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Problem introduction

Introduction of the problem

Reminder: for a sequence x1, . . . , xn ∈ CN of independent random variables,

Rn =
1

n

n
∑

k=1

xk xH
k

is an n-consistent estimator of R = E[x1xH
1 ].

If n, N have comparable sizes, this no longer holds.

Typically, n,N-consistent estimators of the full R matrix perform very badly.

If only the eigenvalues of R are of interest, things can be done. The process of retrieving the
eigenvalues (or in fact retrieving anything based on eigenvalues and eigenvectors) is called
eigen-inference.

If the distinct population eigenvalues, i.e. the distinct eigenvalues of R, are small compared to
N, much more can be done. This is the purpose of this course.
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Problem introduction

Girko and the G-estimators

V. Girko, “Ten years of general statistical analysis,”
http://www.general-statistical-analysis.girko.freewebspace.com/chapter14.pdf

Girko has come up with more than 50 N, n-consistent estimators, called, after himself,
G-estimators. Among those, we find

G1-estimator of generalized variance. For

G1(Rn) = α
−1
n

[

log det(Rn) + log
n(n − 1)N

(n − N)
∏N

k=1(n − k)

]

with αn any sequence such that α−2
n log(n/(n − N)) → 0, we have

G1(Rn) − α
−1
n log det(R) → 0

in probability.
G3-estimator of the inverse covariance matrix,

G3(Rn) = R−1
n [1 − N/n]

and more than 50 others...

However, Girko’s proofs are rarely readable, if existent.

As Bai puts it

“his proofs have puzzled many who attempt to understand, without success, Girko’s
arguments”

R. Couillet (Supélec) Random Matrix Theory Course 29/10/2009 5 / 58



Problem introduction

Girko and the G-estimators

V. Girko, “Ten years of general statistical analysis,”
http://www.general-statistical-analysis.girko.freewebspace.com/chapter14.pdf

Girko has come up with more than 50 N, n-consistent estimators, called, after himself,
G-estimators. Among those, we find

G1-estimator of generalized variance. For

G1(Rn) = α
−1
n

[

log det(Rn) + log
n(n − 1)N

(n − N)
∏N

k=1(n − k)

]

with αn any sequence such that α−2
n log(n/(n − N)) → 0, we have

G1(Rn) − α
−1
n log det(R) → 0

in probability.
G3-estimator of the inverse covariance matrix,

G3(Rn) = R−1
n [1 − N/n]

and more than 50 others...

However, Girko’s proofs are rarely readable, if existent.

As Bai puts it

“his proofs have puzzled many who attempt to understand, without success, Girko’s
arguments”
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Free deconvolution

Position of the problem

it has long been difficult to analytically invert the simplest BN = T
1
2
N XNXH

NT
1
2
N model to recover

the diagonal entries of TN . Indeed, we only have the deterministic equivalent result

mN(z) =
(

−z + c
∫

t

1 + tmN(z)
dF TN (t)

)−1

with mN the deterministic equivalent of the Stieltjes transform for BN = XH
NTNXN .

when TN has eigenvalues t1, . . . , tK with multiplicity n1, . . . , nK , this is

mN(z) =



−z +
1

N

K
∑

k=1

nk
tk

1 + tk mN(z)





−1

an N, n-consistent estimator for the tk ’s was never found until recently...

however, moment-based methods and free probability approaches provide simple solutions to
estimate consistently all moments of F TN .
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Free deconvolution

Reminder on moment-based approaches

For free random matrices A and B, we have the cumulant/moment relationships,

Ck (A + B) = Ck (A) + Ck (B)

Mn(AB) =
∑

(π1,π2)∈NC(n)

∏

V1∈π1
V2∈π2

C|V1|
(A)C|V2|

(B)

this allows one to compute all moments of sum and product distributions

µA ⊞ µB

µA ⊠ µB

in addition, we have results for the information-plus-noise model

BN =
1

n
(RN + σXN) (RN + σXN)

H

whose e.s.d. converges weakly and almost surely to µB such that

µB =
(

(µΓ � µc) ⊞ δσ2
)

⊠ µc

with µc the Marc̆enko-Pastur law and ΓN = RNRH
N .

all basic matrix operations needed in wireless communications are accessible for convenient
matrices (Gaussian, Vandermonde etc.)
all operations are merely polynomial operations on the moments. As a consequence, for
BN = f (RN),

all moments of the l.s.d. of BN are obtained as polynomials of those of the l.s.d. of RN
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Free deconvolution

From free convolution to free deconvolution

Ø. Ryan, M. Debbah, “Multiplicative free convolution and information-plus-noise type matrices,”
Arxiv preprint math.PR/0702342, 2007.

we have the further result that

the k th moment of the l.s.d. of BN is a polynomial of the k -first moments of the l.s.d. of RN

we can therefore invert the problem and express the k th moment of RN as the first k moments of BN .
This entails deconvolution operations,

