathbf{D} \in \mathbb{C}^{N \times n}, \mathbf{X} \in \mathbb{C}^{N \times n}$ with i.i.d. entries of mean 0 and variance 1. Denote

$$
\begin{aligned}
M_{k} & =\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{tr}\left(\frac{1}{N} \mathbf{Y} \mathbf{Y}^{H}\right)^{k} \\
D_{k} & =\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{tr}\left(\frac{1}{N} \mathbf{D} \mathbf{D}^{H}\right)^{k}
\end{aligned}
$$

- For that model, we have the relations

$$
\begin{aligned}
& M_{1}=D_{1}+1 \\
& M_{2}=D_{2}+(2+2 c) D_{1}+(1+c) \\
& M_{3}=D_{3}+(3+3 c) D_{2}+3 c D_{1}^{2}+\left(1+3 c+c^{2}\right)
\end{aligned}
$$

hence

$$
\begin{aligned}
& D_{1}=M_{1}-1 \\
& D_{2}=M_{2}-(2+2 c) M_{1}+(1+c) \\
& D_{3}=M_{3}-(3+3 c) M_{2}-3 c M_{1}^{2}+\left(6 c^{2}+18 c+6\right) M_{1}-\left(4 c^{2}+12 c+4\right)
\end{aligned}
$$

A. Masucci, Ø. Ryan, S. Yang, M. Debbah, "Finite Dimensional Statistical Inference," submitted to IEEE Trans. on Information Theory.

- it might happen that, instead of one large matrix realization, we have access to several smaller such matrices. In that case, we seek an estimate for

$$
\mathrm{E}\left[\frac{1}{n} \operatorname{tr}\left(\frac{1}{N} \mathrm{Y} \mathbf{Y}^{H}\right)^{k}\right]
$$

instead of their limits.

- we have further combinatorics theorems for all previous elementary models.
- example: the previous relations extend to

A. Masucci, Ø. Ryan, S. Yang, M. Debbah, "Finite Dimensional Statistical Inference," submitted to IEEE Trans. on Information Theory.
- it might happen that, instead of one large matrix realization, we have access to several smaller such matrices. In that case, we seek an estimate for

$$
\mathrm{E}\left[\frac{1}{n} \operatorname{tr}\left(\frac{1}{N} \mathbf{Y} \mathbf{Y}^{H}\right)^{k}\right]
$$

instead of their limits.

- we have further combinatorics theorems for all previous elementary models.
- example: the previous relations extend to

A. Masucci, Ø. Ryan, S. Yang, M. Debbah, "Finite Dimensional Statistical Inference," submitted to IEEE Trans. on Information Theory.
- it might happen that, instead of one large matrix realization, we have access to several smaller such matrices. In that case, we seek an estimate for

$$
\mathrm{E}\left[\frac{1}{n} \operatorname{tr}\left(\frac{1}{N} \mathrm{YY}^{H}\right)^{k}\right]
$$

instead of their limits.

- we have further combinatorics theorems for all previous elementary models.
- example: the previous relations extend to

$$
\begin{aligned}
& M_{1}=D_{1}+1 \\
& M_{2}=D_{2}+(2+2 c) D_{1}+(1+c) \\
& M_{3}=D_{3}+(3+3 c) D_{2}+3 c D_{1}^{2}+\left(3+9 c+3 c^{2}+3 N^{-2}\right) D_{1}+\left(1+3 c+c^{2}+N^{-2}\right)
\end{aligned}
$$

- in addition to estimating the average moments themselves, we can evaluate the variance of the empirical moments

$$
\mathrm{E}\left[\frac{1}{n} \operatorname{tr}\left(\frac{1}{N} \mathbf{Y} \mathbf{Y}^{\mathrm{H}}\right)^{k}-\mathrm{E}\left[\frac{1}{n} \operatorname{tr}\left(\frac{1}{N} \mathbf{Y} \mathbf{Y}^{\mathrm{H}}\right)^{k}\right]\right]
$$

- if the moments have Gaussian distributions (left to be proven for models other than sample covariance matrix), the full behaviour of the empirical moments is known.
o statistical maximum-likelihood/MMSE methods can then be used, see further Section 35.
- in addition to estimating the average moments themselves, we can evaluate the variance of the empirical moments

$$
\mathrm{E}\left[\frac{1}{n} \operatorname{tr}\left(\frac{1}{N} \mathbf{Y} \mathbf{Y}^{H}\right)^{k}-\mathrm{E}\left[\frac{1}{n} \operatorname{tr}\left(\frac{1}{N} \mathbf{Y} \mathbf{Y}^{H}\right)^{k}\right]\right]
$$

- if the moments have Gaussian distributions (left to be proven for models other than sample covariance matrix), the full behaviour of the empirical moments is known.
- statistical maximum-likelihood/MMSE methods can then be used, see further Section 35.
- in addition to estimating the average moments themselves, we can evaluate the variance of the empirical moments

$$
\mathrm{E}\left[\frac{1}{n} \operatorname{tr}\left(\frac{1}{N} \mathbf{Y} \mathbf{Y}^{\mathrm{H}}\right)^{k}-\mathrm{E}\left[\frac{1}{n} \operatorname{tr}\left(\frac{1}{N} \mathbf{Y} \mathbf{Y}^{\mathrm{H}}\right)^{k}\right]\right]
$$

- if the moments have Gaussian distributions (left to be proven for models other than sample covariance matrix), the full behaviour of the empirical moments is known.
- statistical maximum-likelihood/MMSE methods can then be used, see further Section 35.
- N. R. Rao, A. Edelman, "The polynomial method for random matrices," Foundations of Computational Mathematics, accepted for publication.
- N. R. Rao, J. A. Mingo, R. Speicher, A. Edelman, "Statistical eigen-inference from large Wishart matrices," Annals of Statistics, vol. 36, no. 6, pp. 2850-2885, 2008.
- A. Masucci, Ø. Ryan, S. Yang, M. Debbah, "Finite Dimensional Statistical Inference," submitted to IEEE Trans. on Information Theory.
- Ø. Ryan, M. Debbah, "Multiplicative free convolution and information-plus-noise type matrices," Arxiv preprint math.PR/0702342, 2007.
- Ø. Ryan, M. Debbah, "Free deconvolution for signal processing applications," IEEE International Symposium on Information Theory, pp. 1846-1850, 2007.
- Ø. Ryan, M. Debbah, "Asymptotic Behavior of Random Vandermonde Matrices With Entries on the Unit Circle," IEEE Trans. on Information Theory, vol. 55, no. 7, pp. 3115-3147, 2009.
- I. M. Johnstone, "On the distribution of the largest eigenvalue in principal components analysis," Annals of Statistics, vol. 99, no. 2, pp. 295-327, 2001.
- K. Johansson, "Shape Fluctuations and Random Matrices," Comm. Math. Phys. vol. 209, pp. 437-476, 2000.
- Y. Q. Yin, Z. D. Bai, P. R. Krishnaiah, "On the limit of the largest eigenvalue of the large dimensional sample covariance matrix," Probability Theory and Related Fields, vol. 78, no. 4, pp. 509-521, 1988.
- J. W. Silverstein, Z.D. Bai and Y.Q. Yin, "A note on the largest eigenvalue of a large dimensional sample covariance matrix," Journal of Multivariate Analysis, vol. 26, no. 2, pp. 166-168. 1988.
- C. A. Tracy, H. Widom, "On orthogonal and symplectic matrix ensembles," Communications in Mathematical Physics, vol. 177, no. 3, pp. 727-754, 1996.
- P. Bianchi, M. Debbah, J. Najim, "Asymptotic independence in the spectrum of the Gaussian Unitary Ensemble," arXiv preprint 0811.0979, 2008.

Outline

(1) Problem introduction
(2) Free deconvolution
(3) The Stieltjes transform approach

4 Case study: comparison of moment vs. Stieltjes transform approach for blind transmit power infer
(5) General summary of open problems worth being studied

Advantages of using the Stieltijes transform

- for the same reasons as always, the Stieltjes transform carries all information on the underlying distribution, not only its moments.
- up to now, we obtained N, n-consistent estimators for every moment only
- if distribution is not compactly supported, moment approach is useless
- it would be more helnful to have N n-consistent estimators of the nowers themselves

Advantages of using the Stieltjes transform

- for the same reasons as always, the Stieltjes transform carries all information on the underlying distribution, not only its moments.
- up to now, we obtained N, n-consistent estimators for every moment only
- if distribution is not compactly supported, moment approach is useless
- it would be more helpful to have N, n-consistent estimators of the powers themselves

Advantages of using the Stieltjes transform

- for the same reasons as always, the Stieltjes transform carries all information on the underlying distribution, not only its moments.
- up to now, we obtained N, n-consistent estimators for every moment only
- if distribution is not compactly supported, moment approach is useless
- it would be more helpful to have N, n-consistent estimators of the powers themselves
X. Mestre, "Improved estimation of eigenvalues and eigenvectors of covariance matrices using their sample estimates," IEEE trans. on Information Theory, vol. 54, no. 11, pp. 5113-5129, 2008.
- Consider the model $\mathbf{B}_{N}=\mathbf{T}_{N}^{\frac{1}{2}} \mathbf{X}_{N} \mathbf{X}_{N}^{H} \mathbf{T}_{N}^{\frac{1}{2}}$, where $F^{\mathbf{T}_{N}}$ is formed of a finite number of masses t_{1}, \ldots, t_{K}.
- it has long been thought the inverse problem of retrieving t_{1}, \ldots, t_{K} from \mathbf{B}_{N} was not possible.
- the problem was partially solved by Mestre in 2008!
- his technique uses elegant complex analysis tools. The description of this technique is the subject of this course.
X. Mestre, "Improved estimation of eigenvalues and eigenvectors of covariance matrices using their sample estimates," IEEE trans. on Information Theory, vol. 54, no. 11, pp. 5113-5129, 2008.
- Consider the model $\mathbf{B}_{N}=\mathbf{T}_{N}^{\frac{1}{2}} \mathbf{X}_{N} \mathbf{X}_{N}^{H} \mathbf{T}_{N}^{\frac{1}{2}}$, where $F^{\mathbf{T}_{N}}$ is formed of a finite number of masses t_{1}, \ldots, t_{K}.
- it has long been thought the inverse problem of retrieving t_{1}, \ldots, t_{K} from \mathbf{B}_{N} was not possible.
- the problem was partially solved by Mestre in 2008!
- his technique uses elegant complex analysis tools. The description of this technique is the subject of this course.
X. Mestre, "Improved estimation of eigenvalues and eigenvectors of covariance matrices using their sample estimates," IEEE trans. on Information Theory, vol. 54, no. 11, pp. 5113-5129, 2008.
- Consider the model $\mathbf{B}_{N}=\mathbf{T}_{N}^{\frac{1}{2}} \mathbf{X}_{N} \mathbf{X}_{N}^{H} \mathbf{T}_{N}^{\frac{1}{2}}$, where $F^{\mathbf{T}_{N}}$ is formed of a finite number of masses t_{1}, \ldots, t_{K}.
- it has long been thought the inverse problem of retrieving t_{1}, \ldots, t_{K} from \mathbf{B}_{N} was not possible.
- the problem was partially solved by Mestre in 2008!
- his technique uses elegant complex analysis tools. The description of this technique is the subject of this course.
- consider the sample covariance matrix model $\mathbf{B}_{N}=\mathbf{T}_{N}^{\frac{1}{2}} \mathbf{X}_{N} \mathbf{X}_{N}^{\mathrm{H}} \mathbf{T}_{N}^{\frac{1}{2}}$.
- in Part 3., we saw
- that there is no eigenvalue outside the support with probability 1.
- that for all large N, when the spectrum is divided into clusters, the number of empirical eigenvalues in each cluster is exactly as we expect.
- consider the sample covariance matrix model $\mathbf{B}_{N}=\mathbf{T}_{N}^{\frac{1}{2}} \mathbf{X}_{N} \mathbf{X}_{N}^{\mathrm{H}} \mathbf{T}_{N}^{\frac{1}{2}}$.
- in Part 3., we saw
- that there is no eigenvalue outside the support with probability 1.
- that for all large N, when the spectrum is divided into clusters, the number of empirical eigenvalues in each cluster is exactly as we expect.
- these results are of crucial importance for the following.

Inverse problem for sample covariance matrix

Figure: Empirical and asymptotic eigenvalue distribution of $\frac{1}{M} \mathbf{Y Y}^{H}$ when \mathbf{P} has three distinct entries $P_{1}=1$, $P_{2}=3, P_{3}=10, n_{1}=n_{2}=n_{3}, N / n=10, M / N=10, \sigma^{2}=0.1$. Empirical test: $n=60$.

The Stielties transform approach
 Eigen-inference for the sample covariance matrix model

X. Mestre, "Improved estimation of eigenvalues and eigenvectors of covariance matrices using their sample estimates," IEEE trans. on Information Theory, vol. 54, no. 11, pp. 5113-5129, 2008.

Theorem

Consider the model $\mathbf{B}_{N}=\mathbf{T}_{N}^{\frac{1}{2}} \mathbf{X}_{N} \mathbf{X}_{N}^{H} \mathbf{T}_{N}^{\frac{1}{2}}$, with $\mathbf{X}_{N} \in \mathbb{C}^{N \times n}$, i.i.d. with entries of zero mean, variance $1 / n$, and $\mathbf{T}_{N} \in \mathbb{R}^{N \times N}$ is diagonal with K distinct entries t_{1}, \ldots, t_{K} of multiplicity n_{1}, \ldots, n_{K} of same order as n. Let $k \in\{1, \ldots, K\}$. Then, if the cluster associated to t_{k} is separated from the clusters associated to $k-1$ and $k+1$, as $N, n \rightarrow \infty, N / n \rightarrow c$,

$$
\hat{t}_{k}=\frac{n}{n_{k}} \sum_{m \in \mathcal{N}_{k}}\left(\lambda_{m}-\mu_{m}\right)
$$

is an N, n-consistent estimator of t_{k}, where $\mathcal{N}_{k}=\left\{N-\sum_{i=k}^{K} n_{j}+1, \ldots, N-\sum_{i=k+1}^{K} n_{i}\right\}$, $\lambda_{1}, \ldots, \lambda_{N}$ are the eigenvalues of \mathbf{B}_{N} and μ_{1}, \ldots, μ_{N} are the N solutions of

$$
m_{\mathbf{x}_{N}^{H} \mathbf{T}_{N} \mathbf{x}_{N}}(\mu)=0
$$

A trick to compute the μ_{k} 's

The Stielties transform approach
R. Couillet, J. W. Silverstein, M. Debbah, "Eigen-inference for multi-source power estimation", submitted to ISIT 2010.