µA = µA+B ⊟ µB

µA = µAB � µB

and for the information-plus-noise model, BN = 1
n (RN + σXN ) (RN + σXN )

H

µΓ =
(

(µB ⊠ µc) ⊟ δ
σ2

)

� µc

for more involved models, the polynomial relations can be iterated and even automatically
generated.
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Free deconvolution

Example of polynomial relation

Consider the information-plus-noise model

Y = D + X

with Y ∈ CN×n, D ∈ CN×n, X ∈ CN×n with i.i.d. entries of mean 0 and variance 1. Denote

Mk = lim
n→∞

1

n
tr(

1

N
YYH)k

Dk = lim
n→∞

1

n
tr(

1

N
DDH)k

For that model, we have the relations

M1 = D1 + 1

M2 = D2 + (2 + 2c)D1 + (1 + c)

M3 = D3 + (3 + 3c)D2 + 3cD1
2 + (1 + 3c + c2)

hence

D1 = M1 − 1

D2 = M2 − (2 + 2c)M1 + (1 + c)

D3 = M3 − (3 + 3c)M2 − 3cM1
2 + (6c2 + 18c + 6)M1 − (4c2 + 12c + 4)
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Free deconvolution

Finite size statistical inference

A. Masucci, Ø. Ryan, S. Yang, M. Debbah, “Finite Dimensional Statistical Inference,” submitted to
IEEE Trans. on Information Theory.

it might happen that, instead of one large matrix realization, we have access to several
smaller such matrices. In that case, we seek an estimate for

E

[

1

n
tr
(

1

N
YYH

)k
]

instead of their limits.

we have further combinatorics theorems for all previous elementary models.

example: the previous relations extend to

M1 = D1 + 1

M2 = D2 + (2 + 2c)D1 + (1 + c)

M3 = D3 + (3 + 3c)D2 + 3cD2
1 + (3 + 9c + 3c2 + 3N−2)D1 + (1 + 3c + c2 + N−2)
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Free deconvolution

Current and further studies

in addition to estimating the average moments themselves, we can evaluate the variance of
the empirical moments

E

[

1

n
tr
(

1

N
YYH

)k

− E

[

1

n
tr
(

1

N
YYH

)k
]]

if the moments have Gaussian distributions (left to be proven for models other than sample
covariance matrix), the full behaviour of the empirical moments is known.

statistical maximum-likelihood/MMSE methods can then be used, see further Section 35.
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Free deconvolution
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The Stieltjes transform approach

Outline

1 Problem introduction

2 Free deconvolution

3 The Stieltjes transform approach

4 Case study: comparison of moment vs. Stieltjes transform approach for blind transmit power inference

5 General summary of open problems worth being studied
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The Stieltjes transform approach

Advantages of using the Stieltjes transform

for the same reasons as always, the Stieltjes transform carries all information on the
underlying distribution, not only its moments.

up to now, we obtained N, n-consistent estimators for every moment only

if distribution is not compactly supported, moment approach is useless

it would be more helpful to have N, n-consistent estimators of the powers themselves
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The Stieltjes transform approach

A long standing problem

X. Mestre, “Improved estimation of eigenvalues and eigenvectors of covariance matrices using
their sample estimates,” IEEE trans. on Information Theory, vol. 54, no. 11, pp. 5113-5129, 2008.

Consider the model BN = T
1
2
N XNXH

NT
1
2
N , where F TN is formed of a finite number of masses

t1, . . . , tK .

it has long been thought the inverse problem of retrieving t1, . . . , tK from BN was not possible.

the problem was partially solved by Mestre in 2008!

his technique uses elegant complex analysis tools. The description of this technique is the
subject of this course.
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The Stieltjes transform approach

Reminders of Part 3.

consider the sample covariance matrix model BN = T
1
2
N XNXH

NT
1
2
N .

in Part 3., we saw
that there is no eigenvalue outside the support with probability 1.
that for all large N, when the spectrum is divided into clusters, the number of empirical eigenvalues in
each cluster is exactly as we expect.

these results are of crucial importance for the following.
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The Stieltjes transform approach

Inverse problem for sample covariance matrix
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Estimated powers
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si
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Asymptotic spectrum

Empirical eigenvalues

Figure: Empirical and asymptotic eigenvalue distribution of 1
M YYH when P has three distinct entries P1 = 1,

P2 = 3, P3 = 10, n1 = n2 = n3, N/n = 10, M/N = 10, σ2 = 0.1. Empirical test: n = 60.
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The Stieltjes transform approach

Eigen-inference for the sample covariance matrix model

X. Mestre, “Improved estimation of eigenvalues and eigenvectors of covariance matrices using
their sample estimates,” IEEE trans. on Information Theory, vol. 54, no. 11, pp. 5113-5129, 2008.