Lemma [Silverstein]

Let $\mathbf{A} \in \mathbb{C}^{N \times N}$ be diagonal with entries $\lambda_{1}, \ldots, \lambda_{N}$ and $\mathbf{y} \in \mathbb{C}^{N}$. Then the eigenvalues of ($\mathbf{A}-\mathbf{y y}^{*}$) are the N real solutions in x of

$$
\sum_{i=1}^{N} \frac{y_{i}^{2}}{\lambda_{i}-x}=1
$$

Taking $\mathbf{A}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ and $y_{i}^{2}=\frac{1}{N} \lambda_{i}$, the eigenvalues of $\mathbf{A}-\mathbf{y y}^{H}$ are the solutions of
which is equivalent to

A trick to compute the μ_{k} 's

The Stielties transform approach
R. Couillet, J. W. Silverstein, M. Debbah, "Eigen-inference for multi-source power estimation", submitted to ISIT 2010.

Lemma [Silverstein]

Let $\mathbf{A} \in \mathbb{C}^{N \times N}$ be diagonal with entries $\lambda_{1}, \ldots, \lambda_{N}$ and $\mathbf{y} \in \mathbb{C}^{N}$. Then the eigenvalues of ($\mathbf{A}-\mathbf{y y}^{*}$) are the N real solutions in x of

$$
\sum_{i=1}^{N} \frac{y_{i}^{2}}{\lambda_{i}-x}=1
$$

Taking $\mathbf{A}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ and $y_{i}^{2}=\frac{1}{N} \lambda_{i}$, the eigenvalues of $\mathbf{A}-\mathbf{y} \mathbf{y}^{\mathrm{H}}$ are the solutions of

$$
\frac{1}{N} \sum_{i=1}^{N} \frac{\lambda_{i}}{\lambda_{i}-x}=1
$$

which is equivalent to

$$
m_{\mathbf{x}_{N}^{H} \mathbf{T}_{N} \mathbf{x}_{N}}(x)=\frac{1}{N} \sum_{i=1}^{N} \frac{1}{\lambda_{i}-x}=0
$$

A trick to compute the μ_{k} 's

The Stielties transform approach
R. Couillet, J. W. Silverstein, M. Debbah, "Eigen-inference for multi-source power estimation", submitted to ISIT 2010.

Lemma [Silverstein]

Let $\mathbf{A} \in \mathbb{C}^{N \times N}$ be diagonal with entries $\lambda_{1}, \ldots, \lambda_{N}$ and $\mathbf{y} \in \mathbb{C}^{N}$. Then the eigenvalues of ($\mathbf{A}-\mathbf{y y}^{*}$) are the N real solutions in x of

$$
\sum_{i=1}^{N} \frac{y_{i}^{2}}{\lambda_{i}-x}=1
$$

Taking $\mathbf{A}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ and $y_{i}^{2}=\frac{1}{N} \lambda_{i}$, the eigenvalues of $\mathbf{A}-\mathbf{y} \mathbf{y}^{\mathrm{H}}$ are the solutions of

$$
\frac{1}{N} \sum_{i=1}^{N} \frac{\lambda_{i}}{\lambda_{i}-x}=1
$$

which is equivalent to

$$
m_{\mathbf{x}_{N}^{H} \mathbf{T}_{N} \mathbf{x}_{N}}(x)=\frac{1}{N} \sum_{i=1}^{N} \frac{1}{\lambda_{i}-x}=0
$$

The μ_{k} 's are then the eigenvalues of a matrix that is function of $\lambda_{1}, \ldots, \lambda_{N}$.

Proof of the lemma

Let $\mathbf{A} \in \mathbb{C}^{N \times N}$ be Hermitian and $\mathbf{y} \in \mathbb{C}^{N}$. If μ is an eigenvalue of $\left(\mathbf{A}-\mathbf{y y}^{*}\right)$ with eigenvector \mathbf{x}, we have

$$
\begin{aligned}
\left(\mathbf{A}-\mathbf{y y}^{*}\right) \mathbf{x} & =\mu \mathbf{x} \\
(\mathbf{A}-\mu I) x & =\mathbf{y}^{*} x \mathbf{y} \\
x & =\mathbf{y}^{*} x(\mathbf{A}-\mu I)^{-1} \mathbf{y} \\
\mathbf{y}^{*} x & =\mathbf{y}^{*} x \mathbf{y}^{*}(\mathbf{A}-\mu I)^{-1} \mathbf{y} \\
1 & =\mathbf{y}^{*}(\mathbf{A}-\mu I)^{-1} \mathbf{y}
\end{aligned}
$$

Take \mathbf{A} diagonal with entries $\lambda_{1}, \ldots, \lambda_{N}$, we then have

$$
\begin{equation*}
\sum_{i=1}^{N} \frac{y_{i}^{2}}{\lambda_{i}-\mu}=1 \tag{1}
\end{equation*}
$$

- assuming cluster separation, the result consists in
- taking the empirical ordered λ_{i} 's inside the cluster (note that exact separation ensures there are n_{k} of these!)
- getting the ordered eigenvalues μ_{1}, \ldots, μ_{N} of

$$
\operatorname{diag}(\boldsymbol{\lambda})-\frac{1}{N} \sqrt{\boldsymbol{\lambda}} \sqrt{\boldsymbol{\lambda}}^{\top}
$$

with $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{N}\right)^{\top}$. Keep only those of index inside \mathcal{N}_{k}.

- take the difference and scale.
- major trick requires tools from complex analysis
- Silverstein's Stieltjes transform identity: for the conjugate model $\underline{B}_{N}=X_{N}^{*} \mathbf{T}_{N} \mathbf{X}_{N}$,

$$
\underline{m}_{N}(z)=\left(-z-c \int \frac{t}{1+t \underline{m}_{N}(z)} d F^{\mathbf{\top}_{N}}(t)\right)^{-1}
$$

with \underline{m}_{N} the deterministic equivalent of $m_{\underline{B}_{N}}$. This is the only random matrix result we need.

- before going further, we need some reminders from complex analysis.
- major trick requires tools from complex analysis
- Silverstein's Stieltjes transform identity: for the conjugate model $\underline{\mathbf{B}}_{N}=\mathbf{X}_{N}^{*} \mathbf{T}_{N} \mathbf{X}_{N}$,

$$
\underline{m}_{N}(z)=\left(-z-c \int \frac{t}{1+t \underline{m}_{N}(z)} d F^{\mathbf{T}_{N}}(t)\right)^{-1}
$$

with \underline{m}_{N} the deterministic equivalent of $m_{\underline{B}_{N}}$. This is the only random matrix result we need.

- major trick requires tools from complex analysis
- Silverstein's Stieltjes transform identity: for the conjugate model $\underline{\mathbf{B}}_{N}=\mathbf{X}_{N}^{*} \mathbf{T}_{N} \mathbf{X}_{N}$,

$$
\underline{m}_{N}(z)=\left(-z-c \int \frac{t}{1+t \underline{m}_{N}(z)} d F^{\mathbf{T}_{N}}(t)\right)^{-1}
$$

with \underline{m}_{N} the deterministic equivalent of $m_{\underline{B}_{N}}$. This is the only random matrix result we need.

- before going further, we need some reminders from complex analysis.

Reminders of complex analysis

W. Rudin, Real and complex analysis, McGraw-Hill, 2006.

- Cauchy integration formula

Theorem

Let $U \subset \mathbb{C}$ be an open set and $f: U \rightarrow \mathbb{C}$ be holomorphic on U. Let $\gamma \subset U$ be a continuous contour (i.e. closed path). Then, for a inside the surface formed by γ, we have

$$
f(a)=\frac{1}{2 \pi i} \oint_{\gamma} \frac{f(z)}{z-a} d z
$$

Reminders of complex analysis (2)

- Residue calculus

Theorem

Let γ be a contour on \mathbb{C}. For f holomorphic inside γ but on a discrete number of points, to compute the expression

$$
\frac{1}{2 \pi i} \oint_{\gamma} f(z) d z
$$

one must
(1) determine the poles of f lying inside the surface formed by γ, i.e. those values a such that

$$
\lim _{z \rightarrow a}|f(z)|=\infty
$$determine the order of each pole, i.e. the smallest k such that

$$
\lim _{z \rightarrow a}\left|(z-a)^{k} f(z)\right|<\infty
$$

(3) compute the residues of f at the poles, i.e. evaluate the value

$$
\operatorname{Res}(f, a) \triangleq \lim _{z \rightarrow a} \frac{d^{k-1}}{d z^{k-1}}\left[(z-a)^{k} f(z)\right]
$$

(4) the integral is then the sum of all residues.

$$
\frac{1}{2 \pi i} \oint_{\gamma} f(z) d z=\sum_{a \in\{\text { poles of } f\}} \operatorname{Res}(f, a)
$$

Drawing a contour around t_{k}

- in the following, we make the cluster separability assumption for t_{k}, i.e. the cluster corresponding to t_{k} is separated from those corresponding to t_{k-1} and t_{k+1}.
- from the Cauchy integral formula, for a negatively oriented complex contour \mathcal{C}_{k} enclosing t_{k} and only t_{k},

- the idea is then1) to choose an ap propriate integration contour featuring the Stieltjes transform $m_{F}(z)$ of the I.s.d. of B_{N}
(2) from the resulting expression, use the fact that, for $N \operatorname{large}, m_{F}(z) \simeq m_{B_{N}}(z)$, and replace m_{F} by
$m_{B_{N}}$
(3) $m_{\mathbf{B}_{N}}$ is a function of the empirical eigenvalues $\lambda_{1} \ldots \ldots, \lambda_{N}$. By residue calculus, we obtain the estimate of t_{k}
- in the following, we make the cluster separability assumption for t_{k}, i.e. the cluster corresponding to t_{k} is separated from those corresponding to t_{k-1} and t_{k+1}.
- from the Cauchy integral formula, for a negatively oriented complex contour \mathcal{C}_{k} enclosing t_{k} and only t_{k},

$$
t_{k}=\frac{n}{n_{k}} \frac{1}{2 \pi i} \oint_{\mathcal{C}_{k}} \frac{1}{N} \sum_{r=1}^{K} n_{r} \frac{\omega}{t_{r}-\omega} d \omega
$$

- the idea is then
(1) to choose an ap propriate integration contour featuring the Stieltjes transform $m_{F}(z)$ of the $I . s . d$. of B_{N}.
(2) from the resulting expression, use the fact that, for N large, $m_{F}(z) \simeq m_{B_{N}}(z)$, and replace m_{F} by
(3) m_{B}
estimate of t_{k}
- in the following, we make the cluster separability assumption for t_{k}, i.e. the cluster corresponding to t_{k} is separated from those corresponding to t_{k-1} and t_{k+1}.
- from the Cauchy integral formula, for a negatively oriented complex contour \mathcal{C}_{k} enclosing t_{k} and only t_{k},

$$
t_{k}=\frac{n}{n_{k}} \frac{1}{2 \pi i} \oint_{\mathcal{C}_{k}} \frac{1}{N} \sum_{r=1}^{K} n_{r} \frac{\omega}{t_{r}-\omega} d \omega
$$

- the idea is then
(1) to choose an appropriate integration contour featuring the Stieltjes transform $m_{F}(z)$ of the I.s.d. of \mathbf{B}_{N}.
(3) $m_{B_{N}}$ is a function of the empirical eigenvalues $\lambda_{1}, \ldots, \lambda_{N}$. By residue calculus, we obtain the estimate of t_{k}.
- in the following, we make the cluster separability assumption for t_{k}, i.e. the cluster corresponding to t_{k} is separated from those corresponding to t_{k-1} and t_{k+1}.
- from the Cauchy integral formula, for a negatively oriented complex contour \mathcal{C}_{k} enclosing t_{k} and only t_{k},

$$
t_{k}=\frac{n}{n_{k}} \frac{1}{2 \pi i} \oint_{\mathcal{C}_{k}} \frac{1}{N} \sum_{r=1}^{K} n_{r} \frac{\omega}{t_{r}-\omega} d \omega
$$

- the idea is then
(1) to choose an appropriate integration contour featuring the Stieltjes transform $m_{F}(z)$ of the I.s.d. of \mathbf{B}_{N}.
(2) from the resulting expression, use the fact that, for N large, $m_{F}(z) \simeq m_{B_{N}}(z)$, and replace m_{F} by $m_{B_{N}}$
(3) $m_{B_{N}}$ is a function of the empirical eigenvalues $\lambda_{1} \ldots \ldots \lambda_{N}$. By residue calculus, we obtain the estimate of t_{k}.

Drawing a contour around t_{k}

- in the following, we make the cluster separability assumption for t_{k}, i.e. the cluster corresponding to t_{k} is separated from those corresponding to t_{k-1} and t_{k+1}.
- from the Cauchy integral formula, for a negatively oriented complex contour \mathcal{C}_{k} enclosing t_{k} and only t_{k},

$$
t_{k}=\frac{n}{n_{k}} \frac{1}{2 \pi i} \oint_{\mathcal{C}_{k}} \frac{1}{N} \sum_{r=1}^{K} n_{r} \frac{\omega}{t_{r}-\omega} d \omega
$$

- the idea is then
(1) to choose an appropriate integration contour featuring the Stieltjes transform $m_{F}(z)$ of the I.s.d. of \mathbf{B}_{N}.
(2) from the resulting expression, use the fact that, for N large, $m_{F}(z) \simeq m_{B_{N}}(z)$, and replace m_{F} by $m_{B_{N}}$
(3) $m_{\mathbf{B}_{N}}$ is a function of the empirical eigenvalues $\lambda_{1}, \ldots, \lambda_{N}$. By residue calculus, we obtain the estimate of t_{k}.
- very naive idea: take any contour around t_{k}, as close as we want.
- However, the Stieltjes transform is ill-defined close to the real axis in the support!
- naive idea: take any contour around the cluster of t_{k}
- However, it is not true that t_{r} is inside its own cluster!
- bright idea: remember the inversion formula of the Stieltjes transform for the conjugate sample covariance matrix $\underline{\mathbf{B}}_{N}=\mathbf{X}_{N}^{H} \mathbf{T}_{N} \mathbf{X}_{N}$,

and study again the graph of $x_{N}(m)$ its restriction to the real line.
- very naive idea: take any contour around t_{k}, as close as we want.
- However, the Stieltjes transform is ill-defined close to the real axis in the support!
- naive idea: take any contour around the cluster of t_{k}
- However, it is not true that t_{k} is inside its own cluster!
- bright idea: remember the inversion formula of the Stieltjes transform for the conjugate sample covariance matrix $\underline{B}_{N}=\mathrm{X}_{N}^{H} \mathrm{~T}_{N} \mathrm{X}_{N}$,

and study again the graph of $x_{N}(m)$ its restriction to the real line.
- very naive idea: take any contour around t_{k}, as close as we want.
- However, the Stieltjes transform is ill-defined close to the real axis in the support!
- naive idea: take any contour around the cluster of t_{k}
- However, it is not true that t_{k} is inside its own cluster!
- bright idea: remember the inversion formula of the Stieltjes transform for the conjugate sample covariance matrix $\underline{B}_{N}=\mathbf{X}_{N}^{H} \mathbf{T}_{N} \mathbf{X}_{N}$,

and study again the graph of $x_{N}(m)$ its restriction to the real line.
- very naive idea: take any contour around t_{k}, as close as we want.
- However, the Stieltjes transform is ill-defined close to the real axis in the support!
- naive idea: take any contour around the cluster of t_{k}
- However, it is not true that t_{k} is inside its own cluster!
- bright idea: remember the inversion formula of the Stieltjes transform for the conjugate sample covariance matrix $\underline{\mathbf{B}}_{N}=\mathbf{X}_{N}^{H} \mathbf{T}_{N} \mathbf{X}_{N}$,

and study again the graph of $x_{N}(m)$ its restriction to the real line.
- very naive idea: take any contour around t_{k}, as close as we want.
- However, the Stieltjes transform is ill-defined close to the real axis in the support!
- naive idea: take any contour around the cluster of t_{k}
- However, it is not true that t_{k} is inside its own cluster!
- bright idea: remember the inversion formula of the Stieltjes transform for the conjugate sample covariance matrix $\underline{\mathbf{B}}_{N}=\mathbf{X}_{N}^{\mathrm{H}} \mathbf{T}_{N} \mathbf{X}_{N}$,

$$
z_{N}(m)=-\frac{1}{m}+c \int \frac{t}{1+t m} d F^{\mathbf{T}_{N}}(t)
$$

and study again the graph of $x_{N}(m)$ its restriction to the real line...

Inverse formula for the Stieltjes transform

Figure: $x_{\underline{F}}(m)$, with \underline{F} the l.s.d. of $\underline{\mathbf{B}}_{N}=\mathbf{X}_{N}^{H} \mathbf{T}_{N} \mathbf{X}_{N}$ with \mathbf{T}_{N} diagonal composed of three evenly weighted masses in 1,3 and 7 . The support of F is read on the vertical axis, whenever $x_{\underline{F}}(m)$ is not increasing.

- remember that the clusters edges x_{k}^{-}, x_{k}^{+}correspond to $x_{k}^{-}=x_{N}\left(m_{k}^{-}\right)$and $x_{k}^{+}=x_{N}\left(m_{k}^{+}\right)$ such that $x_{N}^{\prime}\left(m_{k}^{-}\right)=x_{N}^{\prime}\left(m_{k}^{+}\right)=0$.
- from the asymptotes, we observe that
- we can therefore take a contour that crosses the real line (slightly on the left of) $-\frac{1}{m_{k}^{-}}$and (slightly on the right of) $-\frac{1}{m}$ and is outside the real line everywhere else.
- remember that the clusters edges x_{k}^{-}, x_{k}^{+}correspond to $x_{k}^{-}=x_{N}\left(m_{k}^{-}\right)$and $x_{k}^{+}=x_{N}\left(m_{k}^{+}\right)$ such that $x_{N}^{\prime}\left(m_{k}^{-}\right)=x_{N}^{\prime}\left(m_{k}^{+}\right)=0$.
- from the asymptotes, we observe that

$$
t_{k-1}<-\frac{1}{m_{k}^{-}}<t_{k}<-\frac{1}{m_{k}^{+}}<t_{k+1}
$$

- we can therefore take a contour that crosses the real line (slightly on the left of) $-\frac{1}{m_{-}^{-}}$and (slightly on the right of) $-\frac{1}{+}$ and is outside the real line everywhere else.
- remember that the clusters edges x_{k}^{-}, x_{k}^{+}correspond to $x_{k}^{-}=x_{N}\left(m_{k}^{-}\right)$and $x_{k}^{+}=x_{N}\left(m_{k}^{+}\right)$ such that $x_{N}^{\prime}\left(m_{k}^{-}\right)=x_{N}^{\prime}\left(m_{k}^{+}\right)=0$.
- from the asymptotes, we observe that

$$
t_{k-1}<-\frac{1}{m_{k}^{-}}<t_{k}<-\frac{1}{m_{k}^{+}}<t_{k+1}
$$

- we can therefore take a contour that crosses the real line (slightly on the left of) $-\frac{1}{m_{k}^{-}}$and (slightly on the right of) $-\frac{1}{m_{k}^{+}}$and is outside the real line everywhere else.

Key step: change of variable

- consider:
- two reals $\bar{x}_{k}^{-}=x_{k}^{-}-\varepsilon$ and $\bar{x}_{k}^{+}=x_{k}^{+}+\varepsilon$
- any parametric curve $\bar{\Gamma}_{k} \subset \mathbb{C}$ such that

$$
\bar{\Gamma}_{k}(0)=\bar{x}_{k}^{-}, \bar{\Gamma}_{k}(1)=\bar{x}_{k}^{+}, \bar{\Gamma}_{k}((0,1)) \subset \mathbb{C}^{+}
$$

- with $m_{N}(z)$ the deterministic equivalent of $m_{B_{N}}(z)$, define

$$
\mathcal{C}_{k}=-1 / m_{N}\left(\bar{\Gamma}_{k}\right) \cup-1 / m_{N}\left(\bar{\Gamma}_{k}^{*}\right)
$$

- denoting Γ_{k} the surface enclosed by $\bar{\Gamma}_{k} \cup \bar{\Gamma}_{k}^{*}$ properly oriented, we have,

$$
t_{k}=\frac{n}{n_{k} 2 \pi i} \oint_{\partial r_{k}}\left(\frac{N}{n} w m_{N}(w)+\frac{N-n}{n}\right) \frac{m_{N}^{\prime}(w)}{m_{N}(w)^{2}} d w
$$

- next figure presents the contour obtained by letting w move along a rectangle closely surrounding the real line.

Key step: change of variable

- consider:
- two reals $\bar{x}_{k}^{-}=x_{k}^{-}-\varepsilon$ and $\bar{x}_{k}^{+}=x_{k}^{+}+\varepsilon$
- any parametric curve $\bar{\Gamma}_{k} \subset \mathbb{C}$ such that

$$
\bar{\Gamma}_{k}(0)=\bar{x}_{k}^{-}, \bar{\Gamma}_{k}(1)=\bar{x}_{k}^{+}, \bar{\Gamma}_{k}((0,1)) \subset \mathbb{C}^{+}
$$

- with $m_{N}(z)$ the deterministic equivalent of $m_{\underline{B}_{N}}(z)$, define

$$
\mathcal{C}_{k}=-1 / m_{N}\left(\bar{\Gamma}_{k}\right) \cup-1 / m_{N}\left(\bar{\Gamma}_{k}^{*}\right)
$$

- denoting Γ_{k} the surface enclosed by $\bar{\Gamma}_{k} \cup \bar{\Gamma}_{k}^{*}$ properly oriented, we have,

- next figure presents the contour obtained by letting w move along a rectangle closely surrounding the real line.

Key step: change of variable

- consider:
- two reals $\bar{x}_{k}^{-}=x_{k}^{-}-\varepsilon$ and $\bar{x}_{k}^{+}=x_{k}^{+}+\varepsilon$
- any parametric curve $\bar{\Gamma}_{k} \subset \mathbb{C}$ such that

$$
\bar{\Gamma}_{k}(0)=\bar{x}_{k}^{-}, \bar{\Gamma}_{k}(1)=\bar{x}_{k}^{+}, \bar{\Gamma}_{k}((0,1)) \subset \mathbb{C}^{+}
$$

- with $m_{N}(z)$ the deterministic equivalent of $m_{\underline{B}_{N}}(z)$, define

$$
\mathcal{C}_{k}=-1 / m_{N}\left(\bar{\Gamma}_{k}\right) \cup-1 / m_{N}\left(\bar{\Gamma}_{k}^{*}\right)
$$

- denoting Γ_{k} the surface enclosed by $\bar{\Gamma}_{k} \cup \bar{\Gamma}_{k}^{*}$ properly oriented, we have,

$$
t_{k}=\frac{n}{n_{k}} \frac{1}{2 \pi i} \oint_{\partial \Gamma_{k}}\left(\frac{N}{n} w \underline{m}_{N}(w)+\frac{N-n}{n}\right) \frac{\underline{m}_{N}^{\prime}(w)}{\underline{m}_{N}(w)^{2}} d w
$$

- next figure presents the contour obtained by letting w move along a rectangle closely surrounding the real line.

Key step: change of variable

- consider:
- two reals $\bar{x}_{k}^{-}=x_{k}^{-}-\varepsilon$ and $\bar{x}_{k}^{+}=x_{k}^{+}+\varepsilon$
- any parametric curve $\bar{\Gamma}_{k} \subset \mathbb{C}$ such that

$$
\bar{\Gamma}_{k}(0)=\bar{x}_{k}^{-}, \bar{\Gamma}_{k}(1)=\bar{x}_{k}^{+}, \bar{\Gamma}_{k}((0,1)) \subset \mathbb{C}^{+}
$$

- with $m_{N}(z)$ the deterministic equivalent of $m_{\underline{B}_{N}}(z)$, define

$$
\mathcal{C}_{k}=-1 / m_{N}\left(\bar{\Gamma}_{k}\right) \cup-1 / m_{N}\left(\bar{\Gamma}_{k}^{*}\right)
$$

- denoting Γ_{k} the surface enclosed by $\bar{\Gamma}_{k} \cup \bar{\Gamma}_{k}^{*}$ properly oriented, we have,

$$
t_{k}=\frac{n}{n_{k}} \frac{1}{2 \pi i} \oint_{\partial \Gamma_{k}}\left(\frac{N}{n} w \underline{m}_{N}(w)+\frac{N-n}{n}\right) \frac{\underline{m}_{N}^{\prime}(w)}{\underline{m}_{N}(w)^{2}} d w
$$

- next figure presents the contour obtained by letting w move along a rectangle closely surrounding the real line.

Selected contour

Figure: $z_{N}(m)$ and $z_{N}(m)^{*}$ as a function of m when m describes $(-\infty, \infty)+10^{-8} j$. \mathbf{T}_{N} is composed of three distinct entries, $P_{1}=1, P_{2}=3, P_{3}=10, n_{1}=n_{2}=n_{3}, N / n=1 / 10$.

- as anticipated, we only need random matrix results once, as follows.
- we have that

$$
m_{\underline{\mathbf{B}}_{N}}(z)-\underline{m}_{N}(z) \xrightarrow{\text { a.s. }} 0
$$

for all z outside the support of \underline{F}_{N}, the distribution of Stieltjes transform \underline{m}_{N}, for all large N.

- on the integration contour, $m_{N^{\prime}}(z)$ is moreover bounded and so, replacing $m_{N^{\prime}}$ by $\hat{m}_{N^{\prime}}$, and denoting

$$
\hat{t}_{k}=\frac{n}{n_{k}} \frac{1}{2 \pi i} \oint_{\partial \Gamma_{k}}\left(\frac{N}{n} w \underline{\underline{m}}_{N}(w)+\frac{N-n}{n}\right) \frac{\hat{m}_{N}^{\prime}(w)}{\hat{m}_{N}(w)^{2}} d w
$$

we have

$$
\underline{m}_{N}(z)-\underline{\hat{m}}_{N}(z) \xrightarrow{\text { a.s. }} 0
$$

- we then have our estimate, which we only need to compute.

Random matrix theory in action

- as anticipated, we only need random matrix results once, as follows.
- we have that

$$
m_{\underline{B}_{N}}(z)-\underline{m}_{N}(z) \xrightarrow{\text { a.s. }} 0
$$

for all z outside the support of \underline{F}_{N}, the distribution of Stieltjes transform \underline{m}_{N}, for all large N.

- on the integration contour, $\underline{m}_{N}(z)$ is moreover bounded and so, replacing \underline{m}_{N} by \underline{m}_{N}, and denoting

we have

$$
\underline{m}_{N}(z)-\underline{\underline{m}}_{N}(z) \xrightarrow{\text { a.s. }} 0
$$

- we then have our estimate, which we only need to compute.
- as anticipated, we only need random matrix results once, as follows.
- we have that

$$
m_{\underline{B}_{N}}(z)-\underline{m}_{N}(z) \xrightarrow{\text { a.s. }} 0
$$

for all z outside the support of \underline{F}_{N}, the distribution of Stieltjes transform \underline{m}_{N}, for all large N.

- on the integration contour, $\underline{m}_{N}(z)$ is moreover bounded and so, replacing \underline{m}_{N} by $\underline{\underline{m}}_{N}$, and denoting

$$
\hat{t}_{k}=\frac{n}{n_{k}} \frac{1}{2 \pi i} \oint_{\partial \Gamma_{k}}\left(\frac{N}{n} w \underline{\underline{m}}_{N}(w)+\frac{N-n}{n}\right) \frac{\hat{\underline{m}}_{N}^{\prime}(w)}{\underline{\hat{m}}_{N}(w)^{2}} d w
$$

we have

$$
\underline{m}_{N}(z)-\underline{\underline{m}}_{N}(z) \xrightarrow{\text { a.s. }} 0
$$

- we then have our estimate, which we only need to compute.
- as anticipated, we only need random matrix results once, as follows.
- we have that

$$
m_{\underline{B}_{N}}(z)-\underline{m}_{N}(z) \xrightarrow{\text { a.s. }} 0
$$

for all z outside the support of \underline{F}_{N}, the distribution of Stieltjes transform \underline{m}_{N}, for all large N.