Theorem

Consider the model BN = T
1
2
N XNXH

NT
1
2
N , with XN ∈ CN×n, i.i.d. with entries of zero mean, variance

1/n, and TN ∈ RN×N is diagonal with K distinct entries t1, . . . , tK of multiplicity n1, . . . , nK of same
order as n. Let k ∈ {1, . . . ,K}. Then, if the cluster associated to tk is separated from the clusters
associated to k − 1 and k + 1, as N, n → ∞, N/n → c,

t̂k =
n

nk

∑

m∈Nk

(λm − µm)

is an N, n-consistent estimator of tk , where Nk = {N −∑K
i=k ni + 1, . . . ,N −∑K

i=k+1 ni},
λ1, . . . , λN are the eigenvalues of BN and µ1, . . . , µN are the N solutions of

mXH
N TN XN

(µ) = 0
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The Stieltjes transform approach

A trick to compute the µk ’s

R. Couillet, J. W. Silverstein, M. Debbah, “Eigen-inference for multi-source power estimation”,
submitted to ISIT 2010.

Lemma [Silverstein]

Let A ∈ CN×N be diagonal with entries λ1, . . . , λN and y ∈ CN . Then the eigenvalues of
(A − yy∗) are the N real solutions in x of

N
∑

i=1

y2
i

λi − x
= 1

Taking A = diag(λ1, . . . , λN) and y2
i = 1

N λi , the eigenvalues of A − yyH are the solutions of

1

N

N
∑

i=1

λi

λi − x
= 1

which is equivalent to

mXH
N TN XN

(x) =
1

N

N
∑

i=1

1

λi − x
= 0

The µk ’s are then the eigenvalues of a matrix that is function of λ1, . . . , λN .
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The Stieltjes transform approach

Proof of the lemma

Let A ∈ CN×N be Hermitian and y ∈ CN . If µ is an eigenvalue of (A − yy∗) with eigenvector x, we
have

(A − yy∗)x = µx

(A − µI)x = y∗xy

x = y∗x(A − µI)−1y

y∗x = y∗xy∗(A − µI)−1y

1 = y∗(A − µI)−1y

Take A diagonal with entries λ1, . . . , λN , we then have

N
∑

i=1

y2
i

λi − µ
= 1 (1)
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The Stieltjes transform approach

Remarks on Mestre’s result

assuming cluster separation, the result consists in
taking the empirical ordered λi ’s inside the cluster (note that exact separation ensures there are nk of
these!)
getting the ordered eigenvalues µ1, . . . , µN of

diag(λ) − 1

N

√
λ

√
λ

T

with λ = (λ1, . . . , λN )
T. Keep only those of index inside Nk .

take the difference and scale.
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The Stieltjes transform approach

How to obtain this result?

major trick requires tools from complex analysis

Silverstein’s Stieltjes transform identity: for the conjugate model BN = X∗
NTNXN ,

mN(z) =
(

−z − c
∫

t

1 + tmN(z)
dF TN (t)

)−1

with mN the deterministic equivalent of mBN
. This is the only random matrix result we need.

before going further, we need some reminders from complex analysis.
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The Stieltjes transform approach

Reminders of complex analysis

W. Rudin, Real and complex analysis, McGraw-Hill, 2006.

Cauchy integration formula

Theorem

Let U ⊂ C be an open set and f : U → C be holomorphic on U. Let γ ⊂ U be a continuous
contour (i.e. closed path). Then, for a inside the surface formed by γ, we have

f (a) =
1

2πi

∮

γ

f (z)

z − a
dz
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The Stieltjes transform approach

Reminders of complex analysis (2)

Residue calculus

Theorem

Let γ be a contour on C. For f holomorphic inside γ but on a discrete number of points, to
compute the expression

1

2πi

∮

γ

f (z)dz

one must
1 determine the poles of f lying inside the surface formed by γ, i.e. those values a such that

lim
z→a

|f (z)| = ∞

2 determine the order of each pole, i.e. the smallest k such that

lim
z→a

|(z − a)k f (z)| < ∞

3 compute the residues of f at the poles, i.e. evaluate the value

Res(f , a)
∆
= lim

z→a

dk−1

dzk−1

[

(z − a)k f (z)
]

4 the integral is then the sum of all residues.

1

2πi

∮

γ

f (z)dz =
∑

a∈{ poles of f}

Res(f , a)
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The Stieltjes transform approach

Drawing a contour around tk

in the following, we make the cluster separability assumption for tk , i.e. the cluster
corresponding to tk is separated from those corresponding to tk−1 and tk+1.

from the Cauchy integral formula, for a negatively oriented complex contour Ck enclosing tk
and only tk ,

tk =
n

nk

1

2πi

∮

Ck

1

N

K
∑

r=1

nr
ω

tr − ω
dω

the idea is then
1 to choose an appropriate integration contour featuring the Stieltjes transform mF (z) of the l.s.d. of BN .
2 from the resulting expression, use the fact that, for N large, mF (z) ≃ mBN

(z), and replace mF by
mBN

3 mBN
is a function of the empirical eigenvalues λ1, . . . , λN . By residue calculus, we obtain the

estimate of tk .
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R. Couillet (Supélec) Random Matrix Theory Course 29/10/2009 26 / 58