- on the integration contour, $\underline{m}_{N}(z)$ is moreover bounded and so, replacing \underline{m}_{N} by $\underline{\underline{m}}_{N}$, and denoting

$$
\hat{t}_{k}=\frac{n}{n_{k}} \frac{1}{2 \pi i} \oint_{\partial \Gamma_{k}}\left(\frac{N}{n} w \underline{\underline{m}}_{N}(w)+\frac{N-n}{n}\right) \frac{\hat{\underline{m}}_{N}^{\prime}(w)}{\underline{\hat{m}}_{N}(w)^{2}} d w
$$

we have

$$
\underline{m}_{N}(z)-\underline{\hat{m}}_{N}(z) \xrightarrow{\text { a.s. }} 0
$$

- we then have our estimate, which we only need to compute.

Poles and residues

- we find two sets of poles (outside zeros):
- $\lambda_{1}, \ldots, \lambda_{N}$, the eigenvalues of \mathbf{B}_{N}.
- the solutions μ_{1}, \ldots, μ_{N} to $\underline{\underline{\hat{m}}}_{N}(z)=0$.
- residue calculus, denote $f(w)=\left(\frac{N}{n} w \hat{\underline{m}}_{N}(w)+\frac{N-n}{n}\right) \frac{\hat{\underline{m}}_{N}^{\prime}(w)}{\underline{\hat{m}}_{N}(w)^{2}}$,
- the λ_{k} 's are poles of order 1 and

- the μ_{k} 's are also poles of order 1 and by L'Hospital's rule

Poles and residues

- we find two sets of poles (outside zeros):
- $\lambda_{1}, \ldots, \lambda_{N}$, the eigenvalues of \mathbf{B}_{N}.
- the solutions μ_{1}, \ldots, μ_{N} to $\underline{\underline{h}}_{N}(z)=0$.
- residue calculus, denote $f(w)=\left(\frac{N}{n} w \underline{\underline{m}}_{N}(w)+\frac{N-n}{n}\right) \frac{\hat{\underline{m}}_{N}^{\prime}(w)}{\underline{\underline{m}}_{N}(w)^{2}}$,
- the λ_{k} 's are poles of order 1 and

$$
\lim _{z \rightarrow \lambda_{k}}\left(z-\lambda_{k}\right) f(z)=-\frac{N}{n} \lambda_{k}
$$

- the μ_{k} 's are also poles of order 1 and by L'Hospital's rule

$$
\lim _{z \rightarrow \mu_{k}}\left(z-\lambda_{k}\right) f(z)=\lim _{z \rightarrow \mu_{k}} \frac{N}{n} \frac{\left(z-\mu_{k}\right) z m^{\prime}(z)}{m(z)}=\frac{N}{n} \mu_{k}
$$

- we now need to determine which poles are in the contour of interest.
- based on the asymptotes of

$$
\underline{m}_{N}(z)=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{\lambda_{i}-z}
$$

we have

$$
\lambda_{1}<\mu_{2}<\lambda_{2}<\ldots<\mu_{N}<\lambda_{N}
$$

- what about μ_{1} ? the trick is to use the fact that

$$
\frac{1}{2 \pi i} \oint_{c_{k}} \frac{1}{z} d z=0
$$

which leads to

$$
\frac{1}{2 \pi i} \oint \partial \Gamma_{k} \frac{\underline{m}_{N}^{\prime}(w)}{\underline{m}_{N}(w)} d w=0
$$

the empirical version of which is

$$
\#\left\{i: \lambda_{i} \in \Gamma_{k}\right\}-\#\left\{i: \mu_{i} \in \Gamma_{k}\right\}
$$

Since their difference tends to 0 , there are as many λ_{k} 's as μ_{k} 's in the contour, hence μ_{1} is asymptotically in the integration contour.

Which poles in the contour?

- we now need to determine which poles are in the contour of interest.
- based on the asymptotes of

$$
\underline{m}_{N}(z)=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{\lambda_{i}-z}
$$

we have

$$
\lambda_{1}<\mu_{2}<\lambda_{2}<\ldots<\mu_{N}<\lambda_{N}
$$

- what about μ_{1} ? the trick is to use the fact that

which leads to

the empirical version of which is

Since their difference tends to 0 , there are as many λ_{k} 's as μ_{k} 's in the contour, hence μ_{1} is asymptotically in the integration contour.

Which poles in the contour?

- we now need to determine which poles are in the contour of interest.
- based on the asymptotes of

$$
\underline{m}_{N}(z)=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{\lambda_{i}-z}
$$

we have

$$
\lambda_{1}<\mu_{2}<\lambda_{2}<\ldots<\mu_{N}<\lambda_{N}
$$

- what about μ_{1} ? the trick is to use the fact that

$$
\frac{1}{2 \pi i} \oint_{\mathcal{C}_{k}} \frac{1}{z} d z=0
$$

which leads to

$$
\frac{1}{2 \pi i} \oint \partial \Gamma_{k} \frac{\underline{m}_{N}^{\prime}(w)}{\underline{m}_{N}(w)} d w=0
$$

the empirical version of which is

$$
\#\left\{i: \lambda_{i} \in \Gamma_{k}\right\}-\#\left\{i: \mu_{i} \in \Gamma_{k}\right\}
$$

Since their difference tends to 0 , there are as many λ_{k} 's as μ_{k} 's in the contour, hence μ_{1} is asymptotically in the integration contour.

Problem introduction

Free deconvolution
(3) The Stieltjes transform approach
4. Case study: comparison of moment vs. Stieltjes transform approach for blind transmit power infer

(5) General summary of open problems worth being studied

Figure: Power inference scenario

Problem statement

- a device embedded with N antennas receive a signal
- originating from multiple sources
- number of sources K is not necessarily known
- source k is equipped with n_{k} antennas (ideally $n_{k} \gg 1$)
- signal k goes through unknown MIMO channel $\mathbf{H}_{k} \in \mathbb{C}^{N \times n_{k}}$
- the variance σ^{2} of the additive noise is not necessarily known
- the problem is to inferP_{K} knowing K, n_{1}, \ldots, n_{K}
P_{K} and n_{1}, \ldots, n_{K} knowing K
- we will regard the problem under the angle of
- free deconvolution: i.e. from the moments of the receive $F^{Y Y^{H}}$, infer those of F^{P}, and infer on P
- Stieltjes transform: i.e. extend Mestre's approach

Problem statement

- a device embedded with N antennas receive a signal
- originating from multiple sources
- number of sources K is not necessarily known
- source k is equipped with n_{k} antennas (ideally $n_{k} \gg 1$)
- signal k goes through unknown MIMO channel $\mathbf{H}_{k} \in \mathbb{C}^{N \times n_{k}}$
- the variance σ^{2} of the additive noise is not necessarily known
- the problem is to infer
- P_{1}, \ldots, P_{K} knowing K, n_{1}, \ldots, n_{K}
, P_{1}, \ldots, P_{K} and n_{1}, \ldots, n_{K} knowing K
- we will regard the problem under the angle of
- free deconvolution: i.e. from the moments of the receive $F^{Y Y^{H}}$, infer those of F^{P}, and infer on P
- Stieltjes transform: i.e. extend Mestre's approach

Problem statement

- a device embedded with N antennas receive a signal
- originating from multiple sources
- number of sources K is not necessarily known
- source k is equipped with n_{k} antennas (ideally $n_{k} \gg 1$)
- signal k goes through unknown MIMO channel $\mathbf{H}_{k} \in \mathbb{C}^{N \times n_{k}}$
- the variance σ^{2} of the additive noise is not necessarily known
- the problem is to infer
- P_{1}, \ldots, P_{K} knowing K, n_{1}, \ldots, n_{K}
- P_{1}, \ldots, P_{K} and n_{1}, \ldots, n_{K} knowing K
- we will regard the problem under the angle of
- free deconvolution: ie from the moments of the receive $F^{Y Y H}$, infer those of F^{P}, and infer on P
- Stieltjes transform: i.e. extend Mestre's approach

Problem statement

- a device embedded with N antennas receive a signal
- originating from multiple sources
- number of sources K is not necessarily known
- source k is equipped with n_{k} antennas (ideally $n_{k} \gg 1$)
- signal k goes through unknown MIMO channel $\mathbf{H}_{k} \in \mathbb{C}^{N \times n_{k}}$
- the variance σ^{2} of the additive noise is not necessarily known
- the problem is to infer
- P_{1}, \ldots, P_{K} knowing K, n_{1}, \ldots, n_{K}
- P_{1}, \ldots, P_{K} and n_{1}, \ldots, n_{K} knowing K
- K, P_{1}, \ldots, P_{K} and n_{1}, \ldots, n_{K}
- we will regard the problem under the angle of
- free deconvolution: i.e. from the moments of the receive $F^{Y Y^{H}}$, infer those of $F^{\mathbf{P}}$, and infer on \mathbf{P}
- Stieltjes transform: i.e. extend Mestre's approach

Problem statement

- a device embedded with N antennas receive a signal
- originating from multiple sources
- number of sources K is not necessarily known
- source k is equipped with n_{k} antennas (ideally $n_{k} \gg 1$)
- signal k goes through unknown MIMO channel $\mathbf{H}_{k} \in \mathbb{C}^{N \times n_{k}}$
- the variance σ^{2} of the additive noise is not necessarily known
- the problem is to infer
- P_{1}, \ldots, P_{K} knowing K, n_{1}, \ldots, n_{K}
- P_{1}, \ldots, P_{K} and n_{1}, \ldots, n_{K} knowing K
- K, P_{1}, \ldots, P_{K} and n_{1}, \ldots, n_{K}
- we will regard the problem under the angle of
- free deconvolution: i.e. from the moments of the receive F^{YY}, infer those of $F^{\mathbf{P}}$, and infer on \mathbf{P}

Problem statement

- a device embedded with N antennas receive a signal
- originating from multiple sources
- number of sources K is not necessarily known
- source k is equipped with n_{k} antennas (ideally $n_{k} \gg 1$)
- signal k goes through unknown MIMO channel $\mathbf{H}_{k} \in \mathbb{C}^{N \times n_{k}}$
- the variance σ^{2} of the additive noise is not necessarily known
- the problem is to infer
- P_{1}, \ldots, P_{K} knowing K, n_{1}, \ldots, n_{K}
- P_{1}, \ldots, P_{K} and n_{1}, \ldots, n_{K} knowing K
- K, P_{1}, \ldots, P_{K} and n_{1}, \ldots, n_{K}
- we will regard the problem under the angle of
- free deconvolution: i.e. from the moments of the receive F^{YY}, infer those of $F^{\mathbf{P}}$, and infer on \mathbf{P}
- Stieltjes transform: i.e. extend Mestre's approach
- at time t, source k transmit signal $\mathbf{x}_{k}^{(t)} \in \mathbb{C}^{n_{k}}$ with i.i.d. entries of zero mean and variance 1 .
- we denote P_{k} the power emitted by user k
- the channel $\mathbf{H}_{k} \in \mathbb{C}^{N \times n_{k}}$ from user k to the receiver has i.i.d. entries of zero mean and variance $1 / \mathrm{N}$.
- at time t, the additive noise is denoted $\sigma \mathbf{w}^{(t)}$, with $\mathbf{w}^{(t)} \in \mathbb{C}^{N}$ with i.i.d. entries of zero mean and variance 1 .
- hence the receive signal $\mathbf{y}^{(t)}$ at time t,

Gathering M time instant into $\mathbf{Y}=\left[\mathbf{y}_{1} \ldots \mathbf{y}_{M}\right] \in \mathbb{C}^{N \times M}$, this can be written

- at time t, source k transmit signal $\mathbf{x}_{k}^{(t)} \in \mathbb{C}^{n_{k}}$ with i.i.d. entries of zero mean and variance 1 .
- we denote P_{k} the power emitted by user k
- the channel $\mathbf{H}_{k} \in \mathbb{C}^{N \times n_{k}}$ from user k to the receiver has i.i.d. entries of zero mean and variance $1 / N$.
- at time t, the additive noise is denoted $\sigma \mathbf{w}^{(t)}$, with $\mathbf{w}^{(t)} \in \mathbb{C}^{N}$ with i.i.d. entries of zero mean and variance 1.
- hence the receive signal $\mathbf{y}^{(t)}$ at time t,

$$
\mathbf{y}^{(t)}=\sum_{k=1}^{K} \mathbf{H}_{k} \sqrt{P_{k}} \mathbf{x}_{k}^{(t)}+\sigma \mathbf{w}_{k}^{(t)}
$$

Gathering M time instant into $\mathbf{Y}=\left[\mathbf{y}_{1} \ldots \mathbf{y}_{M}\right] \in \mathbb{C}^{N \times M}$, this can be written

$$
\mathbf{Y}=\mathbf{H} \mathbf{P}^{\frac{1}{2}} \mathbf{X}+\sigma \mathbf{W}
$$

with $\mathbf{H}=\left[\mathbf{H}_{1} \ldots \mathbf{H}_{K}\right] \in \mathbb{C}^{N \times n}, n=\sum_{k=1}^{K} n_{k}$, $\mathbf{P}=\operatorname{diag}\left(P_{1}, \ldots, P_{1}, P_{2}, \ldots, P_{2}, \ldots, P_{K}, \ldots, P_{K}\right)$ where P_{k} has multiplicity n_{k} on the diagonal, $\mathbf{X}^{\mathrm{H}}=\left[\mathbf{X}_{1}^{\mathrm{H}} \ldots \mathbf{X}_{K}^{\mathrm{H}}\right]^{\mathrm{H}} \in \mathbb{C}^{n \times M}, \mathbf{X}_{k}=\left[\mathbf{x}_{k}^{(1)} \ldots \mathbf{x}_{k}^{(M)}\right] \in \mathbb{C}^{n_{k} \times M}, \mathbf{W}$ defined similarly.