The Stieltjes transform approach

Drawing a contour around tk

in the following, we make the cluster separability assumption for tk , i.e. the cluster
corresponding to tk is separated from those corresponding to tk−1 and tk+1.

from the Cauchy integral formula, for a negatively oriented complex contour Ck enclosing tk
and only tk ,

tk =
n

nk

1

2πi

∮

Ck

1

N

K
∑

r=1

nr
ω

tr − ω
dω

the idea is then
1 to choose an appropriate integration contour featuring the Stieltjes transform mF (z) of the l.s.d. of BN .
2 from the resulting expression, use the fact that, for N large, mF (z) ≃ mBN

(z), and replace mF by
mBN

3 mBN
is a function of the empirical eigenvalues λ1, . . . , λN . By residue calculus, we obtain the

estimate of tk .
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The Stieltjes transform approach

Contour selection

very naive idea: take any contour around tk , as close as we want.

However, the Stieltjes transform is ill-defined close to the real axis in the support!

naive idea: take any contour around the cluster of tk
However, it is not true that tk is inside its own cluster!

bright idea: remember the inversion formula of the Stieltjes transform for the conjugate
sample covariance matrix BN = XH

NTNXN ,

zN(m) = − 1

m
+ c

∫

t

1 + tm
dF TN (t)

and study again the graph of xN(m) its restriction to the real line. . .
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The Stieltjes transform approach

Inverse formula for the Stieltjes transform

−1 − 1
3 − 1

7
0

1

3

7

m

x F
(m

)

xF (m), m ∈ B

Support of F

Figure: xF (m), with F the l.s.d. of BN = XH
N TN XN with TN diagonal composed of three evenly weighted masses

in 1, 3 and 7. The support of F is read on the vertical axis, whenever xF (m) is not increasing.
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The Stieltjes transform approach

Playing with the asymptotes. . .

remember that the clusters edges x−
k , x+

k correspond to x−
k = xN(m

−
k ) and x+

k = xN(m
+
k )

such that x ′
N(m

−
k ) = x ′

N(m
+
k ) = 0.

from the asymptotes, we observe that

tk−1 < − 1

m−
k

< tk < − 1

m+
k

< tk+1

we can therefore take a contour that crosses the real line (slightly on the left of) − 1
m−

k

and

(slightly on the right of) − 1
m+

k
and is outside the real line everywhere else.
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The Stieltjes transform approach

Key step: change of variable

consider:
two reals x̄−

k = x−
k − ε and x̄+

k = x+
k + ε

any parametric curve Γ̄k ⊂ C such that

Γ̄k (0) = x̄−
k , Γ̄k (1) = x̄+

k , Γ̄k ((0, 1)) ⊂ C
+

with mN(z) the deterministic equivalent of mBN
(z), define

Ck = −1/mN(Γ̄k ) ∪ −1/mN(Γ̄
∗
k )

denoting Γk the surface enclosed by Γ̄k ∪ Γ̄∗k properly oriented, we have,

tk =
n

nk

1

2πi

∮

∂Γk

(

N

n
wmN(w) +

N − n

n

)

m′
N(w)

mN(w)2
dw

next figure presents the contour obtained by letting w move along a rectangle closely
surrounding the real line.
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The Stieltjes transform approach

Selected contour

1 3 10
−0.25

−0.2

−0.15

−0.1

− 5 · 10−2

0

5 · 10−2

0.1

0.15

0.2

0.25

ℜ(z)

ℑ
(z
)

Figure: zN (m) and zN (m)∗ as a function of m when m describes (−∞,∞) + 10−8 i . TN is composed of three
distinct entries, P1 = 1, P2 = 3, P3 = 10, n1 = n2 = n3, N/n = 1/10.
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The Stieltjes transform approach

Random matrix theory in action

as anticipated, we only need random matrix results once, as follows.

we have that
mBN

(z)− mN(z)
a.s.−→ 0

for all z outside the support of F N , the distribution of Stieltjes transform mN , for all large N.

on the integration contour, mN(z) is moreover bounded and so, replacing mN by m̂N , and
denoting

t̂k =
n

nk

1

2πi

∮

∂Γk

(

N

n
wm̂N(w) +

N − n

n

)

m̂′
N(w)

m̂N(w)2
dw

we have
mN(z)− m̂N(z)

a.s.−→ 0

we then have our estimate, which we only need to compute.
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The Stieltjes transform approach

Poles and residues

we find two sets of poles (outside zeros):
λ1, . . . , λN , the eigenvalues of BN .
the solutions µ1, . . . , µN to m̂N (z) = 0.

residue calculus, denote f (w) =
(

N
n wm̂N(w) + N−n

n

)

m̂′
N (w)

m̂N (w)2
,

the λk ’s are poles of order 1 and

lim
z→λk

(z − λk )f (z) = −N

n
λk

the µk ’s are also poles of order 1 and by L’Hospital’s rule

lim
z→µk

(z − λk )f (z) = lim
z→µk

N

n

(z − µk )zm′(z)

m(z)
=

N

n
µk
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The Stieltjes transform approach

Which poles in the contour?

we now need to determine which poles are in the contour of interest.

based on the asymptotes of

mN(z) =
1

n

n
∑

i=1

1

λi − z

we have
λ1 < µ2 < λ2 < . . . < µN < λN

what about µ1? the trick is to use the fact that

1

2πi

∮

Ck

1

z
dz = 0

which leads to
1

2πi

∮

∂Γk
m′

N(w)

mN(w)
dw = 0

the empirical version of which is

#{i : λi ∈ Γk} −#{i : µi ∈ Γk}

Since their difference tends to 0, there are as many λk ’s as µk ’s in the contour, hence µ1 is
asymptotically in the integration contour.
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Case study: comparison of moment vs. Stieltjes transform approach for blind
transmit power inference

Outline

1 Problem introduction

2 Free deconvolution

3 The Stieltjes transform approach

4 Case study: comparison of moment vs. Stieltjes transform approach for blind transmit power inference

5 General summary of open problems worth being studied
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Case study: comparison of moment vs. Stieltjes transform approach for blind
transmit power inference

Situation

P1, n1?
P2, n2?

P3, n3?

PK , nK ?

Figure: Power inference scenario
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Case study: comparison of moment vs. Stieltjes transform approach for blind
transmit power inference

Problem statement

a device embedded with N antennas receive a signal
originating from multiple sources
number of sources K is not necessarily known
source k is equipped with nk antennas (ideally nk >> 1)
signal k goes through unknown MIMO channel Hk ∈ C

N×nk

the variance σ2 of the additive noise is not necessarily known

the problem is to infer
P1, . . . , PK knowing K , n1, . . . , nK
P1, . . . , PK and n1, . . . , nK knowing K
K , P1, . . . , PK and n1, . . . , nK

we will regard the problem under the angle of

free deconvolution: i.e. from the moments of the receive F YYH
, infer those of F P, and infer on P

Stieltjes transform: i.e. extend Mestre’s approach
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R. Couillet (Supélec) Random Matrix Theory Course 29/10/2009 37 / 58



Case study: comparison of moment vs. Stieltjes transform approach for blind
transmit power inference

Problem statement

a device embedded with N antennas receive a signal
originating from multiple sources
number of sources K is not necessarily known
source k is equipped with nk antennas (ideally nk >> 1)
signal k goes through unknown MIMO channel Hk ∈ C

N×nk

the variance σ2 of the additive noise is not necessarily known

the problem is to infer
P1, . . . , PK knowing K , n1, . . . , nK
P1, . . . , PK and n1, . . . , nK knowing K
K , P1, . . . , PK and n1, . . . , nK

we will regard the problem under the angle of

free deconvolution: i.e. from the moments of the receive F YYH
, infer those of F P, and infer on P

Stieltjes transform: i.e. extend Mestre’s approach
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Case study: comparison of moment vs. Stieltjes transform approach for blind
transmit power inference

System model

at time t , source k transmit signal x(t)
k ∈ Cnk with i.i.d. entries of zero mean and variance 1.

we denote Pk the power emitted by user k

the channel Hk ∈ CN×nk from user k to the receiver has i.i.d. entries of zero mean and
variance 1/N.

at time t , the additive noise is denoted σw(t), with w(t) ∈ CN with i.i.d. entries of zero mean
and variance 1.

hence the receive signal y(t) at time t ,

y(t) =
K
∑

k=1

Hk

√

Pk x(t)
k + σw(t)

k

Gathering M time instant into Y = [y1 . . . yM ] ∈ CN×M , this can be written

Y = HP
1
2 X + σW

with H = [H1 . . .HK ] ∈ CN×n, n =
∑K

k=1 nk ,
P = diag(P1, . . . ,P1,P2, . . . ,P2, . . . ,PK , . . . ,PK ) where Pk has multiplicity nk on the

diagonal, XH = [XH
1 . . .XH

K ]
H ∈ Cn×M , Xk = [x(1)

k . . . x(M)
k ] ∈ Cnk×M , W defined similarly.
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Case study: comparison of moment vs. Stieltjes transform approach for blind
transmit power inference

Free deconvolution approach

one can infer the moment of F P from those of F YYH
.

one can deconvolve YYH in three steps,

an information-plus-noise model with “deterministic matrix” HP
1
2 XXHP

1
2 HH,

YYH
= (HP

1
2 X + σW)(HP

1
2 X + σW)

H

(the “deterministic” matrix can be taken random as long as it has a l.s.d.)

from HP
1
2 XXHP

1
2 HH, up to a Gram matrix commutation, we can deconvolve the signal X,

P
1
2 HHHP

1
2 XXH

from P
1
2 HHHP

1
2 , a new matrix commutation allows one to deconvolve HHH

PHHH
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Case study: comparison of moment vs. Stieltjes transform approach for blind
transmit power inference