- one can infer the moment of $F^{\mathbf{P}}$ from those of $F^{\mathrm{YY}^{\mathrm{H}}}$.
- one can deconvolve YY^{H} in three steps,
- an information-plus-noise model with "deterministic matrix" $\mathbf{H P}{ }^{\frac{1}{2}} \mathbf{X X}^{H} \mathbf{P}^{\frac{1}{2}} \mathbf{H}^{H}$,

$$
Y^{H}=\left(H P^{\frac{1}{2}} x+\sigma W^{\left(H P^{\frac{1}{2}} x+\sigma W^{H},{ }^{H}\right)}\right.
$$

(the "deterministic" matrix can be taken random as long as it has a l.s.d.)

- from $\mathbf{H P}^{\frac{1}{2}} \mathbf{X X} \mathbf{X}^{H} \mathbf{P}^{\frac{1}{2}} \mathbf{H}^{H}$, up to a Gram matrix commutation, we can deconvolve the signal X,

$$
P^{\frac{1}{2}} H^{H} P^{\frac{1}{2}} X X^{H}
$$

- from $\mathbf{P}^{\frac{1}{2}} \mathbf{H} H^{H} \mathbf{P}^{\frac{1}{2}}$, a new matrix commutation allows one to deconvolve $\mathbf{H} \mathbf{H}^{\mathbf{H}}$

$$
\mathrm{PH}^{H}
$$

Free deconvolution approach

- one can infer the moment of $F^{\mathbf{P}}$ from those of $F^{\mathrm{YY}^{\mathrm{H}}}$.
- one can deconvolve $\mathbf{Y} \mathbf{Y}^{H}$ in three steps,
- an information-plus-noise model with "deterministic matrix" $\mathbf{H P}^{\frac{1}{2}} \mathbf{X} \mathbf{X}^{H} \mathbf{P}^{\frac{1}{2}} \mathbf{H}^{H}$,

$$
\mathbf{Y} \mathbf{Y}^{H}=\left(\mathbf{H P}^{\frac{1}{2}} \mathbf{X}+\sigma \mathbf{W}\right)\left(\mathbf{H P}^{\frac{1}{2}} \mathbf{X}+\sigma \mathbf{W}\right)^{H}
$$

(the "deterministic" matrix can be taken random as long as it has a l.s.d.)

- from $H P^{\frac{1}{2}} X^{H} \mathrm{P}^{\frac{1}{2}} \mathrm{H}^{H}$, up to a Gram matrix commutation, we can deconvolve the signal X ,

 $\mathrm{P}^{\frac{1}{2}} \mathrm{HH}^{H} \mathrm{P}^{\frac{1}{2}} \mathrm{XX}^{H}$- from $\mathbf{P}^{\frac{1}{2}} \mathbf{H} H^{H} \mathbf{P}^{\frac{1}{2}}$, a new matrix commutation allows one to deconvolve $\mathbf{H} \mathbf{H}^{\boldsymbol{H}}$

Free deconvolution approach

- one can infer the moment of $F^{\mathbf{P}}$ from those of $F^{\mathrm{Y}^{\mathrm{H}}}$.
- one can deconvolve $\mathbf{Y} \mathbf{Y}^{H}$ in three steps,
- an information-plus-noise model with "deterministic matrix" $\mathbf{H P}^{\frac{1}{2}} \mathbf{X} \mathbf{X}^{H} \mathbf{P}^{\frac{1}{2}} \mathbf{H}^{H}$,

$$
\mathbf{Y} \mathbf{Y}^{H}=\left(\mathbf{H P}^{\frac{1}{2}} \mathbf{X}+\sigma \mathbf{W}\right)\left(\mathbf{H P}^{\frac{1}{2}} \mathbf{X}+\sigma \mathbf{W}\right)^{H}
$$

(the "deterministic" matrix can be taken random as long as it has a l.s.d.)

- from $\mathbf{H} \mathbf{P}^{\frac{1}{2}} \mathbf{X X} \mathbf{X}^{H} \mathbf{P}^{\frac{1}{2}} \mathbf{H}^{H}$, up to a Gram matrix commutation, we can deconvolve the signal \mathbf{X},

$$
\mathbf{P}^{\frac{1}{2}} \mathbf{H} \mathbf{H}^{H} \mathbf{P}^{\frac{1}{2}} \mathbf{X} \mathbf{X}^{H}
$$

- from $\mathbf{P}^{\frac{1}{2}} \mathbf{H} H^{H} \mathbf{P}^{\frac{1}{2}}$, a new matrix commutation allows one to deconvolve $\mathbf{H H ^ { H }}$

PHH ${ }^{H}$

- one can infer the moment of $F^{\mathbf{P}}$ from those of $F^{\mathrm{YY}^{H}}$.
- one can deconvolve $\mathbf{Y} \mathbf{Y}^{H}$ in three steps,
- an information-plus-noise model with "deterministic matrix" $\mathbf{H P}^{\frac{1}{2}} \mathbf{X X}^{H} \mathbf{P}^{\frac{1}{2}} \mathbf{H}^{H}$,

$$
\mathbf{Y} \mathbf{Y}^{H}=\left(\mathbf{H P}^{\frac{1}{2}} \mathbf{X}+\sigma \mathbf{W}\right)\left(\mathbf{H P}^{\frac{1}{2}} \mathbf{X}+\sigma \mathbf{W}\right)^{H}
$$

(the "deterministic" matrix can be taken random as long as it has a l.s.d.)

- from $\mathbf{H} \mathbf{P}^{\frac{1}{2}} \mathbf{X X} \mathbf{X}^{H} \mathbf{P}^{\frac{1}{2}} \mathbf{H}^{H}$, up to a Gram matrix commutation, we can deconvolve the signal \mathbf{X},

$$
\mathbf{P}^{\frac{1}{2}} \mathbf{H} \mathbf{H}^{H} \mathbf{P}^{\frac{1}{2}} \mathbf{X} \mathbf{X}^{H}
$$

- from $\mathbf{P}^{\frac{1}{2}} \mathbf{H} \mathbf{H}^{H} \mathbf{P}^{\frac{1}{2}}$, a new matrix commutation allows one to deconvolve $\mathbf{H H}^{H}$

$$
\mathrm{PHH}^{H}
$$

Free deconvolution operations

In terms of free probability operations, this is

- noise deconvolution

$$
\mu_{\frac{1}{M} \mathbf{H P}^{\frac{1}{2}} \mathbf{X X}^{H} \mathbf{P}^{\frac{1}{2}} \mathbf{H}^{H}}=\left(\left(\mu_{\frac{1}{M} \mathbf{Y}^{H}} \boxtimes \mu_{c}\right) \boxminus \delta_{\sigma^{2}}\right) \boxtimes \mu_{c}
$$

with μ_{c} the Marčenko-Pastur law and $c=N / M$.

- signal deconvolution

- channel deconvolution

$$
\mu_{\mathbf{P}}=\mu_{\mathbf{P} \frac{1}{n} \mathbf{H}^{H} \mathbf{H}} \Delta \mu_{\eta_{c_{1}}}
$$

Free deconvolution operations

In terms of free probability operations, this is

- noise deconvolution

$$
\mu_{\frac{1}{M} \mathbf{H P}^{\frac{1}{2}} \mathbf{X X}^{H} \mathbf{P}^{\frac{1}{2}} \mathbf{H}^{H}}=\left(\left(\mu_{\frac{1}{M} \mathbf{Y Y}^{H}} \boxtimes \mu_{c}\right) \boxminus \delta_{\sigma^{2}}\right) \boxtimes \mu_{c}
$$

with μ_{c} the Marčenko-Pastur law and $c=N / M$.

- signal deconvolution

$$
\mu_{\frac{1}{M} \mathbf{P}^{\frac{1}{2}} \mathbf{H}^{H} \mathbf{H} \mathbf{P}^{\frac{1}{2}} \mathbf{X} \mathbf{x}^{H}}=\frac{N}{n} \mu_{\frac{1}{M} \mathbf{H P}^{\frac{1}{2}} \mathbf{X} \mathbf{X}^{H} \mathbf{P}^{\frac{1}{2}} \mathbf{H}^{H}}+\left(1-\frac{N}{n}\right) \delta_{0}
$$

- channel deconvolution

$$
\mu_{\mathbf{P}}=\mu_{\mathbf{P} \frac{1}{n} \mathbf{H}^{H_{H}} \mathbf{H}} \boxtimes \mu_{\eta_{C_{1}}}
$$

Free deconvolution operations

In terms of free probability operations, this is

- noise deconvolution

$$
\mu_{\frac{1}{M} \mathbf{H P}^{\frac{1}{2}} \mathbf{X X}^{H} \mathbf{P}^{\frac{1}{2}} \mathbf{H}^{H}}=\left(\left(\mu_{\frac{1}{M} \mathbf{Y}^{H}} \boxtimes \mu_{C}\right) \boxminus \delta_{\sigma^{2}}\right) \boxtimes \mu_{C}
$$

with μ_{c} the Marčenko-Pastur law and $c=N / M$.

- signal deconvolution

$$
\mu_{\frac{1}{M} \mathbf{P}^{\frac{1}{2}} \mathbf{H}^{H} \mathbf{H} \mathbf{P}^{\frac{1}{2}} \mathbf{X X}}=\frac{N}{n} \mu_{\frac{1}{M} \mathbf{H P}^{\frac{1}{2}} \mathbf{X} \mathbf{x}^{H} \mathbf{P}^{\frac{1}{2}} \mathbf{H}^{H}}+\left(1-\frac{N}{n}\right) \delta_{0}
$$

- channel deconvolution

$$
\mu_{\mathbf{P}}=\mu_{\mathbf{P} \frac{1}{n}} \mathbf{H}^{H} \mathbf{H} \Delta \mu_{\eta_{c_{1}}}
$$

with $c_{1}=n / N$

- from the three previous steps (plus addition of null eigenvalues), the moments of μ_{P} can be computed from those of μ_{YYH}.
- this process can be automatized by combinatorics softwares
- finite size formulas are also available
- the first moments m_{k} of $\mu_{1 / v \mathbf{v H}}$ as a function of the first moments d_{k} of μ_{p} read

- from the three previous steps (plus addition of null eigenvalues), the moments of μ_{P} can be computed from those of μ_{YYH}.
- this process can be automatized by combinatorics softwares
- finite size formulas are also available
- the first moments m_{k} of $\mu_{M_{M}} \mathrm{YY}^{H}$ as a function of the first moments d_{k} of μ_{P} read

Free deconvolution: moments

- from the three previous steps (plus addition of null eigenvalues), the moments of μ_{P} can be computed from those of μ_{YYH}.
- this process can be automatized by combinatorics softwares
- finite size formulas are also available
- the first moments m_{k} of $\mu_{\frac{1}{M} \mathrm{YYH}}$ as a function of the first moments d_{k} of μ_{P} read

- from the three previous steps (plus addition of null eigenvalues), the moments of μ_{P} can be computed from those of μ_{YYH}.
- this process can be automatized by combinatorics softwares
- finite size formulas are also available
- the first moments m_{k} of $\mu_{\frac{1}{M}} \mathrm{YY}^{H}$ as a function of the first moments d_{k} of $\mu_{\mathbf{P}}$ read

$$
\begin{aligned}
m_{1}= & N^{-1} n d_{1}+1 \\
m_{2}= & \left(N^{-2} M^{-1} n+N^{-1} n\right) d_{2}+\left(N^{-2} n^{2}+N^{-1} M^{-1} n^{2}\right) d_{1}^{2} \\
& +\left(2 N^{-1} n+2 M^{-1} n\right) d_{1}+\left(1+N M^{-1}\right) \\
m_{3}= & \left(3 N^{-3} M^{-2} n+N^{-3} n+6 N^{-2} M^{-1} n+N^{-1} M^{-2} n+N^{-1} n\right) d_{3} \\
& +\left(6 N^{-3} M^{-1} n^{2}+6 N^{-2} M^{-2} n^{2}+3 N^{-2} n^{2}+3 N^{-1} M^{-1} n^{2}\right) d_{2} d_{1} \\
& +\left(N^{-3} M^{-2} n^{3}+N^{-3} n^{3}+3 N^{-2} M^{-1} n^{3}+N^{-1} M^{-2} n^{3}\right) d_{1}^{3} \\
& +\left(6 N^{-2} M^{-1} n+6 N^{-1} M^{-2} n+3 N^{-1} n+3 M^{-1} n\right) d_{2} \\
& +\left(3 N^{-2} M^{-2} n^{2}+3 N^{-2} n^{2}+9 N^{-1} M^{-1} n^{2}+3 M^{-2} n^{2}\right) d_{1}^{2} \\
& +\left(3 N^{-1} M^{-2} n+3 N^{-1} n+9 M^{-1} n+3 N M^{-2} n\right) d_{1}
\end{aligned}
$$

Free deconvolution: inferring powers

- For practical finite size applications, the deconvolved moments will exhibit errors. Different strategies are available,
- direct inversion with Newton-Girard formulas. Assuming perfect evaluation of $\frac{1}{K} \sum_{k=1}^{K} P_{k}^{m}$, P_{1}, \ldots, P_{K} are given by the K solutions of the polynomial

where the Π_{m} 's (known as the elementary symmetric polynomials) are iteratively defined as


```
where Sk}=\mp@subsup{\sum}{i=1}{k}\mp@subsup{P}{i}{k
    0 may lead to non-real solutions!
    - does not minimize any conventional error criterion
    - convenient for one-shot power inference
    - when multiple realizations are available, statistical solutions are preferable
```


Free deconvolution: inferring powers

- For practical finite size applications, the deconvolved moments will exhibit errors. Different strategies are available,
- direct inversion with Newton-Girard formulas. Assuming perfect evaluation of $\frac{1}{K} \sum_{k=1}^{K} P_{k}^{m}$, P_{1}, \ldots, P_{K} are given by the K solutions of the polynomial

$$
X^{K}-\Pi_{1} X^{K-1}+\Pi_{2} X^{K-2}-\ldots+(-1)^{K} \Pi_{K}
$$

where the Π_{m} 's (known as the elementary symmetric polynomials) are iteratively defined as

$$
(-1)^{k} k \Pi_{k}+\sum_{i=1}^{k}(-1)^{k+i} s_{i} \Pi_{k-i}=0
$$

where $S_{k}=\sum_{i=1}^{k} P_{i}^{k}$.

- may lead to non-real solutions!
o does not minimize any conventional error criterion
- convenient for one-shot power inference
- when multiple realizations are available, statistical solutions are preferable
- For practical finite size applications, the deconvolved moments will exhibit errors. Different strategies are available,
- direct inversion with Newton-Girard formulas. Assuming perfect evaluation of $\frac{1}{K} \sum_{k=1}^{K} P_{k}^{m}$, P_{1}, \ldots, P_{K} are given by the K solutions of the polynomial

$$
X^{K}-\Pi_{1} X^{K-1}+\Pi_{2} X^{K-2}-\ldots+(-1)^{K} \Pi_{K}
$$

where the Π_{m} 's (known as the elementary symmetric polynomials) are iteratively defined as

$$
(-1)^{k} k \Pi_{k}+\sum_{i=1}^{k}(-1)^{k+i} S_{i} \Pi_{k-i}=0
$$

where $S_{k}=\sum_{i=1}^{k} P_{i}^{k}$.

- may lead to non-real solutions!
- does not minimize any conventional error criterion
- convenient for one-shot power inference
- when multiple realizations are available, statistical solutions are preferable

Free deconvolution: inferring powers

- alternative approach: estimators that minimize conventional error metrics
Z. D. Bai, J. W. Silverstein, "CLT of linear spectral statistics of large dimensional sample covariance matrices," Annals of Probability, vol. 32, no. 1A, pp. 553-605, 2004.
- for the model $Y=T^{\frac{1}{2}} \mathrm{X}$, an asymptotic central limit result is known for the moments, i.e. for $m_{k}^{(N)}$ the order k empirical moment of $\frac{1}{N} Y^{H}$ and $m_{k}^{\circ(N)}$ its deterministic equivalent, as $N \rightarrow \infty$,

$$
N\left(m_{k}^{(N)}-m_{k}^{o^{(N)}}\right) \Rightarrow X
$$

where X is a central Gaussian random variable.

- for the model under consideration. no such result is known.
- if a given model turns out to be Gaussian, then maximum-likelihood or MMSE estimators are of order. Denoting $\mathbf{p}=\left(P_{1}, \ldots, P_{K}\right)$,

$$
\left.\hat{\mathrm{p}}_{\mathrm{ML}}=\arg \min _{\mathrm{p}} \log \operatorname{det}^{(C}(\mathrm{p})\right)+\left(\mathrm{m}-\mathrm{m}^{\circ}(\mathrm{p})\right)^{\top} \mathrm{C}(\mathrm{p})^{-1}\left(\mathrm{~m}-\mathrm{m}^{\circ}(\mathrm{p})\right)
$$

with, for some $p, \mathbf{m}=\left(m_{1}^{(N)}, \ldots, m_{p}^{(N)}\right), \mathbf{m}^{\circ}(\mathbf{p})=\left(m_{1}^{\circ}(N), \ldots, m_{p}^{\circ}(N)\right)$, and $\mathbf{C}(\mathbf{p})$ the covariance matrix of the Gaussian moment vector assuming powers \mathbf{p}.

- and for the MMSE,

$$
\hat{\mathrm{p}}_{\mathrm{MMSE}}=\frac{\int \mathrm{p} \operatorname{det}\left(\mathrm{C}^{-1}(\mathrm{p})\right) e^{-\left(\mathrm{m}-\mathrm{m}^{\circ}(\mathrm{p})\right)^{\top} \mathrm{C}(\mathrm{p})^{-1}\left(\mathrm{~m}-\mathrm{m}^{\circ}(\mathrm{p})\right)} d \mathrm{p}}{\int \operatorname{det}\left(\mathrm{C}^{-1}(\mathrm{p})\right) e^{-\left(\mathrm{m}-\mathrm{m}^{\circ}(\mathrm{p})\right)^{\top} \mathbf{C}(\mathrm{p})^{-1}\left(\mathrm{~m}-\mathrm{m}^{\circ}(\mathrm{p})\right)} d \mathrm{p}}
$$

$$
4 \square>4 \text { 号 } \downarrow \text { 4 플 }
$$

Free deconvolution: inferring powers

- alternative approach: estimators that minimize conventional error metrics
Z. D. Bai, J. W. Silverstein, "CLT of linear spectral statistics of large dimensional sample covariance matrices," Annals of Probability, vol. 32, no. 1A, pp. 553-605, 2004.
- for the model $\mathbf{Y}=\mathbf{T}^{\frac{1}{2}} \mathbf{X}$, an asymptotic central limit result is known for the moments, i.e. for $m_{k}^{(N)}$ the order k empirical moment of $\frac{1}{N} \mathbf{Y} \mathbf{Y}^{H}$ and $m_{k}^{\circ(N)}$ its deterministic equivalent, as $N \rightarrow \infty$,

$$
N\left(m_{k}^{(N)}-m_{k}^{\circ(N)}\right) \Rightarrow X
$$

where X is a central Gaussian random variable.
if a given model turns out to be Gaussian, then maximum-likelihood or MMSE estimators are of order. Denoting $\mathbf{p}=\left(P_{1}, \ldots, P_{K}\right)$,
 with, for some $p, \mathbf{m}=\left(m_{1}^{(N)}, \ldots, m_{p}^{(N)}\right), \mathbf{m}^{\circ}(\mathbf{p})=\left(m_{1}^{\circ(N)}, \ldots, m_{p}^{\circ(N)}\right)$, and $\mathbf{C}(\mathbf{p})$ the covariance matrix of the Gaussian moment vector assuming powers \mathbf{p}. and for the MMSE,

Free deconvolution: inferring powers

- alternative approach: estimators that minimize conventional error metrics
Z. D. Bai, J. W. Silverstein, "CLT of linear spectral statistics of large dimensional sample covariance matrices," Annals of Probability, vol. 32, no. 1A, pp. 553-605, 2004.
- for the model $\mathbf{Y}=\mathbf{T}^{\frac{1}{2}} \mathbf{X}$, an asymptotic central limit result is known for the moments, i.e. for $m_{k}^{(N)}$ the order k empirical moment of $\frac{1}{N} \mathbf{Y} \mathbf{Y}^{H}$ and $m_{k}^{\circ(N)}$ its deterministic equivalent, as $N \rightarrow \infty$,

$$
N\left(m_{k}^{(N)}-m_{k}^{\circ(N)}\right) \Rightarrow X
$$

where X is a central Gaussian random variable.

- for the model under consideration, no such result is known.
if a given model turns out to be Gaussian, then maximum-likelihood or MMSE estimators are of order. Denoting $\mathbf{p}=\left(P_{1}, \ldots, P_{K}\right)$,
 with, for some $p, \mathbf{m}=\left(m_{1}^{(N)}, \ldots, m_{p}^{(N)}\right), \mathbf{m}^{\circ}(\mathbf{p})=\left(m_{1}^{\circ}(N), \ldots, m_{p}^{\circ(N)}\right)$, and $\mathbf{C}(\mathbf{p})$ the covariance matrix of the Gaussian moment vector assuming powers \mathbf{p}. and for the MMSE,

Free deconvolution: inferring powers

- alternative approach: estimators that minimize conventional error metrics
Z. D. Bai, J. W. Silverstein, "CLT of linear spectral statistics of large dimensional sample covariance matrices," Annals of Probability, vol. 32, no. 1A, pp. 553-605, 2004.
- for the model $\mathbf{Y}=\mathbf{T}^{\frac{1}{2}} \mathbf{X}$, an asymptotic central limit result is known for the moments, i.e. for $m_{k}^{(N)}$ the order k empirical moment of $\frac{1}{N} \mathbf{Y} \mathbf{Y}^{H}$ and $m_{k}^{\circ(N)}$ its deterministic equivalent, as $N \rightarrow \infty$,

$$
N\left(m_{k}^{(N)}-m_{k}^{\circ(N)}\right) \Rightarrow X
$$

where X is a central Gaussian random variable.

- for the model under consideration, no such result is known.
- if a given model turns out to be Gaussian, then maximum-likelihood or MMSE estimators are of order. Denoting $\mathbf{p}=\left(P_{1}, \ldots, P_{K}\right)$,

$$
\hat{\mathbf{p}}_{\mathrm{ML}}=\arg \min _{\mathbf{p}} \log \operatorname{det}(\mathbf{C}(\mathbf{p}))+\left(\mathbf{m}-\mathbf{m}^{\circ}(\mathbf{p})\right)^{\top} \mathbf{C}(\mathbf{p})^{-1}\left(\mathbf{m}-\mathbf{m}^{\circ}(\mathbf{p})\right)
$$

with, for some $p, \mathbf{m}=\left(m_{1}^{(N)}, \ldots, m_{p}^{(N)}\right), \mathbf{m}^{\circ}(\mathbf{p})=\left(m_{1}^{\circ}(N), \ldots, m_{p}^{\circ}(N)\right.$, and $\mathbf{C}(\mathbf{p})$ the covariance matrix of the Gaussian moment vector assuming powers \mathbf{p}.
and for the MMSE,

Free deconvolution: inferring powers

- alternative approach: estimators that minimize conventional error metrics
Z. D. Bai, J. W. Silverstein, "CLT of linear spectral statistics of large dimensional sample covariance matrices," Annals of Probability, vol. 32, no. 1A, pp. 553-605, 2004.
- for the model $\mathbf{Y}=\mathbf{T}^{\frac{1}{2}} \mathbf{X}$, an asymptotic central limit result is known for the moments, i.e. for $m_{k}^{(N)}$ the order k empirical moment of $\frac{1}{N} \mathbf{Y} \mathbf{Y}^{H}$ and $m_{k}^{\circ(N)}$ its deterministic equivalent, as $N \rightarrow \infty$,

$$
N\left(m_{k}^{(N)}-m_{k}^{\circ(N)}\right) \Rightarrow X
$$

where X is a central Gaussian random variable.

- for the model under consideration, no such result is known.
- if a given model turns out to be Gaussian, then maximum-likelihood or MMSE estimators are of order. Denoting $\mathbf{p}=\left(P_{1}, \ldots, P_{K}\right)$,

$$
\hat{\mathbf{p}}_{\mathrm{ML}}=\arg \min _{\mathbf{p}} \log \operatorname{det}(\mathbf{C}(\mathbf{p}))+\left(\mathbf{m}-\mathbf{m}^{\circ}(\mathbf{p})\right)^{\top} \mathbf{C}(\mathbf{p})^{-1}\left(\mathbf{m}-\mathbf{m}^{\circ}(\mathbf{p})\right)
$$

with, for some $p, \mathbf{m}=\left(m_{1}^{(N)}, \ldots, m_{p}^{(N)}\right), \mathbf{m}^{\circ}(\mathbf{p})=\left(m_{1}^{\circ}(N), \ldots, m_{p}^{\circ}(N)\right)$, and $\mathbf{C}(\mathbf{p})$ the covariance matrix of the Gaussian moment vector assuming powers \mathbf{p}.

- and for the MMSE,

$$
\hat{\mathbf{p}}_{\mathrm{MMSE}}=\frac{\int \mathbf{p} \operatorname{det}\left(\mathbf{C}^{-1}(\mathbf{p})\right) e^{-\left(\mathbf{m}-\mathbf{m}^{\circ}(\mathbf{p})\right)^{\top} \mathbf{C}(\mathbf{p})^{-1}\left(\mathbf{m}-\mathbf{m}^{\circ}(\mathbf{p})\right)} d \mathbf{p}}{\int \operatorname{det}\left(\mathbf{C}^{-1}(\mathbf{p})\right) e^{-\left(\mathbf{m}-\mathbf{m}^{\circ}(\mathbf{p})\right)^{\top} \mathbf{C}(\mathbf{p})^{-1}\left(\mathbf{m}-\mathbf{m}^{\circ}(\mathbf{p})\right)} d \mathbf{p}}
$$

Remarks on free deconvolution approach

- convenient approach, computationally not expensive
- necessarily suboptimal when finitely many moments are considered
- problem to move from moments to estimates: Newton-Girard method may lead to non real solutions.
- more elaborate methods, e.g. ML, MMSE, are prohibitively expensive
- convenient approach, computationally not expensive
- necessarily suboptimal when finitely many moments are considered
- problem to move from moments to estimates: Newton-Girard method may lead to non real solutions.
- more elaborate methods, e.g. ML, MMSE, are prohibitively expensive
- convenient approach, computationally not expensive
- necessarily suboptimal when finitely many moments are considered
- problem to move from moments to estimates: Newton-Girard method may lead to non real solutions.
- more elaborate methods, e.g. ML, MMSE, are prohibitively expensive
- convenient approach, computationally not expensive
- necessarily suboptimal when finitely many moments are considered
- problem to move from moments to estimates: Newton-Girard method may lead to non real solutions.
- more elaborate methods, e.g. ML, MMSE, are prohibitively expensive

Stieltjes transform approach

- remember the matrix model

$$
\mathbf{Y}=\mathbf{H} \mathbf{P}^{\frac{1}{2}} \mathbf{X}+\sigma \mathbf{W}
$$

with $\mathbf{W}, \mathbf{Y} \in \mathbb{C}^{N \times M}, \mathbf{H} \in \mathbb{C}^{N \times n}, \mathbf{X} \in \mathbb{C}^{n \times M}$, and $\mathbf{P} \in \mathbb{C}^{n \times n}$ diagonal.

- this can be written in the following way

and extend it into the matrix

$$
\mathbf{Y}_{\mathrm{ext}}=\left[\begin{array}{cc}
\mathbf{H P}^{\frac{1}{2}} & \sigma \mathbf{I} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{X} \\
\mathbf{W}
\end{array}\right] \in \mathbb{C}^{(N+n) \times M}
$$

which is a sample covariance matrix model with random covariance matrix.

- since the covariance matrix clearly has an I.s.d., we have that the I.s.d. $\underline{m}(z)$ of $Y_{\text {ext }}^{H} Y_{\text {ext }}$ is the unique solution, for $z \in \mathbb{C}^{+}$, of

with H the I.s.d. of $\left(\begin{array}{c}\mathrm{HPH}^{H}+\sigma^{2} \mathrm{I}_{\mathrm{N}} \\ 0 \\ 0\end{array}\right)$

Stielties transform approach

- remember the matrix model

$$
\mathbf{Y}=\mathbf{H} \mathbf{P}^{\frac{1}{2}} \mathbf{X}+\sigma \mathbf{W}
$$

with $\mathbf{W}, \mathbf{Y} \in \mathbb{C}^{N \times M}, \mathbf{H} \in \mathbb{C}^{N \times n}, \mathbf{X} \in \mathbb{C}^{n \times M}$, and $\mathbf{P} \in \mathbb{C}^{n \times n}$ diagonal.