Free deconvolution operations

In terms of free probability operations, this is

noise deconvolution

µ
1
M HP

1
2 XXHP

1
2 HH

=
(

(µ 1
M YYH � µc) ⊟ δσ2

)

⊠ µc

with µc the Marc̆enko-Pastur law and c = N/M.

signal deconvolution

µ
1
M P

1
2 HHHP

1
2 XXH

=
N

n
µ

1
M HP

1
2 XXHP

1
2 HH

+

(

1 − N

n

)

δ0

channel deconvolution
µP = µP 1

n HHH � µηc1

with c1 = n/N
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Case study: comparison of moment vs. Stieltjes transform approach for blind
transmit power inference

Free deconvolution: moments

from the three previous steps (plus addition of null eigenvalues), the moments of µP can be
computed from those of µYYH .

this process can be automatized by combinatorics softwares

finite size formulas are also available
the first moments mk of µ 1

M YYH as a function of the first moments dk of µP read

m1 = N−1nd1 + 1

m2 =
(

N−2M−1n + N−1n
)

d2 +
(

N−2n2
+ N−1M−1n2

)

d2
1

+
(

2N−1n + 2M−1n
)

d1 +
(

1 + NM−1
)

m3 =
(

3N−3M−2n + N−3n + 6N−2M−1n + N−1M−2n + N−1n
)

d3

+
(

6N−3M−1n2
+ 6N−2M−2n2

+ 3N−2n2
+ 3N−1M−1n2

)

d2d1

+
(

N−3M−2n3
+ N−3n3

+ 3N−2M−1n3
+ N−1M−2n3

)

d3
1

+
(

6N−2M−1n + 6N−1M−2n + 3N−1n + 3M−1n
)

d2

+
(

3N−2M−2n2
+ 3N−2n2

+ 9N−1M−1n2
+ 3M−2n2

)

d2
1

+
(

3N−1M−2n + 3N−1n + 9M−1n + 3NM−2n
)
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Case study: comparison of moment vs. Stieltjes transform approach for blind
transmit power inference

Free deconvolution: inferring powers

For practical finite size applications, the deconvolved moments will exhibit errors. Different
strategies are available,

direct inversion with Newton-Girard formulas. Assuming perfect evaluation of 1
K

∑K
k=1 Pm

k ,
P1, . . . ,PK are given by the K solutions of the polynomial

X K − Π1X K−1 + Π2X K−2 − . . .+ (−1)KΠK

where the Πm ’s (known as the elementary symmetric polynomials) are iteratively defined as

(−1)k kΠk +
k

∑

i=1

(−1)k+i SiΠk−i = 0

where Sk =
∑k

i=1 Pk
i .

may lead to non-real solutions!
does not minimize any conventional error criterion
convenient for one-shot power inference
when multiple realizations are available, statistical solutions are preferable
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Case study: comparison of moment vs. Stieltjes transform approach for blind
transmit power inference

Free deconvolution: inferring powers

alternative approach: estimators that minimize conventional error metrics

Z. D. Bai, J. W. Silverstein, “CLT of linear spectral statistics of large dimensional sample
covariance matrices,” Annals of Probability, vol. 32, no. 1A, pp. 553-605, 2004.

for the model Y = T
1
2 X, an asymptotic central limit result is known for the moments, i.e. for

m(N)
k the order k empirical moment of 1

N YYH and m◦(N)
k its deterministic equivalent, as

N → ∞,
N
(

m(N)
k − m◦(N)

k

)

⇒ X

where X is a central Gaussian random variable.
for the model under consideration, no such result is known.
if a given model turns out to be Gaussian, then maximum-likelihood or MMSE estimators are
of order. Denoting p = (P1, . . . ,PK ),

p̂ML = arg min
p

log det(C(p)) + (m − m◦(p))TC(p)−1(m − m◦(p))

with, for some p, m = (m(N)
1 , . . . ,m(N)

p ), m◦(p) = (m◦(N)
1 , . . . ,m◦(N)

p ), and C(p) the
covariance matrix of the Gaussian moment vector assuming powers p.
and for the MMSE,

p̂MMSE =

∫

p det(C−1(p))e−(m−m◦(p))TC(p)−1(m−m◦(p))dp
∫

det(C−1(p))e−(m−m◦(p))TC(p)−1(m−m◦(p))dp
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Case study: comparison of moment vs. Stieltjes transform approach for blind
transmit power inference

Remarks on free deconvolution approach

convenient approach, computationally not expensive

necessarily suboptimal when finitely many moments are considered

problem to move from moments to estimates: Newton-Girard method may lead to non real
solutions.

more elaborate methods, e.g. ML, MMSE, are prohibitively expensive
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Case study: comparison of moment vs. Stieltjes transform approach for blind
transmit power inference

Stieltjes transform approach

remember the matrix model
Y = HP

1
2 X + σW

with W,Y ∈ CN×M , H ∈ CN×n, X ∈ Cn×M , and P ∈ Cn×n diagonal.
this can be written in the following way

Y =
[

HP
1
2 σI

]