- this can be written in the following way

$$
\mathbf{Y}=\left[\begin{array}{ll}
\mathbf{H P}^{\frac{1}{2}} & \sigma \mathbf{I}
\end{array}\right]\left[\begin{array}{l}
\mathbf{X} \\
\mathbf{W}
\end{array}\right] \in \mathbb{C}^{N \times M}
$$

and extend it into the matrix

$$
\mathbf{Y}_{\mathrm{ext}}=\left[\begin{array}{cc}
\mathbf{H} \mathbf{P}^{\frac{1}{2}} & \sigma \mathbf{I} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{X} \\
\mathbf{W}
\end{array}\right] \in \mathbb{C}^{(N+n) \times M}
$$

which is a sample covariance matrix model with random covariance matrix.

\square

Stieltjes transform approach

- remember the matrix model

$$
\mathbf{Y}=\mathbf{H} \mathbf{P}^{\frac{1}{2}} \mathbf{X}+\sigma \mathbf{W}
$$

with W, $\mathbf{Y} \in \mathbb{C}^{N \times M}, \mathbf{H} \in \mathbb{C}^{N \times n}, \mathbf{X} \in \mathbb{C}^{n \times M}$, and $\mathbf{P} \in \mathbb{C}^{n \times n}$ diagonal.

- this can be written in the following way

$$
\mathbf{Y}=\left[\begin{array}{ll}
\mathbf{H P}^{\frac{1}{2}} & \sigma \mathbf{I}
\end{array}\right]\left[\begin{array}{l}
\mathbf{X} \\
\mathbf{W}
\end{array}\right] \in \mathbb{C}^{N \times M}
$$

and extend it into the matrix

$$
\mathbf{Y}_{\mathrm{ext}}=\left[\begin{array}{cc}
\mathbf{H} \mathbf{P}^{\frac{1}{2}} & \sigma \mathbf{I} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{X} \\
\mathbf{W}
\end{array}\right] \in \mathbb{C}^{(N+n) \times M}
$$

which is a sample covariance matrix model with random covariance matrix.

- since the covariance matrix clearly has an I.s.d., we have that the I.s.d. $\underline{m}(z)$ of $\mathbf{Y}_{\mathrm{ext}}^{\mathrm{H}} \mathbf{Y}_{\text {ext }}$ is the unique solution, for $z \in \mathbb{C}^{+}$, of

$$
\begin{aligned}
z & =-\frac{1}{\underline{m}(z)}+\frac{N+n}{M} \int \frac{t}{1+\underline{t m}(z)} d H(t) \\
& =-\frac{1}{\underline{m}(z)}+\frac{N+n}{M \underline{m}(z)}\left(1-\frac{1}{\underline{m}(z)} \int \frac{1}{t-\left(-\frac{1}{\underline{m}(z)}\right)} d H(t)\right)
\end{aligned}
$$

with H the l.s.d. of $\left(\begin{array}{cc}\mathrm{HPH}^{H}+\sigma^{2} \mathbf{I}_{N} & 0 \\ 0 & 0\end{array}\right)$.

Second step

- Note now that HPH ${ }^{H}$ is also a sample covariance matrix model, and therefore the I.s.d. of $\mathbf{H P H}^{\mathrm{H}}$ has Stieltjes transform $m_{1}(z)$, solution of the fixed-point equation in m_{1}

$$
z\left(m_{1}\right)=-\frac{1}{m_{1}}+\frac{1}{N} \sum_{k=1}^{K} n_{k} \frac{P_{k}}{1+P_{k} m_{1}}
$$

- Now, up to a shift of σ^{2} and the addition of n zero eigenvalues, the l.s.d. of HPH^{H} is H . More exactly,

- reminding the previous equation

we then have the link between m and m_{1},

Second step

- Note now that HPH ${ }^{H}$ is also a sample covariance matrix model, and therefore the l.s.d. of $\mathbf{H P H}^{\mathrm{H}}$ has Stieltjes transform $m_{1}(z)$, solution of the fixed-point equation in m_{1}

$$
z\left(m_{1}\right)=-\frac{1}{m_{1}}+\frac{1}{N} \sum_{k=1}^{K} n_{k} \frac{P_{k}}{1+P_{k} m_{1}}
$$

- Now, up to a shift of σ^{2} and the addition of n zero eigenvalues, the l.s.d. of HPH^{H} is H. More exactly,

$$
\int \frac{1}{t-\left(z+\sigma^{2}\right)} d H(t)=\frac{N}{N+n} m_{1}(z)-\frac{n}{N+n} \frac{1}{z}
$$

- reminding the previous equation

we then have the link between \underline{m} and m_{1}

Second step

- Note now that HPH ${ }^{H}$ is also a sample covariance matrix model, and therefore the l.s.d. of $\mathbf{H P H}^{\mathrm{H}}$ has Stieltjes transform $m_{1}(z)$, solution of the fixed-point equation in m_{1}

$$
z\left(m_{1}\right)=-\frac{1}{m_{1}}+\frac{1}{N} \sum_{k=1}^{K} n_{k} \frac{P_{k}}{1+P_{k} m_{1}}
$$

- Now, up to a shift of σ^{2} and the addition of n zero eigenvalues, the l.s.d. of $\mathbf{H P H}^{H}$ is H. More exactly,

$$
\int \frac{1}{t-\left(z+\sigma^{2}\right)} d H(t)=\frac{N}{N+n} m_{1}(z)-\frac{n}{N+n} \frac{1}{z}
$$

- reminding the previous equation

$$
z=-\frac{1}{\underline{m}(z)}+\frac{N+n}{M \underline{m}(z)}\left(1-\frac{1}{\underline{m}(z)} \int \frac{1}{t-\left(-\frac{1}{\underline{m}(z)}\right)} d H(t)\right)
$$

we then have the link between \underline{m} and m_{1},

$$
z=-\frac{N}{M} \frac{1}{\underline{m}(z)^{2}} m_{1}\left(-1 / \underline{m}(z)-\sigma^{2}\right)+\frac{N-M}{M} \frac{1}{\underline{m}(z)}
$$

Asymptotic spectrum

R. Couillet, J. W. Silverstein, M. Debbah, "Eigen-inference for multi-source power estimation", submitted to ISIT 2010.

- all together, denoting $f(z)=m_{1}\left(-1 / \underline{m}(z)-\sigma^{2}\right)$, the asymptotic spectrum of $\frac{1}{M} \mathbf{Y} \mathbf{Y}^{H}$ has Stietljes transform $m(z), z \in \mathbb{C}^{+}$, such that

$$
m(z)=\frac{M}{N} \underline{m}(z)+\frac{M-N}{N} \frac{1}{z}
$$

where $\underline{m}(z)$ is the unique solution in \mathbb{C}^{+}of

$$
\frac{1}{\underline{m}(z)}=-\sigma^{2}+\frac{1}{f(z)}-\frac{1}{N} \sum_{k=1}^{K} \frac{n_{k} P_{k}}{1+P_{k} f(z)}
$$

where $f(z)$ is given by

$$
f(z)=\frac{M-N}{N} \underline{m}(z)-\frac{M}{N} z \underline{m}(z)^{2}
$$

Asymptotic spectrum of $\frac{1}{M} \mathrm{YY}^{H}$

Figure: Empirical and asymptotic eigenvalue distribution of $\frac{1}{M} \mathbf{Y} \mathbf{Y}^{H}$ when \mathbf{P} has three distinct entries $P_{1}=1$, $P_{2}=3, P_{3}=10, n_{1}=n_{2}=n_{3}, N / n=10, M / N=10, \sigma^{2}=0.1$. Empirical test: $n=60$.

Contour definition

- the same approach as for the covariance matrix model can be followed
- assuming separation of cluster k, P_{k} is comprised between $-1 / m_{1}\left(x_{k}^{-} \varepsilon\right)$ and $-1 / m_{1}\left(x_{k}^{+}+\varepsilon\right)$ for x_{k}^{-}and x_{k}^{+}the edges of the $k^{\text {th }}$ cluster of the support of $\frac{1}{M} \mathbf{Y Y}^{H}$.
- reproducing the steps of Mestre's work, we have, for some contour $\partial \Gamma_{k}$,

$$
P_{k}=\frac{n}{n_{k}} \frac{1}{2 \pi i} \oint_{\partial \Gamma_{k}}\left(\frac{N}{n} w m_{1}(w)+\frac{N-n}{n}\right) \frac{m_{1}^{\prime}(w)}{m_{1}(w)^{2}} d w
$$

- the key here is to remember that

$$
m_{1}\left(-1 / \underline{m}(z)-\sigma^{2}\right)=\frac{M-N}{N} \underline{m}(z)-\frac{M}{N} z \underline{m}(z)^{2}
$$

- we then make the variable change $w=-1 / \underline{m}(z)-\sigma^{2}$ to get

$$
P_{k}=\frac{n}{n_{k}} \frac{1}{2 \pi i} \oint_{\partial \Omega_{k}}\left[\frac{N}{n}\left(1+\sigma^{2} m(z)\right)+\frac{N-K}{K} \frac{1}{z m(z)}\right]\left[-\frac{1}{z \underline{m}(z)}-\frac{m^{\prime}(z)}{m(z)^{2}}-\frac{m^{\prime}(z)}{m(z) \underline{m}(z)}\right] d z
$$

Contour definition

- the same approach as for the covariance matrix model can be followed
- assuming separation of cluster k, P_{k} is comprised between $-1 / m_{1}\left(x_{k}^{-} \varepsilon\right)$ and $-1 / m_{1}\left(x_{k}^{+}+\varepsilon\right)$ for x_{k}^{-}and x_{k}^{+}the edges of the $k^{\text {th }}$ cluster of the support of $\frac{1}{M} \mathbf{Y} \mathbf{Y}^{H}$.
- reproducing the steps of Mestre's work, we have, for some contour $\partial \Gamma_{k}$,

- the key here is to remember that

- we then make the variable change $w=-1 / \underline{m}(z)-\sigma^{2}$ to get

- the same approach as for the covariance matrix model can be followed
- assuming separation of cluster k, P_{k} is comprised between $-1 / m_{1}\left(x_{k}^{-} \varepsilon\right)$ and $-1 / m_{1}\left(x_{k}^{+}+\varepsilon\right)$ for x_{k}^{-}and x_{k}^{+}the edges of the $k^{\text {th }}$ cluster of the support of $\frac{1}{M} \mathbf{Y} \mathbf{Y}^{H}$.
- reproducing the steps of Mestre's work, we have, for some contour $\partial \Gamma_{k}$,

$$
P_{k}=\frac{n}{n_{k}} \frac{1}{2 \pi i} \oint_{\partial \Gamma_{k}}\left(\frac{N}{n} w m_{1}(w)+\frac{N-n}{n}\right) \frac{m_{1}^{\prime}(w)}{m_{1}(w)^{2}} d w
$$

- the key here is to remember that
- we then make the variable change $w=-1 / \underline{m}(z)-\sigma^{2}$ to get

- the same approach as for the covariance matrix model can be followed
- assuming separation of cluster k, P_{k} is comprised between $-1 / m_{1}\left(x_{k}^{-} \varepsilon\right)$ and $-1 / m_{1}\left(x_{k}^{+}+\varepsilon\right)$ for x_{k}^{-}and x_{k}^{+}the edges of the $k^{\text {th }}$ cluster of the support of $\frac{1}{M} \mathbf{Y} \mathbf{Y}^{H}$.
- reproducing the steps of Mestre's work, we have, for some contour $\partial \Gamma_{k}$,

$$
P_{k}=\frac{n}{n_{k}} \frac{1}{2 \pi i} \oint_{\partial \Gamma_{k}}\left(\frac{N}{n} w m_{1}(w)+\frac{N-n}{n}\right) \frac{m_{1}^{\prime}(w)}{m_{1}(w)^{2}} d w
$$

- the key here is to remember that

$$
m_{1}\left(-1 / \underline{m}(z)-\sigma^{2}\right)=\frac{M-N}{N} \underline{m}(z)-\frac{M}{N} z \underline{m}(z)^{2}
$$

- we then make the variable change $w=-1 / \underline{m}(z)-\sigma^{2}$ to get

$$
P_{k}=\frac{n}{n_{k}} \frac{1}{2 \pi i} \oint_{\partial \Omega_{k}}\left[\frac{N}{n}\left(1+\sigma^{2} \underline{m}(z)\right)+\frac{N-K}{K} \frac{1}{z m(z)}\right]\left[-\frac{1}{z \underline{m}(z)}-\frac{\underline{m}^{\prime}(z)}{\underline{m}(z)^{2}}-\frac{m^{\prime}(z)}{m(z) \underline{m}(z)}\right] d z
$$

Using RMT and computing the residues

- we now know that $m(z)$, the asymptotic Stieltjes transform of $\frac{1}{M} \mathbf{Y} \mathbf{Y}^{H}$, is close to its empirical counterpart

$$
\hat{m}(z)=\frac{1}{M} \sum_{k=1}^{M} \frac{1}{\lambda_{k}-z}
$$

- verifying that $m(z)$ is bounded along the integration contour, we can then replace limiting results by empirical ones, and get
- residue calculus then leads to 9 terms to be evaluated, the poles of which are at
- $\eta_{1}, \ldots, \eta_{N}$, the solutions to

- μ_{1}, \ldots, μ_{N}, the solutions to

(denoting $\lambda_{N+1}=\ldots=\lambda_{M}=0$.)
- proving the nresence of the μ_{k} 's and η_{k} 's in the cluster under study is identical to the sample covariance matrix model approach.