[

X
W

]

∈ C
N×M

and extend it into the matrix

Yext =

[

HP
1
2 σI

0 0

]

[

X
W

]

∈ C
(N+n)×M

which is a sample covariance matrix model with random covariance matrix.
since the covariance matrix clearly has an l.s.d., we have that the l.s.d. m(z) of YH

extYext is the
unique solution, for z ∈ C+, of

z = − 1

m(z)
+

N + n

M

∫

t

1 + tm(z)
dH(t)

= − 1

m(z)
+

N + n

Mm(z)



1 − 1

m(z)

∫

1

t − (− 1
m(z) )

dH(t)





with H the l.s.d. of
(

HPHH+σ2IN 0
0 0

)

.
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Case study: comparison of moment vs. Stieltjes transform approach for blind
transmit power inference

Second step

Note now that HPHH is also a sample covariance matrix model, and therefore the l.s.d. of
HPHH has Stieltjes transform m1(z), solution of the fixed-point equation in m1

z(m1) = − 1

m1
+

1

N

K
∑

k=1

nk
Pk

1 + Pk m1

Now, up to a shift of σ2 and the addition of n zero eigenvalues, the l.s.d. of HPHH is H. More
exactly,

∫

1

t − (z + σ2)
dH(t) =

N

N + n
m1(z)−

n

N + n

1

z

reminding the previous equation

z = − 1

m(z)
+

N + n

Mm(z)



1 − 1

m(z)

∫

1

t − (− 1
m(z) )

dH(t)





we then have the link between m and m1,

z = − N

M

1

m(z)2
m1(−1/m(z)− σ2) +

N − M

M

1

m(z)
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transmit power inference

Second step

Note now that HPHH is also a sample covariance matrix model, and therefore the l.s.d. of
HPHH has Stieltjes transform m1(z), solution of the fixed-point equation in m1
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Case study: comparison of moment vs. Stieltjes transform approach for blind
transmit power inference

Asymptotic spectrum

R. Couillet, J. W. Silverstein, M. Debbah, “Eigen-inference for multi-source power estimation”,
submitted to ISIT 2010.

all together, denoting f (z) = m1(−1/m(z)− σ2), the asymptotic spectrum of 1
M YYH has

Stietljes transform m(z), z ∈ C+, such that

m(z) =
M

N
m(z) +

M − N

N

1

z

where m(z) is the unique solution in C+ of

1

m(z)
= −σ2 +

1

f (z)
− 1

N

K
∑

k=1

nk Pk

1 + Pk f (z)

where f (z) is given by

f (z) =
M − N

N
m(z)− M

N
zm(z)2
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Case study: comparison of moment vs. Stieltjes transform approach for blind
transmit power inference

Asymptotic spectrum of 1
M YYH
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Empirical eigenvalues

Figure: Empirical and asymptotic eigenvalue distribution of 1
M YYH when P has three distinct entries P1 = 1,

P2 = 3, P3 = 10, n1 = n2 = n3, N/n = 10, M/N = 10, σ2 = 0.1. Empirical test: n = 60.
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Case study: comparison of moment vs. Stieltjes transform approach for blind
transmit power inference

Contour definition

the same approach as for the covariance matrix model can be followed

assuming separation of cluster k , Pk is comprised between −1/m1(x
−
k ε) and

−1/m1(x
+
k + ε) for x−

k and x+
k the edges of the k th cluster of the support of 1

M YYH.

reproducing the steps of Mestre’s work, we have, for some contour ∂Γk ,

Pk =
n

nk

1

2πi

∮

∂Γk

(

N

n
wm1(w) +

N − n

n

)

m′
1(w)

m1(w)2
dw

the key here is to remember that

m1(−1/m(z)− σ2) =
M − N

N
m(z)− M

N
zm(z)2

we then make the variable change w = −1/m(z)− σ2 to get

Pk =
n

nk

1

2πi

∮

∂Ωk

[

N

n

(

1 + σ2m(z)
)

+
N − K

K

1

zm(z)

] [

− 1

zm(z)
− m′(z)

m(z)2
− m′(z)

m(z)m(z)

]

dz
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Case study: comparison of moment vs. Stieltjes transform approach for blind
transmit power inference

Using RMT and computing the residues

we now know that m(z), the asymptotic Stieltjes transform of 1
M YYH, is close to its empirical

counterpart

m̂(z) =
1

M

M
∑

k=1

1

λk − z

verifying that m(z) is bounded along the integration contour, we can then replace limiting
results by empirical ones, and get

P̂k =
n

nk

1

2πi

∮

∂Ωk

[

N

n

(

1 + σ2m̂(z)
)

+
N − K

K

1

zm̂(z)

]

[

− 1

zm̂(z)
− m̂′(z)

m̂(z)2
− m̂′(z)

m̂(z)m̂(z)

]

dz

residue calculus then leads to 9 terms to be evaluated, the poles of which are at
η1, . . . , ηN , the solutions to