Using RMT and computing the residues

- we now know that $m(z)$, the asymptotic Stieltjes transform of $\frac{1}{M} \mathbf{Y} \mathbf{Y}^{H}$, is close to its empirical counterpart

$$
\hat{m}(z)=\frac{1}{M} \sum_{k=1}^{M} \frac{1}{\lambda_{k}-z}
$$

- verifying that $m(z)$ is bounded along the integration contour, we can then replace limiting results by empirical ones, and get

$$
\hat{P}_{k}=\frac{n}{n_{k}} \frac{1}{2 \pi i} \oint_{\partial \Omega_{k}}\left[\frac{N}{n}\left(1+\sigma^{2} \underline{\hat{m}}(z)\right)+\frac{N-K}{K} \frac{1}{z \hat{m}(z)}\right]\left[-\frac{1}{z \underline{\hat{m}}(z)}-\frac{\hat{m}^{\prime}(z)}{\underline{\hat{m}}(z)^{2}}-\frac{\hat{m}^{\prime}(z)}{\hat{m}(z) \underline{\hat{m}}(z)}\right] d z
$$

- residue calculus then leads to 9 terms to be evaluated, the poles of which are at
η_{N}, the solutions to

- μ_{1}, \ldots, μ_{N}, the solutions to

$$
\text { (denoting } \lambda_{N+1}=\ldots=\lambda_{M}=0 \text {.) }
$$

proving the presence of the μ_{k} 's and η_{k} 's in the cluster under study is identical to the sample covariance matrix model approach.

Using RMT and computing the residues

- we now know that $m(z)$, the asymptotic Stieltjes transform of $\frac{1}{M} \mathbf{Y} \mathbf{Y}^{H}$, is close to its empirical counterpart

$$
\hat{m}(z)=\frac{1}{M} \sum_{k=1}^{M} \frac{1}{\lambda_{k}-z}
$$

- verifying that $m(z)$ is bounded along the integration contour, we can then replace limiting results by empirical ones, and get
$\hat{P}_{k}=\frac{n}{n_{k}} \frac{1}{2 \pi i} \oint_{\partial \Omega_{k}}\left[\frac{N}{n}\left(1+\sigma^{2} \underline{\hat{m}}(z)\right)+\frac{N-K}{K} \frac{1}{z \hat{m}(z)}\right]\left[-\frac{1}{z \underline{\hat{m}}(z)}-\frac{\hat{m}^{\prime}(z)}{\underline{\hat{m}}(z)^{2}}-\frac{\hat{m}^{\prime}(z)}{\hat{m}(z) \underline{\hat{m}}(z)}\right] d z$
- residue calculus then leads to 9 terms to be evaluated, the poles of which are at
- $\eta_{1}, \ldots, \eta_{N}$, the solutions to

$$
\sum_{k=1}^{N} \frac{1}{\lambda_{k}-z}=0
$$

- μ_{1}, \ldots, μ_{N}, the solutions to

$$
\sum_{k=1}^{M} \frac{1}{\lambda_{k}-z}=0
$$

$$
\text { (denoting } \lambda_{N+1}=\ldots=\lambda_{M}=0 . \text {) }
$$

- proving the presence of the μ_{k} 's and η_{k} 's in the cluster under study is identical to the sample covariance matrix model approach.
- we now know that $m(z)$, the asymptotic Stieltjes transform of $\frac{1}{M} \mathbf{Y} \mathbf{Y}^{H}$, is close to its empirical counterpart

$$
\hat{m}(z)=\frac{1}{M} \sum_{k=1}^{M} \frac{1}{\lambda_{k}-z}
$$

- verifying that $m(z)$ is bounded along the integration contour, we can then replace limiting results by empirical ones, and get
$\hat{P}_{k}=\frac{n}{n_{k}} \frac{1}{2 \pi i} \oint_{\partial \Omega_{k}}\left[\frac{N}{n}\left(1+\sigma^{2} \underline{\hat{m}}(z)\right)+\frac{N-K}{K} \frac{1}{z \hat{m}(z)}\right]\left[-\frac{1}{z \underline{\hat{m}}(z)}-\frac{\hat{m}^{\prime}(z)}{\underline{\hat{m}}(z)^{2}}-\frac{\hat{m}^{\prime}(z)}{\hat{m}(z) \underline{\hat{m}}(z)}\right] d z$
- residue calculus then leads to 9 terms to be evaluated, the poles of which are at
- $\eta_{1}, \ldots, \eta_{N}$, the solutions to

$$
\sum_{k=1}^{N} \frac{1}{\lambda_{k}-z}=0
$$

- μ_{1}, \ldots, μ_{N}, the solutions to

$$
\sum_{k=1}^{M} \frac{1}{\lambda_{k}-z}=0
$$

$$
\text { (denoting } \lambda_{N+1}=\ldots=\lambda_{M}=0 . \text {) }
$$

- proving the presence of the μ_{k} 's and η_{k} 's in the cluster under study is identical to the sample covariance matrix model approach.

Stielties transform approach: final result

R. Couillet, J. W. Silverstein, M. Debbah, "Eigen-inference for multi-source power estimation", submitted to ISIT 2010.

Theorem

Let $\mathbf{B}_{N}=\frac{1}{M} \mathbf{Y} \mathbf{Y}^{H} \in \mathbb{C}^{N \times N}$, with \mathbf{Y} defined as previously. Denote its ordered eigenvalues vector $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{N}\right), \lambda_{1}<\ldots, \lambda_{N}$. Further assume asymptotic spectrum separability. Then, for $k \in\{1, \ldots, K\}$, as N, n, M grow large, we have

$$
\hat{P}_{k}-P_{k} \xrightarrow{\text { a.s. }} 0
$$

where the estimate \hat{P}_{k} is given by

$$
\hat{P}_{k}=\frac{N M}{n_{k}(M-N)} \sum_{i \in \mathcal{N}_{k}}\left(\eta_{i}-\mu_{i}\right)
$$

with $\mathcal{N}_{k}=\left\{N-\sum_{i=k}^{K} n_{i}+1, \ldots, N-\sum_{i=k+1}^{K} n_{i}\right\}$ the set of indexes matching the cluster corresponding to $P_{k},\left(\eta_{1}, \ldots, \eta_{N}\right)$ the ordered eigenvalues of $\operatorname{diag}(\lambda)-\frac{1}{N} \sqrt{\lambda} \sqrt{\lambda}^{\top}$ and $\left(\mu_{1}, \ldots, \mu_{N}\right)$ the ordered eigenvalues of $\operatorname{diag}(\boldsymbol{\lambda})-\frac{1}{M} \sqrt{\boldsymbol{\lambda}} \sqrt{\boldsymbol{\lambda}}^{\top}$.

Comments on the result

- very compact formula
- low computational complexity
- assuming cluster separation, it allows also to infer the number of eigenvalues, as well as the multiplicity of each eigenvalue.
- however, strong requirement on cluster separation
- if separation is not true, the mean of the eigenvalues instead of the eigenvalues themselves is computed. Note that this might be good enough!.
- extension to the case when spectrum separation is not needed is being investigated at the moment.
- supposedly, it is possible to infer K, all n_{k} 's and all P_{k} 's using the Stieltjes transform method.
- very compact formula
- low computational complexity
- assuming cluster separation, it allows also to infer the number of eigenvalues, as well as the multiplicity of each eigenvalue.
- however, strong requirement on cluster separation
- if separation is not true, the mean of the eigenvalues instead of the eigenvalues themselves is computed. Note that this might be good enough!.
- extension to the case when spectrum separation is not needed is being investigated at the moment.
- supposedly, it is possible to infer K, all n_{K} 's and all P_{K} 's using the Stieltjes transform method.
- very compact formula
- low computational complexity
- assuming cluster separation, it allows also to infer the number of eigenvalues, as well as the multiplicity of each eigenvalue.
- however, strong requirement on cluster separation
- if separation is not true, the mean of the eigenvalues instead of the eigenvalues themselves is computed. Note that this might be good enough!.
- extension to the case when spectrum separation is not needed is being investigated at the moment.
- supposedly, it is possible to infer K, all n_{k} 's and all P_{k} 's using the Stieltjes transform method.

Performance comparison

Figure: Multi-source power estimation, for $K=3, P_{1}=1, P_{2}=3, P_{3}=10, n_{1} / n=n_{2} / n=n_{3} / n=1 / 3$,$n / N=N / M=1 / 10$, SNR $=10 \mathrm{~dB}$, for 10,000 simulation runs; Top $n=60$, bottom $n=6$.

- up to this day
- the moment approach is much simpler to derive
- it does not require any cluster separation
- the finite size case is treated in the mean, which the Stieltjes transform approach cannot do.
- however, the Stieltjes transform approach makes full use of the spectral knowledge, when the moment approach is limited to a few moments.
- the results are more natural, and more "telling"
o in the future, it is expected that the cluster separation requirement can be overtaken.
- a natural general framework attached to the Stieltjes transform method could arise
- central limit results on the estimates is expected
- up to this day
- the moment approach is much simpler to derive
- it does not require any cluster separation
- the finite size case is treated in the mean, which the Stieltjes transform approach cannot do.
- however, the Stieltjes transform approach makes full use of the spectral knowledge, when the moment approach is limited to a few moments.
- the results are more natural, and more "telling"
- in the future, it is expected that the cluster separation requirement can be overtaken.
- a natural general framework attached to the Stieltjes transform method could arise
- central limit results on the estimates is expected
- N. El Karoui, "Spectrum estimation for large dimensional covariance matrices using random matrix theory," Annals of Statistics, vol. 36, no. 6, pp. 2757-2790, 2008.
- N. R. Rao, J. A. Mingo, R. Speicher, A. Edelman, "Statistical eigen-inference from large Wishart matrices," Annals of Statistics, vol. 36, no. 6, pp. 2850-2885, 2008.
- R. Couillet, M. Debbah, "Free deconvolution for OFDM multicell SNR detection", PIMRC 2008, Cannes, France.
- X. Mestre, "Improved estimation of eigenvalues and eigenvectors of covariance matrices using their sample estimates," IEEE trans. on Information Theory, vol. 54, no. 11, pp. 5113-5129, 2008.
- R. Couillet, J. W. Silverstein, M. Debbah, "Eigen-inference for multi-source power estimation", submitted to ISIT 2010.
- Z. D. Bai, J. W. Silverstein, "No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices," The Annals of Probability, vol. 26, no. 1 pp. 316-345, 1998.
- Z. D. Bai, J. W. Silverstein, "CLT of linear spectral statistics of large dimensional sample covariance matrices," Annals of Probability, vol. 32, no. 1A, pp. 553-605, 2004.
- J. Silverstein, Z. Bai, "Exact separation of eigenvalues of large dimensional sample covariance matrices" Annals of Probability, vol. 27, no. 3, pp. 1536-1555, 1999.
- Ø. Ryan, M. Debbah, "Free Deconvolution for Signal Processing Applications," IEEE International Symposium on Information Theory, pp. 1846-1850, 2007.

Outline

(1) Problem introduction

(2) Free deconvolution
(3) The Stieltjes transform approach

4 Case study: comparison of moment vs. Stieltjes transform approach for blind transmit power infer

5 General summary of open problems worth being studied

- the first applications of random matrix theory to wireless communications used to be
- mere applications of existing theorems
- limited to system analysis
- today,
- the scope of applications has widened: multi-user, multi-antenna system analysis, concrete applications in self-organized networks, detection, estimation etc.
- most of the new studies require new mathematical results
- the first applications of random matrix theory to wireless communications used to be
- mere applications of existing theorems
- limited to system analysis
- today,
- the scope of applications has widened: multi-user, multi-antenna system analysis, concrete applications in self-organized networks, detection, estimation etc.
- most of the new studies require new mathematical results
- today, a large number of applications linked to i.i.d. (Gaussian or not) models, with double correlation, variance profile, non-centered, Haar matrices has been treated.
- more structured matrices are more difficult to treat, especially on the analytic side
- results on eigenvectors are also less numerous
- finite size considerations yet limited to moment approaches
- eigen-inference methods need be developed to more involved models and gathered into a unified framework.
- the scalars appearing in fixed-point equations seem to compress the communication channel information to its simplest granularity:
- is that true?
- how and for which applications can this be used?
- today, a large number of applications linked to i.i.d. (Gaussian or not) models, with double correlation, variance profile, non-centered, Haar matrices has been treated.
- more structured matrices are more difficult to treat, especially on the analytic side
- results on eigenvectors are also less numerous
- finite size considerations yet limited to moment approaches
- eigen-inference methods need be develoned to more involved models and gathered into a unified framework.
- the scalars appearing in fixed-point equations seem to compress the communication channel information to its simplest granularity:
- is that true?
- how and for which applications can this be used?
- today, a large number of applications linked to i.i.d. (Gaussian or not) models, with double correlation, variance profile, non-centered, Haar matrices has been treated.
- more structured matrices are more difficult to treat, especially on the analytic side
- results on eigenvectors are also less numerous
- finite size considerations yet limited to moment approaches
- eigen-inference methods need be developed to more involved models and gathered into a unified framework.
- the scalars appearing in fixed-point equations seem to compress the communication channel information to its simplest granularity:
- is that true?
- how and for which applications can this be used?
- today, a large number of applications linked to i.i.d. (Gaussian or not) models, with double correlation, variance profile, non-centered, Haar matrices has been treated.
- more structured matrices are more difficult to treat, especially on the analytic side
- results on eigenvectors are also less numerous
- finite size considerations yet limited to moment approaches
- eigen-inference methods need be developed to more involved models and gathered into a unified framework.
- the scalars appearinc in fixed-point equations seem to compress the communication channel information to its simplest granularity:
- is that true?
- how and for which applications can this be used?
- today, a large number of applications linked to i.i.d. (Gaussian or not) models, with double correlation, variance profile, non-centered, Haar matrices has been treated.
- more structured matrices are more difficult to treat, especially on the analytic side
- results on eigenvectors are also less numerous
- finite size considerations yet limited to moment approaches
- eigen-inference methods need be developed to more involved models and gathered into a unified framework.
- the scalars appearing in fixed-point equations seem to compress the communication channel information to its simplest granularity:
- is that true?
- how and for which applications can this be used?
- today, a large number of applications linked to i.i.d. (Gaussian or not) models, with double correlation, variance profile, non-centered, Haar matrices has been treated.
- more structured matrices are more difficult to treat, especially on the analytic side
- results on eigenvectors are also less numerous
- finite size considerations yet limited to moment approaches
- eigen-inference methods need be developed to more involved models and gathered into a unified framework.
- the scalars appearing in fixed-point equations seem to compress the communication channel information to its simplest granularity:
- is that true?
- how and for which applications can this be used?