N
∑

k=1

1

λk − z
= 0

µ1, . . . , µN , the solutions to
M
∑

k=1

1

λk − z
= 0

(denoting λN+1 = . . . = λM = 0.)

proving the presence of the µk ’s and ηk ’s in the cluster under study is identical to the sample
covariance matrix model approach.
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Case study: comparison of moment vs. Stieltjes transform approach for blind
transmit power inference

Stieltjes transform approach: final result

R. Couillet, J. W. Silverstein, M. Debbah, “Eigen-inference for multi-source power estimation”,
submitted to ISIT 2010.

Theorem

Let BN = 1
M YYH ∈ CN×N , with Y defined as previously. Denote its ordered eigenvalues vector

λ = (λ1, . . . , λN), λ1 < . . . , λN . Further assume asymptotic spectrum separability. Then, for
k ∈ {1, . . . ,K}, as N, n, M grow large, we have

P̂k − Pk
a.s.−→ 0

where the estimate P̂k is given by

P̂k =
NM

nk (M − N)

∑

i∈Nk

(ηi − µi )

with Nk = {N −∑K
i=k ni + 1, . . . ,N −∑K

i=k+1 ni} the set of indexes matching the cluster

corresponding to Pk , (η1, . . . , ηN) the ordered eigenvalues of diag(λ)− 1
N

√
λ
√
λ

T
and

(µ1, . . . , µN) the ordered eigenvalues of diag(λ)− 1
M

√
λ
√
λ

T
.
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Case study: comparison of moment vs. Stieltjes transform approach for blind
transmit power inference

Comments on the result

very compact formula

low computational complexity

assuming cluster separation, it allows also to infer the number of eigenvalues, as well as the
multiplicity of each eigenvalue.

however, strong requirement on cluster separation

if separation is not true, the mean of the eigenvalues instead of the eigenvalues themselves is
computed. Note that this might be good enough!.

extension to the case when spectrum separation is not needed is being investigated at the
moment.

supposedly, it is possible to infer K , all nk ’s and all Pk ’s using the Stieltjes transform method.
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Case study: comparison of moment vs. Stieltjes transform approach for blind
transmit power inference

Performance comparison
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Figure: Multi-source power estimation, for K = 3, P1 = 1, P2 = 3, P3 = 10, n1/n = n2/n = n3/n = 1/3
,n/N = N/M = 1/10, SNR = 10 dB, for 10, 000 simulation runs; Top n = 60, bottom n = 6.
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Case study: comparison of moment vs. Stieltjes transform approach for blind
transmit power inference

General comments and steps left to fulfill

up to this day
the moment approach is much simpler to derive
it does not require any cluster separation
the finite size case is treated in the mean, which the Stieltjes transform approach cannot do.
however, the Stieltjes transform approach makes full use of the spectral knowledge, when the
moment approach is limited to a few moments.
the results are more natural, and more “telling”

in the future, it is expected that the cluster separation requirement can be overtaken.

a natural general framework attached to the Stieltjes transform method could arise

central limit results on the estimates is expected

R. Couillet (Supélec) Random Matrix Theory Course 29/10/2009 54 / 58



Case study: comparison of moment vs. Stieltjes transform approach for blind
transmit power inference

General comments and steps left to fulfill

up to this day
the moment approach is much simpler to derive
it does not require any cluster separation
the finite size case is treated in the mean, which the Stieltjes transform approach cannot do.
however, the Stieltjes transform approach makes full use of the spectral knowledge, when the
moment approach is limited to a few moments.
the results are more natural, and more “telling”

in the future, it is expected that the cluster separation requirement can be overtaken.

a natural general framework attached to the Stieltjes transform method could arise

central limit results on the estimates is expected
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Case study: comparison of moment vs. Stieltjes transform approach for blind
transmit power inference
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General summary of open problems worth being studied
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1 Problem introduction
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General summary of open problems worth being studied

Living at the edge of the available mathematical tools

the first applications of random matrix theory to wireless communications used to be
mere applications of existing theorems
limited to system analysis

today,
the scope of applications has widened: multi-user, multi-antenna system analysis, concrete
applications in self-organized networks, detection, estimation etc.
most of the new studies require new mathematical results
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General summary of open problems worth being studied

Random matrix theory today and tomorrow

today, a large number of applications linked to i.i.d. (Gaussian or not) models, with double
correlation, variance profile, non-centered, Haar matrices has been treated.

more structured matrices are more difficult to treat, especially on the analytic side

results on eigenvectors are also less numerous

finite size considerations yet limited to moment approaches

eigen-inference methods need be developed to more involved models and gathered into a
unified framework.
the scalars appearing in fixed-point equations seem to compress the communication channel
information to its simplest granularity:

is that true?
how and for which applications can this be used?
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finite size considerations yet limited to moment approaches

eigen-inference methods need be developed to more involved models and gathered into a
unified framework.
the scalars appearing in fixed-point equations seem to compress the communication channel
information to its simplest granularity:

is that true?
how and for which applications can this be used?
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